The AEAD givenc descriptor relies on moving the IV through the
output FIFO and then back to the CTX2 for authentication. The
SEQ FIFO STORE could be scheduled before the data can be
read from OFIFO, especially since the SEQ FIFO LOAD needs
to wait for the SEQ FIFO LOAD SKIP to finish first. The
SKIP takes more time when the input is SG than when it's
a contiguous buffer. If the SEQ FIFO LOAD is not scheduled
before the STORE, the DECO will hang waiting for data
to be available in the OFIFO so it can be transferred to C2.
In order to overcome this, first force transfer of IV to C2
by starting the "cryptlen" transfer first and then starting to
store data from OFIFO to the output buffer.
When the flag PT_PTRACE_CAP was added the PTRACE_TRACEME path was
overlooked. This can result in incorrect behavior when an application
like strace traces an exec of a setuid executable.
Further PT_PTRACE_CAP does not have enough information for making good
security decisions as it does not report which user namespace the
capability is in. This has already allowed one mistake through
insufficient granulariy.
I found this issue when I was testing another corner case of exec and
discovered that I could not get strace to set PT_PTRACE_CAP even when
running strace as root with a full set of caps.
This change fixes the above issue with strace allowing stracing as
root a setuid executable without disabling setuid. More fundamentaly
this change allows what is allowable at all times, by using the correct
information in it's decision.
We truncated the possible read iterator to s_maxbytes in commit c2a9737f45e2 ("vfs,mm: fix a dead loop in truncate_inode_pages_range()"),
but our end condition handling was wrong: it's not an error to try to
read at the end of the file.
Reading past the end should return EOF (0), not EINVAL.
During exec dumpable is cleared if the file that is being executed is
not readable by the user executing the file. A bug in
ptrace_may_access allows reading the file if the executable happens to
enter into a subordinate user namespace (aka clone(CLONE_NEWUSER),
unshare(CLONE_NEWUSER), or setns(fd, CLONE_NEWUSER).
This problem is fixed with only necessary userspace breakage by adding
a user namespace owner to mm_struct, captured at the time of exec, so
it is clear in which user namespace CAP_SYS_PTRACE must be present in
to be able to safely give read permission to the executable.
The function ptrace_may_access is modified to verify that the ptracer
has CAP_SYS_ADMIN in task->mm->user_ns instead of task->cred->user_ns.
This ensures that if the task changes it's cred into a subordinate
user namespace it does not become ptraceable.
The function ptrace_attach is modified to only set PT_PTRACE_CAP when
CAP_SYS_PTRACE is held over task->mm->user_ns. The intent of
PT_PTRACE_CAP is to be a flag to note that whatever permission changes
the task might go through the tracer has sufficient permissions for
it not to be an issue. task->cred->user_ns is always the same
as or descendent of mm->user_ns. Which guarantees that having
CAP_SYS_PTRACE over mm->user_ns is the worst case for the tasks
credentials.
To prevent regressions mm->dumpable and mm->user_ns are not considered
when a task has no mm. As simply failing ptrace_may_attach causes
regressions in privileged applications attempting to read things
such as /proc/<pid>/stat
Acked-by: Kees Cook <keescook@chromium.org> Tested-by: Cyrill Gorcunov <gorcunov@openvz.org> Fixes: 8409cca70561 ("userns: allow ptrace from non-init user namespaces") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
bdev->bd_contains is not stable before calling __blkdev_get().
When __blkdev_get() is called on a parition with ->bd_openers == 0
it sets
bdev->bd_contains = bdev;
which is not correct for a partition.
After a call to __blkdev_get() succeeds, ->bd_openers will be > 0
and then ->bd_contains is stable.
When FMODE_EXCL is used, blkdev_get() calls
bd_start_claiming() -> bd_prepare_to_claim() -> bd_may_claim()
This call happens before __blkdev_get() is called, so ->bd_contains
is not stable. So bd_may_claim() cannot safely use ->bd_contains.
It currently tries to use it, and this can lead to a BUG_ON().
This happens when a whole device is already open with a bd_holder (in
use by dm in my particular example) and two threads race to open a
partition of that device for the first time, one opening with O_EXCL and
one without.
The thread that doesn't use O_EXCL gets through blkdev_get() to
__blkdev_get(), gains the ->bd_mutex, and sets bdev->bd_contains = bdev;
Immediately thereafter the other thread, using FMODE_EXCL, calls
bd_start_claiming() from blkdev_get(). This should fail because the
whole device has a holder, but because bdev->bd_contains == bdev
bd_may_claim() incorrectly reports success.
This thread continues and blocks on bd_mutex.
The first thread then sets bdev->bd_contains correctly and drops the mutex.
The thread using FMODE_EXCL then continues and when it calls bd_may_claim()
again in:
BUG_ON(!bd_may_claim(bdev, whole, holder));
The BUG_ON fires.
Fix this by removing the dependency on ->bd_contains in
bd_may_claim(). As bd_may_claim() has direct access to the whole
device, it can simply test if the target bdev is the whole device.
If you have a process that has set itself to be non-dumpable, and it
then undergoes exec(2), any CLOEXEC file descriptors it has open are
"exposed" during a race window between the dumpable flags of the process
being reset for exec(2) and CLOEXEC being applied to the file
descriptors. This can be exploited by a process by attempting to access
/proc/<pid>/fd/... during this window, without requiring CAP_SYS_PTRACE.
The race in question is after set_dumpable has been (for get_link,
though the trace is basically the same for readlink):
Which will return 0, during the race window and CLOEXEC file descriptors
will still be open during this window because do_close_on_exec has not
been called yet. As a result, the ordering of these calls should be
reversed to avoid this race window.
This is of particular concern to container runtimes, where joining a
PID namespace with file descriptors referring to the host filesystem
can result in security issues (since PRCTL_SET_DUMPABLE doesn't protect
against access of CLOEXEC file descriptors -- file descriptors which may
reference filesystem objects the container shouldn't have access to).
Cc: dev@opencontainers.org Reported-by: Michael Crosby <crosbymichael@gmail.com> Signed-off-by: Aleksa Sarai <asarai@suse.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When the user namespace support was merged the need to prevent
ptrace from revealing the contents of an unreadable executable
was overlooked.
Correct this oversight by ensuring that the executed file
or files are in mm->user_ns, by adjusting mm->user_ns.
Use the new function privileged_wrt_inode_uidgid to see if
the executable is a member of the user namespace, and as such
if having CAP_SYS_PTRACE in the user namespace should allow
tracing the executable. If not update mm->user_ns to
the parent user namespace until an appropriate parent is found.
