-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Utility functions used throughout sqlite.
-**
-** This file contains functions for allocating memory, comparing
-** strings, and stuff like that.
-**
-*/
-#include "sqliteInt.h"
-#include <stdarg.h>
-#ifdef SQLITE_HAVE_ISNAN
-# include <math.h>
-#endif
-
-/*
-** Routine needed to support the testcase() macro.
-*/
-#ifdef SQLITE_COVERAGE_TEST
-void sqlite3Coverage(int x){
- static int dummy = 0;
- dummy += x;
-}
-#endif
-
-/*
-** Return true if the floating point value is Not a Number (NaN).
-**
-** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
-** Otherwise, we have our own implementation that works on most systems.
-*/
-int sqlite3IsNaN(double x){
- int rc; /* The value return */
-#if !defined(SQLITE_HAVE_ISNAN)
- /*
- ** Systems that support the isnan() library function should probably
- ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
- ** found that many systems do not have a working isnan() function so
- ** this implementation is provided as an alternative.
- **
- ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
- ** On the other hand, the use of -ffast-math comes with the following
- ** warning:
- **
- ** This option [-ffast-math] should never be turned on by any
- ** -O option since it can result in incorrect output for programs
- ** which depend on an exact implementation of IEEE or ISO
- ** rules/specifications for math functions.
- **
- ** Under MSVC, this NaN test may fail if compiled with a floating-
- ** point precision mode other than /fp:precise. From the MSDN
- ** documentation:
- **
- ** The compiler [with /fp:precise] will properly handle comparisons
- ** involving NaN. For example, x != x evaluates to true if x is NaN
- ** ...
- */
-#ifdef __FAST_MATH__
-# error SQLite will not work correctly with the -ffast-math option of GCC.
-#endif
- volatile double y = x;
- volatile double z = y;
- rc = (y!=z);
-#else /* if defined(SQLITE_HAVE_ISNAN) */
- rc = isnan(x);
-#endif /* SQLITE_HAVE_ISNAN */
- testcase( rc );
- return rc;
-}
-
-/*
-** Compute a string length that is limited to what can be stored in
-** lower 30 bits of a 32-bit signed integer.
-**
-** The value returned will never be negative. Nor will it ever be greater
-** than the actual length of the string. For very long strings (greater
-** than 1GiB) the value returned might be less than the true string length.
-*/
-int sqlite3Strlen30(const char *z){
- const char *z2 = z;
- if( z==0 ) return 0;
- while( *z2 ){ z2++; }
- return 0x3fffffff & (int)(z2 - z);
-}
-
-/*
-** Set the most recent error code and error string for the sqlite
-** handle "db". The error code is set to "err_code".
-**
-** If it is not NULL, string zFormat specifies the format of the
-** error string in the style of the printf functions: The following
-** format characters are allowed:
-**
-** %s Insert a string
-** %z A string that should be freed after use
-** %d Insert an integer
-** %T Insert a token
-** %S Insert the first element of a SrcList
-**
-** zFormat and any string tokens that follow it are assumed to be
-** encoded in UTF-8.
-**
-** To clear the most recent error for sqlite handle "db", sqlite3Error
-** should be called with err_code set to SQLITE_OK and zFormat set
-** to NULL.
-*/
-void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
- if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
- db->errCode = err_code;
- if( zFormat ){
- char *z;
- va_list ap;
- va_start(ap, zFormat);
- z = sqlite3VMPrintf(db, zFormat, ap);
- va_end(ap);
- sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
- }else{
- sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
- }
- }
-}
-
-/*
-** Add an error message to pParse->zErrMsg and increment pParse->nErr.
-** The following formatting characters are allowed:
-**
-** %s Insert a string
-** %z A string that should be freed after use
-** %d Insert an integer
-** %T Insert a token
-** %S Insert the first element of a SrcList
-**
-** This function should be used to report any error that occurs whilst
-** compiling an SQL statement (i.e. within sqlite3_prepare()). The
-** last thing the sqlite3_prepare() function does is copy the error
-** stored by this function into the database handle using sqlite3Error().
-** Function sqlite3Error() should be used during statement execution
-** (sqlite3_step() etc.).
-*/
-void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
- va_list ap;
- sqlite3 *db = pParse->db;
- pParse->nErr++;
- sqlite3DbFree(db, pParse->zErrMsg);
- va_start(ap, zFormat);
- pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);
- va_end(ap);
- pParse->rc = SQLITE_ERROR;
-}
-
-/*
-** Clear the error message in pParse, if any
-*/
-void sqlite3ErrorClear(Parse *pParse){
- sqlite3DbFree(pParse->db, pParse->zErrMsg);
- pParse->zErrMsg = 0;
- pParse->nErr = 0;
-}
-
-/*
-** Convert an SQL-style quoted string into a normal string by removing
-** the quote characters. The conversion is done in-place. If the
-** input does not begin with a quote character, then this routine
-** is a no-op.
-**
-** The input string must be zero-terminated. A new zero-terminator
-** is added to the dequoted string.
-**
-** The return value is -1 if no dequoting occurs or the length of the
-** dequoted string, exclusive of the zero terminator, if dequoting does
-** occur.
-**
-** 2002-Feb-14: This routine is extended to remove MS-Access style
-** brackets from around identifers. For example: "[a-b-c]" becomes
-** "a-b-c".
-*/
-int sqlite3Dequote(char *z){
- char quote;
- int i, j;
- if( z==0 ) return -1;
- quote = z[0];
- switch( quote ){
- case '\'': break;
- case '"': break;
- case '`': break; /* For MySQL compatibility */
- case '[': quote = ']'; break; /* For MS SqlServer compatibility */
- default: return -1;
- }
- for(i=1, j=0; ALWAYS(z[i]); i++){
- if( z[i]==quote ){
- if( z[i+1]==quote ){
- z[j++] = quote;
- i++;
- }else{
- break;
- }
- }else{
- z[j++] = z[i];
- }
- }
- z[j] = 0;
- return j;
-}
-
-/* Convenient short-hand */
-#define UpperToLower sqlite3UpperToLower
-
-/*
-** Some systems have stricmp(). Others have strcasecmp(). Because
-** there is no consistency, we will define our own.
-*/
-int sqlite3StrICmp(const char *zLeft, const char *zRight){
- register unsigned char *a, *b;
- a = (unsigned char *)zLeft;
- b = (unsigned char *)zRight;
- while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
- return UpperToLower[*a] - UpperToLower[*b];
-}
-int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
- register unsigned char *a, *b;
- a = (unsigned char *)zLeft;
- b = (unsigned char *)zRight;
- while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
- return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
-}
-
-/*
-** Return TRUE if z is a pure numeric string. Return FALSE and leave
-** *realnum unchanged if the string contains any character which is not
-** part of a number.
-**
-** If the string is pure numeric, set *realnum to TRUE if the string
-** contains the '.' character or an "E+000" style exponentiation suffix.
-** Otherwise set *realnum to FALSE. Note that just becaue *realnum is
-** false does not mean that the number can be successfully converted into
-** an integer - it might be too big.
-**
-** An empty string is considered non-numeric.
-*/
-int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
- int incr = (enc==SQLITE_UTF8?1:2);
- if( enc==SQLITE_UTF16BE ) z++;
- if( *z=='-' || *z=='+' ) z += incr;
- if( !sqlite3Isdigit(*z) ){
- return 0;
- }
- z += incr;
- *realnum = 0;
- while( sqlite3Isdigit(*z) ){ z += incr; }
- if( *z=='.' ){
- z += incr;
- if( !sqlite3Isdigit(*z) ) return 0;
- while( sqlite3Isdigit(*z) ){ z += incr; }
- *realnum = 1;
- }
- if( *z=='e' || *z=='E' ){
- z += incr;
- if( *z=='+' || *z=='-' ) z += incr;
- if( !sqlite3Isdigit(*z) ) return 0;
- while( sqlite3Isdigit(*z) ){ z += incr; }
- *realnum = 1;
- }
- return *z==0;
-}
-
-/*
-** The string z[] is an ASCII representation of a real number.
-** Convert this string to a double.
-**
-** This routine assumes that z[] really is a valid number. If it
-** is not, the result is undefined.
-**
-** This routine is used instead of the library atof() function because
-** the library atof() might want to use "," as the decimal point instead
-** of "." depending on how locale is set. But that would cause problems
-** for SQL. So this routine always uses "." regardless of locale.
