#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
+#include <linux/clk/renesas.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/iopoll.h>
+#include <linux/limits.h>
+#include <linux/math.h>
+#include <linux/math64.h>
+#include <linux/minmax.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/refcount.h>
#include <linux/reset-controller.h>
#include <linux/string_choices.h>
+#include <linux/units.h>
#include <dt-bindings/clock/renesas-cpg-mssr.h>
#define CPG_PLL_STBY(x) ((x))
#define CPG_PLL_STBY_RESETB BIT(0)
+#define CPG_PLL_STBY_SSC_EN BIT(2)
#define CPG_PLL_STBY_RESETB_WEN BIT(16)
+#define CPG_PLL_STBY_SSC_EN_WEN BIT(18)
#define CPG_PLL_CLK1(x) ((x) + 0x004)
#define CPG_PLL_CLK1_KDIV GENMASK(31, 16)
#define CPG_PLL_CLK1_MDIV GENMASK(15, 6)
#define CPG_CLKSTATUS0 (0x700)
+/* On RZ/G3E SoC we have two DSI PLLs */
+#define MAX_CPG_DSI_PLL 2
+
+/**
+ * struct rzv2h_pll_dsi_info - PLL DSI information, holds the limits and parameters
+ *
+ * @pll_dsi_limits: PLL DSI parameters limits
+ * @pll_dsi_parameters: Calculated PLL DSI parameters
+ * @req_pll_dsi_rate: Requested PLL DSI rate
+ */
+struct rzv2h_pll_dsi_info {
+ const struct rzv2h_pll_limits *pll_dsi_limits;
+ struct rzv2h_pll_div_pars pll_dsi_parameters;
+ unsigned long req_pll_dsi_rate;
+};
+
/**
* struct rzv2h_cpg_priv - Clock Pulse Generator Private Data
*
* @ff_mod_status_ops: Fixed Factor Module Status Clock operations
* @mstop_count: Array of mstop values
* @rcdev: Reset controller entity
+ * @pll_dsi_info: Array of PLL DSI information, holds the limits and parameters
*/
struct rzv2h_cpg_priv {
struct device *dev;
atomic_t *mstop_count;
struct reset_controller_dev rcdev;
+
+ struct rzv2h_pll_dsi_info pll_dsi_info[MAX_CPG_DSI_PLL];
};
#define rcdev_to_priv(x) container_of(x, struct rzv2h_cpg_priv, rcdev)
#define to_rzv2h_ff_mod_status_clk(_hw) \
container_of(_hw, struct rzv2h_ff_mod_status_clk, fix.hw)
+/**
+ * struct rzv2h_plldsi_div_clk - PLL DSI DDIV clock
+ *
+ * @dtable: divider table
+ * @priv: CPG private data
+ * @hw: divider clk
+ * @ddiv: divider configuration
+ */
+struct rzv2h_plldsi_div_clk {
+ const struct clk_div_table *dtable;
+ struct rzv2h_cpg_priv *priv;
+ struct clk_hw hw;
+ struct ddiv ddiv;
+};
+
+#define to_plldsi_div_clk(_hw) \
+ container_of(_hw, struct rzv2h_plldsi_div_clk, hw)
+
+#define RZ_V2H_OSC_CLK_IN_MEGA (24 * MEGA)
+#define RZV2H_MAX_DIV_TABLES (16)
+
+/**
+ * rzv2h_get_pll_pars - Finds the best combination of PLL parameters
+ * for a given frequency.
+ *
+ * @limits: Pointer to the structure containing the limits for the PLL parameters
+ * @pars: Pointer to the structure where the best calculated PLL parameters values
+ * will be stored
+ * @freq_millihz: Target output frequency in millihertz
+ *
+ * This function calculates the best set of PLL parameters (M, K, P, S) to achieve
+ * the desired frequency.
