From: Tomas Mraz Date: Mon, 28 Feb 2022 17:26:30 +0000 (+0100) Subject: Add documentation of BN_mod_sqrt() X-Git-Tag: OpenSSL_1_1_1n~4 X-Git-Url: http://git.ipfire.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=b5fcb7e133725b8b2eb66f63f5142710ed63a6d1;p=thirdparty%2Fopenssl.git Add documentation of BN_mod_sqrt() Reviewed-by: Paul Dale Reviewed-by: Matt Caswell --- diff --git a/doc/man3/BN_add.pod b/doc/man3/BN_add.pod index dccd4790ede..1f5e37a4d18 100644 --- a/doc/man3/BN_add.pod +++ b/doc/man3/BN_add.pod @@ -3,7 +3,7 @@ =head1 NAME BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, -BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd - +BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp, BN_gcd - arithmetic operations on BIGNUMs =head1 SYNOPSIS @@ -36,6 +36,8 @@ arithmetic operations on BIGNUMs int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); + BIGNUM *BN_mod_sqrt(BIGNUM *in, BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); + int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, @@ -87,6 +89,12 @@ L. BN_mod_sqr() takes the square of I modulo B and places the result in I. +BN_mod_sqrt() returns the modular square root of I such that +C. The modulus I

must be a +prime, otherwise an error or an incorrect "result" will be returned. +The result is stored into I which can be NULL. The result will be +newly allocated in that case. + BN_exp() raises I to the I

-th power and places the result in I (C). This function is faster than repeated applications of BN_mul(). @@ -108,7 +116,10 @@ the arguments. =head1 RETURN VALUES -For all functions, 1 is returned for success, 0 on error. The return +The BN_mod_sqrt() returns the result (possibly incorrect if I

is +not a prime), or NULL. + +For all remaining functions, 1 is returned for success, 0 on error. The return value should always be checked (e.g., C). The error codes can be obtained by L.