Reported-by: Jann Horn <jann@thejh.net> Fixes: 9e4a36ece652 ("userns: Fail exec for suid and sgid binaries with ids outside our user namespace.") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 951555856b88 ("Btrfs: send, don't bug on inconsistent snapshots")
removed some BUG_ON() statements (replacing them with returning errors
to user space and logging error messages) when a snapshot is in an
inconsistent state due to failures to update a delayed inode item (ENOMEM
or ENOSPC) after adding/updating/deleting references, xattrs or file
extent items.
However there is a case, when no errors happen, where a file extent item
can be modified without having the corresponding inode item updated. This
case happens during balance under very specific timings, when relocation
is in the stage where it updates data pointers and a leaf that contains
file extent items is COWed. When that happens file extent items get their
disk_bytenr field updated to a new value that reflects the post relocation
logical address of the extent, without updating their respective inode
items (as there is nothing that needs to be updated on them). This is
performed at relocation.c:replace_file_extents() through
relocation.c:btrfs_reloc_cow_block().
So make an incremental send deal with this case and don't do any processing
for a file extent item that got its disk_bytenr field updated by relocation,
since the extent's data is the same as the one pointed by the file extent
item in the parent snapshot.
After the recent commit mentioned above this case resulted in EIO errors
returned to user space (and an error message logged to dmesg/syslog) when
doing an incremental send, while before it, it resulted in hitting a
BUG_ON leading to the following trace:
Really there's lots of things that can go wrong here, kill all the
BUG_ON()'s and replace the logic ones with ASSERT()'s and return EIO
instead.
Signed-off-by: Josef Bacik <jbacik@fb.com>
[ switched to btrfs_err, errors go to common label ] Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
btrfs_show_devname() is using the device_list_mutex, sometimes
a call to blkdev_put() leads vfs calling into this func. So
call blkdev_put() outside of device_list_mutex, as of now.
The extent buffer 'next' needs to be free'd conditionally.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
btrfs_rm_device frees the block device but then re-opens it using
the saved device name. A race exists between the close and the
re-open that allows the block size to be changed. The result
is getting stuck forever in the reclaim loop in __getblk_slow.
This patch moves the superblock cleanup before closing the block
device, which is also consistent with other callers. We also don't
need a private copy of dev_name as the whole routine operates under
the uuid_mutex.
Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We don't track the reloc roots in any sort of normal way, so the only way the
root/commit_root nodes get free'd is if the relocation finishes successfully and
the reloc root is deleted. Fix this by free'ing them in free_reloc_roots.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When relocating tree blocks, we firstly get block information from
back references in the extent tree, we then search fs tree to try to
find all parents of a block.
However, if fs tree is corrupted, eg. if there're some missing
items, we could come across these WARN_ONs and BUG_ONs.
This makes us print some error messages and return gracefully
from balance.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently we allow inconsistence about mixed flag
(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA).
We'd get ENOSPC if block group has mixed flag and btrfs doesn't.
If that happens, we have one space_info with mixed flag and another
space_info only with BTRFS_BLOCK_GROUP_METADATA, and
global_block_rsv.space_info points to the latter one, but all bytes
from block_group contributes to the mixed space_info, thus all the
allocation will fail with ENOSPC.
This adds a check for the above case.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com> Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
[ updated message ] Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
So we can read a btree block via readahead or intentional read,
and we can end up with a memory leak when something happens as
follows,
1) readahead starts to read block A but does not wait for read
completion,
2) btree_readpage_end_io_hook finds that block A is corrupted,
and it needs to clear all block A's pages' uptodate bit.
3) meanwhile an intentional read kicks in and checks block A's
pages' uptodate to decide which page needs to be read.
4) when some pages have the uptodate bit during 3)'s check so
3) doesn't count them for eb->io_pages, but they are later
cleared by 2) so we has to readpage on the page, we get
the wrong eb->io_pages which results in a memory leak of
this block.
This fixes the problem by firstly getting all pages's locking and
then checking pages' uptodate bit.
t1(readahead) t2(readahead endio) t3(the following read)
read_extent_buffer_pages end_bio_extent_readpage
for pg in eb: for page 0,1,2 in eb:
if pg is uptodate: btree_readpage_end_io_hook(pg)
num_reads++ if uptodate:
eb->io_pages = num_reads SetPageUptodate(pg) _______________
for pg in eb: for page 3 in eb: read_extent_buffer_pages
if pg is NOT uptodate: btree_readpage_end_io_hook(pg) for pg in eb:
__extent_read_full_page(pg) sanity check reports something wrong if pg is uptodate:
clear_extent_buffer_uptodate(eb) num_reads++
for pg in eb: eb->io_pages = num_reads
ClearPageUptodate(page) _______________
for pg in eb:
if pg is NOT uptodate:
__extent_read_full_page(pg)
So t3's eb->io_pages is not consistent with the number of pages it's reading,
and during endio(), atomic_dec_and_test(&eb->io_pages) will get a negative
number so that we're not able to free the eb.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The OMAP36xx DPLL5, driving EHCI USB, can be subject to a long-term
frequency drift. The frequency drift magnitude depends on the VCO update
rate, which is inversely proportional to the PLL divider. The kernel
DPLL configuration code results in a high value for the divider, leading
to a long term drift high enough to cause USB transmission errors. In
the worst case the USB PHY's ULPI interface can stop responding,
breaking USB operation completely. This manifests itself on the
Beagleboard xM by the LAN9514 reporting 'Cannot enable port 2. Maybe the
cable is bad?' in the kernel log.
Errata sprz319 advisory 2.1 documents PLL values that minimize the
drift. Use them automatically when DPLL5 is used for USB operation,
which we detect based on the requested clock rate. The clock framework
will still compute the PLL parameters and resulting rate as usual, but
the PLL M and N values will then be overridden. This can result in the
effective clock rate being slightly different than the rate cached by
the clock framework, but won't cause any adverse effect to USB
operation.
Signed-off-by: Richard Watts <rrw@kynesim.co.uk>
[Upported from v3.2 to v4.9] Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Tested-by: Ladislav Michl <ladis@linux-mips.org> Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Cc: Adam Ford <aford173@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit [64047d7f4912 ALSA: hda - ignore the assoc and seq when comparing
pin configurations] intented to ignore both seq and assoc at pin
comparing, but it only ignored seq. So that commit may still fail to
match pins on some machines.
Change the bitmask to also ignore assoc.
v2: Use macro to do bit masking.
Thanks to Hui Wang for the analysis.
Fixes: 64047d7f4912 ("ALSA: hda - ignore the assoc and seq when comparing...") Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
HP Z1 Gen3 AiO with Conexant codec doesn't give an unsolicited event
to the headset mic pin upon the jack plugging, it reports only to the
headphone pin. It results in the missing mic switching. Let's fix up
by simply gating the jack event.