+ * There is no direct formula to calculate the PLL parameters, as it's an open
+ * system of equations, therefore this function uses an iterative approach to
+ * determine the best solution. The best solution is one that minimizes the error
+ * (desired frequency - actual frequency).
+ *
+ * Return: true if a valid set of parameters values is found, false otherwise.
+ */
+bool rzv2h_get_pll_pars(const struct rzv2h_pll_limits *limits,
+ struct rzv2h_pll_pars *pars, u64 freq_millihz)
+{
+ u64 fout_min_millihz = mul_u32_u32(limits->fout.min, MILLI);
+ u64 fout_max_millihz = mul_u32_u32(limits->fout.max, MILLI);
+ struct rzv2h_pll_pars p, best;
+
+ if (freq_millihz > fout_max_millihz ||
+ freq_millihz < fout_min_millihz)
+ return false;
+
+ /* Initialize best error to maximum possible value */
+ best.error_millihz = S64_MAX;
+
+ for (p.p = limits->p.min; p.p <= limits->p.max; p.p++) {
+ u32 fref = RZ_V2H_OSC_CLK_IN_MEGA / p.p;
+ u16 divider;
+
+ for (divider = 1 << limits->s.min, p.s = limits->s.min;
+ p.s <= limits->s.max; p.s++, divider <<= 1) {
+ for (p.m = limits->m.min; p.m <= limits->m.max; p.m++) {
+ u64 output_m, output_k_range;
+ s64 pll_k, output_k;
+ u64 fvco, output;
+
+ /*
+ * The frequency generated by the PLL + divider
+ * is calculated as follows:
+ *
+ * With:
+ * Freq = Ffout = Ffvco / 2^(pll_s)
+ * Ffvco = (pll_m + (pll_k / 65536)) * Ffref
+ * Ffref = 24MHz / pll_p
+ *
+ * Freq can also be rewritten as:
+ * Freq = Ffvco / 2^(pll_s)
+ * = ((pll_m + (pll_k / 65536)) * Ffref) / 2^(pll_s)
+ * = (pll_m * Ffref) / 2^(pll_s) + ((pll_k / 65536) * Ffref) / 2^(pll_s)
+ * = output_m + output_k
+ *
+ * Every parameter has been determined at this
+ * point, but pll_k.
+ *
+ * Considering that:
+ * limits->k.min <= pll_k <= limits->k.max
+ * Then:
+ * -0.5 <= (pll_k / 65536) < 0.5
+ * Therefore:
+ * -Ffref / (2 * 2^(pll_s)) <= output_k < Ffref / (2 * 2^(pll_s))
+ */
+
+ /* Compute output M component (in mHz) */
+ output_m = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(p.m, fref) * MILLI,
+ divider);
+ /* Compute range for output K (in mHz) */
+ output_k_range = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(fref, MILLI),
+ 2 * divider);
+ /*
+ * No point in continuing if we can't achieve
+ * the desired frequency
+ */
+ if (freq_millihz < (output_m - output_k_range) ||
+ freq_millihz >= (output_m + output_k_range)) {
+ continue;
+ }
+
+ /*
+ * Compute the K component
+ *
+ * Since:
+ * Freq = output_m + output_k
+ * Then:
+ * output_k = Freq - output_m
+ * = ((pll_k / 65536) * Ffref) / 2^(pll_s)
+ * Therefore:
+ * pll_k = (output_k * 65536 * 2^(pll_s)) / Ffref
+ */
+ output_k = freq_millihz - output_m;
+ pll_k = div_s64(output_k * 65536ULL * divider,
+ fref);
+ pll_k = DIV_S64_ROUND_CLOSEST(pll_k, MILLI);
+
