/*! ZDICT_trainFromBuffer():
* Train a dictionary from an array of samples.
* Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4,
- * f=18, and accel=1.
+ * f=20, and accel=1.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
- unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(18)*/
+ unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)*/
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
- * If f is zero, default value of 18 is used.
+ * If f is zero, default value of 20 is used.
* If accel is zero, default value of 1 is used.
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
Same as cover but with extra parameters \fIf\fR and \fIaccel\fR and different default value of split
.
.IP
-If \fIsplit\fR is not specified, then it tries \fIsplit\fR = 75. If \fIf\fR is not specified, then it tries \fIf\fR = 18. Requires that 0 < \fIf\fR < 32. If \fIaccel\fR is not specified, then it tries \fIaccel\fR = 1. Requires that 0 < \fIaccel\fR <= 10. Requires that \fId\fR = 6 or \fId\fR = 8.
+If \fIsplit\fR is not specified, then it tries \fIsplit\fR = 75. If \fIf\fR is not specified, then it tries \fIf\fR = 20. Requires that 0 < \fIf\fR < 32. If \fIaccel\fR is not specified, then it tries \fIaccel\fR = 1. Requires that 0 < \fIaccel\fR <= 10. Requires that \fId\fR = 6 or \fId\fR = 8.
.
.IP
\fIf\fR is log of size of array that keeps track of frequency of subsegments of size \fId\fR. The subsegment is hashed to an index in the range [0,2^\fIf\fR - 1]. It is possible that 2 different subsegments are hashed to the same index, and they are considered as the same subsegment when computing frequency. Using a higher \fIf\fR reduces collision but takes longer.
* `--train-fastcover[=k#,d=#,f=#,steps=#,split=#,accel=#]`:
Same as cover but with extra parameters _f_ and _accel_ and different default value of split
If _split_ is not specified, then it tries _split_ = 75.
- If _f_ is not specified, then it tries _f_ = 18.
+ If _f_ is not specified, then it tries _f_ = 20.
Requires that 0 < _f_ < 32.
If _accel_ is not specified, then it tries _accel_ = 1.
Requires that 0 < _accel_ <= 10.