More and more pin configurations have been adding to the pin quirk
table, lots of them are only different from assoc and seq, but they
all apply to the same QUIRK_FIXUP, if we don't compare assoc and seq
when matching pin configurations, it will greatly reduce the pin
quirk table size.
We have tested this change on a couple of Dell laptops, it worked
well.
Sampling rate changes after first set one are not reflected to the
hardware, while driver and ALSA think the rate has been changed.
Fix the problem by properly stopping the interface at the beginning of
prepare call, allowing new rate to be set to the hardware. This keeps
the hardware in sync with the driver.
The Logitech QuickCam Communicate Deluxe/S7500 microphone fails with the
following warning.
[ 6.778995] usb 2-1.2.2.2: Warning! Unlikely big volume range (=3072),
cval->res is probably wrong.
[ 6.778996] usb 2-1.2.2.2: [5] FU [Mic Capture Volume] ch = 1, val =
4608/7680/1
Adding it to the list of devices in volume_control_quirks makes it work
properly, fixing related typo.
The UHCI controllers in Intel chipsets rely on a platform-specific non-PME
mechanism for wakeup signalling. They can generate wakeup signals even
though they don't support PME.
We need to let the USB core know this so that it will enable runtime
suspend for UHCI controllers.
usb_endpoint_maxp() returns wMaxPacketSize in its
raw form. Without taking into consideration that it
also contains other bits reserved for isochronous
endpoints.
This patch fixes one occasion where this is a
problem by making sure that we initialize
ep->maxpacket only with lower 10 bits of the value
returned by usb_endpoint_maxp(). Note that seperate
patches will be necessary to audit all call sites of
usb_endpoint_maxp() and make sure that
usb_endpoint_maxp() only returns lower 10 bits of
wMaxPacketSize.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
USB-3 does not have any link state that will avoid negotiating a connection
with a plugged-in cable but will signal the host when the cable is
unplugged.
For USB-3 we used to first set the link to Disabled, then to RxDdetect to
be able to detect cable connects or disconnects. But in RxDetect the
connected device is detected again and eventually enabled.
Instead set the link into U3 and disable remote wakeups for the device.
This is what Windows does, and what Alan Stern suggested.
Cc: Alan Stern <stern@rowland.harvard.edu> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In case of High-Speed, High-Bandwidth endpoints, we
need to tell DWC3 that we have more than one packet
per interval. We do that by setting PCM1 field of
Isochronous-First TRB.
Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We were setting the qgroup_rescan_running flag to true only after the
rescan worker started (which is a task run by a queue). So if a user
space task starts a rescan and immediately after asks to wait for the
rescan worker to finish, this second call might happen before the rescan
worker task starts running, in which case the rescan wait ioctl returns
immediatley, not waiting for the rescan worker to finish.
This was making the fstest btrfs/022 fail very often.
Fixes: d2c609b834d6 (btrfs: properly track when rescan worker is running) Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We can not simply use the owner field from an extent buffer's header to
get the id of the respective tree when the extent buffer is from a
relocation tree. When we create the root for a relocation tree we leave
(on purpose) the owner field with the same value as the subvolume's tree
root (we do this at ctree.c:btrfs_copy_root()). So we must ignore extent
buffers from relocation trees, which have the BTRFS_HEADER_FLAG_RELOC
flag set, because otherwise we will always consider the extent buffer
as not being the root of the tree (the root of original subvolume tree
is always different from the root of the respective relocation tree).
This lead to assertion failures when running with the integrity checker
enabled (CONFIG_BTRFS_FS_CHECK_INTEGRITY=y) such as the following:
This can be easily reproduced by running xfstests with the integrity
checker enabled.
Fixes: 1ba98d086fe3 (Btrfs: detect corruption when non-root leaf has zero item) Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The balance status item contains currently known filter values, but the
stripes filter was unintentionally not among them. This would mean, that
interrupted and automatically restarted balance does not apply the
stripe filters.
Fixes: dee32d0ac3719ef8d640efaf0884111df444730f Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
During relocation of a data block group we create a relocation tree
for each fs/subvol tree by making a snapshot of each tree using
btrfs_copy_root() and the tree's commit root, and then setting the last
snapshot field for the fs/subvol tree's root to the value of the current
transaction id minus 1. However this can lead to relocation later
dropping references that it did not create if we have qgroups enabled,
leaving the filesystem in an inconsistent state that keeps aborting
transactions.
Lets consider the following example to explain the problem, which requires
qgroups to be enabled.
We are relocating data block group Y, we have a subvolume with id 258 that
has a root at level 1, that subvolume is used to store directory entries
for snapshots and we are currently at transaction 3404.
When committing transaction 3404, we have a pending snapshot and therefore
we call btrfs_run_delayed_items() at transaction.c:create_pending_snapshot()
in order to create its dentry at subvolume 258. This results in COWing
leaf A from root 258 in order to add the dentry. Note that leaf A
also contains file extent items referring to extents from some other
block group X (we are currently relocating block group Y). Later on, still
at create_pending_snapshot() we call qgroup_account_snapshot(), which
switches the commit root for root 258 when it calls switch_commit_roots(),
so now the COWed version of leaf A, lets call it leaf A', is accessible
from the commit root of tree 258. At the end of qgroup_account_snapshot(),
we call record_root_in_trans() with 258 as its argument, which results
in btrfs_init_reloc_root() being called, which in turn calls
relocation.c:create_reloc_root() in order to create a relocation tree
associated to root 258, which results in assigning the value of 3403
(which is the current transaction id minus 1 = 3404 - 1) to the
last_snapshot field of root 258. When creating the relocation tree root
at ctree.c:btrfs_copy_root() we add a shared reference for leaf A',
corresponding to the relocation tree's root, when we call btrfs_inc_ref()
against the COWed root (a copy of the commit root from tree 258), which
is at level 1. So at this point leaf A' has 2 references, one normal
reference corresponding to root 258 and one shared reference corresponding
to the root of the relocation tree.
Transaction 3404 finishes its commit and transaction 3405 is started by
relocation when calling merge_reloc_root() for the relocation tree
associated to root 258. In the meanwhile leaf A' is COWed again, in
response to some filesystem operation, when we are still at transaction
3405. However when we COW leaf A', at ctree.c:update_ref_for_cow(), we
call btrfs_block_can_be_shared() in order to figure out if other trees
refer to the leaf and if any such trees exists, add a full back reference
to leaf A' - but btrfs_block_can_be_shared() incorrectly returns false
because the following condition is false:
which evaluates to 3404 <= 3403. So after leaf A' is COWed, it stays with
only one reference, corresponding to the shared reference we created when
we called btrfs_copy_root() to create the relocation tree's root and
btrfs_inc_ref() ends up not being called for leaf A' nor we end up setting
the flag BTRFS_BLOCK_FLAG_FULL_BACKREF in leaf A'. This results in not
adding shared references for the extents from block group X that leaf A'
refers to with its file extent items.