+ /* Validate K value within allowed limits */
+ if (pll_k < limits->k.min ||
+ pll_k > limits->k.max)
+ continue;
+
+ p.k = pll_k;
+
+ /* Compute (Ffvco * 65536) */
+ fvco = mul_u32_u32(p.m * 65536 + p.k, fref);
+ if (fvco < mul_u32_u32(limits->fvco.min, 65536) ||
+ fvco > mul_u32_u32(limits->fvco.max, 65536))
+ continue;
+
+ /* PLL_M component of (output * 65536 * PLL_P) */
+ output = mul_u32_u32(p.m * 65536, RZ_V2H_OSC_CLK_IN_MEGA);
+ /* PLL_K component of (output * 65536 * PLL_P) */
+ output += p.k * RZ_V2H_OSC_CLK_IN_MEGA;
+ /* Make it in mHz */
+ output *= MILLI;
+ output = DIV_U64_ROUND_CLOSEST(output, 65536 * p.p * divider);
+
+ /* Check output frequency against limits */
+ if (output < fout_min_millihz ||
+ output > fout_max_millihz)
+ continue;
+
+ p.error_millihz = freq_millihz - output;
+ p.freq_millihz = output;
+
+ /* If an exact match is found, return immediately */
+ if (p.error_millihz == 0) {
+ *pars = p;
+ return true;
+ }
+
+ /* Update best match if error is smaller */
+ if (abs(best.error_millihz) > abs(p.error_millihz))
+ best = p;
+ }
+ }
+ }
+
+ /* If no valid parameters were found, return false */
+ if (best.error_millihz == S64_MAX)
+ return false;
+
+ *pars = best;
+ return true;
+}
+EXPORT_SYMBOL_NS_GPL(rzv2h_get_pll_pars, "RZV2H_CPG");
+
+/*
+ * rzv2h_get_pll_divs_pars - Finds the best combination of PLL parameters
+ * and divider value for a given frequency.
+ *
+ * @limits: Pointer to the structure containing the limits for the PLL parameters
+ * @pars: Pointer to the structure where the best calculated PLL parameters and
+ * divider values will be stored
+ * @table: Pointer to the array of valid divider values
+ * @table_size: Size of the divider values array
+ * @freq_millihz: Target output frequency in millihertz
+ *
+ * This function calculates the best set of PLL parameters (M, K, P, S) and divider
+ * value to achieve the desired frequency. See rzv2h_get_pll_pars() for more details
+ * on how the PLL parameters are calculated.
+ *
+ * freq_millihz is the desired frequency generated by the PLL followed by a
+ * a gear.
+ */
+bool rzv2h_get_pll_divs_pars(const struct rzv2h_pll_limits *limits,
+ struct rzv2h_pll_div_pars *pars,
+ const u8 *table, u8 table_size, u64 freq_millihz)
+{
+ struct rzv2h_pll_div_pars p, best;
+
+ best.div.error_millihz = S64_MAX;
+ p.div.error_millihz = S64_MAX;
+ for (unsigned int i = 0; i < table_size; i++) {
+ if (!rzv2h_get_pll_pars(limits, &p.pll, freq_millihz * table[i]))
+ continue;
+
+ p.div.divider_value = table[i];
+ p.div.freq_millihz = DIV_U64_ROUND_CLOSEST(p.pll.freq_millihz, table[i]);
+ p.div.error_millihz = freq_millihz - p.div.freq_millihz;
+
+ if (p.div.error_millihz == 0) {
+ *pars = p;
+ return true;
+ }
+
+ if (abs(best.div.error_millihz) > abs(p.div.error_millihz))
+ best = p;