-*/
-int sqlite3AtoF(const char *z, double *pResult){
-#ifndef SQLITE_OMIT_FLOATING_POINT
- const char *zBegin = z;
- /* sign * significand * (10 ^ (esign * exponent)) */
- int sign = 1; /* sign of significand */
- i64 s = 0; /* significand */
- int d = 0; /* adjust exponent for shifting decimal point */
- int esign = 1; /* sign of exponent */
- int e = 0; /* exponent */
- double result;
- int nDigits = 0;
-
- /* skip leading spaces */
- while( sqlite3Isspace(*z) ) z++;
- /* get sign of significand */
- if( *z=='-' ){
- sign = -1;
- z++;
- }else if( *z=='+' ){
- z++;
- }
- /* skip leading zeroes */
- while( z[0]=='0' ) z++, nDigits++;
-
- /* copy max significant digits to significand */
- while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
- s = s*10 + (*z - '0');
- z++, nDigits++;
- }
- /* skip non-significant significand digits
- ** (increase exponent by d to shift decimal left) */
- while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;
-
- /* if decimal point is present */
- if( *z=='.' ){
- z++;
- /* copy digits from after decimal to significand
- ** (decrease exponent by d to shift decimal right) */
- while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
- s = s*10 + (*z - '0');
- z++, nDigits++, d--;
- }
- /* skip non-significant digits */
- while( sqlite3Isdigit(*z) ) z++, nDigits++;
- }
-
- /* if exponent is present */
- if( *z=='e' || *z=='E' ){
- z++;
- /* get sign of exponent */
- if( *z=='-' ){
- esign = -1;
- z++;
- }else if( *z=='+' ){
- z++;
- }
- /* copy digits to exponent */
- while( sqlite3Isdigit(*z) ){
- e = e*10 + (*z - '0');
- z++;
- }
- }
-
- /* adjust exponent by d, and update sign */
- e = (e*esign) + d;
- if( e<0 ) {
- esign = -1;
- e *= -1;
- } else {
- esign = 1;
- }
-
- /* if 0 significand */
- if( !s ) {
- /* In the IEEE 754 standard, zero is signed.
- ** Add the sign if we've seen at least one digit */
- result = (sign<0 && nDigits) ? -(double)0 : (double)0;
- } else {
- /* attempt to reduce exponent */
- if( esign>0 ){
- while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
- }
-
- /* adjust the sign of significand */
- s = sign<0 ? -s : s;
-
- /* if exponent, scale significand as appropriate
- ** and store in result. */
- if( e ){
- double scale = 1.0;
- while( e>=16 ){ scale *= 1.0e+16; e -= 16; }
- while( e>=4 ){ scale *= 1.0e+4; e -= 4; }
- while( e>=1 ){ scale *= 1.0e+1; e -= 1; }
- if( esign<0 ){
- result = s / scale;
- }else{
- result = s * scale;
- }
- } else {
- result = (double)s;
- }
- }
-
- /* store the result */
- *pResult = result;
-
- /* return number of characters used */
- return (int)(z - zBegin);
-#else
- return sqlite3Atoi64(z, pResult);
-#endif /* SQLITE_OMIT_FLOATING_POINT */
-}
-
-/*
-** Compare the 19-character string zNum against the text representation
-** value 2^63: 9223372036854775808. Return negative, zero, or positive
-** if zNum is less than, equal to, or greater than the string.
-**
-** Unlike memcmp() this routine is guaranteed to return the difference
-** in the values of the last digit if the only difference is in the
-** last digit. So, for example,
-**
-** compare2pow63("9223372036854775800")
-**
-** will return -8.
-*/
-static int compare2pow63(const char *zNum){
- int c;
- c = memcmp(zNum,"922337203685477580",18)*10;
- if( c==0 ){
- c = zNum[18] - '8';
- }
- return c;
-}
-
-
-/*
-** Return TRUE if zNum is a 64-bit signed integer and write
-** the value of the integer into *pNum. If zNum is not an integer
-** or is an integer that is too large to be expressed with 64 bits,
-** then return false.
-**
-** When this routine was originally written it dealt with only
-** 32-bit numbers. At that time, it was much faster than the
-** atoi() library routine in RedHat 7.2.
-*/
-int sqlite3Atoi64(const char *zNum, i64 *pNum){
- i64 v = 0;
- int neg;
- int i, c;
- const char *zStart;
- while( sqlite3Isspace(*zNum) ) zNum++;
- if( *zNum=='-' ){
- neg = 1;
- zNum++;
- }else if( *zNum=='+' ){
- neg = 0;
- zNum++;
- }else{
- neg = 0;
- }
- zStart = zNum;
- while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
- v = v*10 + c - '0';
- }
- *pNum = neg ? -v : v;
- if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
- /* zNum is empty or contains non-numeric text or is longer
- ** than 19 digits (thus guaranting that it is too large) */
- return 0;
- }else if( i<19 ){
- /* Less than 19 digits, so we know that it fits in 64 bits */
- return 1;
- }else{
- /* 19-digit numbers must be no larger than 9223372036854775807 if positive
- ** or 9223372036854775808 if negative. Note that 9223372036854665808
- ** is 2^63. */
- return compare2pow63(zNum)<neg;
- }
-}
-
-/*
-** The string zNum represents an unsigned integer. The zNum string
-** consists of one or more digit characters and is terminated by
-** a zero character. Any stray characters in zNum result in undefined
-** behavior.
-**
-** If the unsigned integer that zNum represents will fit in a
-** 64-bit signed integer, return TRUE. Otherwise return FALSE.
-**
-** If the negFlag parameter is true, that means that zNum really represents
-** a negative number. (The leading "-" is omitted from zNum.) This
-** parameter is needed to determine a boundary case. A string
-** of "9223373036854775808" returns false if negFlag is false or true
-** if negFlag is true.
-**
-** Leading zeros are ignored.
-*/
-int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
- int i;
- int neg = 0;
-
- assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */
-
- if( negFlag ) neg = 1-neg;
- while( *zNum=='0' ){
- zNum++; /* Skip leading zeros. Ticket #2454 */
- }
- for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); }
- if( i<19 ){
- /* Guaranteed to fit if less than 19 digits */
- return 1;
- }else if( i>19 ){
- /* Guaranteed to be too big if greater than 19 digits */
- return 0;
- }else{
- /* Compare against 2^63. */
- return compare2pow63(zNum)<neg;
- }
-}
-
-/*
-** If zNum represents an integer that will fit in 32-bits, then set
-** *pValue to that integer and return true. Otherwise return false.
-**
-** Any non-numeric characters that following zNum are ignored.
-** This is different from sqlite3Atoi64() which requires the
-** input number to be zero-terminated.
-*/
-int sqlite3GetInt32(const char *zNum, int *pValue){
- sqlite_int64 v = 0;
- int i, c;
- int neg = 0;
- if( zNum[0]=='-' ){
- neg = 1;
- zNum++;
- }else if( zNum[0]=='+' ){
- zNum++;
- }
- while( zNum[0]=='0' ) zNum++;
- for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
- v = v*10 + c;
- }
-
- /* The longest decimal representation of a 32 bit integer is 10 digits:
- **
- ** 1234567890
- ** 2^31 -> 2147483648
- */
- if( i>10 ){
- return 0;
- }
- if( v-neg>2147483647 ){
- return 0;
- }
- if( neg ){
- v = -v;
- }
- *pValue = (int)v;
- return 1;
-}
-
-/*
-** The variable-length integer encoding is as follows:
-**
-** KEY:
-** A = 0xxxxxxx 7 bits of data and one flag bit
-** B = 1xxxxxxx 7 bits of data and one flag bit
-** C = xxxxxxxx 8 bits of data
-**
-** 7 bits - A
-** 14 bits - BA
-** 21 bits - BBA
-** 28 bits - BBBA
-** 35 bits - BBBBA
-** 42 bits - BBBBBA
-** 49 bits - BBBBBBA
-** 56 bits - BBBBBBBA
-** 64 bits - BBBBBBBBC
-*/
-
-/*
-** Write a 64-bit variable-length integer to memory starting at p[0].
-** The length of data write will be between 1 and 9 bytes. The number
-** of bytes written is returned.
-**
-** A variable-length integer consists of the lower 7 bits of each byte
-** for all bytes that have the 8th bit set and one byte with the 8th
-** bit clear. Except, if we get to the 9th byte, it stores the full
-** 8 bits and is the last byte.
