]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob
53104412
[thirdparty/kernel/stable.git] /
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47
48 #include "tls.h"
49
50 struct tls_decrypt_arg {
51 struct_group(inargs,
52 bool zc;
53 bool async;
54 bool async_done;
55 u8 tail;
56 );
57
58 struct sk_buff *skb;
59 };
60
61 struct tls_decrypt_ctx {
62 struct sock *sk;
63 u8 iv[MAX_IV_SIZE];
64 u8 aad[TLS_MAX_AAD_SIZE];
65 u8 tail;
66 bool free_sgout;
67 struct scatterlist sg[];
68 };
69
70 noinline void tls_err_abort(struct sock *sk, int err)
71 {
72 WARN_ON_ONCE(err >= 0);
73 /* sk->sk_err should contain a positive error code. */
74 WRITE_ONCE(sk->sk_err, -err);
75 /* Paired with smp_rmb() in tcp_poll() */
76 smp_wmb();
77 sk_error_report(sk);
78 }
79
80 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
81 unsigned int recursion_level)
82 {
83 int start = skb_headlen(skb);
84 int i, chunk = start - offset;
85 struct sk_buff *frag_iter;
86 int elt = 0;
87
88 if (unlikely(recursion_level >= 24))
89 return -EMSGSIZE;
90
91 if (chunk > 0) {
92 if (chunk > len)
93 chunk = len;
94 elt++;
95 len -= chunk;
96 if (len == 0)
97 return elt;
98 offset += chunk;
99 }
100
101 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
102 int end;
103
104 WARN_ON(start > offset + len);
105
106 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
107 chunk = end - offset;
108 if (chunk > 0) {
109 if (chunk > len)
110 chunk = len;
111 elt++;
112 len -= chunk;
113 if (len == 0)
114 return elt;
115 offset += chunk;
116 }
117 start = end;
118 }
119
120 if (unlikely(skb_has_frag_list(skb))) {
121 skb_walk_frags(skb, frag_iter) {
122 int end, ret;
123
124 WARN_ON(start > offset + len);
125
126 end = start + frag_iter->len;
127 chunk = end - offset;
128 if (chunk > 0) {
129 if (chunk > len)
130 chunk = len;
131 ret = __skb_nsg(frag_iter, offset - start, chunk,
132 recursion_level + 1);
133 if (unlikely(ret < 0))
134 return ret;
135 elt += ret;
136 len -= chunk;
137 if (len == 0)
138 return elt;
139 offset += chunk;
140 }
141 start = end;
142 }
143 }
144 BUG_ON(len);
145 return elt;
146 }
147
148 /* Return the number of scatterlist elements required to completely map the
149 * skb, or -EMSGSIZE if the recursion depth is exceeded.
150 */
151 static int skb_nsg(struct sk_buff *skb, int offset, int len)
152 {
153 return __skb_nsg(skb, offset, len, 0);
154 }
155
156 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
157 struct tls_decrypt_arg *darg)
158 {
159 struct strp_msg *rxm = strp_msg(skb);
160 struct tls_msg *tlm = tls_msg(skb);
161 int sub = 0;
162
163 /* Determine zero-padding length */
164 if (prot->version == TLS_1_3_VERSION) {
165 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
166 char content_type = darg->zc ? darg->tail : 0;
167 int err;
168
169 while (content_type == 0) {
170 if (offset < prot->prepend_size)
171 return -EBADMSG;
172 err = skb_copy_bits(skb, rxm->offset + offset,
173 &content_type, 1);
174 if (err)
175 return err;
176 if (content_type)
177 break;
178 sub++;
179 offset--;
180 }
181 tlm->control = content_type;
182 }
183 return sub;
184 }
185
186 static void tls_decrypt_done(crypto_completion_data_t *data, int err)
187 {
188 struct aead_request *aead_req = crypto_get_completion_data(data);
189 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
190 struct scatterlist *sgout = aead_req->dst;
191 struct tls_sw_context_rx *ctx;
192 struct tls_decrypt_ctx *dctx;
193 struct tls_context *tls_ctx;
194 struct scatterlist *sg;
195 unsigned int pages;
196 struct sock *sk;
197 int aead_size;
198
199 /* If requests get too backlogged crypto API returns -EBUSY and calls
200 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
201 * to make waiting for backlog to flush with crypto_wait_req() easier.
202 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
203 * -EINPROGRESS -> 0.
204 * We have a single struct crypto_async_request per direction, this
205 * scheme doesn't help us, so just ignore the first ->complete().
206 */
207 if (err == -EINPROGRESS)
208 return;
209
210 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
211 aead_size = ALIGN(aead_size, __alignof__(*dctx));
212 dctx = (void *)((u8 *)aead_req + aead_size);
213
214 sk = dctx->sk;
215 tls_ctx = tls_get_ctx(sk);
216 ctx = tls_sw_ctx_rx(tls_ctx);
217
218 /* Propagate if there was an err */
219 if (err) {
220 if (err == -EBADMSG)
221 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
222 ctx->async_wait.err = err;
223 tls_err_abort(sk, err);
224 }
225
226 /* Free the destination pages if skb was not decrypted inplace */
227 if (dctx->free_sgout) {
228 /* Skip the first S/G entry as it points to AAD */
229 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
230 if (!sg)
231 break;
232 put_page(sg_page(sg));
233 }
234 }
235
236 kfree(aead_req);
237
238 if (atomic_dec_and_test(&ctx->decrypt_pending))
239 complete(&ctx->async_wait.completion);
240 }
241
242 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
243 {
244 if (!atomic_dec_and_test(&ctx->decrypt_pending))
245 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
246 atomic_inc(&ctx->decrypt_pending);
247
248 return ctx->async_wait.err;
249 }
250
251 static int tls_do_decryption(struct sock *sk,
252 struct scatterlist *sgin,
253 struct scatterlist *sgout,
254 char *iv_recv,
255 size_t data_len,
256 struct aead_request *aead_req,
257 struct tls_decrypt_arg *darg)
258 {
259 struct tls_context *tls_ctx = tls_get_ctx(sk);
260 struct tls_prot_info *prot = &tls_ctx->prot_info;
261 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
262 int ret;
263
264 aead_request_set_tfm(aead_req, ctx->aead_recv);
265 aead_request_set_ad(aead_req, prot->aad_size);
266 aead_request_set_crypt(aead_req, sgin, sgout,
267 data_len + prot->tag_size,
268 (u8 *)iv_recv);
269
270 if (darg->async) {
271 aead_request_set_callback(aead_req,
272 CRYPTO_TFM_REQ_MAY_BACKLOG,
273 tls_decrypt_done, aead_req);
274 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
275 atomic_inc(&ctx->decrypt_pending);
276 } else {
277 aead_request_set_callback(aead_req,
278 CRYPTO_TFM_REQ_MAY_BACKLOG,
279 crypto_req_done, &ctx->async_wait);
280 }
281
282 ret = crypto_aead_decrypt(aead_req);
283 if (ret == -EINPROGRESS)
284 return 0;
285
286 if (ret == -EBUSY) {
287 ret = tls_decrypt_async_wait(ctx);
288 darg->async_done = true;
289 /* all completions have run, we're not doing async anymore */
290 darg->async = false;
291 return ret;
292 ret = ret ?: -EINPROGRESS;
293 }
294
295 atomic_dec(&ctx->decrypt_pending);
296 darg->async = false;
297
298 return ret;
299 }
300
301 static void tls_trim_both_msgs(struct sock *sk, int target_size)
302 {
303 struct tls_context *tls_ctx = tls_get_ctx(sk);
304 struct tls_prot_info *prot = &tls_ctx->prot_info;
305 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306 struct tls_rec *rec = ctx->open_rec;
307
308 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
309 if (target_size > 0)
310 target_size += prot->overhead_size;
311 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
312 }
313
314 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
315 {
316 struct tls_context *tls_ctx = tls_get_ctx(sk);
317 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318 struct tls_rec *rec = ctx->open_rec;
319 struct sk_msg *msg_en = &rec->msg_encrypted;
320
321 return sk_msg_alloc(sk, msg_en, len, 0);
322 }
323
324 static int tls_clone_plaintext_msg(struct sock *sk, int required)
325 {
326 struct tls_context *tls_ctx = tls_get_ctx(sk);
327 struct tls_prot_info *prot = &tls_ctx->prot_info;
328 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
329 struct tls_rec *rec = ctx->open_rec;
330 struct sk_msg *msg_pl = &rec->msg_plaintext;
331 struct sk_msg *msg_en = &rec->msg_encrypted;
332 int skip, len;
333
334 /* We add page references worth len bytes from encrypted sg
335 * at the end of plaintext sg. It is guaranteed that msg_en
336 * has enough required room (ensured by caller).