+ }
+
+ if (best.div.error_millihz == S64_MAX)
+ return false;
+
+ *pars = best;
+ return true;
+}
+EXPORT_SYMBOL_NS_GPL(rzv2h_get_pll_divs_pars, "RZV2H_CPG");
+
+static unsigned long rzv2h_cpg_plldsi_div_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw);
+ struct rzv2h_cpg_priv *priv = dsi_div->priv;
+ struct ddiv ddiv = dsi_div->ddiv;
+ u32 div;
+
+ div = readl(priv->base + ddiv.offset);
+ div >>= ddiv.shift;
+ div &= clk_div_mask(ddiv.width);
+ div = dsi_div->dtable[div].div;
+
+ return DIV_ROUND_CLOSEST_ULL(parent_rate, div);
+}
+
+static int rzv2h_cpg_plldsi_div_determine_rate(struct clk_hw *hw,
+ struct clk_rate_request *req)
+{
+ struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw);
+ struct pll_clk *pll_clk = to_pll(clk_hw_get_parent(hw));
+ struct rzv2h_cpg_priv *priv = dsi_div->priv;
+ u8 table[RZV2H_MAX_DIV_TABLES] = { 0 };
+ struct rzv2h_pll_div_pars *dsi_params;
+ struct rzv2h_pll_dsi_info *dsi_info;
+ const struct clk_div_table *div;
+ unsigned int i = 0;
+ u64 rate_millihz;
+
+ dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance];
+ dsi_params = &dsi_info->pll_dsi_parameters;
+
+ rate_millihz = mul_u32_u32(req->rate, MILLI);
+ if (rate_millihz == dsi_params->div.error_millihz + dsi_params->div.freq_millihz)
+ goto exit_determine_rate;
+
+ for (div = dsi_div->dtable; div->div; div++) {
+ if (i >= RZV2H_MAX_DIV_TABLES)
+ return -EINVAL;
+ table[i++] = div->div;
+ }
+
+ if (!rzv2h_get_pll_divs_pars(dsi_info->pll_dsi_limits, dsi_params, table, i,
+ rate_millihz)) {
+ dev_err(priv->dev, "failed to determine rate for req->rate: %lu\n",
+ req->rate);
+ return -EINVAL;
+ }
+
+exit_determine_rate:
+ req->rate = DIV_ROUND_CLOSEST_ULL(dsi_params->div.freq_millihz, MILLI);
+ req->best_parent_rate = req->rate * dsi_params->div.divider_value;
+ dsi_info->req_pll_dsi_rate = req->best_parent_rate;
+
+ return 0;
+}
+
+static int rzv2h_cpg_plldsi_div_set_rate(struct clk_hw *hw,
+ unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw);
+ struct pll_clk *pll_clk = to_pll(clk_hw_get_parent(hw));
+ struct rzv2h_cpg_priv *priv = dsi_div->priv;
+ struct rzv2h_pll_div_pars *dsi_params;
+ struct rzv2h_pll_dsi_info *dsi_info;
+ struct ddiv ddiv = dsi_div->ddiv;
+ const struct clk_div_table *clkt;
+ bool divider_found = false;
+ u32 val, shift;
+
+ dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance];
+ dsi_params = &dsi_info->pll_dsi_parameters;
+
+ for (clkt = dsi_div->dtable; clkt->div; clkt++) {
+ if (clkt->div == dsi_params->div.divider_value) {
+ divider_found = true;
+ break;
+ }
+ }
+
+ if (!divider_found)
+ return -EINVAL;
+
+ shift = ddiv.shift;
+ val = readl(priv->base + ddiv.offset) | DDIV_DIVCTL_WEN(shift);
+ val &= ~(clk_div_mask(ddiv.width) << shift);
+ val |= clkt->val << shift;
+ writel(val, priv->base + ddiv.offset);