Later, after merging the relocation root we do a call to to
btrfs_drop_snapshot() in order to delete the relocation tree. This ends
up calling do_walk_down() when path->slots[1] points to leaf A', which
results in calling btrfs_lookup_extent_info() to get the number of
references for leaf A', which is 1 at this time (only the shared reference
exists) and this value is stored at wc->refs[0]. After this walk_up_proc()
is called when wc->level is 0 and path->nodes[0] corresponds to leaf A'.
Because the current level is 0 and wc->refs[0] is 1, it does call
btrfs_dec_ref() against leaf A', which results in removing the single
references that the extents from block group X have which are associated
to root 258 - the expectation was to have each of these extents with 2
references - one reference for root 258 and one shared reference related
to the root of the relocation tree, and so we would drop only the shared
reference (because leaf A' was supposed to have the flag
BTRFS_BLOCK_FLAG_FULL_BACKREF set).
This leaves the filesystem in an inconsistent state as we now have file
extent items in a subvolume tree that point to extents from block group X
without references in the extent tree. So later on when we try to decrement
the references for these extents, for example due to a file unlink operation,
truncate operation or overwriting ranges of a file, we fail because the
expected references do not exist in the extent tree.
This leads to warnings and transaction aborts like the following:
This was happening often on openSUSE and SLE systems using btrfs as the
root filesystem (with its default layout where multiple subvolumes are
used) where balance happens in the background triggered by a cron job and
snapshots are automatically created before/after package installations,
upgrades and removals. The issue could be triggered simply by running the
following loop on the first system boot post installation:
while true; do
zypper -n in nfs-kernel-server
zypper -n rm nfs-kernel-server
done
(If we were fast enough and made that loop before the cron job triggered
a balance operation and the balance finished)
So fix by setting the last_snapshot field of the root to the value of the
generation of its commit root. Like this btrfs_block_can_be_shared()
behaves correctly for the case where the relocation root is created during
a transaction commit and for the case where it's created before a
transaction commit.
Fixes: 6426c7ad697d (btrfs: qgroup: Fix qgroup accounting when creating snapshot) Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
leaf N:
...
item 240 key (282 DIR_LOG_ITEM 0) itemoff 8189 itemsize 8
dir log end 1275809046
leaf N + 1:
item 0 key (282 DIR_LOG_ITEM 3936149215) itemoff 16275 itemsize 8
dir log end 18446744073709551615
...
When we pass the value 1275809046 + 1 as the parameter start_ret to the
function tree-log.c:find_dir_range() (done by replay_dir_deletes()), we
end up with path->slots[0] having the value 239 (points to the last item
of leaf N, item 240). Because the dir log item in that position has an
offset value smaller than *start_ret (1275809046 + 1) we need to move on
to the next leaf, however the logic for that is wrong since it compares
the current slot to the number of items in the leaf, which is smaller
and therefore we don't lookup for the next leaf but instead we set the
slot to point to an item that does not exist, at slot 240, and we later
operate on that slot which has unexpected content or in the worst case
can result in an invalid memory access (accessing beyond the last page
of leaf N's extent buffer).
So fix the logic that checks when we need to lookup at the next leaf
by first incrementing the slot and only after to check if that slot
is beyond the last item of the current leaf.
Signed-off-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Fixes: e02119d5a7b4 (Btrfs: Add a write ahead tree log to optimize synchronous operations) Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness] Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
While logging new directory entries, at tree-log.c:log_new_dir_dentries(),
after we call btrfs_search_forward() we get a leaf with a read lock on it,
and without unlocking that leaf we can end up calling btrfs_iget() to get
an inode pointer. The later (btrfs_iget()) can end up doing a read-only
search on the same tree again, if the inode is not in memory already, which
ends up causing a deadlock if some other task in the meanwhile started a
write search on the tree and is attempting to write lock the same leaf
that btrfs_search_forward() locked while holding write locks on upper
levels of the tree blocking the read search from btrfs_iget(). In this
scenario we get a deadlock.
So fix this by releasing the search path before calling btrfs_iget() at
tree-log.c:log_new_dir_dentries().
This can only happen with CONFIG_BTRFS_FS_CHECK_INTEGRITY=y.
Commit 1ba98d0 ("Btrfs: detect corruption when non-root leaf has zero item")
assumes that a leaf is its root when leaf->bytenr == btrfs_root_bytenr(root),
however, we should not use btrfs_root_bytenr(root) since it's mainly got
updated during committing transaction. So the check can fail when doing
COW on this leaf while it is a root.
This changes to use "if (leaf == btrfs_root_node(root))" instead, just like
how we check whether leaf is a root in __btrfs_cow_block().
Fixes: 1ba98d086fe3 (Btrfs: detect corruption when non-root leaf has zero item) Reported-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Problem statement: unprivileged user who has read-write access to more than
one btrfs subvolume may easily consume all kernel memory (eventually
triggering oom-killer).
Reproducer (./mkrmdir below essentially loops over mkdir/rmdir):
[root@kteam1 ~]# cat prep.sh
DEV=/dev/sdb
mkfs.btrfs -f $DEV
mount $DEV /mnt
for i in `seq 1 16`
do
mkdir /mnt/$i
btrfs subvolume create /mnt/SV_$i
ID=`btrfs subvolume list /mnt |grep "SV_$i$" |cut -d ' ' -f 2`
mount -t btrfs -o subvolid=$ID $DEV /mnt/$i
chmod a+rwx /mnt/$i
done
[root@kteam1 ~]# sh prep.sh
[maxim@kteam1 ~]$ for i in `seq 1 16`; do ./mkrmdir /mnt/$i 2000 2000 & done
The huge numbers above come from insane number of async_work-s allocated
and queued by btrfs_wq_run_delayed_node.
The problem is caused by btrfs_wq_run_delayed_node() queuing more and more
works if the number of delayed items is above BTRFS_DELAYED_BACKGROUND. The
worker func (btrfs_async_run_delayed_root) processes at least
BTRFS_DELAYED_BATCH items (if they are present in the list). So, the machinery
works as expected while the list is almost empty. As soon as it is getting
bigger, worker func starts to process more than one item at a time, it takes
longer, and the chances to have async_works queued more than needed is getting
higher.