337 */
338 len = required - msg_pl->sg.size;
339
340 /* Skip initial bytes in msg_en's data to be able to use
341 * same offset of both plain and encrypted data.
342 */
343 skip = prot->prepend_size + msg_pl->sg.size;
344
345 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
346 }
347
348 static struct tls_rec *tls_get_rec(struct sock *sk)
349 {
350 struct tls_context *tls_ctx = tls_get_ctx(sk);
351 struct tls_prot_info *prot = &tls_ctx->prot_info;
352 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
353 struct sk_msg *msg_pl, *msg_en;
354 struct tls_rec *rec;
355 int mem_size;
356
357 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
358
359 rec = kzalloc(mem_size, sk->sk_allocation);
360 if (!rec)
361 return NULL;
362
363 msg_pl = &rec->msg_plaintext;
364 msg_en = &rec->msg_encrypted;
365
366 sk_msg_init(msg_pl);
367 sk_msg_init(msg_en);
368
369 sg_init_table(rec->sg_aead_in, 2);
370 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
371 sg_unmark_end(&rec->sg_aead_in[1]);
372
373 sg_init_table(rec->sg_aead_out, 2);
374 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
375 sg_unmark_end(&rec->sg_aead_out[1]);
376
377 rec->sk = sk;
378
379 return rec;
380 }
381
382 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
383 {
384 sk_msg_free(sk, &rec->msg_encrypted);
385 sk_msg_free(sk, &rec->msg_plaintext);
386 kfree(rec);
387 }
388
389 static void tls_free_open_rec(struct sock *sk)
390 {
391 struct tls_context *tls_ctx = tls_get_ctx(sk);
392 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
393 struct tls_rec *rec = ctx->open_rec;
394
395 if (rec) {
396 tls_free_rec(sk, rec);
397 ctx->open_rec = NULL;
398 }
399 }
400
401 int tls_tx_records(struct sock *sk, int flags)
402 {
403 struct tls_context *tls_ctx = tls_get_ctx(sk);
404 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
405 struct tls_rec *rec, *tmp;
406 struct sk_msg *msg_en;
407 int tx_flags, rc = 0;
408
409 if (tls_is_partially_sent_record(tls_ctx)) {
410 rec = list_first_entry(&ctx->tx_list,
411 struct tls_rec, list);
412
413 if (flags == -1)
414 tx_flags = rec->tx_flags;
415 else
416 tx_flags = flags;
417
418 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
419 if (rc)
420 goto tx_err;
421
422 /* Full record has been transmitted.
423 * Remove the head of tx_list
424 */
425 list_del(&rec->list);
426 sk_msg_free(sk, &rec->msg_plaintext);
427 kfree(rec);
428 }
429
430 /* Tx all ready records */
431 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
432 if (READ_ONCE(rec->tx_ready)) {
433 if (flags == -1)
434 tx_flags = rec->tx_flags;
435 else
436 tx_flags = flags;
437
438 msg_en = &rec->msg_encrypted;
439 rc = tls_push_sg(sk, tls_ctx,
440 &msg_en->sg.data[msg_en->sg.curr],
441 0, tx_flags);
442 if (rc)
443 goto tx_err;
444
445 list_del(&rec->list);
446 sk_msg_free(sk, &rec->msg_plaintext);
447 kfree(rec);
448 } else {
449 break;
450 }
451 }
452
453 tx_err:
454 if (rc < 0 && rc != -EAGAIN)
455 tls_err_abort(sk, rc);
456
457 return rc;
458 }
459
460 static void tls_encrypt_done(crypto_completion_data_t *data, int err)
461 {
462 struct aead_request *aead_req = crypto_get_completion_data(data);
463 struct tls_sw_context_tx *ctx;
464 struct tls_context *tls_ctx;
465 struct tls_prot_info *prot;
466 struct scatterlist *sge;
467 struct sk_msg *msg_en;
468 struct tls_rec *rec;
469 struct sock *sk;
470
471 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
472 return;
473
474 rec = container_of(aead_req, struct tls_rec, aead_req);
475 msg_en = &rec->msg_encrypted;
476
477 sk = rec->sk;
478 tls_ctx = tls_get_ctx(sk);
479 prot = &tls_ctx->prot_info;
480 ctx = tls_sw_ctx_tx(tls_ctx);
481
482 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
483 sge->offset -= prot->prepend_size;
484 sge->length += prot->prepend_size;
485
486 /* Check if error is previously set on socket */
487 if (err || sk->sk_err) {
488 rec = NULL;
489
490 /* If err is already set on socket, return the same code */
491 if (sk->sk_err) {
492 ctx->async_wait.err = -sk->sk_err;
493 } else {
494 ctx->async_wait.err = err;
495 tls_err_abort(sk, err);
496 }
497 }
498
499 if (rec) {
500 struct tls_rec *first_rec;
501
502 /* Mark the record as ready for transmission */
503 smp_store_mb(rec->tx_ready, true);
504
505 /* If received record is at head of tx_list, schedule tx */
506 first_rec = list_first_entry(&ctx->tx_list,
507 struct tls_rec, list);
508 if (rec == first_rec) {
509 /* Schedule the transmission */
510 if (!test_and_set_bit(BIT_TX_SCHEDULED,
511 &ctx->tx_bitmask))
512 schedule_delayed_work(&ctx->tx_work.work, 1);
513 }
514 }
515
516 if (atomic_dec_and_test(&ctx->encrypt_pending))
517 complete(&ctx->async_wait.completion);
518 }
519
520 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
521 {
522 if (!atomic_dec_and_test(&ctx->encrypt_pending))
523 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
524 atomic_inc(&ctx->encrypt_pending);
525
526 return ctx->async_wait.err;
527 }
528
529 static int tls_do_encryption(struct sock *sk,
530 struct tls_context *tls_ctx,
531 struct tls_sw_context_tx *ctx,
532 struct aead_request *aead_req,
533 size_t data_len, u32 start)
534 {
535 struct tls_prot_info *prot = &tls_ctx->prot_info;
536 struct tls_rec *rec = ctx->open_rec;
537 struct sk_msg *msg_en = &rec->msg_encrypted;
538 struct scatterlist *sge = sk_msg_elem(msg_en, start);
539 int rc, iv_offset = 0;
540
541 /* For CCM based ciphers, first byte of IV is a constant */
542 switch (prot->cipher_type) {
543 case TLS_CIPHER_AES_CCM_128:
544 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
545 iv_offset = 1;
546 break;
547 case TLS_CIPHER_SM4_CCM:
548 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
549 iv_offset = 1;
