]> git.ipfire.org Git - thirdparty/dhcpcd.git/commitdiff
Use rbtree from vendor
authorRoy Marples <roy@marples.name>
Thu, 30 Oct 2025 13:55:08 +0000 (13:55 +0000)
committerRoy Marples <roy@marples.name>
Thu, 30 Oct 2025 13:55:08 +0000 (13:55 +0000)
It is unexpected for this to exist on anything other than NetBSD.

compat/queue.h [new file with mode: 0644]
compat/rb.c [deleted file]
compat/rbtree.h [deleted file]
configure
src/Makefile
src/route.h

diff --git a/compat/queue.h b/compat/queue.h
new file mode 100644 (file)
index 0000000..f03fe02
--- /dev/null
@@ -0,0 +1,7 @@
+/* This stub exists to avoid including queue.h in the vendor folder
+ * for source imports */
+#ifdef BSD
+#include <sys/queue.h>
+#else
+#include "../vendor/queue.h"
+#endif
diff --git a/compat/rb.c b/compat/rb.c
deleted file mode 100644 (file)
index 4dfbd0d..0000000
+++ /dev/null
@@ -1,1350 +0,0 @@
-/*     $NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $   */
-
-/*-
- * Copyright (c) 2001 The NetBSD Foundation, Inc.
- * All rights reserved.
- *
- * This code is derived from software contributed to The NetBSD Foundation
- * by Matt Thomas <matt@3am-software.com>.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include "config.h"
-#include "common.h"
-
-#if HAVE_NBTOOL_CONFIG_H
-#include "nbtool_config.h"
-#endif
-
-#if !defined(_KERNEL) && !defined(_STANDALONE)
-#include <sys/types.h>
-#include <stddef.h>
-#include <assert.h>
-#include <stdbool.h>
-#ifdef RBDEBUG
-#define        KASSERT(s)      assert(s)
-#define        __rbt_unused
-#else
-#define KASSERT(s)     do { } while (/*CONSTCOND*/ 0)
-#define        __rbt_unused    __unused
-#endif
-__RCSID("$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $");
-#else
-#include <lib/libkern/libkern.h>
-__KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $");
-#ifndef DIAGNOSTIC
-#define        __rbt_unused    __unused
-#else
-#define        __rbt_unused
-#endif
-#endif
-
-#ifdef _LIBC
-__weak_alias(rb_tree_init, _rb_tree_init)
-__weak_alias(rb_tree_find_node, _rb_tree_find_node)
-__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
-__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
-__weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
-__weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
-__weak_alias(rb_tree_iterate, _rb_tree_iterate)
-#ifdef RBDEBUG
-__weak_alias(rb_tree_check, _rb_tree_check)
-__weak_alias(rb_tree_depths, _rb_tree_depths)
-#endif
-
-#include "namespace.h"
-#endif
-
-#ifdef RBTEST
-#include "rbtree.h"
-#else
-#include <sys/rbtree.h>
-#endif
-
-static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
-static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
-       unsigned int);
-#ifdef RBDEBUG
-static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
-       const struct rb_node *, const unsigned int);
-static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
-       const struct rb_node *, bool);
-#else
-#define        rb_tree_check_node(a, b, c, d)  true
-#endif
-
-#define        RB_NODETOITEM(rbto, rbn)        \
-    ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
-#define        RB_ITEMTONODE(rbto, rbn)        \
-    ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
-
-#define        RB_SENTINEL_NODE        NULL
-
-void
-rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
-{
-
-       rbt->rbt_ops = ops;
-       rbt->rbt_root = RB_SENTINEL_NODE;
-       RB_TAILQ_INIT(&rbt->rbt_nodes);
-#ifndef RBSMALL
-       rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;   /* minimum node */
-       rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;  /* maximum node */
-#endif
-#ifdef RBSTATS
-       rbt->rbt_count = 0;
-       rbt->rbt_insertions = 0;
-       rbt->rbt_removals = 0;
-       rbt->rbt_insertion_rebalance_calls = 0;
-       rbt->rbt_insertion_rebalance_passes = 0;
-       rbt->rbt_removal_rebalance_calls = 0;
-       rbt->rbt_removal_rebalance_passes = 0;
-#endif
-}
-
-void *
-rb_tree_find_node(struct rb_tree *rbt, const void *key)
-{
-       const rb_tree_ops_t *rbto = rbt->rbt_ops;
-       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
-       struct rb_node *parent = rbt->rbt_root;
-
-       while (!RB_SENTINEL_P(parent)) {
-               void *pobj = RB_NODETOITEM(rbto, parent);
-               const signed int diff = (*compare_key)(rbto->rbto_context,
-                   pobj, key);
-               if (diff == 0)
-                       return pobj;
-               parent = parent->rb_nodes[diff < 0];
-       }
-
-       return NULL;
-}
-
-void *
-rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
-{
-       const rb_tree_ops_t *rbto = rbt->rbt_ops;
-       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
-       struct rb_node *parent = rbt->rbt_root, *last = NULL;
-
-       while (!RB_SENTINEL_P(parent)) {
-               void *pobj = RB_NODETOITEM(rbto, parent);
-               const signed int diff = (*compare_key)(rbto->rbto_context,
-                   pobj, key);
-               if (diff == 0)
-                       return pobj;
-               if (diff > 0)
-                       last = parent;
-               parent = parent->rb_nodes[diff < 0];
-       }
-
-       return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
-}
-
-void *
-rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
-{
-       const rb_tree_ops_t *rbto = rbt->rbt_ops;
-       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
-       struct rb_node *parent = rbt->rbt_root, *last = NULL;
-
-       while (!RB_SENTINEL_P(parent)) {
-               void *pobj = RB_NODETOITEM(rbto, parent);
-               const signed int diff = (*compare_key)(rbto->rbto_context,
-                   pobj, key);
-               if (diff == 0)
-                       return pobj;
-               if (diff < 0)
-                       last = parent;
-               parent = parent->rb_nodes[diff < 0];
-       }
-
-       return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
-}
-
-void *
-rb_tree_insert_node(struct rb_tree *rbt, void *object)
-{
-       const rb_tree_ops_t *rbto = rbt->rbt_ops;
-       rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
-       struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
-       unsigned int position;
-       bool rebalance;
-
-       RBSTAT_INC(rbt->rbt_insertions);
-
-       tmp = rbt->rbt_root;
-       /*
-        * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
-        * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
-        * avoid a lot of tests for root and know that even at root,
-        * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
-        * update rbt->rbt_root.
-        */
-       parent = (struct rb_node *)(void *)&rbt->rbt_root;
-       position = RB_DIR_LEFT;
-
-       /*
-        * Find out where to place this new leaf.
-        */
-       while (!RB_SENTINEL_P(tmp)) {
-               void *tobj = RB_NODETOITEM(rbto, tmp);
-               const signed int diff = (*compare_nodes)(rbto->rbto_context,
-                   tobj, object);
-               if (__predict_false(diff == 0)) {
-                       /*
-                        * Node already exists; return it.