-*/
-int sqlite3PutVarint(unsigned char *p, u64 v){
- int i, j, n;
- u8 buf[10];
- if( v & (((u64)0xff000000)<<32) ){
- p[8] = (u8)v;
- v >>= 8;
- for(i=7; i>=0; i--){
- p[i] = (u8)((v & 0x7f) | 0x80);
- v >>= 7;
- }
- return 9;
- }
- n = 0;
- do{
- buf[n++] = (u8)((v & 0x7f) | 0x80);
- v >>= 7;
- }while( v!=0 );
- buf[0] &= 0x7f;
- assert( n<=9 );
- for(i=0, j=n-1; j>=0; j--, i++){
- p[i] = buf[j];
- }
- return n;
-}
-
-/*
-** This routine is a faster version of sqlite3PutVarint() that only
-** works for 32-bit positive integers and which is optimized for
-** the common case of small integers. A MACRO version, putVarint32,
-** is provided which inlines the single-byte case. All code should use
-** the MACRO version as this function assumes the single-byte case has
-** already been handled.
-*/
-int sqlite3PutVarint32(unsigned char *p, u32 v){
-#ifndef putVarint32
- if( (v & ~0x7f)==0 ){
- p[0] = v;
- return 1;
- }
-#endif
- if( (v & ~0x3fff)==0 ){
- p[0] = (u8)((v>>7) | 0x80);
- p[1] = (u8)(v & 0x7f);
- return 2;
- }
- return sqlite3PutVarint(p, v);
-}
-
-/*
-** Read a 64-bit variable-length integer from memory starting at p[0].
-** Return the number of bytes read. The value is stored in *v.
-*/
-u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
- u32 a,b,s;
-
- a = *p;
- /* a: p0 (unmasked) */
- if (!(a&0x80))
- {
- *v = a;
- return 1;
- }
-
- p++;
- b = *p;
- /* b: p1 (unmasked) */
- if (!(b&0x80))
- {
- a &= 0x7f;
- a = a<<7;
- a |= b;
- *v = a;
- return 2;
- }
-
- p++;
- a = a<<14;
- a |= *p;
- /* a: p0<<14 | p2 (unmasked) */
- if (!(a&0x80))
- {
- a &= (0x7f<<14)|(0x7f);
- b &= 0x7f;
- b = b<<7;
- a |= b;
- *v = a;
- return 3;
- }
-
- /* CSE1 from below */
- a &= (0x7f<<14)|(0x7f);
- p++;
- b = b<<14;
- b |= *p;
- /* b: p1<<14 | p3 (unmasked) */
- if (!(b&0x80))
- {
- b &= (0x7f<<14)|(0x7f);
- /* moved CSE1 up */
- /* a &= (0x7f<<14)|(0x7f); */
- a = a<<7;
- a |= b;
- *v = a;
- return 4;
- }
-
- /* a: p0<<14 | p2 (masked) */
- /* b: p1<<14 | p3 (unmasked) */
- /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
- /* moved CSE1 up */
- /* a &= (0x7f<<14)|(0x7f); */
- b &= (0x7f<<14)|(0x7f);
- s = a;
- /* s: p0<<14 | p2 (masked) */
-
- p++;
- a = a<<14;
- a |= *p;
- /* a: p0<<28 | p2<<14 | p4 (unmasked) */
- if (!(a&0x80))
- {
- /* we can skip these cause they were (effectively) done above in calc'ing s */
- /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
- /* b &= (0x7f<<14)|(0x7f); */
- b = b<<7;
- a |= b;
- s = s>>18;
- *v = ((u64)s)<<32 | a;
- return 5;
- }
-
- /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
- s = s<<7;
- s |= b;
- /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
-
- p++;
- b = b<<14;
- b |= *p;
- /* b: p1<<28 | p3<<14 | p5 (unmasked) */
- if (!(b&0x80))
- {
- /* we can skip this cause it was (effectively) done above in calc'ing s */
- /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
- a &= (0x7f<<14)|(0x7f);
- a = a<<7;
- a |= b;
- s = s>>18;
- *v = ((u64)s)<<32 | a;
- return 6;
- }
-
- p++;
- a = a<<14;
- a |= *p;
- /* a: p2<<28 | p4<<14 | p6 (unmasked) */
- if (!(a&0x80))
- {
- a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
- b &= (0x7f<<14)|(0x7f);
- b = b<<7;
- a |= b;
- s = s>>11;
- *v = ((u64)s)<<32 | a;
- return 7;
- }
-
- /* CSE2 from below */
- a &= (0x7f<<14)|(0x7f);
- p++;
- b = b<<14;
- b |= *p;
- /* b: p3<<28 | p5<<14 | p7 (unmasked) */
- if (!(b&0x80))
- {
- b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
- /* moved CSE2 up */
- /* a &= (0x7f<<14)|(0x7f); */
- a = a<<7;
- a |= b;
- s = s>>4;
- *v = ((u64)s)<<32 | a;
- return 8;
- }
-
- p++;
- a = a<<15;
- a |= *p;
- /* a: p4<<29 | p6<<15 | p8 (unmasked) */
-
- /* moved CSE2 up */
- /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
- b &= (0x7f<<14)|(0x7f);
- b = b<<8;
- a |= b;
-
- s = s<<4;
- b = p[-4];
- b &= 0x7f;
- b = b>>3;
- s |= b;
-
- *v = ((u64)s)<<32 | a;
-
- return 9;
-}
-
-/*
-** Read a 32-bit variable-length integer from memory starting at p[0].
-** Return the number of bytes read. The value is stored in *v.
-**
-** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
-** integer, then set *v to 0xffffffff.
-**
-** A MACRO version, getVarint32, is provided which inlines the
-** single-byte case. All code should use the MACRO version as
-** this function assumes the single-byte case has already been handled.
-*/
-u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
- u32 a,b;
-
- /* The 1-byte case. Overwhelmingly the most common. Handled inline
- ** by the getVarin32() macro */
- a = *p;
- /* a: p0 (unmasked) */
-#ifndef getVarint32
- if (!(a&0x80))
- {
- /* Values between 0 and 127 */
- *v = a;
- return 1;
- }
-#endif
-
- /* The 2-byte case */
- p++;
- b = *p;
- /* b: p1 (unmasked) */
- if (!(b&0x80))
- {
- /* Values between 128 and 16383 */
- a &= 0x7f;
- a = a<<7;
- *v = a | b;
- return 2;
- }
-
- /* The 3-byte case */
- p++;
- a = a<<14;
- a |= *p;
- /* a: p0<<14 | p2 (unmasked) */
- if (!(a&0x80))
- {
- /* Values between 16384 and 2097151 */
- a &= (0x7f<<14)|(0x7f);
- b &= 0x7f;
- b = b<<7;
- *v = a | b;
- return 3;
- }
-
- /* A 32-bit varint is used to store size information in btrees.
- ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
- ** A 3-byte varint is sufficient, for example, to record the size
- ** of a 1048569-byte BLOB or string.
- **
- ** We only unroll the first 1-, 2-, and 3- byte cases. The very
- ** rare larger cases can be handled by the slower 64-bit varint
- ** routine.
- */
-#if 1
- {
- u64 v64;
- u8 n;
-
- p -= 2;
- n = sqlite3GetVarint(p, &v64);
- assert( n>3 && n<=9 );
- if( (v64 & SQLITE_MAX_U32)!=v64 ){
- *v = 0xffffffff;
- }else{
- *v = (u32)v64;
- }
- return n;
- }
-
-#else
- /* For following code (kept for historical record only) shows an
- ** unrolling for the 3- and 4-byte varint cases. This code is
- ** slightly faster, but it is also larger and much harder to test.
- */
- p++;
- b = b<<14;
- b |= *p;
- /* b: p1<<14 | p3 (unmasked) */
- if (!(b&0x80))
- {
- /* Values between 2097152 and 268435455 */
- b &= (0x7f<<14)|(0x7f);
- a &= (0x7f<<14)|(0x7f);
- a = a<<7;
- *v = a | b;
- return 4;
- }
-
- p++;
- a = a<<14;
- a |= *p;
- /* a: p0<<28 | p2<<14 | p4 (unmasked) */
- if (!(a&0x80))
- {
- /* Walues between 268435456 and 34359738367 */
- a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
- b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
- b = b<<7;
- *v = a | b;
- return 5;
- }
-
- /* We can only reach this point when reading a corrupt database
- ** file. In that case we are not in any hurry. Use the (relatively
- ** slow) general-purpose sqlite3GetVarint() routine to extract the
- ** value. */
- {
- u64 v64;
- u8 n;
-
- p -= 4;
- n = sqlite3GetVarint(p, &v64);
- assert( n>5 && n<=9 );
- *v = (u32)v64;
- return n;
- }
-#endif
-}
-
-/*
-** Return the number of bytes that will be needed to store the given
-** 64-bit integer.