550 break;
551 }
552
553 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
554 prot->iv_size + prot->salt_size);
555
556 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
557 tls_ctx->tx.rec_seq);
558
559 sge->offset += prot->prepend_size;
560 sge->length -= prot->prepend_size;
561
562 msg_en->sg.curr = start;
563
564 aead_request_set_tfm(aead_req, ctx->aead_send);
565 aead_request_set_ad(aead_req, prot->aad_size);
566 aead_request_set_crypt(aead_req, rec->sg_aead_in,
567 rec->sg_aead_out,
568 data_len, rec->iv_data);
569
570 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
571 tls_encrypt_done, aead_req);
572
573 /* Add the record in tx_list */
574 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
575 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
576 atomic_inc(&ctx->encrypt_pending);
577
578 rc = crypto_aead_encrypt(aead_req);
579 if (rc == -EBUSY) {
580 rc = tls_encrypt_async_wait(ctx);
581 rc = rc ?: -EINPROGRESS;
582 }
583 if (!rc || rc != -EINPROGRESS) {
584 atomic_dec(&ctx->encrypt_pending);
585 sge->offset -= prot->prepend_size;
586 sge->length += prot->prepend_size;
587 }
588
589 if (!rc) {
590 WRITE_ONCE(rec->tx_ready, true);
591 } else if (rc != -EINPROGRESS) {
592 list_del(&rec->list);
593 return rc;
594 }
595
596 /* Unhook the record from context if encryption is not failure */
597 ctx->open_rec = NULL;
598 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
599 return rc;
600 }
601
602 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
603 struct tls_rec **to, struct sk_msg *msg_opl,
604 struct sk_msg *msg_oen, u32 split_point,
605 u32 tx_overhead_size, u32 *orig_end)
606 {
607 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
608 struct scatterlist *sge, *osge, *nsge;
609 u32 orig_size = msg_opl->sg.size;
610 struct scatterlist tmp = { };
611 struct sk_msg *msg_npl;
612 struct tls_rec *new;
613 int ret;
614
615 new = tls_get_rec(sk);
616 if (!new)
617 return -ENOMEM;
618 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
619 tx_overhead_size, 0);
620 if (ret < 0) {
621 tls_free_rec(sk, new);
622 return ret;
623 }
624
625 *orig_end = msg_opl->sg.end;
626 i = msg_opl->sg.start;
627 sge = sk_msg_elem(msg_opl, i);
628 while (apply && sge->length) {
629 if (sge->length > apply) {
630 u32 len = sge->length - apply;
631
632 get_page(sg_page(sge));
633 sg_set_page(&tmp, sg_page(sge), len,
634 sge->offset + apply);
635 sge->length = apply;
636 bytes += apply;
637 apply = 0;
638 } else {
639 apply -= sge->length;
640 bytes += sge->length;
641 }
642
643 sk_msg_iter_var_next(i);
644 if (i == msg_opl->sg.end)
645 break;
646 sge = sk_msg_elem(msg_opl, i);
647 }
648
649 msg_opl->sg.end = i;
650 msg_opl->sg.curr = i;
651 msg_opl->sg.copybreak = 0;
652 msg_opl->apply_bytes = 0;
653 msg_opl->sg.size = bytes;
654
655 msg_npl = &new->msg_plaintext;
656 msg_npl->apply_bytes = apply;
657 msg_npl->sg.size = orig_size - bytes;
658
659 j = msg_npl->sg.start;
660 nsge = sk_msg_elem(msg_npl, j);
661 if (tmp.length) {
662 memcpy(nsge, &tmp, sizeof(*nsge));
663 sk_msg_iter_var_next(j);
664 nsge = sk_msg_elem(msg_npl, j);
665 }
666
667 osge = sk_msg_elem(msg_opl, i);
668 while (osge->length) {
669 memcpy(nsge, osge, sizeof(*nsge));
670 sg_unmark_end(nsge);
671 sk_msg_iter_var_next(i);
672 sk_msg_iter_var_next(j);
673 if (i == *orig_end)
674 break;
675 osge = sk_msg_elem(msg_opl, i);
676 nsge = sk_msg_elem(msg_npl, j);
677 }
678
679 msg_npl->sg.end = j;
680 msg_npl->sg.curr = j;
681 msg_npl->sg.copybreak = 0;
682
683 *to = new;
684 return 0;
685 }
686
687 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
688 struct tls_rec *from, u32 orig_end)
689 {
690 struct sk_msg *msg_npl = &from->msg_plaintext;
691 struct sk_msg *msg_opl = &to->msg_plaintext;
692 struct scatterlist *osge, *nsge;
693 u32 i, j;
694
695 i = msg_opl->sg.end;
696 sk_msg_iter_var_prev(i);
697 j = msg_npl->sg.start;
698
699 osge = sk_msg_elem(msg_opl, i);
700 nsge = sk_msg_elem(msg_npl, j);
701
702 if (sg_page(osge) == sg_page(nsge) &&
703 osge->offset + osge->length == nsge->offset) {
704 osge->length += nsge->length;
705 put_page(sg_page(nsge));
706 }
707
708 msg_opl->sg.end = orig_end;
709 msg_opl->sg.curr = orig_end;
710 msg_opl->sg.copybreak = 0;
711 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
712 msg_opl->sg.size += msg_npl->sg.size;
713
714 sk_msg_free(sk, &to->msg_encrypted);
715 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
716
717 kfree(from);
718 }
719
720 static int tls_push_record(struct sock *sk, int flags,
721 unsigned char record_type)
722 {
723 struct tls_context *tls_ctx = tls_get_ctx(sk);
724 struct tls_prot_info *prot = &tls_ctx->prot_info;
725 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
726 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
727 u32 i, split_point, orig_end;
728 struct sk_msg *msg_pl, *msg_en;
729 struct aead_request *req;
730 bool split;
731 int rc;
732
733 if (!rec)
734 return 0;
735
736 msg_pl = &rec->msg_plaintext;
737 msg_en = &rec->msg_encrypted;
738
739 split_point = msg_pl->apply_bytes;
740 split = split_point && split_point < msg_pl->sg.size;
741 if (unlikely((!split &&
742 msg_pl->sg.size +
743 prot->overhead_size > msg_en->sg.size) ||
744 (split &&
745 split_point +
746 prot->overhead_size > msg_en->sg.size))) {
747 split = true;
748 split_point = msg_en->sg.size;
749 }
750 if (split) {
751 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
752 split_point, prot->overhead_size,
753 &orig_end);
754 if (rc < 0)
755 return rc;
756 /* This can happen if above tls_split_open_record allocates
757 * a single large encryption buffer instead of two smaller
758 * ones. In this case adjust pointers and continue without
759 * split.
