-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2025 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <https://www.gnu.org/licenses/>.
- */
-/**************************************************************************/
-/* MODULE_NAME urem.c */
-/* */
-/* FUNCTION: uremainder */
-/* */
-/* An ultimate remainder routine. Given two IEEE double machine numbers x */
-/* ,y it computes the correctly rounded (to nearest) value of remainder */
-/* of dividing x by y. */
-/* Assumption: Machine arithmetic operations are performed in */
-/* round to nearest mode of IEEE 754 standard. */
-/* */
-/* ************************************************************************/
+/* Remainder function, double version.
+ Copyright (C) 2008-2025 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
-#include "endian.h"
-#include "mydefs.h"
-#include "urem.h"
#include <math.h>
-#include <math_private.h>
-#include <fenv_private.h>
#include <libm-alias-finite.h>
+#include "math_config.h"
-/**************************************************************************/
-/* An ultimate remainder routine. Given two IEEE double machine numbers x */
-/* ,y it computes the correctly rounded (to nearest) value of remainder */
-/**************************************************************************/
double
__ieee754_remainder (double x, double y)
{
- double z, d, xx;
- int4 kx, ky, n, nn, n1, m1, l;
- mynumber u, t, w = { { 0, 0 } }, v = { { 0, 0 } }, ww = { { 0, 0 } }, r;
- u.x = x;
- t.x = y;
- kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign for x*/
- t.i[HIGH_HALF] &= 0x7fffffff; /*no sign for y */
- ky = t.i[HIGH_HALF];
- /*------ |x| < 2^1023 and 2^-970 < |y| < 2^1024 ------------------*/
- if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000)
+ uint64_t hx = asuint64 (x);
+ uint64_t hy = asuint64 (y);
+ uint64_t sx = hx >> 63;
+
+ hx &= ~SIGN_MASK;
+ hy &= ~SIGN_MASK;
+
+ /* |y| < DBL_MAX / 2 ? */
+ y = fabs (y);
+ if (__glibc_likely (hy < UINT64_C (0x7fe0000000000000)))
{
- SET_RESTORE_ROUND_NOEX (FE_TONEAREST);
- if (kx + 0x00100000 < ky)
- return x;
- if ((kx - 0x01500000) < ky)
- {
- z = x / t.x;
- v.i[HIGH_HALF] = t.i[HIGH_HALF];
- d = (z + big.x) - big.x;
- xx = (x - d * v.x) - d * (t.x - v.x);
- if (d - z != 0.5 && d - z != -0.5)
- return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x);
- else
- {
- if (fabs (xx) > 0.5 * t.x)
- return (z > d) ? xx - t.x : xx + t.x;
- else
- return xx;
- }
- } /* (kx<(ky+0x01500000)) */
- else
+ /* |x| not finite, |y| equal 0 is handled by fmod. */
+ if (__glibc_unlikely (hx >= EXPONENT_MASK))
+ return (x * y) / (x * y);
+
+ x = fabs (__ieee754_fmod (x, y + y));
+ if (x + x > y)
{
- r.x = 1.0 / t.x;
- n = t.i[HIGH_HALF];
- nn = (n & 0x7ff00000) + 0x01400000;
- w.i[HIGH_HALF] = n;
- ww.x = t.x - w.x;
- l = (kx - nn) & 0xfff00000;
- n1 = ww.i[HIGH_HALF];
- m1 = r.i[HIGH_HALF];
- while (l > 0)
- {
- r.i[HIGH_HALF] = m1 - l;
- z = u.x * r.x;
- w.i[HIGH_HALF] = n + l;
- ww.i[HIGH_HALF] = (n1) ? n1 + l : n1;
- d = (z + big.x) - big.x;
- u.x = (u.x - d * w.x) - d * ww.x;
- l = (u.i[HIGH_HALF] & 0x7ff00000) - nn;
- }
- r.i[HIGH_HALF] = m1;
- w.i[HIGH_HALF] = n;
- ww.i[HIGH_HALF] = n1;
- z = u.x * r.x;
- d = (z + big.x) - big.x;
- u.x = (u.x - d * w.x) - d * ww.x;
- if (fabs (u.x) < 0.5 * t.x)
- return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x);
- else
- if (fabs (u.x) > 0.5 * t.x)
- return (d > z) ? u.x + t.x : u.x - t.x;
- else
- {
- z = u.x / t.x; d = (z + big.x) - big.x;
- return ((u.x - d * w.x) - d * ww.x);
- }
+ x -= y;
+ if (x + x >= y)
+ x -= y;
+ /* Make sure x is not -0. This can occur only when x = y
+ and rounding direction is towards negative infinity. */
+ else if (x == 0.0)
+ x = 0.0;
}
- } /* (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000) */
+ }
else
{
- if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0))
- {
- y = fabs (y) * t128.x;
- z = __ieee754_remainder (x, y) * t128.x;
- z = __ieee754_remainder (z, y) * tm128.x;
- return z;
- }
- else
+ /* |x| not finite or |y| is NaN or 0 */
+ if ((hx >= EXPONENT_MASK || (hy - 1) >= EXPONENT_MASK))
+ return (x * y) / (x * y);
+
+ x = fabs (x);
+ double y_half = y * 0.5;
+ if (x > y_half)
{
- if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 &&
- (ky > 0 || t.i[LOW_HALF] != 0))
- {
- y = fabs (y);
- z = 2.0 * __ieee754_remainder (0.5 * x, y);
- d = fabs (z);
- if (d <= fabs (d - y))
- return z;
- else if (d == y)
- return 0.0 * x;
- else
- return (z > 0) ? z - y : z + y;
- }
- else /* if x is too big */
- {
- if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */
- return (x * y) / (x * y);
- else if (kx >= 0x7ff00000 /* x not finite */
- || (ky > 0x7ff00000 /* y is NaN */
- || (ky == 0x7ff00000 && t.i[LOW_HALF] != 0)))
- return (x * y) / (x * y);
- else
- return x;
- }
+ x -= y;
+ if (x >= y_half)
+ x -= y;
+ else if (x == 0.0)
+ x = 0.0;
}
}
+
+ return sx ? -x : x;
}
libm_alias_finite (__ieee754_remainder, __remainder)
+++ /dev/null
-/*
- * IBM Accurate Mathematical Library
- * Copyright (C) 2001-2025 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <https://www.gnu.org/licenses/>.
- */
-
-/************************************************************************/
-/* MODULE_NAME: urem.h */
-/* */
-/* */
-/* common data and variables definition for BIG or LITTLE ENDIAN */
-/************************************************************************/
-
-#ifndef UREM_H
-#define UREM_H
-
-#ifdef BIG_ENDI
-static const mynumber big = {{0x43380000, 0}}, /* 6755399441055744 */
- t128 = {{0x47f00000, 0}}, /* 2^ 128 */
- tm128 = {{0x37f00000, 0}}, /* 2^-128 */
- ZERO = {{0, 0}}, /* 0.0 */
- nZERO = {{0x80000000, 0}}; /* -0.0 */
-#else
-#ifdef LITTLE_ENDI
-static const mynumber big = {{0, 0x43380000}}, /* 6755399441055744 */
- t128 = {{0, 0x47f00000}}, /* 2^ 128 */
- tm128 = {{0, 0x37f00000}}, /* 2^-128 */
- ZERO = {{0, 0}}, /* 0.0 */
- nZERO = {{0, 0x80000000}}; /* -0.0 */
-#endif
-#endif
-
-#endif