The problem above is worsened by another flaw of delayed-inode implementation:
if async_work was queued in a throttling branch (number of items >=
BTRFS_DELAYED_WRITEBACK), corresponding worker func won't quit until
the number of items < BTRFS_DELAYED_BACKGROUND / 2. So, it is possible that
the func occupies CPU infinitely (up to 30sec in my experiments): while the
func is trying to drain the list, the user activity may add more and more
items to the list.
The patch fixes both problems in straightforward way: refuse queuing too
many works in btrfs_wq_run_delayed_node and bail out of worker func if
at least BTRFS_DELAYED_WRITEBACK items are processed.
Changed in v2: remove support of thresh == NO_THRESHOLD.
aoeblk contains some mysterious code, that wants to elevate the bio
vec page counts while it's under IO. That is not needed, it's
fragile, and it's causing kernel oopses for some.
Reported-by: Tested-by: Don Koch <kochd@us.ibm.com> Tested-by: Tested-by: Don Koch <kochd@us.ibm.com> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Both asn1 headers are included by rsa_helper.c, so rsa_helper.o
should explicitly depend on them.
Signed-off-by: David Michael <david.michael@coreos.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Cc: Tuomas Tynkkynen <tuomas@tuxera.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Yu Zhao has noticed that __unregister_cpu_notifier only unregisters its
notifiers when HOTPLUG_CPU=y while the registration might succeed even
when HOTPLUG_CPU=n if MODULE is enabled. This means that e.g. zswap
might keep a stale notifier on the list on the manual clean up during
the pool tear down and thus corrupt the list. Resulting in the following
This can be even triggered manually by changing
/sys/module/zswap/parameters/compressor multiple times.
Fix this issue by making unregister APIs symmetric to the register so
there are no surprises.
Fixes: 47e627bc8c9a ("[PATCH] hotplug: Allow modules to use the cpu hotplug notifiers even if !CONFIG_HOTPLUG_CPU") Reported-and-tested-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: linux-mm@kvack.org Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dan Streetman <ddstreet@ieee.org> Link: http://lkml.kernel.org/r/20161207135438.4310-1-mhocko@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
batadv_tt_prepare_tvlv_local_data can fail to allocate the memory for the
new TVLV block. The caller is informed about this problem with the returned
length of 0. Not checking this value results in an invalid memory access
when either tt_data or tt_change is accessed.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Fixes: 7ea7b4a14275 ("batman-adv: make the TT CRC logic VLAN specific") Signed-off-by: Sven Eckelmann <sven@narfation.org> Signed-off-by: Simon Wunderlich <sw@simonwunderlich.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The current ndelay() macro definition has an extra semi-colon at the
end of the line thus leading to a compilation error when ndelay is used
in a conditional block without curly braces like this one:
if (cond)
ndelay(t);
else
...
which, after the preprocessor pass gives:
if (cond)
m68k_ndelay(t);;
else
...
thus leading to the following gcc error:
error: 'else' without a previous 'if'
Remove this extra semi-colon.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com> Fixes: c8ee038bd1488 ("m68k: Implement ndelay() based on the existing udelay() logic") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This function sets req->r_locked_dir which is supposed to indicate to
ceph_fill_trace that the parent's i_rwsem is locked for write.
Unfortunately, there is no guarantee that the dir will be locked when
d_revalidate is called, so we really don't want ceph_fill_trace to do
any dcache manipulation from this context. Clear req->r_locked_dir since
it's clearly not safe to do that.
What we really want to know with d_revalidate is whether the dentry
still points to the same inode. ceph_fill_trace installs a pointer to
the inode in req->r_target_inode, so we can just compare that to
d_inode(dentry) to see if it's the same one after the lookup.
Also, since we aren't generally interested in the parent here, we can
switch to using a GETATTR to hint that to the MDS, which also means that
we only need to reserve one cap.
Finally, just remove the d_unhashed check. That's really outside the
purview of a filesystem's d_revalidate. If the thing became unhashed
while we're checking it, then that's up to the VFS to handle anyway.
All of them are switched by a single gate, which is part of the
IMX7D_LCDIF_PIXEL_ROOT_CLK clock. Hence using that clock also for
the AXI bus clock (clock-name "axi") makes sure the gate gets
enabled when accessing registers.
There seem to be no separate AXI display clock, and the clock is
optional. Hence remove the dummy clock.
This fixes kernel freezes when starting the X-Server (which
disables/re-enables the display controller).
Bug report from Debian [0] shows there's minor changed model of
Linkstation LS-GL that uses the 2nd SATA port of the SoC.
So it's necessary to enable two SATA ports, though for that specific
model only the 2nd one is used.
[0] https://bugs.debian.org/845611
Fixes: b1742ffa9ddb ("ARM: dts: orion5x: add device tree for buffalo linkstation ls-gl") Reported-by: Ryan Tandy <ryan@nardis.ca> Tested-by: Ryan Tandy <ryan@nardis.ca> Signed-off-by: Roger Shimizu <rogershimizu@gmail.com> Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch adds a check to limit the number of can_filters that can be
set via setsockopt on CAN_RAW sockets. Otherwise allocations > MAX_ORDER
are not prevented resulting in a warning.
mv_cesa_hash_std_step() copies the creq->state into the SRAM at each
step, but this is only required on the first one. By doing that, we
overwrite the engine state, and get erroneous results when the crypto
request is split in several chunks to fit in the internal SRAM.
This commit changes the function to copy the state only on the first
step.
Algorithms not compatible with mcryptd could be spawned by mcryptd
with a direct crypto_alloc_tfm invocation using a "mcryptd(alg)" name
construct. This causes mcryptd to crash the kernel if an arbitrary
"alg" is incompatible and not intended to be used with mcryptd. It is
an issue if AF_ALG tries to spawn mcryptd(alg) to expose it externally.
But such algorithms must be used internally and not be exposed.
We added a check to enforce that only internal algorithms are allowed
with mcryptd at the time mcryptd is spawning an algorithm.
Link: http://marc.info/?l=linux-crypto-vger&m=148063683310477&w=2 Reported-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Start with a clean slate before dealing with bit 16 (pointer size)
of Master Configuration Register.
This fixes the case of AArch64 boot loader + AArch32 kernel, when
the boot loader might set MCFGR[PS] and kernel would fail to clear it.
Reported-by: Alison Wang <alison.wang@nxp.com> Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Reviewed-By: Alison Wang <Alison.wang@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Given dimms and bus commands share the same command number space we need
to be careful that we are translating status in the correct context.
Otherwise we can, for example, fail an ND_CMD_GET_CONFIG_SIZE command
because max_xfer is zero. It fails because that condition erroneously
correlates with the 'cleared == 0' failure of ND_CMD_CLEAR_ERROR.