+
+ return 0;
+}
+
+static const struct clk_ops rzv2h_cpg_plldsi_div_ops = {
+ .recalc_rate = rzv2h_cpg_plldsi_div_recalc_rate,
+ .determine_rate = rzv2h_cpg_plldsi_div_determine_rate,
+ .set_rate = rzv2h_cpg_plldsi_div_set_rate,
+};
+
+static struct clk * __init
+rzv2h_cpg_plldsi_div_clk_register(const struct cpg_core_clk *core,
+ struct rzv2h_cpg_priv *priv)
+{
+ struct rzv2h_plldsi_div_clk *clk_hw_data;
+ struct clk **clks = priv->clks;
+ struct clk_init_data init;
+ const struct clk *parent;
+ const char *parent_name;
+ struct clk_hw *clk_hw;
+ int ret;
+
+ parent = clks[core->parent];
+ if (IS_ERR(parent))
+ return ERR_CAST(parent);
+
+ clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL);
+ if (!clk_hw_data)
+ return ERR_PTR(-ENOMEM);
+
+ clk_hw_data->priv = priv;
+ clk_hw_data->ddiv = core->cfg.ddiv;
+ clk_hw_data->dtable = core->dtable;
+
+ parent_name = __clk_get_name(parent);
+ init.name = core->name;
+ init.ops = &rzv2h_cpg_plldsi_div_ops;
+ init.flags = core->flag;
+ init.parent_names = &parent_name;
+ init.num_parents = 1;
+
+ clk_hw = &clk_hw_data->hw;
+ clk_hw->init = &init;
+
+ ret = devm_clk_hw_register(priv->dev, clk_hw);
+ if (ret)
+ return ERR_PTR(ret);
+
+ return clk_hw->clk;
+}
+
+static int rzv2h_cpg_plldsi_determine_rate(struct clk_hw *hw,
+ struct clk_rate_request *req)
+{
+ struct pll_clk *pll_clk = to_pll(hw);
+ struct rzv2h_cpg_priv *priv = pll_clk->priv;
+ struct rzv2h_pll_dsi_info *dsi_info;
+ u64 rate_millihz;
+
+ dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance];
+ /* check if the divider has already invoked the algorithm */
+ if (req->rate == dsi_info->req_pll_dsi_rate)
+ return 0;
+
+ /* If the req->rate doesn't match we do the calculation assuming there is no divider */
+ rate_millihz = mul_u32_u32(req->rate, MILLI);
+ if (!rzv2h_get_pll_pars(dsi_info->pll_dsi_limits,
+ &dsi_info->pll_dsi_parameters.pll, rate_millihz)) {
+ dev_err(priv->dev,
+ "failed to determine rate for req->rate: %lu\n",
+ req->rate);
+ return -EINVAL;
+ }
+
+ req->rate = DIV_ROUND_CLOSEST_ULL(dsi_info->pll_dsi_parameters.pll.freq_millihz, MILLI);
+ dsi_info->req_pll_dsi_rate = req->rate;
+
+ return 0;
+}
+
+static int rzv2h_cpg_pll_set_rate(struct pll_clk *pll_clk,
+ struct rzv2h_pll_pars *params,
+ bool ssc_disable)
+{
+ struct rzv2h_cpg_priv *priv = pll_clk->priv;
+ u16 offset = pll_clk->pll.offset;
+ u32 val;
+ int ret;
+
+ /* Put PLL into standby mode */
+ writel(CPG_PLL_STBY_RESETB_WEN, priv->base + CPG_PLL_STBY(offset));
+ ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset),
+ val, !(val & CPG_PLL_MON_LOCK),
+ 100, 2000);
+ if (ret) {
+ dev_err(priv->dev, "Failed to put PLLDSI into standby mode");
+ return ret;
+ }
+
+ /* Output clock setting 1 */
+ writel(FIELD_PREP(CPG_PLL_CLK1_KDIV, (u16)params->k) |