-*/
-int sqlite3VarintLen(u64 v){
- int i = 0;
- do{
- i++;
- v >>= 7;
- }while( v!=0 && ALWAYS(i<9) );
- return i;
-}
-
-
-/*
-** Read or write a four-byte big-endian integer value.
-*/
-u32 sqlite3Get4byte(const u8 *p){
- return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
-}
-void sqlite3Put4byte(unsigned char *p, u32 v){
- p[0] = (u8)(v>>24);
- p[1] = (u8)(v>>16);
- p[2] = (u8)(v>>8);
- p[3] = (u8)v;
-}
-
-
-
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
-/*
-** Translate a single byte of Hex into an integer.
-** This routine only works if h really is a valid hexadecimal
-** character: 0..9a..fA..F
-*/
-static u8 hexToInt(int h){
- assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
-#ifdef SQLITE_ASCII
- h += 9*(1&(h>>6));
-#endif
-#ifdef SQLITE_EBCDIC
- h += 9*(1&~(h>>4));
-#endif
- return (u8)(h & 0xf);
-}
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
-
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
-/*
-** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
-** value. Return a pointer to its binary value. Space to hold the
-** binary value has been obtained from malloc and must be freed by
-** the calling routine.
-*/
-void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
- char *zBlob;
- int i;
-
- zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
- n--;
- if( zBlob ){
- for(i=0; i<n; i+=2){
- zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
- }
- zBlob[i/2] = 0;
- }
- return zBlob;
-}
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
-
-
-/*
-** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
-** when this routine is called.
-**
-** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
-** value indicates that the database connection passed into the API is
-** open and is not being used by another thread. By changing the value
-** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
-** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
-** when the API exits.
-**
-** This routine is a attempt to detect if two threads use the
-** same sqlite* pointer at the same time. There is a race
-** condition so it is possible that the error is not detected.
-** But usually the problem will be seen. The result will be an
-** error which can be used to debug the application that is
-** using SQLite incorrectly.
-**
-** Ticket #202: If db->magic is not a valid open value, take care not
-** to modify the db structure at all. It could be that db is a stale
-** pointer. In other words, it could be that there has been a prior
-** call to sqlite3_close(db) and db has been deallocated. And we do
-** not want to write into deallocated memory.
-*/
-#ifdef SQLITE_DEBUG
-int sqlite3SafetyOn(sqlite3 *db){
- if( db->magic==SQLITE_MAGIC_OPEN ){
- db->magic = SQLITE_MAGIC_BUSY;
- assert( sqlite3_mutex_held(db->mutex) );
- return 0;
- }else if( db->magic==SQLITE_MAGIC_BUSY ){
- db->magic = SQLITE_MAGIC_ERROR;
- db->u1.isInterrupted = 1;
- }
- return 1;
-}
-#endif
-
-/*
-** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
-** when this routine is called.
-*/
-#ifdef SQLITE_DEBUG
-int sqlite3SafetyOff(sqlite3 *db){
- if( db->magic==SQLITE_MAGIC_BUSY ){
- db->magic = SQLITE_MAGIC_OPEN;
- assert( sqlite3_mutex_held(db->mutex) );
- return 0;
- }else{
- db->magic = SQLITE_MAGIC_ERROR;
- db->u1.isInterrupted = 1;
- return 1;
- }
-}
-#endif
-
-/*
-** Check to make sure we have a valid db pointer. This test is not
-** foolproof but it does provide some measure of protection against
-** misuse of the interface such as passing in db pointers that are
-** NULL or which have been previously closed. If this routine returns
-** 1 it means that the db pointer is valid and 0 if it should not be
-** dereferenced for any reason. The calling function should invoke
-** SQLITE_MISUSE immediately.
-**
-** sqlite3SafetyCheckOk() requires that the db pointer be valid for
-** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
-** open properly and is not fit for general use but which can be
-** used as an argument to sqlite3_errmsg() or sqlite3_close().
-*/
-int sqlite3SafetyCheckOk(sqlite3 *db){
- u32 magic;
- if( db==0 ) return 0;
- magic = db->magic;
- if( magic!=SQLITE_MAGIC_OPEN
-#ifdef SQLITE_DEBUG
- && magic!=SQLITE_MAGIC_BUSY
-#endif
- ){
- return 0;
- }else{
- return 1;
- }
-}
-int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
- u32 magic;
- magic = db->magic;
- if( magic!=SQLITE_MAGIC_SICK &&
- magic!=SQLITE_MAGIC_OPEN &&
- magic!=SQLITE_MAGIC_BUSY ) return 0;
- return 1;
-}
+/*\r
+** 2001 September 15\r
+**\r
+** The author disclaims copyright to this source code. In place of\r
+** a legal notice, here is a blessing:\r
+**\r
+** May you do good and not evil.\r
+** May you find forgiveness for yourself and forgive others.\r
+** May you share freely, never taking more than you give.\r
+**\r
+*************************************************************************\r
+** Utility functions used throughout sqlite.\r
+**\r
+** This file contains functions for allocating memory, comparing\r
+** strings, and stuff like that.\r
+**\r
+*/\r
+#include "sqliteInt.h"\r
+#include <stdarg.h>\r
+#ifdef SQLITE_HAVE_ISNAN\r
+# include <math.h>\r
+#endif\r
+\r
+/*\r
+** Routine needed to support the testcase() macro.\r
+*/\r
+#ifdef SQLITE_COVERAGE_TEST\r
+void sqlite3Coverage(int x){\r
+ static int dummy = 0;\r
+ dummy += x;\r
+}\r
+#endif\r
+\r
+/*\r
+** Return true if the floating point value is Not a Number (NaN).\r
+**\r
+** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.\r
+** Otherwise, we have our own implementation that works on most systems.\r
+*/\r
+int sqlite3IsNaN(double x){\r
+ int rc; /* The value return */\r
+#if !defined(SQLITE_HAVE_ISNAN)\r
+ /*\r
+ ** Systems that support the isnan() library function should probably\r
+ ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have\r
+ ** found that many systems do not have a working isnan() function so\r
+ ** this implementation is provided as an alternative.\r
+ **\r
+ ** This NaN test sometimes fails if compiled on GCC with -ffast-math.\r
+ ** On the other hand, the use of -ffast-math comes with the following\r
+ ** warning:\r
+ **\r
+ ** This option [-ffast-math] should never be turned on by any\r
+ ** -O option since it can result in incorrect output for programs\r
+ ** which depend on an exact implementation of IEEE or ISO \r
+ ** rules/specifications for math functions.\r
+ **\r
+ ** Under MSVC, this NaN test may fail if compiled with a floating-\r
+ ** point precision mode other than /fp:precise. From the MSDN \r
+ ** documentation:\r
+ **\r
+ ** The compiler [with /fp:precise] will properly handle comparisons \r
+ ** involving NaN. For example, x != x evaluates to true if x is NaN \r
+ ** ...\r
+ */\r
+#ifdef __FAST_MATH__\r
+# error SQLite will not work correctly with the -ffast-math option of GCC.\r
+#endif\r
+ volatile double y = x;\r
+ volatile double z = y;\r
+ rc = (y!=z);\r