760 */
761 if (!msg_pl->sg.size) {
762 tls_merge_open_record(sk, rec, tmp, orig_end);
763 msg_pl = &rec->msg_plaintext;
764 msg_en = &rec->msg_encrypted;
765 split = false;
766 }
767 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
768 prot->overhead_size);
769 }
770
771 rec->tx_flags = flags;
772 req = &rec->aead_req;
773
774 i = msg_pl->sg.end;
775 sk_msg_iter_var_prev(i);
776
777 rec->content_type = record_type;
778 if (prot->version == TLS_1_3_VERSION) {
779 /* Add content type to end of message. No padding added */
780 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
781 sg_mark_end(&rec->sg_content_type);
782 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
783 &rec->sg_content_type);
784 } else {
785 sg_mark_end(sk_msg_elem(msg_pl, i));
786 }
787
788 if (msg_pl->sg.end < msg_pl->sg.start) {
789 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
790 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
791 msg_pl->sg.data);
792 }
793
794 i = msg_pl->sg.start;
795 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
796
797 i = msg_en->sg.end;
798 sk_msg_iter_var_prev(i);
799 sg_mark_end(sk_msg_elem(msg_en, i));
800
801 i = msg_en->sg.start;
802 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
803
804 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
805 tls_ctx->tx.rec_seq, record_type, prot);
806
807 tls_fill_prepend(tls_ctx,
808 page_address(sg_page(&msg_en->sg.data[i])) +
809 msg_en->sg.data[i].offset,
810 msg_pl->sg.size + prot->tail_size,
811 record_type);
812
813 tls_ctx->pending_open_record_frags = false;
814
815 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
816 msg_pl->sg.size + prot->tail_size, i);
817 if (rc < 0) {
818 if (rc != -EINPROGRESS) {
819 tls_err_abort(sk, -EBADMSG);
820 if (split) {
821 tls_ctx->pending_open_record_frags = true;
822 tls_merge_open_record(sk, rec, tmp, orig_end);
823 }
824 }
825 ctx->async_capable = 1;
826 return rc;
827 } else if (split) {
828 msg_pl = &tmp->msg_plaintext;
829 msg_en = &tmp->msg_encrypted;
830 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
831 tls_ctx->pending_open_record_frags = true;
832 ctx->open_rec = tmp;
833 }
834
835 return tls_tx_records(sk, flags);
836 }
837
838 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
839 bool full_record, u8 record_type,
840 ssize_t *copied, int flags)
841 {
842 struct tls_context *tls_ctx = tls_get_ctx(sk);
843 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
844 struct sk_msg msg_redir = { };
845 struct sk_psock *psock;
846 struct sock *sk_redir;
847 struct tls_rec *rec;
848 bool enospc, policy, redir_ingress;
849 int err = 0, send;
850 u32 delta = 0;
851
852 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
853 psock = sk_psock_get(sk);
854 if (!psock || !policy) {
855 err = tls_push_record(sk, flags, record_type);
856 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
857 *copied -= sk_msg_free(sk, msg);
858 tls_free_open_rec(sk);
859 err = -sk->sk_err;
860 }
861 if (psock)
862 sk_psock_put(sk, psock);
863 return err;
864 }
865 more_data:
866 enospc = sk_msg_full(msg);
867 if (psock->eval == __SK_NONE) {
868 delta = msg->sg.size;
869 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
870 delta -= msg->sg.size;
871 }
872 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
873 !enospc && !full_record) {
874 err = -ENOSPC;
875 goto out_err;
876 }
877 msg->cork_bytes = 0;
878 send = msg->sg.size;
879 if (msg->apply_bytes && msg->apply_bytes < send)
880 send = msg->apply_bytes;
881
882 switch (psock->eval) {
883 case __SK_PASS:
884 err = tls_push_record(sk, flags, record_type);
885 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
886 *copied -= sk_msg_free(sk, msg);
887 tls_free_open_rec(sk);
888 err = -sk->sk_err;
889 goto out_err;
890 }
891 break;
892 case __SK_REDIRECT:
893 redir_ingress = psock->redir_ingress;
894 sk_redir = psock->sk_redir;
895 memcpy(&msg_redir, msg, sizeof(*msg));
896 if (msg->apply_bytes < send)
897 msg->apply_bytes = 0;
898 else
899 msg->apply_bytes -= send;
900 sk_msg_return_zero(sk, msg, send);
901 msg->sg.size -= send;
902 release_sock(sk);
903 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
904 &msg_redir, send, flags);
905 lock_sock(sk);
906 if (err < 0) {
907 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
908 msg->sg.size = 0;
909 }
910 if (msg->sg.size == 0)
911 tls_free_open_rec(sk);
912 break;
913 case __SK_DROP:
914 default:
915 sk_msg_free_partial(sk, msg, send);
916 if (msg->apply_bytes < send)
917 msg->apply_bytes = 0;
918 else
919 msg->apply_bytes -= send;
920 if (msg->sg.size == 0)
921 tls_free_open_rec(sk);
922 *copied -= (send + delta);
923 err = -EACCES;
924 }
925
926 if (likely(!err)) {
927 bool reset_eval = !ctx->open_rec;
928
929 rec = ctx->open_rec;
930 if (rec) {
931 msg = &rec->msg_plaintext;
932 if (!msg->apply_bytes)
933 reset_eval = true;
934 }
935 if (reset_eval) {
936 psock->eval = __SK_NONE;
937 if (psock->sk_redir) {
938 sock_put(psock->sk_redir);
939 psock->sk_redir = NULL;
940 }
941 }
942 if (rec)
943 goto more_data;
944 }
945 out_err:
946 sk_psock_put(sk, psock);
947 return err;
948 }
949
950 static int tls_sw_push_pending_record(struct sock *sk, int flags)
951 {
952 struct tls_context *tls_ctx = tls_get_ctx(sk);
953 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
954 struct tls_rec *rec = ctx->open_rec;
955 struct sk_msg *msg_pl;
956 size_t copied;
957
958 if (!rec)
959 return 0;
960
961 msg_pl = &rec->msg_plaintext;
962 copied = msg_pl->sg.size;
963 if (!copied)
964 return 0;
965
966 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
967 &copied, flags);
968 }
969
970 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
971 {
972 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
973 struct tls_context *tls_ctx = tls_get_ctx(sk);
974 struct tls_prot_info *prot = &tls_ctx->prot_info;
975 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
976 bool async_capable = ctx->async_capable;
977 unsigned char record_type = TLS_RECORD_TYPE_DATA;
978 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
979 bool eor = !(msg->msg_flags & MSG_MORE);
980 size_t try_to_copy;
981 ssize_t copied = 0;
982 struct sk_msg *msg_pl, *msg_en;
983 struct tls_rec *rec;
984 int required_size;
985 int num_async = 0;
986 bool full_record;
987 int record_room;
988 int num_zc = 0;
989 int orig_size;
990 int ret = 0;
991
992 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
993 MSG_CMSG_COMPAT))
994 return -EOPNOTSUPP;
995