-                        */
-                       return tobj;
-               }
-               parent = tmp;
-               position = (diff < 0);
-               tmp = parent->rb_nodes[position];
-       }
-
-#ifdef RBDEBUG
-       {
-               struct rb_node *prev = NULL, *next = NULL;
-
-               if (position == RB_DIR_RIGHT)
-                       prev = parent;
-               else if (tmp != rbt->rbt_root)
-                       next = parent;
-
-               /*
-                * Verify our sequential position
-                */
-               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
-               KASSERT(next == NULL || !RB_SENTINEL_P(next));
-               if (prev != NULL && next == NULL)
-                       next = TAILQ_NEXT(prev, rb_link);
-               if (prev == NULL && next != NULL)
-                       prev = TAILQ_PREV(next, rb_node_qh, rb_link);
-               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
-               KASSERT(next == NULL || !RB_SENTINEL_P(next));
-               KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
-                   RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
-               KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
-                   RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
-       }
-#endif
-
-       /*
-        * Initialize the node and insert as a leaf into the tree.
-        */
-       RB_SET_FATHER(self, parent);
-       RB_SET_POSITION(self, position);
-       if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
-               RB_MARK_BLACK(self);            /* root is always black */
-#ifndef RBSMALL
-               rbt->rbt_minmax[RB_DIR_LEFT] = self;
-               rbt->rbt_minmax[RB_DIR_RIGHT] = self;
-#endif
-               rebalance = false;
-       } else {
-               KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
-#ifndef RBSMALL
-               /*
-                * Keep track of the minimum and maximum nodes.  If our
-                * parent is a minmax node and we on their min/max side,
-                * we must be the new min/max node.
-                */
-               if (parent == rbt->rbt_minmax[position])
-                       rbt->rbt_minmax[position] = self;
-#endif /* !RBSMALL */
-               /*
-                * All new nodes are colored red.  We only need to rebalance
-                * if our parent is also red.
-                */
-               RB_MARK_RED(self);
-               rebalance = RB_RED_P(parent);
-       }
-       KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
-       self->rb_left = parent->rb_nodes[position];
-       self->rb_right = parent->rb_nodes[position];
-       parent->rb_nodes[position] = self;
-       KASSERT(RB_CHILDLESS_P(self));
-
-       /*
-        * Insert the new node into a sorted list for easy sequential access
-        */
-       RBSTAT_INC(rbt->rbt_count);
-#ifdef RBDEBUG
-       if (RB_ROOT_P(rbt, self)) {
-               RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
-       } else if (position == RB_DIR_LEFT) {
-               KASSERT((*compare_nodes)(rbto->rbto_context,
-                   RB_NODETOITEM(rbto, self),
-                   RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
-               RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
-       } else {
-               KASSERT((*compare_nodes)(rbto->rbto_context,
-                   RB_NODETOITEM(rbto, RB_FATHER(self)),
-                   RB_NODETOITEM(rbto, self)) < 0);
-               RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
-                   self, rb_link);
-       }
-#endif
-       KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
-
-       /*
-        * Rebalance tree after insertion
-        */
-       if (rebalance) {
-               rb_tree_insert_rebalance(rbt, self);
-               KASSERT(rb_tree_check_node(rbt, self, NULL, true));
-       }
-
-       /* Successfully inserted, return our node pointer. */
-       return object;
-}
-
-/*
- * Swap the location and colors of 'self' and its child @ which.  The child
- * can not be a sentinel node.  This is our rotation function.  However,
- * since it preserves coloring, it great simplifies both insertion and
- * removal since rotation almost always involves the exchanging of colors
- * as a separate step.
- */
-static void
-rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt,
-       struct rb_node *old_father, const unsigned int which)
-{
-       const unsigned int other = which ^ RB_DIR_OTHER;
-       struct rb_node * const grandpa = RB_FATHER(old_father);
-       struct rb_node * const old_child = old_father->rb_nodes[which];
-       struct rb_node * const new_father = old_child;
-       struct rb_node * const new_child = old_father;
-
-       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
-
-       KASSERT(!RB_SENTINEL_P(old_child));
-       KASSERT(RB_FATHER(old_child) == old_father);
-
-       KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
-       KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
-       KASSERT(RB_ROOT_P(rbt, old_father) ||
-           rb_tree_check_node(rbt, grandpa, NULL, false));
-
-       /*
-        * Exchange descendant linkages.
-        */
-       grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
-       new_child->rb_nodes[which] = old_child->rb_nodes[other];
-       new_father->rb_nodes[other] = new_child;
-
-       /*
-        * Update ancestor linkages
-        */
-       RB_SET_FATHER(new_father, grandpa);
-       RB_SET_FATHER(new_child, new_father);
-
-       /*
-        * Exchange properties between new_father and new_child.  The only
-        * change is that new_child's position is now on the other side.
-        */
-#if 0
-       {
-               struct rb_node tmp;
-               tmp.rb_info = 0;
-               RB_COPY_PROPERTIES(&tmp, old_child);
-               RB_COPY_PROPERTIES(new_father, old_father);
-               RB_COPY_PROPERTIES(new_child, &tmp);
-       }
-#else
-       RB_SWAP_PROPERTIES(new_father, new_child);
-#endif
-       RB_SET_POSITION(new_child, other);
-
-       /*
-        * Make sure to reparent the new child to ourself.
-        */
-       if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
-               RB_SET_FATHER(new_child->rb_nodes[which], new_child);
-               RB_SET_POSITION(new_child->rb_nodes[which], which);
-       }
-
-       KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
-       KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
-       KASSERT(RB_ROOT_P(rbt, new_father) ||
-           rb_tree_check_node(rbt, grandpa, NULL, false));
-}
-
-static void
-rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
-{
-       struct rb_node * father = RB_FATHER(self);
-       struct rb_node * grandpa = RB_FATHER(father);
-       struct rb_node * uncle;
-       unsigned int which;
-       unsigned int other;
-
-       KASSERT(!RB_ROOT_P(rbt, self));
-       KASSERT(RB_RED_P(self));
-       KASSERT(RB_RED_P(father));
-       RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
-
-       for (;;) {
-               KASSERT(!RB_SENTINEL_P(self));
-
-               KASSERT(RB_RED_P(self));
-               KASSERT(RB_RED_P(father));
-               /*
-                * We are red and our parent is red, therefore we must have a
-                * grandfather and he must be black.
-                */
-               grandpa = RB_FATHER(father);
-               KASSERT(RB_BLACK_P(grandpa));
-               KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
-               which = (father == grandpa->rb_right);
-               other = which ^ RB_DIR_OTHER;
-               uncle = grandpa->rb_nodes[other];
-
-               if (RB_BLACK_P(uncle))
-                       break;
-
-               RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
-               /*
-                * Case 1: our uncle is red
-                *   Simply invert the colors of our parent and
-                *   uncle and make our grandparent red.  And
-                *   then solve the problem up at his level.
-                */
-               RB_MARK_BLACK(uncle);
-               RB_MARK_BLACK(father);
-               if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
-                       /*
-                        * If our grandpa is root, don't bother
-                        * setting him to red, just return.