+#else /* if defined(SQLITE_HAVE_ISNAN) */\r
+ rc = isnan(x);\r
+#endif /* SQLITE_HAVE_ISNAN */\r
+ testcase( rc );\r
+ return rc;\r
+}\r
+\r
+/*\r
+** Compute a string length that is limited to what can be stored in\r
+** lower 30 bits of a 32-bit signed integer.\r
+**\r
+** The value returned will never be negative. Nor will it ever be greater\r
+** than the actual length of the string. For very long strings (greater\r
+** than 1GiB) the value returned might be less than the true string length.\r
+*/\r
+int sqlite3Strlen30(const char *z){\r
+ const char *z2 = z;\r
+ if( z==0 ) return 0;\r
+ while( *z2 ){ z2++; }\r
+ return 0x3fffffff & (int)(z2 - z);\r
+}\r
+\r
+/*\r
+** Set the most recent error code and error string for the sqlite\r
+** handle "db". The error code is set to "err_code".\r
+**\r
+** If it is not NULL, string zFormat specifies the format of the\r
+** error string in the style of the printf functions: The following\r
+** format characters are allowed:\r
+**\r
+** %s Insert a string\r
+** %z A string that should be freed after use\r
+** %d Insert an integer\r
+** %T Insert a token\r
+** %S Insert the first element of a SrcList\r
+**\r
+** zFormat and any string tokens that follow it are assumed to be\r
+** encoded in UTF-8.\r
+**\r
+** To clear the most recent error for sqlite handle "db", sqlite3Error\r
+** should be called with err_code set to SQLITE_OK and zFormat set\r
+** to NULL.\r
+*/\r
+void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){\r
+ if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){\r
+ db->errCode = err_code;\r
+ if( zFormat ){\r
+ char *z;\r
+ va_list ap;\r
+ va_start(ap, zFormat);\r
+ z = sqlite3VMPrintf(db, zFormat, ap);\r
+ va_end(ap);\r
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);\r
+ }else{\r
+ sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);\r
+ }\r
+ }\r
+}\r
+\r
+/*\r
+** Add an error message to pParse->zErrMsg and increment pParse->nErr.\r
+** The following formatting characters are allowed:\r
+**\r
+** %s Insert a string\r
+** %z A string that should be freed after use\r
+** %d Insert an integer\r
+** %T Insert a token\r
+** %S Insert the first element of a SrcList\r
+**\r
+** This function should be used to report any error that occurs whilst\r
+** compiling an SQL statement (i.e. within sqlite3_prepare()). The\r
+** last thing the sqlite3_prepare() function does is copy the error\r
+** stored by this function into the database handle using sqlite3Error().\r
+** Function sqlite3Error() should be used during statement execution\r
+** (sqlite3_step() etc.).\r
+*/\r
+void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){\r
+ va_list ap;\r
+ sqlite3 *db = pParse->db;\r
+ pParse->nErr++;\r
+ sqlite3DbFree(db, pParse->zErrMsg);\r
+ va_start(ap, zFormat);\r
+ pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);\r
+ va_end(ap);\r
+ pParse->rc = SQLITE_ERROR;\r
+}\r
+\r
+/*\r
+** Clear the error message in pParse, if any\r
+*/\r
+void sqlite3ErrorClear(Parse *pParse){\r
+ sqlite3DbFree(pParse->db, pParse->zErrMsg);\r
+ pParse->zErrMsg = 0;\r
+ pParse->nErr = 0;\r
+}\r
+\r
+/*\r
+** Convert an SQL-style quoted string into a normal string by removing\r
+** the quote characters. The conversion is done in-place. If the\r
+** input does not begin with a quote character, then this routine\r
+** is a no-op.\r
+**\r
+** The input string must be zero-terminated. A new zero-terminator\r
+** is added to the dequoted string.\r
+**\r
+** The return value is -1 if no dequoting occurs or the length of the\r
+** dequoted string, exclusive of the zero terminator, if dequoting does\r
+** occur.\r
+**\r
+** 2002-Feb-14: This routine is extended to remove MS-Access style\r
+** brackets from around identifers. For example: "[a-b-c]" becomes\r
+** "a-b-c".\r
+*/\r
+int sqlite3Dequote(char *z){\r
+ char quote;\r
+ int i, j;\r
+ if( z==0 ) return -1;\r
+ quote = z[0];\r
+ switch( quote ){\r
+ case '\'': break;\r
+ case '"': break;\r
+ case '`': break; /* For MySQL compatibility */\r
+ case '[': quote = ']'; break; /* For MS SqlServer compatibility */\r
+ default: return -1;\r
+ }\r
+ for(i=1, j=0; ALWAYS(z[i]); i++){\r
+ if( z[i]==quote ){\r
+ if( z[i+1]==quote ){\r
+ z[j++] = quote;\r
+ i++;\r
+ }else{\r
+ break;\r
+ }\r
+ }else{\r
+ z[j++] = z[i];\r
+ }\r
+ }\r
+ z[j] = 0;\r
+ return j;\r
+}\r
+\r
+/* Convenient short-hand */\r
+#define UpperToLower sqlite3UpperToLower\r
+\r
+/*\r
+** Some systems have stricmp(). Others have strcasecmp(). Because\r
+** there is no consistency, we will define our own.\r
+*/\r
+int sqlite3StrICmp(const char *zLeft, const char *zRight){\r
+ register unsigned char *a, *b;\r
+ a = (unsigned char *)zLeft;\r
+ b = (unsigned char *)zRight;\r
+ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }\r
+ return UpperToLower[*a] - UpperToLower[*b];\r
+}\r
+int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){\r
+ register unsigned char *a, *b;\r
+ a = (unsigned char *)zLeft;\r
+ b = (unsigned char *)zRight;\r
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }\r
+ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];\r
+}\r
+\r
+/*\r
+** Return TRUE if z is a pure numeric string. Return FALSE and leave\r
+** *realnum unchanged if the string contains any character which is not\r
+** part of a number.\r
+**\r
+** If the string is pure numeric, set *realnum to TRUE if the string\r
+** contains the '.' character or an "E+000" style exponentiation suffix.\r
+** Otherwise set *realnum to FALSE. Note that just becaue *realnum is\r
+** false does not mean that the number can be successfully converted into\r
+** an integer - it might be too big.\r
+**\r
+** An empty string is considered non-numeric.\r
+*/\r
+int sqlite3IsNumber(const char *z, int *realnum, u8 enc){\r
+ int incr = (enc==SQLITE_UTF8?1:2);\r
+ if( enc==SQLITE_UTF16BE ) z++;\r
+ if( *z=='-' || *z=='+' ) z += incr;\r
+ if( !sqlite3Isdigit(*z) ){\r
+ return 0;\r
+ }\r
+ z += incr;\r
+ *realnum = 0;\r
+ while( sqlite3Isdigit(*z) ){ z += incr; }\r
+ if( *z=='.' ){\r
+ z += incr;\r
+ if( !sqlite3Isdigit(*z) ) return 0;\r
+ while( sqlite3Isdigit(*z) ){ z += incr; }\r
+ *realnum = 1;\r
+ }\r
+ if( *z=='e' || *z=='E' ){\r
+ z += incr;\r
+ if( *z=='+' || *z=='-' ) z += incr;\r
+ if( !sqlite3Isdigit(*z) ) return 0;\r
+ while( sqlite3Isdigit(*z) ){ z += incr; }\r
+ *realnum = 1;\r
+ }\r
+ return *z==0;\r
+}\r
+\r
+/*\r
+** The string z[] is an ASCII representation of a real number.\r
+** Convert this string to a double.\r
+**\r
+** This routine assumes that z[] really is a valid number. If it\r
+** is not, the result is undefined.\r
+**\r
+** This routine is used instead of the library atof() function because\r
+** the library atof() might want to use "," as the decimal point instead\r
+** of "." depending on how locale is set. But that would cause problems\r
+** for SQL. So this routine always uses "." regardless of locale.\r
+*/\r
