/*
* Wake up waiters in __wait_on_freeing_inode().
*
- * Lockless hash lookup may end up finding the inode before we removed
- * it above, but only lock it *after* we are done with the wakeup below.
- * In this case the potential waiter cannot safely block.
+ * It is an invariant that any thread we need to wake up is already
+ * accounted for before remove_inode_hash() acquires ->i_lock -- both
+ * sides take the lock and sleep is aborted if the inode is found
+ * unhashed. Thus either the sleeper wins and goes off CPU, or removal
+ * wins and the sleeper aborts after testing with the lock.
*
- * The inode being unhashed after the call to remove_inode_hash() is
- * used as an indicator whether blocking on it is safe.
+ * This also means we don't need any fences for the call below.
*/
- spin_lock(&inode->i_lock);
- /*
- * Pairs with the barrier in prepare_to_wait_event() to make sure
- * ___wait_var_event() either sees the bit cleared or
- * waitqueue_active() check in wake_up_var() sees the waiter.
- */
- smp_mb__after_spinlock();
inode_wake_up_bit(inode, __I_NEW);
BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
- spin_unlock(&inode->i_lock);
destroy_inode(inode);
}