-                        */
-                       KASSERT(RB_BLACK_P(grandpa));
-                       return;
-               }
-               RB_MARK_RED(grandpa);
-               self = grandpa;
-               father = RB_FATHER(self);
-               KASSERT(RB_RED_P(self));
-               if (RB_BLACK_P(father)) {
-                       /*
-                        * If our greatgrandpa is black, we're done.
-                        */
-                       KASSERT(RB_BLACK_P(rbt->rbt_root));
-                       return;
-               }
-       }
-
-       KASSERT(!RB_ROOT_P(rbt, self));
-       KASSERT(RB_RED_P(self));
-       KASSERT(RB_RED_P(father));
-       KASSERT(RB_BLACK_P(uncle));
-       KASSERT(RB_BLACK_P(grandpa));
-       /*
-        * Case 2&3: our uncle is black.
-        */
-       if (self == father->rb_nodes[other]) {
-               /*
-                * Case 2: we are on the same side as our uncle
-                *   Swap ourselves with our parent so this case
-                *   becomes case 3.  Basically our parent becomes our
-                *   child.
-                */
-               rb_tree_reparent_nodes(rbt, father, other);
-               KASSERT(RB_FATHER(father) == self);
-               KASSERT(self->rb_nodes[which] == father);
-               KASSERT(RB_FATHER(self) == grandpa);
-               self = father;
-               father = RB_FATHER(self);
-       }
-       KASSERT(RB_RED_P(self) && RB_RED_P(father));
-       KASSERT(grandpa->rb_nodes[which] == father);
-       /*
-        * Case 3: we are opposite a child of a black uncle.
-        *   Swap our parent and grandparent.  Since our grandfather
-        *   is black, our father will become black and our new sibling
-        *   (former grandparent) will become red.
-        */
-       rb_tree_reparent_nodes(rbt, grandpa, which);
-       KASSERT(RB_FATHER(self) == father);
-       KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
-       KASSERT(RB_RED_P(self));
-       KASSERT(RB_BLACK_P(father));
-       KASSERT(RB_RED_P(grandpa));
-
-       /*
-        * Final step: Set the root to black.
-        */
-       RB_MARK_BLACK(rbt->rbt_root);
-}
-
-static void
-rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
-{
-       const unsigned int which = RB_POSITION(self);
-       struct rb_node *father = RB_FATHER(self);
-#ifndef RBSMALL
-       const bool was_root = RB_ROOT_P(rbt, self);
-#endif
-
-       KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
-       KASSERT(!rebalance || RB_BLACK_P(self));
-       KASSERT(RB_CHILDLESS_P(self));
-       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
-
-       /*
-        * Since we are childless, we know that self->rb_left is pointing
-        * to the sentinel node.
-        */
-       father->rb_nodes[which] = self->rb_left;
-
-       /*
-        * Remove ourselves from the node list, decrement the count,
-        * and update min/max.
-        */
-       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
-       RBSTAT_DEC(rbt->rbt_count);
-#ifndef RBSMALL
-       if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
-               rbt->rbt_minmax[RB_POSITION(self)] = father;
-               /*
-                * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
-                * updated automatically, but we also need to update 
-                * rbt->rbt_minmax[RB_DIR_RIGHT];
-                */
-               if (__predict_false(was_root)) {
-                       rbt->rbt_minmax[RB_DIR_RIGHT] = father;
-               }
-       }
-       RB_SET_FATHER(self, NULL);
-#endif
-
-       /*
-        * Rebalance if requested.
-        */
-       if (rebalance)
-               rb_tree_removal_rebalance(rbt, father, which);
-       KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
-}
-
-/*
- * When deleting an interior node
- */
-static void
-rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
-       struct rb_node *standin)
-{
-       const unsigned int standin_which = RB_POSITION(standin);
-       unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
-       struct rb_node *standin_son;
-       struct rb_node *standin_father = RB_FATHER(standin);
-       bool rebalance = RB_BLACK_P(standin);
-
-       if (standin_father == self) {
-               /*
-                * As a child of self, any childen would be opposite of
-                * our parent.
-                */
-               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
-               standin_son = standin->rb_nodes[standin_which];
-       } else {
-               /*
-                * Since we aren't a child of self, any childen would be
-                * on the same side as our parent.
-                */
-               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
-               standin_son = standin->rb_nodes[standin_other];
-       }
-
-       /*
-        * the node we are removing must have two children.
-        */
-       KASSERT(RB_TWOCHILDREN_P(self));
-       /*
-        * If standin has a child, it must be red.
-        */
-       KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
-
-       /*
-        * Verify things are sane.
-        */
-       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
-       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
-
-       if (__predict_false(RB_RED_P(standin_son))) {
-               /*
-                * We know we have a red child so if we flip it to black
-                * we don't have to rebalance.
-                */
-               KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
-               RB_MARK_BLACK(standin_son);
-               rebalance = false;
-
-               if (standin_father == self) {
-                       KASSERT(RB_POSITION(standin_son) == standin_which);
-               } else {
-                       KASSERT(RB_POSITION(standin_son) == standin_other);
-                       /*
-                        * Change the son's parentage to point to his grandpa.
-                        */
-                       RB_SET_FATHER(standin_son, standin_father);
-                       RB_SET_POSITION(standin_son, standin_which);
-               }
-       }
-
-       if (standin_father == self) {
-               /*
-                * If we are about to delete the standin's father, then when
-                * we call rebalance, we need to use ourselves as our father.
-                * Otherwise remember our original father.  Also, sincef we are
-                * our standin's father we only need to reparent the standin's
-                * brother.
-                *
-                * |    R      -->     S    |
-                * |  Q   S    -->   Q   T  |
-                * |        t  -->          |
-                */
-               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
-               KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
-               KASSERT(self->rb_nodes[standin_which] == standin);
-               /*
-                * Have our son/standin adopt his brother as his new son.
-                */
-               standin_father = standin;
-       } else {
-               /*
-                * |    R          -->    S       .  |
-                * |   / \  |   T  -->   / \  |  /   |
-                * |  ..... | S    -->  ..... | T    |
-                *
-                * Sever standin's connection to his father.
-                */
-               standin_father->rb_nodes[standin_which] = standin_son;
-               /*
-                * Adopt the far son.
-                */
-               standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
-               RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
-               KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
-               /*
-                * Use standin_other because we need to preserve standin_which
-                * for the removal_rebalance.
-                */
-               standin_other = standin_which;
-       }
-
-       /*
-        * Move the only remaining son to our standin.  If our standin is our
-        * son, this will be the only son needed to be moved.
-        */
-       KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
-       standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
-       RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
-
-       /*
-        * Now copy the result of self to standin and then replace
-        * self with standin in the tree.
-        */
-       RB_COPY_PROPERTIES(standin, self);
-       RB_SET_FATHER(standin, RB_FATHER(self));
-       RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
-
-       /*
-        * Remove ourselves from the node list, decrement the count,
-        * and update min/max.