+ FIELD_PREP(CPG_PLL_CLK1_MDIV, params->m) |
+ FIELD_PREP(CPG_PLL_CLK1_PDIV, params->p),
+ priv->base + CPG_PLL_CLK1(offset));
+
+ /* Output clock setting 2 */
+ val = readl(priv->base + CPG_PLL_CLK2(offset));
+ writel((val & ~CPG_PLL_CLK2_SDIV) | FIELD_PREP(CPG_PLL_CLK2_SDIV, params->s),
+ priv->base + CPG_PLL_CLK2(offset));
+
+ /* Put PLL to normal mode */
+ if (ssc_disable)
+ val = CPG_PLL_STBY_SSC_EN_WEN;
+ else
+ val = CPG_PLL_STBY_SSC_EN_WEN | CPG_PLL_STBY_SSC_EN;
+ writel(val | CPG_PLL_STBY_RESETB_WEN | CPG_PLL_STBY_RESETB,
+ priv->base + CPG_PLL_STBY(offset));
+
+ /* PLL normal mode transition, output clock stability check */
+ ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset),
+ val, (val & CPG_PLL_MON_LOCK),
+ 100, 2000);
+ if (ret) {
+ dev_err(priv->dev, "Failed to put PLLDSI into normal mode");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int rzv2h_cpg_plldsi_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct pll_clk *pll_clk = to_pll(hw);
+ struct rzv2h_pll_dsi_info *dsi_info;
+ struct rzv2h_cpg_priv *priv = pll_clk->priv;
+
+ dsi_info = &priv->pll_dsi_info[pll_clk->pll.instance];
+
+ return rzv2h_cpg_pll_set_rate(pll_clk, &dsi_info->pll_dsi_parameters.pll, true);
+}
+
static int rzv2h_cpg_pll_clk_is_enabled(struct clk_hw *hw)
{
struct pll_clk *pll_clk = to_pll(hw);
return DIV_ROUND_CLOSEST_ULL(rate, FIELD_GET(CPG_PLL_CLK1_PDIV, clk1));
}
+static const struct clk_ops rzv2h_cpg_plldsi_ops = {
+ .recalc_rate = rzv2h_cpg_pll_clk_recalc_rate,
+ .determine_rate = rzv2h_cpg_plldsi_determine_rate,
+ .set_rate = rzv2h_cpg_plldsi_set_rate,
+};
+
static const struct clk_ops rzv2h_cpg_pll_ops = {
.is_enabled = rzv2h_cpg_pll_clk_is_enabled,
.enable = rzv2h_cpg_pll_clk_enable,
if (!pll_clk)
return ERR_PTR(-ENOMEM);
+ if (core->type == CLK_TYPE_PLLDSI)
+ priv->pll_dsi_info[core->cfg.pll.instance].pll_dsi_limits =
+ core->cfg.pll.limits;
+
parent_name = __clk_get_name(parent);
init.name = core->name;
init.ops = ops;
case CLK_TYPE_SMUX:
clk = rzv2h_cpg_mux_clk_register(core, priv);
break;
+ case CLK_TYPE_PLLDSI:
+ clk = rzv2h_cpg_pll_clk_register(core, priv, &rzv2h_cpg_plldsi_ops);
+ break;
+ case CLK_TYPE_PLLDSI_DIV:
+ clk = rzv2h_cpg_plldsi_div_clk_register(core, priv);
+ break;
default:
goto fail;
}
#ifndef __LINUX_CLK_RENESAS_H_
#define __LINUX_CLK_RENESAS_H_
+#include <linux/clk-provider.h>
#include <linux/types.h>
+#include <linux/units.h>
struct device;
struct device_node;
#define cpg_mssr_attach_dev NULL
#define cpg_mssr_detach_dev NULL
#endif
+
+/**
+ * struct rzv2h_pll_limits - PLL parameter constraints
+ *
+ * This structure defines the minimum and maximum allowed values for
+ * various parameters used to configure a PLL. These limits ensure
+ * the PLL operates within valid and stable ranges.