996 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
997 if (ret)
998 return ret;
999 lock_sock(sk);
1000
1001 if (unlikely(msg->msg_controllen)) {
1002 ret = tls_process_cmsg(sk, msg, &record_type);
1003 if (ret) {
1004 if (ret == -EINPROGRESS)
1005 num_async++;
1006 else if (ret != -EAGAIN)
1007 goto send_end;
1008 }
1009 }
1010
1011 while (msg_data_left(msg)) {
1012 if (sk->sk_err) {
1013 ret = -sk->sk_err;
1014 goto send_end;
1015 }
1016
1017 if (ctx->open_rec)
1018 rec = ctx->open_rec;
1019 else
1020 rec = ctx->open_rec = tls_get_rec(sk);
1021 if (!rec) {
1022 ret = -ENOMEM;
1023 goto send_end;
1024 }
1025
1026 msg_pl = &rec->msg_plaintext;
1027 msg_en = &rec->msg_encrypted;
1028
1029 orig_size = msg_pl->sg.size;
1030 full_record = false;
1031 try_to_copy = msg_data_left(msg);
1032 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1033 if (try_to_copy >= record_room) {
1034 try_to_copy = record_room;
1035 full_record = true;
1036 }
1037
1038 required_size = msg_pl->sg.size + try_to_copy +
1039 prot->overhead_size;
1040
1041 if (!sk_stream_memory_free(sk))
1042 goto wait_for_sndbuf;
1043
1044 alloc_encrypted:
1045 ret = tls_alloc_encrypted_msg(sk, required_size);
1046 if (ret) {
1047 if (ret != -ENOSPC)
1048 goto wait_for_memory;
1049
1050 /* Adjust try_to_copy according to the amount that was
1051 * actually allocated. The difference is due
1052 * to max sg elements limit
1053 */
1054 try_to_copy -= required_size - msg_en->sg.size;
1055 full_record = true;
1056 }
1057
1058 if (!is_kvec && (full_record || eor) && !async_capable) {
1059 u32 first = msg_pl->sg.end;
1060
1061 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1062 msg_pl, try_to_copy);
1063 if (ret)
1064 goto fallback_to_reg_send;
1065
1066 num_zc++;
1067 copied += try_to_copy;
1068
1069 sk_msg_sg_copy_set(msg_pl, first);
1070 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1071 record_type, &copied,
1072 msg->msg_flags);
1073 if (ret) {
1074 if (ret == -EINPROGRESS)
1075 num_async++;
1076 else if (ret == -ENOMEM)
1077 goto wait_for_memory;
1078 else if (ctx->open_rec && ret == -ENOSPC)
1079 goto rollback_iter;
1080 else if (ret != -EAGAIN)
1081 goto send_end;
1082 }
1083 continue;
1084 rollback_iter:
1085 copied -= try_to_copy;
1086 sk_msg_sg_copy_clear(msg_pl, first);
1087 iov_iter_revert(&msg->msg_iter,
1088 msg_pl->sg.size - orig_size);
1089 fallback_to_reg_send:
1090 sk_msg_trim(sk, msg_pl, orig_size);
1091 }
1092
1093 required_size = msg_pl->sg.size + try_to_copy;
1094
1095 ret = tls_clone_plaintext_msg(sk, required_size);
1096 if (ret) {
1097 if (ret != -ENOSPC)
1098 goto send_end;
1099
1100 /* Adjust try_to_copy according to the amount that was
1101 * actually allocated. The difference is due
1102 * to max sg elements limit
1103 */
1104 try_to_copy -= required_size - msg_pl->sg.size;
1105 full_record = true;
1106 sk_msg_trim(sk, msg_en,
1107 msg_pl->sg.size + prot->overhead_size);
1108 }
1109
1110 if (try_to_copy) {
1111 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1112 msg_pl, try_to_copy);
1113 if (ret < 0)
1114 goto trim_sgl;
1115 }
1116
1117 /* Open records defined only if successfully copied, otherwise
1118 * we would trim the sg but not reset the open record frags.
1119 */
1120 tls_ctx->pending_open_record_frags = true;
1121 copied += try_to_copy;
1122 if (full_record || eor) {
1123 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1124 record_type, &copied,
1125 msg->msg_flags);
1126 if (ret) {
1127 if (ret == -EINPROGRESS)
1128 num_async++;
1129 else if (ret == -ENOMEM)
1130 goto wait_for_memory;
1131 else if (ret != -EAGAIN) {
1132 if (ret == -ENOSPC)
1133 ret = 0;
1134 goto send_end;
1135 }
1136 }
1137 }
1138
1139 continue;
1140
1141 wait_for_sndbuf:
1142 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1143 wait_for_memory:
1144 ret = sk_stream_wait_memory(sk, &timeo);
1145 if (ret) {
1146 trim_sgl:
1147 if (ctx->open_rec)
1148 tls_trim_both_msgs(sk, orig_size);
1149 goto send_end;
1150 }
1151
1152 if (ctx->open_rec && msg_en->sg.size < required_size)
1153 goto alloc_encrypted;
1154 }
1155
1156 if (!num_async) {
1157 goto send_end;
1158 } else if (num_zc) {
1159 int err;
1160
1161 /* Wait for pending encryptions to get completed */
1162 err = tls_encrypt_async_wait(ctx);
1163 if (err) {
1164 ret = err;
1165 copied = 0;
1166 }
1167 }
1168
1169 /* Transmit if any encryptions have completed */
1170 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1171 cancel_delayed_work(&ctx->tx_work.work);
1172 tls_tx_records(sk, msg->msg_flags);
1173 }
1174
1175 send_end:
1176 ret = sk_stream_error(sk, msg->msg_flags, ret);
1177
1178 release_sock(sk);
1179 mutex_unlock(&tls_ctx->tx_lock);
1180 return copied > 0 ? copied : ret;
1181 }
1182
1183 /*
1184 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1185 */
1186 void tls_sw_splice_eof(struct socket *sock)
1187 {
1188 struct sock *sk = sock->sk;
1189 struct tls_context *tls_ctx = tls_get_ctx(sk);
1190 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1191 struct tls_rec *rec;
1192 struct sk_msg *msg_pl;
1193 ssize_t copied = 0;
1194 bool retrying = false;
1195 int ret = 0;
1196
1197 if (!ctx->open_rec)
1198 return;
1199
1200 mutex_lock(&tls_ctx->tx_lock);
1201 lock_sock(sk);
1202
1203 retry:
1204 /* same checks as in tls_sw_push_pending_record() */
1205 rec = ctx->open_rec;
1206 if (!rec)
1207 goto unlock;
1208
1209 msg_pl = &rec->msg_plaintext;
1210 if (msg_pl->sg.size == 0)
1211 goto unlock;
1212
1213 /* Check the BPF advisor and perform transmission. */
1214 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1215 &copied, 0);
1216 switch (ret) {
1217 case 0:
1218 case -EAGAIN:
1219 if (retrying)
1220 goto unlock;
1221 retrying = true;
1222 goto retry;
1223 case -EINPROGRESS:
1224 break;
1225 default:
1226 goto unlock;
1227 }
1228
1229 /* Wait for pending encryptions to get completed */
1230 if (tls_encrypt_async_wait(ctx))
1231 goto unlock;
1232
1233 /* Transmit if any encryptions have completed */
1234 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1235 cancel_delayed_work(&ctx->tx_work.work);
1236 tls_tx_records(sk, 0);
1237 }
1238
1239 unlock:
1240 release_sock(sk);
1241 mutex_unlock(&tls_ctx->tx_lock);
1242 }
1243
1244 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1245 int offset, size_t size, int flags)
1246 {
1247 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1248 struct tls_context *tls_ctx = tls_get_ctx(sk);
1249 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1250 struct tls_prot_info *prot = &tls_ctx->prot_info;