-        */
-       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
-       RBSTAT_DEC(rbt->rbt_count);
-#ifndef RBSMALL
-       if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
-               rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
-       RB_SET_FATHER(self, NULL);
-#endif
-
-       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
-       KASSERT(RB_FATHER_SENTINEL_P(standin)
-               || rb_tree_check_node(rbt, standin_father, NULL, false));
-       KASSERT(RB_LEFT_SENTINEL_P(standin)
-               || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
-       KASSERT(RB_RIGHT_SENTINEL_P(standin)
-               || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
-
-       if (!rebalance)
-               return;
-
-       rb_tree_removal_rebalance(rbt, standin_father, standin_which);
-       KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
-}
-
-/*
- * We could do this by doing
- *     rb_tree_node_swap(rbt, self, which);
- *     rb_tree_prune_node(rbt, self, false);
- *
- * But it's more efficient to just evalate and recolor the child.
- */
-static void
-rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
-       unsigned int which)
-{
-       struct rb_node *father = RB_FATHER(self);
-       struct rb_node *son = self->rb_nodes[which];
-#ifndef RBSMALL
-       const bool was_root = RB_ROOT_P(rbt, self);
-#endif
-
-       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
-       KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
-       KASSERT(!RB_TWOCHILDREN_P(son));
-       KASSERT(RB_CHILDLESS_P(son));
-       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
-       KASSERT(rb_tree_check_node(rbt, son, NULL, false));
-
-       /*
-        * Remove ourselves from the tree and give our former child our
-        * properties (position, color, root).
-        */
-       RB_COPY_PROPERTIES(son, self);
-       father->rb_nodes[RB_POSITION(son)] = son;
-       RB_SET_FATHER(son, father);
-
-       /*
-        * Remove ourselves from the node list, decrement the count,
-        * and update minmax.
-        */
-       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
-       RBSTAT_DEC(rbt->rbt_count);
-#ifndef RBSMALL
-       if (__predict_false(was_root)) {
-               KASSERT(rbt->rbt_minmax[which] == son);
-               rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
-       } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
-               rbt->rbt_minmax[RB_POSITION(self)] = son;
-       }
-       RB_SET_FATHER(self, NULL);
-#endif
-
-       KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
-       KASSERT(rb_tree_check_node(rbt, son, NULL, true));
-}
-
-void
-rb_tree_remove_node(struct rb_tree *rbt, void *object)
-{
-       const rb_tree_ops_t *rbto = rbt->rbt_ops;
-       struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
-       unsigned int which;
-
-       KASSERT(!RB_SENTINEL_P(self));
-       RBSTAT_INC(rbt->rbt_removals);
-
-       /*
-        * In the following diagrams, we (the node to be removed) are S.  Red
-        * nodes are lowercase.  T could be either red or black.
-        *
-        * Remember the major axiom of the red-black tree: the number of
-        * black nodes from the root to each leaf is constant across all
-        * leaves, only the number of red nodes varies.
-        *
-        * Thus removing a red leaf doesn't require any other changes to a
-        * red-black tree.  So if we must remove a node, attempt to rearrange
-        * the tree so we can remove a red node.
-        *
-        * The simpliest case is a childless red node or a childless root node:
-        *
-        * |    T  -->    T  |    or    |  R  -->  *  |
-        * |  s    -->  *    |
-        */
-       if (RB_CHILDLESS_P(self)) {
-               const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
-               rb_tree_prune_node(rbt, self, rebalance);
-               return;
-       }
-       KASSERT(!RB_CHILDLESS_P(self));
-       if (!RB_TWOCHILDREN_P(self)) {
-               /*
-                * The next simpliest case is the node we are deleting is
-                * black and has one red child.
-                *
-                * |      T  -->      T  -->      T  |
-                * |    S    -->  R      -->  R      |
-                * |  r      -->    s    -->    *    |
-                */
-               which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
-               KASSERT(RB_BLACK_P(self));
-               KASSERT(RB_RED_P(self->rb_nodes[which]));
-               KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
-               rb_tree_prune_blackred_branch(rbt, self, which);
-               return;
-       }
-       KASSERT(RB_TWOCHILDREN_P(self));
-
-       /*
-        * We invert these because we prefer to remove from the inside of
-        * the tree.
-        */
-       which = RB_POSITION(self) ^ RB_DIR_OTHER;
-
-       /*
-        * Let's find the node closes to us opposite of our parent
-        * Now swap it with ourself, "prune" it, and rebalance, if needed.
-        */
-       standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
-       rb_tree_swap_prune_and_rebalance(rbt, self, standin);
-}
-
-static void
-rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
-       unsigned int which)
-{
-       KASSERT(!RB_SENTINEL_P(parent));
-       KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
-       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
-       RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
-
-       while (RB_BLACK_P(parent->rb_nodes[which])) {
-               unsigned int other = which ^ RB_DIR_OTHER;
-               struct rb_node *brother = parent->rb_nodes[other];
-
-               RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
-
-               KASSERT(!RB_SENTINEL_P(brother));
-               /*
-                * For cases 1, 2a, and 2b, our brother's children must
-                * be black and our father must be black
-                */
-               if (RB_BLACK_P(parent)
-                   && RB_BLACK_P(brother->rb_left)
-                   && RB_BLACK_P(brother->rb_right)) {
-                       if (RB_RED_P(brother)) {
-                               /*
-                                * Case 1: Our brother is red, swap its
-                                * position (and colors) with our parent. 
-                                * This should now be case 2b (unless C or E
-                                * has a red child which is case 3; thus no
-                                * explicit branch to case 2b).
-                                *
-                                *    B         ->        D
-                                *  A     d     ->    b     E
-                                *      C   E   ->  A   C
-                                */
-                               KASSERT(RB_BLACK_P(parent));
-                               rb_tree_reparent_nodes(rbt, parent, other);
-                               brother = parent->rb_nodes[other];
-                               KASSERT(!RB_SENTINEL_P(brother));
-                               KASSERT(RB_RED_P(parent));
-                               KASSERT(RB_BLACK_P(brother));
-                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
-                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
-                       } else {
-                               /*
-                                * Both our parent and brother are black.
-                                * Change our brother to red, advance up rank
-                                * and go through the loop again.
-                                *
-                                *    B         ->   *B
-                                * *A     D     ->  A     d
-                                *      C   E   ->      C   E
-                                */
-                               RB_MARK_RED(brother);
-                               KASSERT(RB_BLACK_P(brother->rb_left));
-                               KASSERT(RB_BLACK_P(brother->rb_right));
-                               if (RB_ROOT_P(rbt, parent))
-                                       return; /* root == parent == black */
-                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
-                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
-                               which = RB_POSITION(parent);
-                               parent = RB_FATHER(parent);
-                               continue;
-                       }
-               }
-               /*
-                * Avoid an else here so that case 2a above can hit either
-                * case 2b, 3, or 4.
-                */
-               if (RB_RED_P(parent)
-                   && RB_BLACK_P(brother)
-                   && RB_BLACK_P(brother->rb_left)
-                   && RB_BLACK_P(brother->rb_right)) {
-                       KASSERT(RB_RED_P(parent));
-                       KASSERT(RB_BLACK_P(brother));
-                       KASSERT(RB_BLACK_P(brother->rb_left));
-                       KASSERT(RB_BLACK_P(brother->rb_right));
-                       /*
-                        * We are black, our father is red, our brother and
-                        * both nephews are black.  Simply invert/exchange the
-                        * colors of our father and brother (to black and red
-                        * respectively).