+ *
+ * @fout: Output frequency range (in MHz)
+ * @fout.min: Minimum allowed output frequency
+ * @fout.max: Maximum allowed output frequency
+ *
+ * @fvco: PLL oscillation frequency range (in MHz)
+ * @fvco.min: Minimum allowed VCO frequency
+ * @fvco.max: Maximum allowed VCO frequency
+ *
+ * @m: Main-divider range
+ * @m.min: Minimum main-divider value
+ * @m.max: Maximum main-divider value
+ *
+ * @p: Pre-divider range
+ * @p.min: Minimum pre-divider value
+ * @p.max: Maximum pre-divider value
+ *
+ * @s: Divider range
+ * @s.min: Minimum divider value
+ * @s.max: Maximum divider value
+ *
+ * @k: Delta-sigma modulator range (signed)
+ * @k.min: Minimum delta-sigma value
+ * @k.max: Maximum delta-sigma value
+ */
+struct rzv2h_pll_limits {
+ struct {
+ u32 min;
+ u32 max;
+ } fout;
+
+ struct {
+ u32 min;
+ u32 max;
+ } fvco;
+
+ struct {
+ u16 min;
+ u16 max;
+ } m;
+
+ struct {
+ u8 min;
+ u8 max;
+ } p;
+
+ struct {
+ u8 min;
+ u8 max;
+ } s;
+
+ struct {
+ s16 min;
+ s16 max;
+ } k;
+};
+
+/**
+ * struct rzv2h_pll_pars - PLL configuration parameters
+ *
+ * This structure contains the configuration parameters for the
+ * Phase-Locked Loop (PLL), used to achieve a specific output frequency.
+ *
+ * @m: Main divider value
+ * @p: Pre-divider value
+ * @s: Output divider value
+ * @k: Delta-sigma modulation value
+ * @freq_millihz: Calculated PLL output frequency in millihertz
+ * @error_millihz: Frequency error from target in millihertz (signed)
+ */
+struct rzv2h_pll_pars {
+ u16 m;
+ u8 p;
+ u8 s;
+ s16 k;
+ u64 freq_millihz;
+ s64 error_millihz;
+};
+
+/**
+ * struct rzv2h_pll_div_pars - PLL parameters with post-divider
+ *
+ * This structure is used for PLLs that include an additional post-divider
+ * stage after the main PLL block. It contains both the PLL configuration
+ * parameters and the resulting frequency/error values after the divider.
+ *
+ * @pll: Main PLL configuration parameters (see struct rzv2h_pll_pars)
+ *
+ * @div: Post-divider configuration and result
+ * @div.divider_value: Divider applied to the PLL output
+ * @div.freq_millihz: Output frequency after divider in millihertz
+ * @div.error_millihz: Frequency error from target in millihertz (signed)
+ */
+struct rzv2h_pll_div_pars {
+ struct rzv2h_pll_pars pll;
+ struct {
+ u8 divider_value;
+ u64 freq_millihz;
+ s64 error_millihz;
+ } div;
+};
+
+#define RZV2H_CPG_PLL_DSI_LIMITS(name) \
+ static const struct rzv2h_pll_limits (name) = { \
+ .fout = { .min = 25 * MEGA, .max = 375 * MEGA }, \
+ .fvco = { .min = 1600 * MEGA, .max = 3200 * MEGA }, \
+ .m = { .min = 64, .max = 533 }, \
+ .p = { .min = 1, .max = 4 }, \
+ .s = { .min = 0, .max = 6 }, \
+ .k = { .min = -32768, .max = 32767 }, \
+ } \
+
+#ifdef CONFIG_CLK_RZV2H
+bool rzv2h_get_pll_pars(const struct rzv2h_pll_limits *limits,
+ struct rzv2h_pll_pars *pars, u64 freq_millihz);
+
+bool rzv2h_get_pll_divs_pars(const struct rzv2h_pll_limits *limits,
+ struct rzv2h_pll_div_pars *pars,
+ const u8 *table, u8 table_size, u64 freq_millihz);
+#else
+static inline bool rzv2h_get_pll_pars(const struct rzv2h_pll_limits *limits,
+ struct rzv2h_pll_pars *pars,
+ u64 freq_millihz)
+{
+ return false;
+}
+
+static inline bool rzv2h_get_pll_divs_pars(const struct rzv2h_pll_limits *limits,
+ struct rzv2h_pll_div_pars *pars,
+ const u8 *table, u8 table_size,
+ u64 freq_millihz)
+{
+ return false;
+}
+#endif
+
#endif