1251 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1252 struct sk_msg *msg_pl;
1253 struct tls_rec *rec;
1254 int num_async = 0;
1255 ssize_t copied = 0;
1256 bool full_record;
1257 int record_room;
1258 int ret = 0;
1259 bool eor;
1260
1261 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1262 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1263
1264 /* Call the sk_stream functions to manage the sndbuf mem. */
1265 while (size > 0) {
1266 size_t copy, required_size;
1267
1268 if (sk->sk_err) {
1269 ret = -sk->sk_err;
1270 goto sendpage_end;
1271 }
1272
1273 if (ctx->open_rec)
1274 rec = ctx->open_rec;
1275 else
1276 rec = ctx->open_rec = tls_get_rec(sk);
1277 if (!rec) {
1278 ret = -ENOMEM;
1279 goto sendpage_end;
1280 }
1281
1282 msg_pl = &rec->msg_plaintext;
1283
1284 full_record = false;
1285 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1286 copy = size;
1287 if (copy >= record_room) {
1288 copy = record_room;
1289 full_record = true;
1290 }
1291
1292 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1293
1294 if (!sk_stream_memory_free(sk))
1295 goto wait_for_sndbuf;
1296 alloc_payload:
1297 ret = tls_alloc_encrypted_msg(sk, required_size);
1298 if (ret) {
1299 if (ret != -ENOSPC)
1300 goto wait_for_memory;
1301
1302 /* Adjust copy according to the amount that was
1303 * actually allocated. The difference is due
1304 * to max sg elements limit
1305 */
1306 copy -= required_size - msg_pl->sg.size;
1307 full_record = true;
1308 }
1309
1310 sk_msg_page_add(msg_pl, page, copy, offset);
1311 msg_pl->sg.copybreak = 0;
1312 msg_pl->sg.curr = msg_pl->sg.end;
1313 sk_mem_charge(sk, copy);
1314
1315 offset += copy;
1316 size -= copy;
1317 copied += copy;
1318
1319 tls_ctx->pending_open_record_frags = true;
1320 if (full_record || eor || sk_msg_full(msg_pl)) {
1321 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1322 record_type, &copied, flags);
1323 if (ret) {
1324 if (ret == -EINPROGRESS)
1325 num_async++;
1326 else if (ret == -ENOMEM)
1327 goto wait_for_memory;
1328 else if (ret != -EAGAIN) {
1329 if (ret == -ENOSPC)
1330 ret = 0;
1331 goto sendpage_end;
1332 }
1333 }
1334 }
1335 continue;
1336 wait_for_sndbuf:
1337 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1338 wait_for_memory:
1339 ret = sk_stream_wait_memory(sk, &timeo);
1340 if (ret) {
1341 if (ctx->open_rec)
1342 tls_trim_both_msgs(sk, msg_pl->sg.size);
1343 goto sendpage_end;
1344 }
1345
1346 if (ctx->open_rec)
1347 goto alloc_payload;
1348 }
1349
1350 if (num_async) {
1351 /* Transmit if any encryptions have completed */
1352 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1353 cancel_delayed_work(&ctx->tx_work.work);
1354 tls_tx_records(sk, flags);
1355 }
1356 }
1357 sendpage_end:
1358 ret = sk_stream_error(sk, flags, ret);
1359 return copied > 0 ? copied : ret;
1360 }
1361
1362 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1363 int offset, size_t size, int flags)
1364 {
1365 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1366 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1367 MSG_NO_SHARED_FRAGS))
1368 return -EOPNOTSUPP;
1369
1370 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1371 }
1372
1373 int tls_sw_sendpage(struct sock *sk, struct page *page,
1374 int offset, size_t size, int flags)
1375 {
1376 struct tls_context *tls_ctx = tls_get_ctx(sk);
1377 int ret;
1378
1379 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1380 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1381 return -EOPNOTSUPP;
1382
1383 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1384 if (ret)
1385 return ret;
1386 lock_sock(sk);
1387 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1388 release_sock(sk);
1389 mutex_unlock(&tls_ctx->tx_lock);
1390 return ret;
1391 }
1392
1393 static int
1394 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1395 bool released)
1396 {
1397 struct tls_context *tls_ctx = tls_get_ctx(sk);
1398 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1399 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1400 int ret = 0;
1401 long timeo;
1402
1403 timeo = sock_rcvtimeo(sk, nonblock);
1404
1405 while (!tls_strp_msg_ready(ctx)) {
1406 if (!sk_psock_queue_empty(psock))
1407 return 0;
1408
1409 if (sk->sk_err)
1410 return sock_error(sk);
1411
1412 if (ret < 0)
1413 return ret;
1414
1415 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1416 tls_strp_check_rcv(&ctx->strp);
1417 if (tls_strp_msg_ready(ctx))
1418 break;
1419 }
1420
1421 if (sk->sk_shutdown & RCV_SHUTDOWN)
1422 return 0;
1423
1424 if (sock_flag(sk, SOCK_DONE))
1425 return 0;
1426
1427 if (!timeo)
1428 return -EAGAIN;
1429
1430 released = true;
1431 add_wait_queue(sk_sleep(sk), &wait);
1432 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1433 ret = sk_wait_event(sk, &timeo,
1434 tls_strp_msg_ready(ctx) ||
1435 !sk_psock_queue_empty(psock),
1436 &wait);
1437 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1438 remove_wait_queue(sk_sleep(sk), &wait);
1439
1440 /* Handle signals */
1441 if (signal_pending(current))
1442 return sock_intr_errno(timeo);
1443 }
1444
1445 tls_strp_msg_load(&ctx->strp, released);
1446
1447 return 1;
1448 }
1449
1450 static int tls_setup_from_iter(struct iov_iter *from,
1451 int length, int *pages_used,
1452 struct scatterlist *to,
1453 int to_max_pages)
1454 {
1455 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1456 struct page *pages[MAX_SKB_FRAGS];
1457 unsigned int size = 0;
1458 ssize_t copied, use;
1459 size_t offset;
1460
1461 while (length > 0) {
1462 i = 0;
1463 maxpages = to_max_pages - num_elem;
1464 if (maxpages == 0) {
1465 rc = -EFAULT;
1466 goto out;
1467 }
1468 copied = iov_iter_get_pages2(from, pages,
1469 length,
1470 maxpages, &offset);
1471 if (copied <= 0) {
1472 rc = -EFAULT;
1473 goto out;
1474 }
1475
1476 length -= copied;
1477 size += copied;
1478 while (copied) {
1479 use = min_t(int, copied, PAGE_SIZE - offset);
1480
1481 sg_set_page(&to[num_elem],
1482 pages[i], use, offset);
1483 sg_unmark_end(&to[num_elem]);
1484 /* We do not uncharge memory from this API */
1485
1486 offset = 0;
1487 copied -= use;
1488
1489 i++;
1490 num_elem++;
1491 }
1492 }
1493 /* Mark the end in the last sg entry if newly added */
1494 if (num_elem > *pages_used)
1495 sg_mark_end(&to[num_elem - 1]);
1496 out:
1497 if (rc)
1498 iov_iter_revert(from, size);
1499 *pages_used = num_elem;
1500
1501 return rc;
1502 }
1503
1504 static struct sk_buff *