-                        *
-                        *      |    f        -->    F        |
-                        *      |  *     B    -->  *     b    |
-                        *      |      N   N  -->      N   N  |
-                        */
-                       RB_MARK_BLACK(parent);
-                       RB_MARK_RED(brother);
-                       KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
-                       break;          /* We're done! */
-               } else {
-                       /*
-                        * Our brother must be black and have at least one
-                        * red child (it may have two).
-                        */
-                       KASSERT(RB_BLACK_P(brother));
-                       KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
-                               RB_RED_P(brother->rb_nodes[other]));
-                       if (RB_BLACK_P(brother->rb_nodes[other])) {
-                               /*
-                                * Case 3: our brother is black, our near
-                                * nephew is red, and our far nephew is black.
-                                * Swap our brother with our near nephew.  
-                                * This result in a tree that matches case 4.
-                                * (Our father could be red or black).
-                                *
-                                *      |    F      -->    F      |
-                                *      |  x     B  -->  x   B    |
-                                *      |      n    -->        n  |
-                                */
-                               KASSERT(RB_RED_P(brother->rb_nodes[which]));
-                               rb_tree_reparent_nodes(rbt, brother, which);
-                               KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
-                               brother = parent->rb_nodes[other];
-                               KASSERT(RB_RED_P(brother->rb_nodes[other]));
-                       }
-                       /*
-                        * Case 4: our brother is black and our far nephew
-                        * is red.  Swap our father and brother locations and
-                        * change our far nephew to black.  (these can be
-                        * done in either order so we change the color first).
-                        * The result is a valid red-black tree and is a
-                        * terminal case.  (again we don't care about the
-                        * father's color)
-                        *
-                        * If the father is red, we will get a red-black-black
-                        * tree:
-                        *      |  f      ->  f      -->    b    |
-                        *      |    B    ->    B    -->  F   N  |
-                        *      |      n  ->      N  -->         |
-                        *
-                        * If the father is black, we will get an all black
-                        * tree:
-                        *      |  F      ->  F      -->    B    |
-                        *      |    B    ->    B    -->  F   N  |
-                        *      |      n  ->      N  -->         |
-                        *
-                        * If we had two red nephews, then after the swap,
-                        * our former father would have a red grandson. 
-                        */
-                       KASSERT(RB_BLACK_P(brother));
-                       KASSERT(RB_RED_P(brother->rb_nodes[other]));
-                       RB_MARK_BLACK(brother->rb_nodes[other]);
-                       rb_tree_reparent_nodes(rbt, parent, other);
-                       break;          /* We're done! */
-               }
-       }
-       KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
-}
-
-void *
-rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
-{
-       const rb_tree_ops_t *rbto = rbt->rbt_ops;
-       const unsigned int other = direction ^ RB_DIR_OTHER;
-       struct rb_node *self;
-
-       KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
-
-       if (object == NULL) {
-#ifndef RBSMALL
-               if (RB_SENTINEL_P(rbt->rbt_root))
-                       return NULL;
-               return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
-#else
-               self = rbt->rbt_root;
-               if (RB_SENTINEL_P(self))
-                       return NULL;
-               while (!RB_SENTINEL_P(self->rb_nodes[direction]))
-                       self = self->rb_nodes[direction];
-               return RB_NODETOITEM(rbto, self);
-#endif /* !RBSMALL */
-       }
-       self = RB_ITEMTONODE(rbto, object);
-       KASSERT(!RB_SENTINEL_P(self));
-       /*
-        * We can't go any further in this direction.  We proceed up in the
-        * opposite direction until our parent is in direction we want to go.
-        */
-       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
-               while (!RB_ROOT_P(rbt, self)) {
-                       if (other == RB_POSITION(self))
-                               return RB_NODETOITEM(rbto, RB_FATHER(self));
-                       self = RB_FATHER(self);
-               }
-               return NULL;
-       }
-
-       /*
-        * Advance down one in current direction and go down as far as possible
-        * in the opposite direction.
-        */
-       self = self->rb_nodes[direction];
-       KASSERT(!RB_SENTINEL_P(self));
-       while (!RB_SENTINEL_P(self->rb_nodes[other]))
-               self = self->rb_nodes[other];
-       return RB_NODETOITEM(rbto, self);
-}
-
-#ifdef RBDEBUG
-static const struct rb_node *
-rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
-       const unsigned int direction)
-{
-       const unsigned int other = direction ^ RB_DIR_OTHER;
-       KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
-
-       if (self == NULL) {
-#ifndef RBSMALL
-               if (RB_SENTINEL_P(rbt->rbt_root))
-                       return NULL;
-               return rbt->rbt_minmax[direction];
-#else
-               self = rbt->rbt_root;
-               if (RB_SENTINEL_P(self))
-                       return NULL;
-               while (!RB_SENTINEL_P(self->rb_nodes[direction]))
-                       self = self->rb_nodes[direction];
-               return self;
-#endif /* !RBSMALL */
-       }
-       KASSERT(!RB_SENTINEL_P(self));
-       /*
-        * We can't go any further in this direction.  We proceed up in the
-        * opposite direction until our parent is in direction we want to go.
-        */
-       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
-               while (!RB_ROOT_P(rbt, self)) {
-                       if (other == RB_POSITION(self))
-                               return RB_FATHER(self);
-                       self = RB_FATHER(self);
-               }
-               return NULL;
-       }
-
-       /*
-        * Advance down one in current direction and go down as far as possible
-        * in the opposite direction.
-        */
-       self = self->rb_nodes[direction];
-       KASSERT(!RB_SENTINEL_P(self));
-       while (!RB_SENTINEL_P(self->rb_nodes[other]))
-               self = self->rb_nodes[other];
-       return self;
-}
-
-static unsigned int
-rb_tree_count_black(const struct rb_node *self)
-{
-       unsigned int left, right;
-
-       if (RB_SENTINEL_P(self))
-               return 0;
-
-       left = rb_tree_count_black(self->rb_left);
-       right = rb_tree_count_black(self->rb_right);
-
-       KASSERT(left == right);
-
-       return left + RB_BLACK_P(self);
-}
-
-static bool
-rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
-       const struct rb_node *prev, bool red_check)
-{
-       const rb_tree_ops_t *rbto = rbt->rbt_ops;
-       rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
-
-       KASSERT(!RB_SENTINEL_P(self));
-       KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
-           RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
-
-       /*
-        * Verify our relationship to our parent.
-        */
-       if (RB_ROOT_P(rbt, self)) {
-               KASSERT(self == rbt->rbt_root);
-               KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
-               KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
-               KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
-       } else {
-               int diff = (*compare_nodes)(rbto->rbto_context,
-                   RB_NODETOITEM(rbto, self),
-                   RB_NODETOITEM(rbto, RB_FATHER(self)));
-
-               KASSERT(self != rbt->rbt_root);
-               KASSERT(!RB_FATHER_SENTINEL_P(self));
-               if (RB_POSITION(self) == RB_DIR_LEFT) {
-                       KASSERT(diff < 0);
-                       KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
-               } else {
-                       KASSERT(diff > 0);
-                       KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
-               }
-       }
-
-       /*
-        * Verify our position in the linked list against the tree itself.
