From: Richard Henderson Date: Fri, 4 Jul 2025 14:19:31 +0000 (-0600) Subject: target/arm: Fix f16_dotadd vs nan selection X-Git-Tag: v10.1.0-rc0~29^2~99 X-Git-Url: http://git.ipfire.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=cfc688c00ade84f6b32c7814b52c217f1d3b5eb1;p=thirdparty%2Fqemu.git target/arm: Fix f16_dotadd vs nan selection Implement FPProcessNaNs4 within f16_dotadd, rather than simply letting NaNs propagate through the function. Cc: qemu-stable@nongnu.org Fixes: 3916841ac75 ("target/arm: Implement FMOPA, FMOPS (widening)") Reviewed-by: Peter Maydell Signed-off-by: Richard Henderson Message-id: 20250704142112.1018902-9-richard.henderson@linaro.org Signed-off-by: Peter Maydell --- diff --git a/target/arm/tcg/sme_helper.c b/target/arm/tcg/sme_helper.c index de0c6e54d4b..8f33387e4bd 100644 --- a/target/arm/tcg/sme_helper.c +++ b/target/arm/tcg/sme_helper.c @@ -1005,25 +1005,55 @@ static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2, * - we have pre-set-up copy of s_std which is set to round-to-odd, * for the multiply (see below) */ - float64 e1r = float16_to_float64(e1 & 0xffff, true, s_f16); - float64 e1c = float16_to_float64(e1 >> 16, true, s_f16); - float64 e2r = float16_to_float64(e2 & 0xffff, true, s_f16); - float64 e2c = float16_to_float64(e2 >> 16, true, s_f16); - float64 t64; + float16 h1r = e1 & 0xffff; + float16 h1c = e1 >> 16; + float16 h2r = e2 & 0xffff; + float16 h2c = e2 >> 16; float32 t32; - /* - * The ARM pseudocode function FPDot performs both multiplies - * and the add with a single rounding operation. Emulate this - * by performing the first multiply in round-to-odd, then doing - * the second multiply as fused multiply-add, and rounding to - * float32 all in one step. - */ - t64 = float64_mul(e1r, e2r, s_odd); - t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std); + /* C.f. FPProcessNaNs4 */ + if (float16_is_any_nan(h1r) || float16_is_any_nan(h1c) || + float16_is_any_nan(h2r) || float16_is_any_nan(h2c)) { + float16 t16; + + if (float16_is_signaling_nan(h1r, s_f16)) { + t16 = h1r; + } else if (float16_is_signaling_nan(h1c, s_f16)) { + t16 = h1c; + } else if (float16_is_signaling_nan(h2r, s_f16)) { + t16 = h2r; + } else if (float16_is_signaling_nan(h2c, s_f16)) { + t16 = h2c; + } else if (float16_is_any_nan(h1r)) { + t16 = h1r; + } else if (float16_is_any_nan(h1c)) { + t16 = h1c; + } else if (float16_is_any_nan(h2r)) { + t16 = h2r; + } else { + t16 = h2c; + } + t32 = float16_to_float32(t16, true, s_f16); + } else { + float64 e1r = float16_to_float64(h1r, true, s_f16); + float64 e1c = float16_to_float64(h1c, true, s_f16); + float64 e2r = float16_to_float64(h2r, true, s_f16); + float64 e2c = float16_to_float64(h2c, true, s_f16); + float64 t64; - /* This conversion is exact, because we've already rounded. */ - t32 = float64_to_float32(t64, s_std); + /* + * The ARM pseudocode function FPDot performs both multiplies + * and the add with a single rounding operation. Emulate this + * by performing the first multiply in round-to-odd, then doing + * the second multiply as fused multiply-add, and rounding to + * float32 all in one step. + */ + t64 = float64_mul(e1r, e2r, s_odd); + t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std); + + /* This conversion is exact, because we've already rounded. */ + t32 = float64_to_float32(t64, s_std); + } /* The final accumulation step is not fused. */ return float32_add(sum, t32, s_std);