+int sqlite3AtoF(const char *z, double *pResult){\r
+#ifndef SQLITE_OMIT_FLOATING_POINT\r
+ const char *zBegin = z;\r
+ /* sign * significand * (10 ^ (esign * exponent)) */\r
+ int sign = 1; /* sign of significand */\r
+ i64 s = 0; /* significand */\r
+ int d = 0; /* adjust exponent for shifting decimal point */\r
+ int esign = 1; /* sign of exponent */\r
+ int e = 0; /* exponent */\r
+ double result;\r
+ int nDigits = 0;\r
+\r
+ /* skip leading spaces */\r
+ while( sqlite3Isspace(*z) ) z++;\r
+ /* get sign of significand */\r
+ if( *z=='-' ){\r
+ sign = -1;\r
+ z++;\r
+ }else if( *z=='+' ){\r
+ z++;\r
+ }\r
+ /* skip leading zeroes */\r
+ while( z[0]=='0' ) z++, nDigits++;\r
+\r
+ /* copy max significant digits to significand */\r
+ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){\r
+ s = s*10 + (*z - '0');\r
+ z++, nDigits++;\r
+ }\r
+ /* skip non-significant significand digits\r
+ ** (increase exponent by d to shift decimal left) */\r
+ while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;\r
+\r
+ /* if decimal point is present */\r
+ if( *z=='.' ){\r
+ z++;\r
+ /* copy digits from after decimal to significand\r
+ ** (decrease exponent by d to shift decimal right) */\r
+ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){\r
+ s = s*10 + (*z - '0');\r
+ z++, nDigits++, d--;\r
+ }\r
+ /* skip non-significant digits */\r
+ while( sqlite3Isdigit(*z) ) z++, nDigits++;\r
+ }\r
+\r
+ /* if exponent is present */\r
+ if( *z=='e' || *z=='E' ){\r
+ z++;\r
+ /* get sign of exponent */\r
+ if( *z=='-' ){\r
+ esign = -1;\r
+ z++;\r
+ }else if( *z=='+' ){\r
+ z++;\r
+ }\r
+ /* copy digits to exponent */\r
+ while( sqlite3Isdigit(*z) ){\r
+ e = e*10 + (*z - '0');\r
+ z++;\r
+ }\r
+ }\r
+\r
+ /* adjust exponent by d, and update sign */\r
+ e = (e*esign) + d;\r
+ if( e<0 ) {\r
+ esign = -1;\r
+ e *= -1;\r
+ } else {\r
+ esign = 1;\r
+ }\r
+\r
+ /* if 0 significand */\r
+ if( !s ) {\r
+ /* In the IEEE 754 standard, zero is signed.\r
+ ** Add the sign if we've seen at least one digit */\r
+ result = (sign<0 && nDigits) ? -(double)0 : (double)0;\r
+ } else {\r
+ /* attempt to reduce exponent */\r
+ if( esign>0 ){\r
+ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;\r
+ }else{\r
+ while( !(s%10) && e>0 ) e--,s/=10;\r
+ }\r
+\r
+ /* adjust the sign of significand */\r
+ s = sign<0 ? -s : s;\r
+\r
+ /* if exponent, scale significand as appropriate\r
+ ** and store in result. */\r
+ if( e ){\r
+ double scale = 1.0;\r
+ /* 1.0e+22 is the largest power of 10 than can be \r
+ ** represented exactly. */\r
+ while( e%22 ) { scale *= 1.0e+1; e -= 1; }\r
+ while( e>0 ) { scale *= 1.0e+22; e -= 22; }\r
+ if( esign<0 ){\r
+ result = s / scale;\r
+ }else{\r
+ result = s * scale;\r
+ }\r
+ } else {\r
+ result = (double)s;\r
+ }\r
+ }\r
+\r
+ /* store the result */\r
+ *pResult = result;\r
+\r
+ /* return number of characters used */\r
+ return (int)(z - zBegin);\r
+#else\r
+ return sqlite3Atoi64(z, pResult);\r
+#endif /* SQLITE_OMIT_FLOATING_POINT */\r
+}\r
+\r
+/*\r
+** Compare the 19-character string zNum against the text representation\r
+** value 2^63: 9223372036854775808. Return negative, zero, or positive\r
+** if zNum is less than, equal to, or greater than the string.\r
+**\r
+** Unlike memcmp() this routine is guaranteed to return the difference\r
+** in the values of the last digit if the only difference is in the\r
+** last digit. So, for example,\r
+**\r
+** compare2pow63("9223372036854775800")\r
+**\r
+** will return -8.\r
+*/\r
+static int compare2pow63(const char *zNum){\r
+ int c;\r
+ c = memcmp(zNum,"922337203685477580",18)*10;\r
+ if( c==0 ){\r
+ c = zNum[18] - '8';\r
+ }\r
+ return c;\r
+}\r
+\r
+\r
+/*\r
+** Return TRUE if zNum is a 64-bit signed integer and write\r
+** the value of the integer into *pNum. If zNum is not an integer\r
+** or is an integer that is too large to be expressed with 64 bits,\r
+** then return false.\r
+**\r
+** When this routine was originally written it dealt with only\r
+** 32-bit numbers. At that time, it was much faster than the\r
+** atoi() library routine in RedHat 7.2.\r
+*/\r
+int sqlite3Atoi64(const char *zNum, i64 *pNum){\r
+ i64 v = 0;\r
+ int neg;\r
+ int i, c;\r
+ const char *zStart;\r
+ while( sqlite3Isspace(*zNum) ) zNum++;\r
+ if( *zNum=='-' ){\r
+ neg = 1;\r
+ zNum++;\r
+ }else if( *zNum=='+' ){\r
+ neg = 0;\r
+ zNum++;\r
+ }else{\r
+ neg = 0;\r
+ }\r
+ zStart = zNum;\r
+ while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */\r
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){\r
+ v = v*10 + c - '0';\r
+ }\r
+ *pNum = neg ? -v : v;\r
+ if( c!=0 || (i==0 && zStart==zNum) || i>19 ){\r
+ /* zNum is empty or contains non-numeric text or is longer\r
+ ** than 19 digits (thus guaranting that it is too large) */\r
+ return 0;\r
+ }else if( i<19 ){\r
+ /* Less than 19 digits, so we know that it fits in 64 bits */\r
+ return 1;\r
+ }else{\r
+ /* 19-digit numbers must be no larger than 9223372036854775807 if positive\r
+ ** or 9223372036854775808 if negative. Note that 9223372036854665808\r
+ ** is 2^63. */\r
+ return compare2pow63(zNum)<neg;\r
+ }\r
+}\r
+\r
+/*\r
+** The string zNum represents an unsigned integer. The zNum string\r
+** consists of one or more digit characters and is terminated by\r
+** a zero character. Any stray characters in zNum result in undefined\r
+** behavior.\r
+**\r
+** If the unsigned integer that zNum represents will fit in a\r
+** 64-bit signed integer, return TRUE. Otherwise return FALSE.\r
+**\r
+** If the negFlag parameter is true, that means that zNum really represents\r
+** a negative number. (The leading "-" is omitted from zNum.) This\r
+** parameter is needed to determine a boundary case. A string\r
+** of "9223373036854775808" returns false if negFlag is false or true\r
+** if negFlag is true.\r
+**\r
+** Leading zeros are ignored.\r
+*/\r
+int sqlite3FitsIn64Bits(const char *zNum, int negFlag){\r
+ int i;\r
+ int neg = 0;\r
+\r
+ assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */\r
+\r
+ if( negFlag ) neg = 1-neg;\r
+ while( *zNum=='0' ){\r
+ zNum++; /* Skip leading zeros. Ticket #2454 */\r
+ }\r
+ for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); }\r
+ if( i<19 ){\r
+ /* Guaranteed to fit if less than 19 digits */\r
+ return 1;\r
+ }else if( i>19 ){\r
+ /* Guaranteed to be too big if greater than 19 digits */\r
+ return 0;\r
+ }else{\r
+ /* Compare against 2^63. */\r
+ return compare2pow63(zNum)<neg;\r
+ }\r
+}\r
+\r
+/*\r
+** If zNum represents an integer that will fit in 32-bits, then set\r
+** *pValue to that integer and return true. Otherwise return false.\r
+**\r
+** Any non-numeric characters that following zNum are ignored.\r
+** This is different from sqlite3Atoi64() which requires the\r
+** input number to be zero-terminated.\r
+*/\r
+int sqlite3GetInt32(const char *zNum, int *pValue){\r
+ sqlite_int64 v = 0;\r
+ int i, c;\r
+ int neg = 0;\r
+ if( zNum[0]=='-' ){\r
+ neg = 1;\r
+ zNum++;\r