Fixes: aef253382266 ("libnvdimm, nfit: centralize command status translation") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If an ARS Status command returns truncated output, do not process
partial records or otherwise consume non-status fields.
Fixes: 0caeef63e6d2 ("libnvdimm: Add a poison list and export badblocks") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Given ambiguities in the ACPI 6.1 definition of the "Output (Size)"
field of the ARS (Address Range Scrub) Status command, a firmware
implementation may in practice return 0, 4, or 8 to indicate that there
is no output payload to process.
The specification states "Size of Output Buffer in bytes, including this
field.". However, 'Output Buffer' is also the name of the entire
payload, and earlier in the specification it states "Max Query ARS
Status Output Buffer Size: Maximum size of buffer (including the Status
and Extended Status fields)".
Without this fix if the BIOS happens to return 0 it causes memory
corruption as evidenced by this result from the acpi_nfit_ctl() unit
test.
ACPI DSMs can have an 'extended' status which can be non-zero to convey
additional information about the command. In the xlat_status routine,
where we translate the command statuses, we were returning an error for
a non-zero extended status, even if the primary status indicated success.
Return from each command's 'case' once we have verified both its status
and extend status are good.
Fixes: 11294d63ac91 ("nfit: fail DSMs that return non-zero status by default") Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Lukasz reported that perf stat counters overflow handling is broken on KNL/SLM.
Both these parts have full_width_write set, and that does indeed have
a problem. In order to deal with counter wrap, we must sample the
counter at at least half the counter period (see also the sampling
theorem) such that we can unambiguously reconstruct the count.
However commit:
069e0c3c4058 ("perf/x86/intel: Support full width counting")
sets the sampling interval to the full period, not half.
Fixing that exposes another issue, in that we must not sign extend the
delta value when we shift it right; the counter cannot have
decremented after all.
With both these issues fixed, counter overflow functions correctly
again.
Reported-by: Lukasz Odzioba <lukasz.odzioba@intel.com> Tested-by: Liang, Kan <kan.liang@intel.com> Tested-by: Odzioba, Lukasz <lukasz.odzioba@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: 069e0c3c4058 ("perf/x86/intel: Support full width counting") Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
local_addr.svm_cid is host cid. We should check guest cid instead,
which is remote_addr.svm_cid. Otherwise we end up resetting all
connections to all guests.
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Peng Tao <bergwolf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
> Regarding the previous paragraph... My tests indicate
> that writing *any* value to the autogroup [nice priority level]
> file causes the task group to get a lower priority.
Because autogroup didn't call the then meaningless scale_load()...
Autogroup nice level adjustment has been broken ever since load
resolution was increased for 64-bit kernels. Use scale_load() to
scale group weight.
Michael Kerrisk tested this patch to fix the problem:
> Applied and tested against 4.9-rc6 on an Intel u7 (4 cores).
> Test setup:
>
> Terminal window 1: running 40 CPU burner jobs
> Terminal window 2: running 40 CPU burner jobs
> Terminal window 1: running 1 CPU burner job
>
> Demonstrated that:
> * Writing "0" to the autogroup file for TW1 now causes no change
> to the rate at which the process on the terminal consume CPU.
> * Writing -20 to the autogroup file for TW1 caused those processes
> to get the lion's share of CPU while TW2 TW3 get a tiny amount.
> * Writing -20 to the autogroup files for TW1 and TW3 allowed the
> process on TW3 to get as much CPU as it was getting as when
> the autogroup nice values for both terminals were 0.
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com> Tested-by: Michael Kerrisk <mtk.manpages@gmail.com> Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-man <linux-man@vger.kernel.org> Link: http://lkml.kernel.org/r/1479897217.4306.6.camel@gmx.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The BUG_ON() recently introduced in lpfc_sli_ringtxcmpl_put() is hit in
the lpfc_els_abort() > lpfc_sli_issue_abort_iotag() >
lpfc_sli_abort_iotag_issue() function path [similar names], due to
'piocb->vport == NULL':
BUG_ON(!piocb || !piocb->vport);
This happens because lpfc_sli_abort_iotag_issue() doesn't set the
'abtsiocbp->vport' pointer -- but this is not the problem.
Previously, lpfc_sli_ringtxcmpl_put() accessed 'piocb->vport' only if
'piocb->iocb.ulpCommand' is neither CMD_ABORT_XRI_CN nor
CMD_CLOSE_XRI_CN, which are the only possible values for
lpfc_sli_abort_iotag_issue():
So, this function path would not have hit this possible NULL pointer
dereference before.
In order to fix this regression, move the second part of the BUG_ON()
check prior to the pointer dereference that it does check for.
For reference, this is the stack trace observed. The problem happened
because an unsolicited event was received - a PLOGI was received after
our PLOGI was issued but not yet complete, so the discovery state
machine goes on to sw-abort our PLOGI.
Hugh notes in response to commit 4cb19355ea19 "device-dax: fail all
private mapping attempts":
"I think that is more restrictive than you intended: haven't tried, but I
believe it rejects a PROT_READ, MAP_SHARED, O_RDONLY fd mmap, leaving no
way to mmap /dev/dax without write permission to it."
Indeed it does restrict read-only mappings, switch to checking
VM_MAYSHARE, not VM_SHARED.
Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Pawel Lebioda <pawel.lebioda@intel.com> Fixes: 4cb19355ea19 ("device-dax: fail all private mapping attempts") Reported-by: Hugh Dickins <hughd@google.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
While debugging the rtmutex unlock vs. dequeue race Will suggested to use
READ_ONCE() in rt_mutex_owner() as it might race against the
cmpxchg_release() in unlock_rt_mutex_safe().
Will: "It's a minor thing which will most likely not matter in practice"
Careful search did not unearth an actual problem in todays code, but it's
better to be safe than surprised.
Suggested-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Daney <ddaney@caviumnetworks.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20161130210030.431379999@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
That means the problem is caused by fixup_rt_mutex_waiters() which does the
RMW to clear the waiters bit unconditionally when there are no waiters in
the rtmutexes rbtree.
This can be fatal: A concurrent unlock can release the rtmutex in the
fastpath because the waiters bit is not set. If the cmpxchg() gets in the
middle of the RMW operation then the previous owner, which just unlocked
the rtmutex is set as the owner again when the write takes place after the
successfull cmpxchg().
The solution is rather trivial: verify that the owner member of the rtmutex
has the waiters bit set before clearing it. This does not require a
cmpxchg() or other atomic operations because the waiters bit can only be
set and cleared with the rtmutex wait_lock held. It's also safe against the
fast path unlock attempt. The unlock attempt via cmpxchg() will either see
the bit set and take the slowpath or see the bit cleared and release it
atomically in the fastpath.
