commit
2865baf54077aa98fcdb478cefe6a42c417b9374 upstream.
The Spectre-v1 mitigations made "access_ok()" much more expensive, since
it has to serialize execution with the test for a valid user address.
All the normal user copy routines avoid this by just masking the user
address with a data-dependent mask instead, but the fast
"unsafe_user_read()" kind of patterms that were supposed to be a fast
case got slowed down.
This introduces a notion of using
src = masked_user_access_begin(src);
to do the user address sanity using a data-dependent mask instead of the
more traditional conditional
if (user_read_access_begin(src, len)) {
model.
This model only works for dense accesses that start at 'src' and on
architectures that have a guard region that is guaranteed to fault in
between the user space and the kernel space area.
With this, the user access doesn't need to be manually checked, because
a bad address is guaranteed to fault (by some architecture masking
trick: on x86-64 this involves just turning an invalid user address into
all ones, since we don't map the top of address space).
This only converts a couple of examples for now. Example x86-64 code
generation for loading two words from user space:
stac
mov %rax,%rcx
sar $0x3f,%rcx
or %rax,%rcx
mov (%rcx),%r13
mov 0x8(%rcx),%r14
clac
where all the error handling and -EFAULT is now purely handled out of
line by the exception path.
Of course, if the micro-architecture does badly at 'clac' and 'stac',
the above is still pitifully slow. But at least we did as well as we
could.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
*/
#define valid_user_address(x) ((__force long)(x) >= 0)
+/*
+ * Masking the user address is an alternative to a conditional
+ * user_access_begin that can avoid the fencing. This only works
+ * for dense accesses starting at the address.
+ */
+#define mask_user_address(x) ((typeof(x))((long)(x)|((long)(x)>>63)))
+#define masked_user_access_begin(x) ({ __uaccess_begin(); mask_user_address(x); })
+
/*
* User pointers can have tag bits on x86-64. This scheme tolerates
* arbitrary values in those bits rather then masking them off.
{
// the path is hot enough for overhead of copy_from_user() to matter
if (from) {
- if (!user_read_access_begin(from, sizeof(*from)))
+ if (can_do_masked_user_access())
+ from = masked_user_access_begin(from);
+ else if (!user_read_access_begin(from, sizeof(*from)))
return -EFAULT;
unsafe_get_user(to->p, &from->p, Efault);
unsafe_get_user(to->size, &from->size, Efault);
})
#endif
+#ifdef masked_user_access_begin
+ #define can_do_masked_user_access() 1
+#else
+ #define can_do_masked_user_access() 0
+ #define masked_user_access_begin(src) NULL
+#endif
+
/*
* Architectures should provide two primitives (raw_copy_{to,from}_user())
* and get rid of their private instances of copy_{to,from}_user() and
if (unlikely(count <= 0))
return 0;
+ if (can_do_masked_user_access()) {
+ long retval;
+
+ src = masked_user_access_begin(src);
+ retval = do_strncpy_from_user(dst, src, count, count);
+ user_read_access_end();
+ return retval;
+ }
+
max_addr = TASK_SIZE_MAX;
src_addr = (unsigned long)untagged_addr(src);
if (likely(src_addr < max_addr)) {
if (unlikely(count <= 0))
return 0;
+ if (can_do_masked_user_access()) {
+ long retval;
+
+ str = masked_user_access_begin(str);
+ retval = do_strnlen_user(str, count, count);
+ user_read_access_end();
+ return retval;
+ }
+
max_addr = TASK_SIZE_MAX;
src_addr = (unsigned long)untagged_addr(str);
if (likely(src_addr < max_addr)) {