-        */
-       {
-               const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
-               const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
-               KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
-               KASSERT(next0 == TAILQ_NEXT(self, rb_link));
-#ifndef RBSMALL
-               KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
-               KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
-#endif
-       }
-
-       /*
-        * The root must be black.
-        * There can never be two adjacent red nodes. 
-        */
-       if (red_check) {
-               KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
-               (void) rb_tree_count_black(self);
-               if (RB_RED_P(self)) {
-                       const struct rb_node *brother;
-                       KASSERT(!RB_ROOT_P(rbt, self));
-                       brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
-                       KASSERT(RB_BLACK_P(RB_FATHER(self)));
-                       /* 
-                        * I'm red and have no children, then I must either
-                        * have no brother or my brother also be red and
-                        * also have no children.  (black count == 0)
-                        */
-                       KASSERT(!RB_CHILDLESS_P(self)
-                               || RB_SENTINEL_P(brother)
-                               || RB_RED_P(brother)
-                               || RB_CHILDLESS_P(brother));
-                       /*
-                        * If I'm not childless, I must have two children
-                        * and they must be both be black.
-                        */
-                       KASSERT(RB_CHILDLESS_P(self)
-                               || (RB_TWOCHILDREN_P(self)
-                                   && RB_BLACK_P(self->rb_left)
-                                   && RB_BLACK_P(self->rb_right)));
-                       /*
-                        * If I'm not childless, thus I have black children,
-                        * then my brother must either be black or have two
-                        * black children.
-                        */
-                       KASSERT(RB_CHILDLESS_P(self)
-                               || RB_BLACK_P(brother)
-                               || (RB_TWOCHILDREN_P(brother)
-                                   && RB_BLACK_P(brother->rb_left)
-                                   && RB_BLACK_P(brother->rb_right)));
-               } else {
-                       /*
-                        * If I'm black and have one child, that child must
-                        * be red and childless.
-                        */
-                       KASSERT(RB_CHILDLESS_P(self)
-                               || RB_TWOCHILDREN_P(self)
-                               || (!RB_LEFT_SENTINEL_P(self)
-                                   && RB_RIGHT_SENTINEL_P(self)
-                                   && RB_RED_P(self->rb_left)
-                                   && RB_CHILDLESS_P(self->rb_left))
-                               || (!RB_RIGHT_SENTINEL_P(self)
-                                   && RB_LEFT_SENTINEL_P(self)
-                                   && RB_RED_P(self->rb_right)
-                                   && RB_CHILDLESS_P(self->rb_right)));
-
-                       /*
-                        * If I'm a childless black node and my parent is
-                        * black, my 2nd closet relative away from my parent
-                        * is either red or has a red parent or red children.
-                        */
-                       if (!RB_ROOT_P(rbt, self)
-                           && RB_CHILDLESS_P(self)
-                           && RB_BLACK_P(RB_FATHER(self))) {
-                               const unsigned int which = RB_POSITION(self);
-                               const unsigned int other = which ^ RB_DIR_OTHER;
-                               const struct rb_node *relative0, *relative;
-
-                               relative0 = rb_tree_iterate_const(rbt,
-                                   self, other);
-                               KASSERT(relative0 != NULL);
-                               relative = rb_tree_iterate_const(rbt,
-                                   relative0, other);
-                               KASSERT(relative != NULL);
-                               KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
-#if 0
-                               KASSERT(RB_RED_P(relative)
-                                       || RB_RED_P(relative->rb_left)
-                                       || RB_RED_P(relative->rb_right)
-                                       || RB_RED_P(RB_FATHER(relative)));
-#endif
-                       }
-               }
-               /*
-                * A grandparent's children must be real nodes and not
-                * sentinels.  First check out grandparent.
-                */
-               KASSERT(RB_ROOT_P(rbt, self)
-                       || RB_ROOT_P(rbt, RB_FATHER(self))
-                       || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
-               /*
-                * If we are have grandchildren on our left, then
-                * we must have a child on our right.
-                */
-               KASSERT(RB_LEFT_SENTINEL_P(self)
-                       || RB_CHILDLESS_P(self->rb_left)
-                       || !RB_RIGHT_SENTINEL_P(self));
-               /*
-                * If we are have grandchildren on our right, then
-                * we must have a child on our left.
-                */
-               KASSERT(RB_RIGHT_SENTINEL_P(self)
-                       || RB_CHILDLESS_P(self->rb_right)
-                       || !RB_LEFT_SENTINEL_P(self));
-
-               /*
-                * If we have a child on the left and it doesn't have two
-                * children make sure we don't have great-great-grandchildren on
-                * the right.
-                */
-               KASSERT(RB_TWOCHILDREN_P(self->rb_left)
-                       || RB_CHILDLESS_P(self->rb_right)
-                       || RB_CHILDLESS_P(self->rb_right->rb_left)
-                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
-                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
-                       || RB_CHILDLESS_P(self->rb_right->rb_right)
-                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
-                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
-
-               /*
-                * If we have a child on the right and it doesn't have two
-                * children make sure we don't have great-great-grandchildren on
-                * the left.
-                */
-               KASSERT(RB_TWOCHILDREN_P(self->rb_right)
-                       || RB_CHILDLESS_P(self->rb_left)
-                       || RB_CHILDLESS_P(self->rb_left->rb_left)
-                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
-                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
-                       || RB_CHILDLESS_P(self->rb_left->rb_right)
-                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
-                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
-
-               /*
-                * If we are fully interior node, then our predecessors and
-                * successors must have no children in our direction.
-                */
-               if (RB_TWOCHILDREN_P(self)) {
-                       const struct rb_node *prev0;
-                       const struct rb_node *next0;
-
-                       prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
-                       KASSERT(prev0 != NULL);
-                       KASSERT(RB_RIGHT_SENTINEL_P(prev0));
-
-                       next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
-                       KASSERT(next0 != NULL);
-                       KASSERT(RB_LEFT_SENTINEL_P(next0));
-               }
-       }
-
-       return true;
-}
-
-void
-rb_tree_check(const struct rb_tree *rbt, bool red_check)
-{
-       const struct rb_node *self;
-       const struct rb_node *prev;
-#ifdef RBSTATS
-       unsigned int count = 0;
-#endif
-
-       KASSERT(rbt->rbt_root != NULL);
-       KASSERT(RB_LEFT_P(rbt->rbt_root));
-
-#if defined(RBSTATS) && !defined(RBSMALL)
-       KASSERT(rbt->rbt_count > 1
-           || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
-#endif
-
-       prev = NULL;
-       TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
-               rb_tree_check_node(rbt, self, prev, false);
-#ifdef RBSTATS
-               count++;
-#endif
-       }
-#ifdef RBSTATS
-       KASSERT(rbt->rbt_count == count);
-#endif
-       if (red_check) {
-               KASSERT(RB_BLACK_P(rbt->rbt_root));
-               KASSERT(RB_SENTINEL_P(rbt->rbt_root)
-                       || rb_tree_count_black(rbt->rbt_root));
-
-               /*
-                * The root must be black.