It's remarkable that the test program provided by David triggers on ARM64
and MIPS64 really quick, but it refuses to reproduce on x86-64, while the
problem exists there as well. That refusal might explain that this got not
discovered earlier despite the bug existing from day one of the rtmutex
implementation more than 10 years ago.
Thanks to David for meticulously instrumenting the code and providing the
information which allowed to decode this subtle problem.
Reported-by: David Daney <ddaney@caviumnetworks.com> Tested-by: David Daney <david.daney@cavium.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Fixes: 23f78d4a03c5 ("[PATCH] pi-futex: rt mutex core") Link: http://lkml.kernel.org/r/20161130210030.351136722@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
zram hot_add sysfs attribute is a very 'special' attribute - reading
from it creates a new uninitialized zram device. This file, by a
mistake, can be read by a 'normal' user at the moment, while only root
must be able to create a new zram device, therefore hot_add attribute
must have S_IRUSR mode, not S_IRUGO.
[akpm@linux-foundation.org: s/sence/sense/, reflow comment to use 80 cols] Fixes: 6566d1a32bf72 ("zram: add dynamic device add/remove functionality") Link: http://lkml.kernel.org/r/20161205155845.20129-1-sergey.senozhatsky@gmail.com Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Steven Allen <steven@stebalien.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
At bootup we run measurements to calculate the best threshold for when we
should be using full TLB flushes instead of just flushing a specific amount of
TLB entries. This performance test is run over the kernel text segment.
But running this TLB performance test on the kernel text segment turned out to
crash some SMP machines when the kernel text pages were mapped as huge pages.
To avoid those crashes this patch simply skips this test on some SMP machines
and calculates an optimal threshold based on the maximum number of available
TLB entries and number of online CPUs.
On a technical side, this seems to happen:
The TLB measurement code uses flush_tlb_kernel_range() to flush specific TLB
entries with a page size of 4k (pdtlb 0(sr1,addr)). On UP systems this purge
instruction seems to work without problems even if the pages were mapped as
huge pages. But on SMP systems the TLB purge instruction is broadcasted to
other CPUs. Those CPUs then crash the machine because the page size is not as
expected. C8000 machines with PA8800/PA8900 CPUs were not affected by this
problem, because the required cache coherency prohibits to use huge pages at
all. Sadly I didn't found any documentation about this behaviour, so this
finding is purely based on testing with phyiscal SMP machines (A500-44 and
J5000, both were 2-way boxes).
We have four routines in pacache.S that use temporary alias pages:
copy_user_page_asm(), clear_user_page_asm(), flush_dcache_page_asm() and
flush_icache_page_asm(). copy_user_page_asm() and clear_user_page_asm()
don't purge the TLB entry used for the operation.
flush_dcache_page_asm() and flush_icache_page_asm do purge the entry.
Presumably, this was thought to optimize TLB use. However, the
operation is quite heavy weight on PA 1.X processors as we need to take
the TLB lock and a TLB broadcast is sent to all processors.
This patch removes the purges from flush_dcache_page_asm() and
flush_icache_page_asm.
Signed-off-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The attached change interchanges the order of purging the TLB and
setting the corresponding page table entry. TLB purges are strongly
ordered. It occurred to me one night that setting the PTE first might
have subtle ordering issues on SMP machines and cause random memory
corruption.
A TLB lock guards the insertion of user TLB entries. So after the TLB
is purged, a new entry can't be inserted until the lock is released.
This ensures that the new PTE value is used when the lock is released.
Since making this change, no random segmentation faults have been
observed on the Debian hppa buildd servers.
Signed-off-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Basically, the pjdfstests set the ownership of a file to 06555, and then
chowns it (as root) to a new uid/gid. Prior to commit a09f99eddef4 ("fuse:
fix killing s[ug]id in setattr"), fuse would send down a setattr with both
the uid/gid change and a new mode. Now, it just sends down the uid/gid
change.
Technically this is NOTABUG, since POSIX doesn't _require_ that we clear
these bits for a privileged process, but Linux (wisely) has done that and I
think we don't want to change that behavior here.
This is caused by the use of should_remove_suid(), which will always return
0 when the process has CAP_FSETID.
In fact we really don't need to be calling should_remove_suid() at all,
since we've already been indicated that we should remove the suid, we just
don't want to use a (very) stale mode for that.
This patch should fix the above as well as simplify the logic.
Reported-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Fixes: a09f99eddef4 ("fuse: fix killing s[ug]id in setattr") Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On 64-bit CPUs with no-execute support and non-snooping icache, such as
970 or POWER4, we have a software mechanism to ensure coherency of the
cache (using exec faults when needed).
This was broken due to a logic error when the code was rewritten
from assembly to C, previously the assembly code did:
In eeh_reset_device(), we take the pci_rescan_remove_lock immediately after
after we call eeh_reset_pe() to reset the PCI controller. We then call
eeh_clear_pe_frozen_state(), which can return an error. In this case, we
bail out of eeh_reset_device() without calling pci_unlock_rescan_remove().
Add a call to pci_unlock_rescan_remove() in the eeh_clear_pe_frozen_state()
error path so that we don't cause a deadlock later on.
Reported-by: Pradipta Ghosh <pradghos@in.ibm.com> Fixes: 78954700631f ("powerpc/eeh: Avoid I/O access during PE reset") Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Acked-by: Russell Currey <ruscur@russell.cc> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The threshold for OOM protection is too small for systems with large
number of CPUs. Applications report ENOBUFs on connect() every 10
minutes.
The problem is that the variable net->xfrm.flow_cache_gc_count is a
global counter while the variable fc->high_watermark is a per-CPU
constant. Take the number of CPUs into account as well.
Fixes: 6ad3122a08e3 ("flowcache: Avoid OOM condition under preasure") Reported-by: Lukáš Koldrt <lk@excello.cz> Tested-by: Jan Hejl <jh@excello.cz> Signed-off-by: Miroslav Urbanek <mu@miroslavurbanek.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
skb->protocol is now set in __ip_local_out() and __ip6_local_out() before
dst_output() is called. It is no longer necessary to do it for each tunnel.
Signed-off-by: Eli Cooper <elicooper@gmx.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
where skb_gso_segment() relies on skb->protocol to function properly.
This patch sets skb->protocol to ETH_P_IP before dst_output() is called,
fixing a bug where GSO packets sent through a sit tunnel are dropped
when xfrm is involved.
Signed-off-by: Eli Cooper <elicooper@gmx.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
where skb_gso_segment() relies on skb->protocol to function properly.
This patch sets skb->protocol to ETH_P_IPV6 before dst_output() is called,
fixing a bug where GSO packets sent through an ipip6 tunnel are dropped
when xfrm is involved.
