CXL Access Coordinates Computation
==================================
+Latency and Bandwidth Calculation
+=================================
+A memory region performance coordinates (latency and bandwidth) are typically
+provided via ACPI tables :doc:`SRAT <../platform/acpi/srat>` and
+:doc:`HMAT <../platform/acpi/hmat>`. However, the platform firmware (BIOS) is
+not able to annotate those for CXL devices that are hot-plugged since they do
+not exist during platform firmware initialization. The CXL driver can compute
+the performance coordinates by retrieving data from several components.
+
+The :doc:`SRAT <../platform/acpi/srat>` provides a Generic Port Affinity
+subtable that ties a proximity domain to a device handle, which in this case
+would be the CXL hostbridge. Using this association, the performance
+coordinates for the Generic Port can be retrieved from the
+:doc:`HMAT <../platform/acpi/hmat>` subtable. This piece represents the
+performance coordinates between a CPU and a Generic Port (CXL hostbridge).
+
+The :doc:`CDAT <../platform/cdat>` provides the performance coordinates for
+the CXL device itself. That is the bandwidth and latency to access that device's
+memory region. The DSMAS subtable provides a DSMADHandle that is tied to a
+Device Physical Address (DPA) range. The DSLBIS subtable provides the
+performance coordinates that's tied to a DSMADhandle and this ties the two
+table entries together to provide the performance coordinates for each DPA
+region. For example, if a device exports a DRAM region and a PMEM region,
+then there would be different performance characteristsics for each of those
+regions.
+
+If there's a CXL switch in the topology, then the performance coordinates for the
+switch is provided by SSLBIS subtable. This provides the bandwidth and latency
+for traversing the switch between the switch upstream port and the switch
+downstream port that points to the endpoint device.
+
+Simple topology example::
+
+ GP0/HB0/ACPI0016-0
+ RP0
+ |
+ | L0
+ |
+ SW 0 / USP0
+ SW 0 / DSP0
+ |
+ | L1
+ |
+ EP0
+
+In this example, there is a CXL switch between an endpoint and a root port.
+Latency in this example is calculated as such:
+L(EP0) - Latency from EP0 CDAT DSMAS+DSLBIS
+L(L1) - Link latency between EP0 and SW0DSP0
+L(SW0) - Latency for the switch from SW0 CDAT SSLBIS.
+L(L0) - Link latency between SW0 and RP0
+L(RP0) - Latency from root port to CPU via SRAT and HMAT (Generic Port).
+Total read and write latencies are the sum of all these parts.
+
+Bandwidth in this example is calculated as such:
+B(EP0) - Bandwidth from EP0 CDAT DSMAS+DSLBIS
+B(L1) - Link bandwidth between EP0 and SW0DSP0
+B(SW0) - Bandwidth for the switch from SW0 CDAT SSLBIS.
+B(L0) - Link bandwidth between SW0 and RP0
+B(RP0) - Bandwidth from root port to CPU via SRAT and HMAT (Generic Port).
+The total read and write bandwidth is the min() of all these parts.
+
+To calculate the link bandwidth:
+LinkOperatingFrequency (GT/s) is the current negotiated link speed.
+DataRatePerLink (MB/s) = LinkOperatingFrequency / 8
+Bandwidth (MB/s) = PCIeCurrentLinkWidth * DataRatePerLink
+Where PCIeCurrentLinkWidth is the number of lanes in the link.
+
+To calculate the link latency:
+LinkLatency (picoseconds) = FlitSize / LinkBandwidth (MB/s)
+
+See `CXL Memory Device SW Guide r1.0 <https://www.intel.com/content/www/us/en/content-details/643805/cxl-memory-device-software-guide.html>`_,
+section 2.11.3 and 2.11.4 for details.
+
+In the end, the access coordinates for a constructed memory region is calculated from one
+or more memory partitions from each of the CXL device(s).
+
Shared Upstream Link Calculation
================================
For certain CXL region construction with endpoints behind CXL switches (SW) or
bandwidth from all the members of the last xarray is updated for the
access coordinates residing in the cxl region (cxlr) context.
-.. kernel-doc:: drivers/cxl/acpi.c
- :identifiers: cxl_acpi_evaluate_qtg_dsm
+QTG ID
+======
+Each :doc:`CEDT <../platform/acpi/cedt>` has a QTG ID field. This field provides
+the ID that associates with a QoS Throttling Group (QTG) for the CFMWS window.
+Once the access coordinates are calculated, an ACPI Device Specific Method can
+be issued to the ACPI0016 device to retrieve the QTG ID depends on the access
+coordinates provided. The QTG ID for the device can be used as guidance to match
+to the CFMWS to setup the best Linux root decoder for the device performance.