-                * There can never be two adjacent red nodes. 
-                */
-               TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
-                       rb_tree_check_node(rbt, self, NULL, true);
-               }
-       }
-}
-#endif /* RBDEBUG */
-
-#ifdef RBSTATS
-static void
-rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
-       size_t *depths, size_t depth)
-{
-       if (RB_SENTINEL_P(self))
-               return;
-
-       if (RB_TWOCHILDREN_P(self)) {
-               rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
-               rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
-               return;
-       }
-       depths[depth]++;
-       if (!RB_LEFT_SENTINEL_P(self)) {
-               rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
-       }
-       if (!RB_RIGHT_SENTINEL_P(self)) {
-               rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
-       }
-}
-
-void
-rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
-{
-       rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
-}
-#endif /* RBSTATS */
diff --git a/compat/rbtree.h b/compat/rbtree.h
deleted file mode 100644 (file)
index 656da22..0000000
+++ /dev/null
@@ -1,211 +0,0 @@
-/*     $NetBSD: rbtree.h,v 1.5 2019/03/07 14:39:21 roy Exp $   */
-
-/*-
- * Copyright (c) 2001 The NetBSD Foundation, Inc.
- * All rights reserved.
- *
- * This code is derived from software contributed to The NetBSD Foundation
- * by Matt Thomas <matt@3am-software.com>.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
-
-#ifndef _SYS_RBTREE_H_
-#define        _SYS_RBTREE_H_
-
-#include "config.h"
-#include "common.h"
-
-#if defined(_KERNEL) || defined(_STANDALONE)
-#include <sys/types.h>
-#else
-#include <stdbool.h>
-#include <inttypes.h>
-#endif
-#ifdef HAVE_SYS_QUEUE_H
-#include <sys/queue.h>
-#else
-#include "queue.h"
-#endif
-#if !defined(__linux__) && !defined(__QNX__) && !defined(__sun)
-#include <sys/endian.h>
-#else
-#include "endian.h"
-#endif
-
-__BEGIN_DECLS
-
-typedef struct rb_node {
-       struct rb_node *rb_nodes[2];
-#define        RB_DIR_LEFT             0
-#define        RB_DIR_RIGHT            1
-#define        RB_DIR_OTHER            1
-#define        rb_left                 rb_nodes[RB_DIR_LEFT]
-#define        rb_right                rb_nodes[RB_DIR_RIGHT]
-
-       /*
-        * rb_info contains the two flags and the parent back pointer.
-        * We put the two flags in the low two bits since we know that
-        * rb_node will have an alignment of 4 or 8 bytes.
-        */
-       uintptr_t rb_info;
-#define        RB_FLAG_POSITION        (uintptr_t)0x2
-#define        RB_FLAG_RED             (uintptr_t)0x1
-#define        RB_FLAG_MASK            (RB_FLAG_POSITION|RB_FLAG_RED)
-#define        RB_FATHER(rb) \
-    ((struct rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
-#define        RB_SET_FATHER(rb, father) \
-    ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
-
-#define        RB_SENTINEL_P(rb)       ((rb) == NULL)
-#define        RB_LEFT_SENTINEL_P(rb)  RB_SENTINEL_P((rb)->rb_left)
-#define        RB_RIGHT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_right)
-#define        RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
-#define        RB_CHILDLESS_P(rb) \
-    (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
-#define        RB_TWOCHILDREN_P(rb) \
-    (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
-
-#define        RB_POSITION(rb) \
-    (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
-#define        RB_RIGHT_P(rb)          (RB_POSITION(rb) == RB_DIR_RIGHT)
-#define        RB_LEFT_P(rb)           (RB_POSITION(rb) == RB_DIR_LEFT)
-#define        RB_RED_P(rb)            (!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
-#define        RB_BLACK_P(rb)          (RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
-#define        RB_MARK_RED(rb)         ((void)((rb)->rb_info |= RB_FLAG_RED))
-#define        RB_MARK_BLACK(rb)       ((void)((rb)->rb_info &= ~RB_FLAG_RED))
-#define        RB_INVERT_COLOR(rb)     ((void)((rb)->rb_info ^= RB_FLAG_RED))
-#define        RB_ROOT_P(rbt, rb)      ((rbt)->rbt_root == (rb))
-#define        RB_SET_POSITION(rb, position) \
-    ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
-    ((rb)->rb_info &= ~RB_FLAG_POSITION)))
-#define        RB_ZERO_PROPERTIES(rb)  ((void)((rb)->rb_info &= ~RB_FLAG_MASK))
-#define        RB_COPY_PROPERTIES(dst, src) \
-    ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
-#define RB_SWAP_PROPERTIES(a, b) do { \
-    uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
-    (a)->rb_info ^= xorinfo; \
-    (b)->rb_info ^= xorinfo; \
-  } while (/*CONSTCOND*/ 0)
-#ifdef RBDEBUG
-       TAILQ_ENTRY(rb_node) rb_link;
-#endif
-} rb_node_t;
-
-#define RB_TREE_MIN(T) rb_tree_iterate((T), NULL, RB_DIR_LEFT)
-#define RB_TREE_MAX(T) rb_tree_iterate((T), NULL, RB_DIR_RIGHT)
-#define RB_TREE_NEXT(T, N) rb_tree_iterate((T), (N), RB_DIR_RIGHT)
-#define RB_TREE_PREV(T, N) rb_tree_iterate((T), (N), RB_DIR_LEFT)
-#define RB_TREE_FOREACH(N, T) \
-    for ((N) = RB_TREE_MIN(T); (N); (N) = RB_TREE_NEXT((T), (N)))
-#define RB_TREE_FOREACH_REVERSE(N, T) \
-    for ((N) = RB_TREE_MAX(T); (N); (N) = RB_TREE_PREV((T), (N)))
-#define RB_TREE_FOREACH_SAFE(N, T, S) \
-    for ((N) = RB_TREE_MIN(T); \
-        (N) && ((S) = RB_TREE_NEXT((T), (N)), 1); \
-        (N) = (S))
-#define RB_TREE_FOREACH_REVERSE_SAFE(N, T, S) \
-    for ((N) = RB_TREE_MAX(T); \
-        (N) && ((S) = RB_TREE_PREV((T), (N)), 1); \
-        (N) = (S))
-
-#ifdef RBDEBUG
-TAILQ_HEAD(rb_node_qh, rb_node);
-
-#define        RB_TAILQ_REMOVE(a, b, c)                TAILQ_REMOVE(a, b, c)
-#define        RB_TAILQ_INIT(a)                        TAILQ_INIT(a)
-#define        RB_TAILQ_INSERT_HEAD(a, b, c)           TAILQ_INSERT_HEAD(a, b, c)
-#define        RB_TAILQ_INSERT_BEFORE(a, b, c)         TAILQ_INSERT_BEFORE(a, b, c)
-#define        RB_TAILQ_INSERT_AFTER(a, b, c, d)       TAILQ_INSERT_AFTER(a, b, c, d)
-#else
-#define        RB_TAILQ_REMOVE(a, b, c)                do { } while (/*CONSTCOND*/0)
-#define        RB_TAILQ_INIT(a)                        do { } while (/*CONSTCOND*/0)
-#define        RB_TAILQ_INSERT_HEAD(a, b, c)           do { } while (/*CONSTCOND*/0)
-#define        RB_TAILQ_INSERT_BEFORE(a, b, c)         do { } while (/*CONSTCOND*/0)
-#define        RB_TAILQ_INSERT_AFTER(a, b, c, d)       do { } while (/*CONSTCOND*/0)
-#endif /* RBDEBUG */
-
-/*
- * rbto_compare_nodes_fn:
- *     return a positive value if the first node > the second node.