Signed-off-by: Eli Cooper <elicooper@gmx.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In theory we could map other things, but there's a reason that function
is called "user_iov". Using anything else (like splice can do) just
confuses it.
Reported-and-tested-by: Johannes Thumshirn <jthumshirn@suse.de> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andreas Larsson <andreas@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A compile warning is introduced by a commit to fix the find_node().
This patch fix the compile warning by moving find_node() into __init
section. Because find_node() is only used by memblock_nid_range() which
is only used by a __init add_node_ranges(). find_node() and
memblock_nid_range() should also be inside __init section.
Signed-off-by: Thomas Tai <thomas.tai@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When booting up LDOM, find_node() warns that a physical address
doesn't match a NUMA node.
WARNING: CPU: 0 PID: 0 at arch/sparc/mm/init_64.c:835
find_node+0xf4/0x120 find_node: A physical address doesn't
match a NUMA node rule. Some physical memory will be
owned by node 0.Modules linked in:
It is because linux use an internal structure node_masks[] to
keep the best memory latency node only. However, LDOM mdesc can
contain single latency-group with multiple memory latency nodes.
If the address doesn't match the best latency node within
node_masks[], it should check for an alternative via mdesc.
The warning message should only be printed if the address
doesn't match any node_masks[] nor within mdesc. To minimize
the impact of searching mdesc every time, the last matched
mask and index is stored in a variable.
Signed-off-by: Thomas Tai <thomas.tai@oracle.com> Reviewed-by: Chris Hyser <chris.hyser@oracle.com> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It has been reported that update_suffix can be expensive when it is called
on a large node in which most of the suffix lengths are the same. The time
required to add 200K entries had increased from around 3 seconds to almost
49 seconds.
In order to address this we need to move the code for updating the suffix
out of resize and instead just have it handled in the cases where we are
pushing a node that increases the suffix length, or will decrease the
suffix length.
Fixes: 5405afd1a306 ("fib_trie: Add tracking value for suffix length") Reported-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Reviewed-by: Robert Shearman <rshearma@brocade.com> Tested-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It wasn't necessary to pass a leaf in when doing the suffix updates so just
drop it. Instead just pass the suffix and work with that.
Since we dropped the leaf there is no need to include that in the name so
the names are updated to node_push_suffix and node_pull_suffix.
Finally I noticed that the logic for pulling the suffix length back
actually had some issues. Specifically it would stop prematurely if there
was a longer suffix, but it was not as long as the original suffix. I
updated the code to address that in node_pull_suffix.
Fixes: 5405afd1a306 ("fib_trie: Add tracking value for suffix length") Suggested-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Reviewed-by: Robert Shearman <rshearma@brocade.com> Tested-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fix a small memory leak that can occur where we leak a fib_alias in the
event of us not being able to insert it into the local table.
Fixes: 0ddcf43d5d4a0 ("ipv4: FIB Local/MAIN table collapse") Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Alexander Duyck [Tue, 15 Nov 2016 10:46:06 +0000 (05:46 -0500)]
ipv4: Restore fib_trie_flush_external function and fix call ordering
[ Upstream commit 3b7093346b326e5d3590c7d49f6aefe6fa5b2c9a, the FIB offload
removal didn't occur in 4.8 so that part of this patch isn't here. However
we still need to fib_unmerge() bits. ]
The patch that removed the FIB offload infrastructure was a bit too
aggressive and also removed code needed to clean up us splitting the table
if additional rules were added. Specifically the function
fib_trie_flush_external was called at the end of a new rule being added to
flush the foreign trie entries from the main trie.
I updated the code so that we only call fib_trie_flush_external on the main
table so that we flush the entries for local from main. This way we don't
call it for every rule change which is what was happening previously.
Fixes: 347e3b28c1ba2 ("switchdev: remove FIB offload infrastructure") Reported-by: Eric Dumazet <edumazet@google.com> Cc: Jiri Pirko <jiri@mellanox.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Prior to commit c0371da6047a ("put iov_iter into msghdr") in v3.19, there
was no check that the iovec contained enough bytes for an ICMP header,
and the read loop would walk across neighboring stack contents. Since the
iov_iter conversion, bad arguments are noticed, but the returned error is
EFAULT. Returning EINVAL is a clearer error and also solves the problem
prior to v3.19.
CAP_NET_ADMIN users should not be allowed to set negative
sk_sndbuf or sk_rcvbuf values, as it can lead to various memory
corruptions, crashes, OOM...
Note that before commit 82981930125a ("net: cleanups in
sock_setsockopt()"), the bug was even more serious, since SO_SNDBUF
and SO_RCVBUF were vulnerable.
This needs to be backported to all known linux kernels.
Again, many thanks to syzkaller team for discovering this gem.
Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
geneve{,6}_build_skb can end up doing a pskb_expand_head(), which
makes the ip_hdr(skb) reference we stashed earlier stale. Since it's
only needed as an argument to ip_tunnel_ecn_encap(), move this
directly in the function call.
Fixes: 08399efc6319 ("geneve: ensure ECN info is handled properly in all tx/rx paths") Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Reviewed-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Qian Zhang (张谦) reported a potential socket buffer overflow in
tipc_msg_build() which is also known as CVE-2016-8632: due to
insufficient checks, a buffer overflow can occur if MTU is too short for
even tipc headers. As anyone can set device MTU in a user/net namespace,
this issue can be abused by a regular user.
As agreed in the discussion on Ben Hutchings' original patch, we should
check the MTU at the moment a bearer is attached rather than for each
processed packet. We also need to repeat the check when bearer MTU is
adjusted to new device MTU. UDP case also needs a check to avoid
overflow when calculating bearer MTU.
Fixes: b97bf3fd8f6a ("[TIPC] Initial merge") Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Reported-by: Qian Zhang (张谦) <zhangqian-c@360.cn> Acked-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When streaming a lot of data and the RZ/A1 can't keep up, some status bits
will get set that are not being checked or cleared which cause the
following messages and the Ethernet driver to stop working. This
patch fixes that issue.
irq 21: nobody cared (try booting with the "irqpoll" option)
handlers:
[<c036b71c>] sh_eth_interrupt
Disabling IRQ #21
Fixes: db893473d313a4ad ("sh_eth: Add support for r7s72100") Signed-off-by: Chris Brandt <chris.brandt@renesas.com> Acked-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
__bcmgenet_tx_reclaim() and bcmgenet_free_rx_buffers() are not using the
same struct device during unmap that was used for the map operation,
which makes DMA-API debugging warn about it. Fix this by always using
&priv->pdev->dev throughout the driver, using an identical device
reference for all map/unmap calls.
Fixes: 1c1008c793fa ("net: bcmgenet: add main driver file") Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>