+ }else if( zNum[0]=='+' ){\r
+ zNum++;\r
+ }\r
+ while( zNum[0]=='0' ) zNum++;\r
+ for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){\r
+ v = v*10 + c;\r
+ }\r
+\r
+ /* The longest decimal representation of a 32 bit integer is 10 digits:\r
+ **\r
+ ** 1234567890\r
+ ** 2^31 -> 2147483648\r
+ */\r
+ if( i>10 ){\r
+ return 0;\r
+ }\r
+ if( v-neg>2147483647 ){\r
+ return 0;\r
+ }\r
+ if( neg ){\r
+ v = -v;\r
+ }\r
+ *pValue = (int)v;\r
+ return 1;\r
+}\r
+\r
+/*\r
+** The variable-length integer encoding is as follows:\r
+**\r
+** KEY:\r
+** A = 0xxxxxxx 7 bits of data and one flag bit\r
+** B = 1xxxxxxx 7 bits of data and one flag bit\r
+** C = xxxxxxxx 8 bits of data\r
+**\r
+** 7 bits - A\r
+** 14 bits - BA\r
+** 21 bits - BBA\r
+** 28 bits - BBBA\r
+** 35 bits - BBBBA\r
+** 42 bits - BBBBBA\r
+** 49 bits - BBBBBBA\r
+** 56 bits - BBBBBBBA\r
+** 64 bits - BBBBBBBBC\r
+*/\r
+\r
+/*\r
+** Write a 64-bit variable-length integer to memory starting at p[0].\r
+** The length of data write will be between 1 and 9 bytes. The number\r
+** of bytes written is returned.\r
+**\r
+** A variable-length integer consists of the lower 7 bits of each byte\r
+** for all bytes that have the 8th bit set and one byte with the 8th\r
+** bit clear. Except, if we get to the 9th byte, it stores the full\r
+** 8 bits and is the last byte.\r
+*/\r
+int sqlite3PutVarint(unsigned char *p, u64 v){\r
+ int i, j, n;\r
+ u8 buf[10];\r
+ if( v & (((u64)0xff000000)<<32) ){\r
+ p[8] = (u8)v;\r
+ v >>= 8;\r
+ for(i=7; i>=0; i--){\r
+ p[i] = (u8)((v & 0x7f) | 0x80);\r
+ v >>= 7;\r
+ }\r
+ return 9;\r
+ } \r
+ n = 0;\r
+ do{\r
+ buf[n++] = (u8)((v & 0x7f) | 0x80);\r
+ v >>= 7;\r
+ }while( v!=0 );\r
+ buf[0] &= 0x7f;\r
+ assert( n<=9 );\r
+ for(i=0, j=n-1; j>=0; j--, i++){\r
+ p[i] = buf[j];\r
+ }\r
+ return n;\r
+}\r
+\r
+/*\r
+** This routine is a faster version of sqlite3PutVarint() that only\r
+** works for 32-bit positive integers and which is optimized for\r
+** the common case of small integers. A MACRO version, putVarint32,\r
+** is provided which inlines the single-byte case. All code should use\r
+** the MACRO version as this function assumes the single-byte case has\r
+** already been handled.\r
+*/\r
+int sqlite3PutVarint32(unsigned char *p, u32 v){\r
+#ifndef putVarint32\r
+ if( (v & ~0x7f)==0 ){\r
+ p[0] = v;\r
+ return 1;\r
+ }\r
+#endif\r
+ if( (v & ~0x3fff)==0 ){\r
+ p[0] = (u8)((v>>7) | 0x80);\r
+ p[1] = (u8)(v & 0x7f);\r
+ return 2;\r
+ }\r
+ return sqlite3PutVarint(p, v);\r
+}\r
+\r
+/*\r
+** Read a 64-bit variable-length integer from memory starting at p[0].\r
+** Return the number of bytes read. The value is stored in *v.\r
+*/\r
+u8 sqlite3GetVarint(const unsigned char *p, u64 *v){\r
+ u32 a,b,s;\r
+\r
+ a = *p;\r
+ /* a: p0 (unmasked) */\r
+ if (!(a&0x80))\r
+ {\r
+ *v = a;\r
+ return 1;\r
+ }\r
+\r
+ p++;\r
+ b = *p;\r
+ /* b: p1 (unmasked) */\r
+ if (!(b&0x80))\r
+ {\r
+ a &= 0x7f;\r
+ a = a<<7;\r
+ a |= b;\r
+ *v = a;\r
+ return 2;\r
+ }\r
+\r
+ p++;\r
+ a = a<<14;\r
+ a |= *p;\r
+ /* a: p0<<14 | p2 (unmasked) */\r
+ if (!(a&0x80))\r
+ {\r
+ a &= (0x7f<<14)|(0x7f);\r
+ b &= 0x7f;\r
+ b = b<<7;\r
+ a |= b;\r
+ *v = a;\r
+ return 3;\r
+ }\r
+\r
+ /* CSE1 from below */\r
+ a &= (0x7f<<14)|(0x7f);\r
+ p++;\r
+ b = b<<14;\r
+ b |= *p;\r
+ /* b: p1<<14 | p3 (unmasked) */\r
+ if (!(b&0x80))\r
+ {\r
+ b &= (0x7f<<14)|(0x7f);\r
+ /* moved CSE1 up */\r
+ /* a &= (0x7f<<14)|(0x7f); */\r
+ a = a<<7;\r
+ a |= b;\r
+ *v = a;\r
+ return 4;\r
+ }\r
+\r
+ /* a: p0<<14 | p2 (masked) */\r
+ /* b: p1<<14 | p3 (unmasked) */\r
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */\r
+ /* moved CSE1 up */\r
+ /* a &= (0x7f<<14)|(0x7f); */\r
+ b &= (0x7f<<14)|(0x7f);\r
+ s = a;\r
+ /* s: p0<<14 | p2 (masked) */\r
+\r
+ p++;\r
+ a = a<<14;\r
+ a |= *p;\r
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */\r
+ if (!(a&0x80))\r
+ {\r
+ /* we can skip these cause they were (effectively) done above in calc'ing s */\r
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */\r
+ /* b &= (0x7f<<14)|(0x7f); */\r
+ b = b<<7;\r
+ a |= b;\r
+ s = s>>18;\r
+ *v = ((u64)s)<<32 | a;\r
+ return 5;\r
+ }\r
+\r
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */\r
+ s = s<<7;\r
+ s |= b;\r
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */\r
+\r
+ p++;\r
+ b = b<<14;\r
+ b |= *p;\r
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */\r
+ if (!(b&0x80))\r
+ {\r
+ /* we can skip this cause it was (effectively) done above in calc'ing s */\r
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */\r
+ a &= (0x7f<<14)|(0x7f);\r
+ a = a<<7;\r
+ a |= b;\r
+ s = s>>18;\r
+ *v = ((u64)s)<<32 | a;\r
+ return 6;\r
+ }\r
+\r
+ p++;\r
+ a = a<<14;\r
+ a |= *p;\r
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */\r
+ if (!(a&0x80))\r
+ {\r
+ a &= (0x1f<<28)|(0x7f<<14)|(0x7f);\r
+ b &= (0x7f<<14)|(0x7f);\r
+ b = b<<7;\r
+ a |= b;\r
+ s = s>>11;\r
+ *v = ((u64)s)<<32 | a;\r
+ return 7;\r
+ }\r
+\r
+ /* CSE2 from below */\r
+ a &= (0x7f<<14)|(0x7f);\r
+ p++;\r
+ b = b<<14;\r
+ b |= *p;\r
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */\r
+ if (!(b&0x80))\r
+ {\r
+ b &= (0x1f<<28)|(0x7f<<14)|(0x7f);\r
+ /* moved CSE2 up */\r
+ /* a &= (0x7f<<14)|(0x7f); */\r
+ a = a<<7;\r
+ a |= b;\r
+ s = s>>4;\r
+ *v = ((u64)s)<<32 | a;\r
+ return 8;\r
+ }\r
+\r
+ p++;\r
+ a = a<<15;\r
+ a |= *p;\r
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */\r
+\r
+ /* moved CSE2 up */\r
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */\r
+ b &= (0x7f<<14)|(0x7f);\r
+ b = b<<8;\r
+ a |= b;\r
+\r
+ s = s<<4;\r
+ b = p[-4];\r
+ b &= 0x7f;\r
+ b = b>>3;\r
+ s |= b;\r
+\r
+ *v = ((u64)s)<<32 | a;\r
+\r
+ return 9;\r
+}\r
+\r
+/*\r
+** Read a 32-bit variable-length integer from memory starting at p[0].\r
+** Return the number of bytes read. The value is stored in *v.\r
+**\r
+** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned\r
+** integer, then set *v to 0xffffffff.\r
+**\r
+** A MACRO version, getVarint32, is provided which inlines the \r
+** single-byte case. All code should use the MACRO version as \r
+** this function assumes the single-byte case has already been handled.\r
+*/\r
+u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){\r
+ u32 a,b;\r
+\r
+ /* The 1-byte case. Overwhelmingly the most common. Handled inline\r
+ ** by the getVarin32() macro */\r
+ a = *p;\r
+ /* a: p0 (unmasked) */\r
+#ifndef getVarint32\r
+ if (!(a&0x80))\r
+ {\r
+ /* Values between 0 and 127 */\r
+ *v = a;\r
+ return 1;\r
+ }\r
+#endif\r
+\r
+ /* The 2-byte case */\r
+ p++;\r
+ b = *p;\r
+ /* b: p1 (unmasked) */\r
+ if (!(b&0x80))\r
+ {\r
+ /* Values between 128 and 16383 */\r
+ a &= 0x7f;\r
+ a = a<<7;\r
+ *v = a | b;\r
+ return 2;\r
+ }\r
+\r
+ /* The 3-byte case */\r
+ p++;\r
+ a = a<<14;\r
+ a |= *p;\r
+ /* a: p0<<14 | p2 (unmasked) */\r
+ if (!(a&0x80))\r
+ {\r
+ /* Values between 16384 and 2097151 */\r
+ a &= (0x7f<<14)|(0x7f);\r
+ b &= 0x7f;\r