- *     return a negative value if the first node < the second node.
- *     return 0 if they are considered same.
- *
- * rbto_compare_key_fn:
- *     return a positive value if the node > the key.
- *     return a negative value if the node < the key.
- *     return 0 if they are considered same.
- */
-
-typedef signed int (*rbto_compare_nodes_fn)(void *, const void *, const void *);
-typedef signed int (*rbto_compare_key_fn)(void *, const void *, const void *);
-
-typedef struct {
-       rbto_compare_nodes_fn rbto_compare_nodes;
-       rbto_compare_key_fn rbto_compare_key;
-       size_t rbto_node_offset;
-       void *rbto_context;
-} rb_tree_ops_t;
-
-typedef struct rb_tree {
-       struct rb_node *rbt_root;
-       const rb_tree_ops_t *rbt_ops;
-       struct rb_node *rbt_minmax[2];
-#ifdef RBDEBUG
-       struct rb_node_qh rbt_nodes;
-#endif
-#ifdef RBSTATS
-       unsigned int rbt_count;
-       unsigned int rbt_insertions;
-       unsigned int rbt_removals;
-       unsigned int rbt_insertion_rebalance_calls;
-       unsigned int rbt_insertion_rebalance_passes;
-       unsigned int rbt_removal_rebalance_calls;
-       unsigned int rbt_removal_rebalance_passes;
-#endif
-} rb_tree_t;
-
-#ifdef RBSTATS
-#define        RBSTAT_INC(v)   ((void)((v)++))
-#define        RBSTAT_DEC(v)   ((void)((v)--))
-#else
-#define        RBSTAT_INC(v)   do { } while (/*CONSTCOND*/0)
-#define        RBSTAT_DEC(v)   do { } while (/*CONSTCOND*/0)
-#endif
-
-void   rb_tree_init(rb_tree_t *, const rb_tree_ops_t *);
-void * rb_tree_insert_node(rb_tree_t *, void *);
-void * rb_tree_find_node(rb_tree_t *, const void *);
-void * rb_tree_find_node_geq(rb_tree_t *, const void *);
-void * rb_tree_find_node_leq(rb_tree_t *, const void *);
-void   rb_tree_remove_node(rb_tree_t *, void *);
-void * rb_tree_iterate(rb_tree_t *, void *, const unsigned int);
-#ifdef RBDEBUG
-void   rb_tree_check(const rb_tree_t *, bool);
-#endif
-#ifdef RBSTATS
-void   rb_tree_depths(const rb_tree_t *, size_t *);
-#endif
-
-__END_DECLS
-
-#endif /* _SYS_RBTREE_H_*/
index 0bbba7ea43ddfe8890804ea521ff46aa49a6720b..45ad4d2d868a8d43ee6b3c79b4d6d3a88b718f6d 100755 (executable)
--- a/configure
+++ b/configure
@@ -1218,10 +1218,8 @@ EOF
        rm -f _rbtree.c _rbtree
 fi
 if [ "$RBTREE" = no ]; then
-       echo "#define   HAVE_NBTOOL_CONFIG_H    0" >>$CONFIG_H
-       echo "#define   RBTEST" >>$CONFIG_H
-       echo "COMPAT_SRCS+=     compat/rb.c" >>$CONFIG_MK
-       echo "#include                  \"compat/rbtree.h\"" >>$CONFIG_H
+       echo "#define   RBLOCAL" >>$CONFIG_H
+       echo "VENDOR_SRCS+=     vendor/rbtree.c" >>$CONFIG_MK
 else
        echo "#define   HAVE_SYS_RBTREE_H" >>$CONFIG_H
 fi
index 8f358d755aab577421a18155e4d96ef6ed5e1b3b..f308ae1a95a4a5eb73d95b2e22dcc5565edf1c96 100644 (file)
@@ -21,7 +21,11 @@ DHCPCD_DEFS= dhcpcd-definitions.conf dhcpcd-definitions-small.conf
 
 PCOMPAT_SRCS=  ${COMPAT_SRCS:compat/%=${TOP}/compat/%}
 PCRYPT_SRCS=   ${CRYPT_SRCS:compat/%=${TOP}/compat/%}
-OBJS+=         ${SRCS:.c=.o} ${PCRYPT_SRCS:.c=.o} ${PCOMPAT_SRCS:.c=.o}
+PVENDOR_SRCS=  ${VENDOR_SRCS:vendor/%=${TOP}/vendor/%}
+OBJS+=         ${SRCS:.c=.o}
+OBJS+=         ${PCRYPT_SRCS:.c=.o}
+OBJS+=         ${PCOMPAT_SRCS:.c=.o}
+OBJS+=         ${PVENDOR_SRCS:.c=.o}
 
 MAN5=          dhcpcd.conf.5
 MAN8=          dhcpcd.8
@@ -133,14 +137,21 @@ _import-src: ${SRCS} ${MAN5} ${MAN8}
                        [ ! -e "../$$x" ] || cp "../$$x" ${DESTDIR}/compat; \
                done; \
        fi
+       if [ -n "${VENDOR_SRCS}" ]; then \
+               ${INSTALL} -d ${DESTDIR}/vendor; \
+               cp ../vendor/queue.h ${DESTDIR}/vendor; \
+               for x in ${VENDOR_SRCS} ${VENDOR_SRCS:.c=.h}; do \
+                       [ ! -e "../$$x" ] || cp "../$$x" ${DESTDIR}/compat; \
+               done; \
+       fi
        if ! grep HAVE_SYS_BITOPS_H ../config.h; then \
                cp ../compat/bitops.h ${DESTDIR}/compat; \
        fi
        if grep compat/consttime_memequal.h ../config.h; then \
                cp ../compat/consttime_memequal.h ${DESTDIR}/compat; \
        fi
-       if [ -e ${DESTDIR}/compat/rb.c ]; then \
-               cp ../compat/rbtree.h ${DESTDIR}/compat; \
+       if [ -e ${DESTDIR}/vendor/rbtree.c ]; then \
+               cp ../vendor/rbtree.h ${DESTDIR}/vendor; \
        fi
        if [ -e ${DESTDIR}/compat/strtoi.c ]; then \
                cp ../compat/_strtoi.h ${DESTDIR}/compat; \
index eea7e559fc99406cf6115c3322915119fcf47624..6aae9bcb6d2d5b14e7e24f13118be5295d1cd44c 100644 (file)
@@ -31,6 +31,8 @@
 
 #ifdef HAVE_SYS_RBTREE_H
 #include <sys/rbtree.h>
+#else
+#include "rbtree.h"
 #endif
 
 #include <sys/socket.h>