+ b = b<<7;\r
+ *v = a | b;\r
+ return 3;\r
+ }\r
+\r
+ /* A 32-bit varint is used to store size information in btrees.\r
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint.\r
+ ** A 3-byte varint is sufficient, for example, to record the size\r
+ ** of a 1048569-byte BLOB or string.\r
+ **\r
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very\r
+ ** rare larger cases can be handled by the slower 64-bit varint\r
+ ** routine.\r
+ */\r
+#if 1\r
+ {\r
+ u64 v64;\r
+ u8 n;\r
+\r
+ p -= 2;\r
+ n = sqlite3GetVarint(p, &v64);\r
+ assert( n>3 && n<=9 );\r
+ if( (v64 & SQLITE_MAX_U32)!=v64 ){\r
+ *v = 0xffffffff;\r
+ }else{\r
+ *v = (u32)v64;\r
+ }\r
+ return n;\r
+ }\r
+\r
+#else\r
+ /* For following code (kept for historical record only) shows an\r
+ ** unrolling for the 3- and 4-byte varint cases. This code is\r
+ ** slightly faster, but it is also larger and much harder to test.\r
+ */\r
+ p++;\r
+ b = b<<14;\r
+ b |= *p;\r
+ /* b: p1<<14 | p3 (unmasked) */\r
+ if (!(b&0x80))\r
+ {\r
+ /* Values between 2097152 and 268435455 */\r
+ b &= (0x7f<<14)|(0x7f);\r
+ a &= (0x7f<<14)|(0x7f);\r
+ a = a<<7;\r
+ *v = a | b;\r
+ return 4;\r
+ }\r
+\r
+ p++;\r
+ a = a<<14;\r
+ a |= *p;\r
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */\r
+ if (!(a&0x80))\r
+ {\r
+ /* Walues between 268435456 and 34359738367 */\r
+ a &= (0x1f<<28)|(0x7f<<14)|(0x7f);\r
+ b &= (0x1f<<28)|(0x7f<<14)|(0x7f);\r
+ b = b<<7;\r
+ *v = a | b;\r
+ return 5;\r
+ }\r
+\r
+ /* We can only reach this point when reading a corrupt database\r
+ ** file. In that case we are not in any hurry. Use the (relatively\r
+ ** slow) general-purpose sqlite3GetVarint() routine to extract the\r
+ ** value. */\r
+ {\r
+ u64 v64;\r
+ u8 n;\r
+\r
+ p -= 4;\r
+ n = sqlite3GetVarint(p, &v64);\r
+ assert( n>5 && n<=9 );\r
+ *v = (u32)v64;\r
+ return n;\r
+ }\r
+#endif\r
+}\r
+\r
+/*\r
+** Return the number of bytes that will be needed to store the given\r
+** 64-bit integer.\r
+*/\r
+int sqlite3VarintLen(u64 v){\r
+ int i = 0;\r
+ do{\r
+ i++;\r
+ v >>= 7;\r
+ }while( v!=0 && ALWAYS(i<9) );\r
+ return i;\r
+}\r
+\r
+\r
+/*\r
+** Read or write a four-byte big-endian integer value.\r
+*/\r
+u32 sqlite3Get4byte(const u8 *p){\r
+ return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];\r
+}\r
+void sqlite3Put4byte(unsigned char *p, u32 v){\r
+ p[0] = (u8)(v>>24);\r
+ p[1] = (u8)(v>>16);\r
+ p[2] = (u8)(v>>8);\r
+ p[3] = (u8)v;\r
+}\r
+\r
+\r
+\r
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)\r
+/*\r
+** Translate a single byte of Hex into an integer.\r
+** This routine only works if h really is a valid hexadecimal\r
+** character: 0..9a..fA..F\r
+*/\r
+static u8 hexToInt(int h){\r
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );\r
+#ifdef SQLITE_ASCII\r
+ h += 9*(1&(h>>6));\r
+#endif\r
+#ifdef SQLITE_EBCDIC\r
+ h += 9*(1&~(h>>4));\r
+#endif\r
+ return (u8)(h & 0xf);\r
+}\r
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */\r
+\r
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)\r
+/*\r
+** Convert a BLOB literal of the form "x'hhhhhh'" into its binary\r
+** value. Return a pointer to its binary value. Space to hold the\r
+** binary value has been obtained from malloc and must be freed by\r
+** the calling routine.\r
+*/\r
+void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){\r
+ char *zBlob;\r
+ int i;\r
+\r
+ zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);\r
+ n--;\r
+ if( zBlob ){\r
+ for(i=0; i<n; i+=2){\r
+ zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);\r
+ }\r
+ zBlob[i/2] = 0;\r
+ }\r
+ return zBlob;\r
+}\r
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */\r
+\r
+\r
+/*\r
+** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.\r
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN\r
+** when this routine is called.\r
+**\r
+** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN\r
+** value indicates that the database connection passed into the API is\r
+** open and is not being used by another thread. By changing the value\r
+** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.\r
+** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN\r
+** when the API exits. \r
+**\r
+** This routine is a attempt to detect if two threads use the\r
+** same sqlite* pointer at the same time. There is a race \r
+** condition so it is possible that the error is not detected.\r
+** But usually the problem will be seen. The result will be an\r
+** error which can be used to debug the application that is\r
+** using SQLite incorrectly.\r
+**\r
+** Ticket #202: If db->magic is not a valid open value, take care not\r
+** to modify the db structure at all. It could be that db is a stale\r
+** pointer. In other words, it could be that there has been a prior\r
+** call to sqlite3_close(db) and db has been deallocated. And we do\r
+** not want to write into deallocated memory.\r
+*/\r
+#ifdef SQLITE_DEBUG\r
+int sqlite3SafetyOn(sqlite3 *db){\r
+ if( db->magic==SQLITE_MAGIC_OPEN ){\r
+ db->magic = SQLITE_MAGIC_BUSY;\r
+ assert( sqlite3_mutex_held(db->mutex) );\r
+ return 0;\r
+ }else if( db->magic==SQLITE_MAGIC_BUSY ){\r
+ db->magic = SQLITE_MAGIC_ERROR;\r
+ db->u1.isInterrupted = 1;\r
+ }\r
+ return 1;\r
+}\r
+#endif\r
+\r
+/*\r
+** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.\r
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY\r
+** when this routine is called.\r
+*/\r
+#ifdef SQLITE_DEBUG\r
+int sqlite3SafetyOff(sqlite3 *db){\r
+ if( db->magic==SQLITE_MAGIC_BUSY ){\r
+ db->magic = SQLITE_MAGIC_OPEN;\r
+ assert( sqlite3_mutex_held(db->mutex) );\r
+ return 0;\r
+ }else{\r
+ db->magic = SQLITE_MAGIC_ERROR;\r
+ db->u1.isInterrupted = 1;\r
+ return 1;\r
+ }\r
+}\r
+#endif\r
+\r
+/*\r
+** Check to make sure we have a valid db pointer. This test is not\r
+** foolproof but it does provide some measure of protection against\r
+** misuse of the interface such as passing in db pointers that are\r
+** NULL or which have been previously closed. If this routine returns\r
+** 1 it means that the db pointer is valid and 0 if it should not be\r
+** dereferenced for any reason. The calling function should invoke\r
+** SQLITE_MISUSE immediately.\r
+**\r
+** sqlite3SafetyCheckOk() requires that the db pointer be valid for\r
+** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to\r
+** open properly and is not fit for general use but which can be\r
+** used as an argument to sqlite3_errmsg() or sqlite3_close().\r
+*/\r
+int sqlite3SafetyCheckOk(sqlite3 *db){\r
+ u32 magic;\r
+ if( db==0 ) return 0;\r
+ magic = db->magic;\r
+ if( magic!=SQLITE_MAGIC_OPEN \r
+#ifdef SQLITE_DEBUG\r
+ && magic!=SQLITE_MAGIC_BUSY\r
+#endif\r
+ ){\r
+ return 0;\r
+ }else{\r
+ return 1;\r
+ }\r
+}\r
+int sqlite3SafetyCheckSickOrOk(sqlite3 *db){\r
+ u32 magic;\r
+ magic = db->magic;\r
+ if( magic!=SQLITE_MAGIC_SICK &&\r
+ magic!=SQLITE_MAGIC_OPEN &&\r
+ magic!=SQLITE_MAGIC_BUSY ) return 0;\r
+ return 1;\r
+}\r