1505 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1506 unsigned int full_len)
1507 {
1508 struct strp_msg *clr_rxm;
1509 struct sk_buff *clr_skb;
1510 int err;
1511
1512 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1513 &err, sk->sk_allocation);
1514 if (!clr_skb)
1515 return NULL;
1516
1517 skb_copy_header(clr_skb, skb);
1518 clr_skb->len = full_len;
1519 clr_skb->data_len = full_len;
1520
1521 clr_rxm = strp_msg(clr_skb);
1522 clr_rxm->offset = 0;
1523
1524 return clr_skb;
1525 }
1526
1527 /* Decrypt handlers
1528 *
1529 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1530 * They must transform the darg in/out argument are as follows:
1531 * | Input | Output
1532 * -------------------------------------------------------------------
1533 * zc | Zero-copy decrypt allowed | Zero-copy performed
1534 * async | Async decrypt allowed | Async crypto used / in progress
1535 * skb | * | Output skb
1536 *
1537 * If ZC decryption was performed darg.skb will point to the input skb.
1538 */
1539
1540 /* This function decrypts the input skb into either out_iov or in out_sg
1541 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1542 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1543 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1544 * NULL, then the decryption happens inside skb buffers itself, i.e.
1545 * zero-copy gets disabled and 'darg->zc' is updated.
1546 */
1547 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1548 struct scatterlist *out_sg,
1549 struct tls_decrypt_arg *darg)
1550 {
1551 struct tls_context *tls_ctx = tls_get_ctx(sk);
1552 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1553 struct tls_prot_info *prot = &tls_ctx->prot_info;
1554 int n_sgin, n_sgout, aead_size, err, pages = 0;
1555 struct sk_buff *skb = tls_strp_msg(ctx);
1556 const struct strp_msg *rxm = strp_msg(skb);
1557 const struct tls_msg *tlm = tls_msg(skb);
1558 struct aead_request *aead_req;
1559 struct scatterlist *sgin = NULL;
1560 struct scatterlist *sgout = NULL;
1561 const int data_len = rxm->full_len - prot->overhead_size;
1562 int tail_pages = !!prot->tail_size;
1563 struct tls_decrypt_ctx *dctx;
1564 struct sk_buff *clear_skb;
1565 int iv_offset = 0;
1566 u8 *mem;
1567
1568 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1569 rxm->full_len - prot->prepend_size);
1570 if (n_sgin < 1)
1571 return n_sgin ?: -EBADMSG;
1572
1573 if (darg->zc && (out_iov || out_sg)) {
1574 clear_skb = NULL;
1575
1576 if (out_iov)
1577 n_sgout = 1 + tail_pages +
1578 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1579 else
1580 n_sgout = sg_nents(out_sg);
1581 } else {
1582 darg->zc = false;
1583
1584 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1585 if (!clear_skb)
1586 return -ENOMEM;
1587
1588 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1589 }
1590
1591 /* Increment to accommodate AAD */
1592 n_sgin = n_sgin + 1;
1593
1594 /* Allocate a single block of memory which contains
1595 * aead_req || tls_decrypt_ctx.
1596 * Both structs are variable length.
1597 */
1598 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1599 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1600 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1601 sk->sk_allocation);
1602 if (!mem) {
1603 err = -ENOMEM;
1604 goto exit_free_skb;
1605 }
1606
1607 /* Segment the allocated memory */
1608 aead_req = (struct aead_request *)mem;
1609 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1610 dctx->sk = sk;
1611 sgin = &dctx->sg[0];
1612 sgout = &dctx->sg[n_sgin];
1613
1614 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1615 switch (prot->cipher_type) {
1616 case TLS_CIPHER_AES_CCM_128:
1617 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1618 iv_offset = 1;
1619 break;
1620 case TLS_CIPHER_SM4_CCM:
1621 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1622 iv_offset = 1;
1623 break;
1624 }
1625
1626 /* Prepare IV */
1627 if (prot->version == TLS_1_3_VERSION ||
1628 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1629 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1630 prot->iv_size + prot->salt_size);
1631 } else {
1632 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1633 &dctx->iv[iv_offset] + prot->salt_size,
1634 prot->iv_size);
1635 if (err < 0)
1636 goto exit_free;
1637 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1638 }
1639 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1640
1641 /* Prepare AAD */
1642 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1643 prot->tail_size,
1644 tls_ctx->rx.rec_seq, tlm->control, prot);
1645
1646 /* Prepare sgin */
1647 sg_init_table(sgin, n_sgin);
1648 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1649 err = skb_to_sgvec(skb, &sgin[1],
1650 rxm->offset + prot->prepend_size,
1651 rxm->full_len - prot->prepend_size);
1652 if (err < 0)
1653 goto exit_free;
1654
1655 if (clear_skb) {
1656 sg_init_table(sgout, n_sgout);
1657 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1658
1659 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1660 data_len + prot->tail_size);
1661 if (err < 0)
1662 goto exit_free;
1663 } else if (out_iov) {
1664 sg_init_table(sgout, n_sgout);
1665 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1666
1667 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1668 (n_sgout - 1 - tail_pages));
1669 if (err < 0)
1670 goto exit_free_pages;
1671
1672 if (prot->tail_size) {
1673 sg_unmark_end(&sgout[pages]);
1674 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1675 prot->tail_size);
1676 sg_mark_end(&sgout[pages + 1]);
1677 }
1678 } else if (out_sg) {
1679 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1680 }
1681 dctx->free_sgout = !!pages;
1682
1683 /* Prepare and submit AEAD request */
1684 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1685 data_len + prot->tail_size, aead_req, darg);
1686 if (err) {
1687 if (darg->async_done)
1688 goto exit_free_skb;
1689 goto exit_free_pages;
1690 }
1691
1692 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1693 clear_skb = NULL;
1694
1695 if (unlikely(darg->async)) {
1696 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1697 if (err)
1698 __skb_queue_tail(&ctx->async_hold, darg->skb);
1699 return err;
1700 }
1701
1702 if (unlikely(darg->async_done))
1703 return 0;
1704
1705 if (prot->tail_size)
1706 darg->tail = dctx->tail;
1707
1708 exit_free_pages:
1709 /* Release the pages in case iov was mapped to pages */
1710 for (; pages > 0; pages--)
1711 put_page(sg_page(&sgout[pages]));
1712 exit_free:
1713 kfree(mem);
1714 exit_free_skb:
1715 consume_skb(clear_skb);
1716 return err;
1717 }
1718
1719 static int
1720 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1721 struct msghdr *msg, struct tls_decrypt_arg *darg)
1722 {
1723 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1724 struct tls_prot_info *prot = &tls_ctx->prot_info;
1725 struct strp_msg *rxm;
1726 int pad, err;
1727
1728 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1729 if (err < 0) {
1730 if (err == -EBADMSG)
1731 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1732 return err;
1733 }
1734 /* keep going even for ->async, the code below is TLS 1.3 */
1735
1736 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1737 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1738 darg->tail != TLS_RECORD_TYPE_DATA)) {
1739 darg->zc = false;
1740 if (!darg->tail)
1741 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1742 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1743 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1744 }
1745
1746 pad = tls_padding_length(prot, darg->skb, darg);
1747 if (pad < 0) {
1748 if (darg->skb != tls_strp_msg(ctx))
1749 consume_skb(darg->skb);
1750 return pad;
1751 }
1752
1753 rxm = strp_msg(darg->skb);
1754 rxm->full_len -= pad;
1755
1756 return 0;
1757 }
1758
1759 static int
1760 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1761 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1762 {
1763 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1764 struct tls_prot_info *prot = &tls_ctx->prot_info;
1765 struct strp_msg *rxm;
1766 int pad, err;
1767
1768 if (tls_ctx->rx_conf != TLS_HW)
1769 return 0;
1770
1771 err = tls_device_decrypted(sk, tls_ctx);
1772 if (err <= 0)
1773 return err;
1774
1775 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1776 if (pad < 0)
1777 return pad;
1778
1779 darg->async = false;
1780 darg->skb = tls_strp_msg(ctx);
1781 /* ->zc downgrade check, in case TLS 1.3 gets here */
1782 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1783 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1784
1785 rxm = strp_msg(darg->skb);
1786 rxm->full_len -= pad;
1787
1788 if (!darg->zc) {
1789 /* Non-ZC case needs a real skb */
1790 darg->skb = tls_strp_msg_detach(ctx);
1791 if (!darg->skb)
1792 return -ENOMEM;
1793 } else {
1794 unsigned int off, len;
1795
1796 /* In ZC case nobody cares about the output skb.
1797 * Just copy the data here. Note the skb is not fully trimmed.
1798 */
1799 off = rxm->offset + prot->prepend_size;
1800 len = rxm->full_len - prot->overhead_size;
1801
1802 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1803 if (err)
1804 return err;
1805 }
1806 return 1;
1807 }
1808
1809 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1810 struct tls_decrypt_arg *darg)
1811 {
1812 struct tls_context *tls_ctx = tls_get_ctx(sk);
1813 struct tls_prot_info *prot = &tls_ctx->prot_info;
1814 struct strp_msg *rxm;
1815 int err;
1816
1817 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1818 if (!err)
1819 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1820 if (err < 0)
1821 return err;
1822
1823 rxm = strp_msg(darg->skb);
1824 rxm->offset += prot->prepend_size;
1825 rxm->full_len -= prot->overhead_size;
1826 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1827
1828 return 0;
1829 }
1830
1831 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1832 {
1833 struct tls_decrypt_arg darg = { .zc = true, };
1834
1835 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1836 }
1837
1838 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1839 u8 *control)
1840 {
1841 int err;
1842
1843 if (!*control) {
1844 *control = tlm->control;
1845 if (!*control)
1846 return -EBADMSG;
1847
1848 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1849 sizeof(*control), control);
1850 if (*control != TLS_RECORD_TYPE_DATA) {
1851 if (err || msg->msg_flags & MSG_CTRUNC)
1852 return -EIO;
1853 }
1854 } else if (*control != tlm->control) {
1855 return 0;
1856 }
1857
1858 return 1;
1859 }
1860
1861 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1862 {
1863 tls_strp_msg_done(&ctx->strp);
1864 }
1865
1866 /* This function traverses the rx_list in tls receive context to copies the
1867 * decrypted records into the buffer provided by caller zero copy is not
1868 * true. Further, the records are removed from the rx_list if it is not a peek
1869 * case and the record has been consumed completely.
1870 */
1871 static int process_rx_list(struct tls_sw_context_rx *ctx,
1872 struct msghdr *msg,
1873 u8 *control,
1874 size_t skip,
1875 size_t len,
1876 bool is_peek,
1877 bool *more)
1878 {
1879 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1880 struct tls_msg *tlm;
1881 ssize_t copied = 0;
1882 int err;
1883
1884 while (skip && skb) {
1885 struct strp_msg *rxm = strp_msg(skb);
1886 tlm = tls_msg(skb);
1887
1888 err = tls_record_content_type(msg, tlm, control);
1889 if (err <= 0)
1890 goto more;
1891
1892 if (skip < rxm->full_len)
1893 break;
1894
1895 skip = skip - rxm->full_len;
1896 skb = skb_peek_next(skb, &ctx->rx_list);
1897 }
1898
1899 while (len && skb) {
1900 struct sk_buff *next_skb;
1901 struct strp_msg *rxm = strp_msg(skb);
1902 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1903
1904 tlm = tls_msg(skb);
1905
1906 err = tls_record_content_type(msg, tlm, control);
1907 if (err <= 0)
1908 goto more;
1909
1910 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1911 msg, chunk);
1912 if (err < 0)
1913 goto more;
1914
1915 len = len - chunk;
1916 copied = copied + chunk;
1917
1918 /* Consume the data from record if it is non-peek case*/
1919 if (!is_peek) {
1920 rxm->offset = rxm->offset + chunk;
1921 rxm->full_len = rxm->full_len - chunk;
1922
1923 /* Return if there is unconsumed data in the record */
1924 if (rxm->full_len - skip)
1925 break;
1926 }
1927
1928 /* The remaining skip-bytes must lie in 1st record in rx_list.
1929 * So from the 2nd record, 'skip' should be 0.
1930 */
1931 skip = 0;
1932
1933 if (msg)
1934 msg->msg_flags |= MSG_EOR;
1935
1936 next_skb = skb_peek_next(skb, &ctx->rx_list);
1937
1938 if (!is_peek) {
1939 __skb_unlink(skb, &ctx->rx_list);
1940 consume_skb(skb);
1941 }
1942
1943 skb = next_skb;
1944 }
1945 err = 0;
1946
1947 out:
1948 return copied ? : err;
1949 more:
1950 if (more)
1951 *more = true;
1952 goto out;
1953 }
1954
1955 static bool
1956 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1957 size_t len_left, size_t decrypted, ssize_t done,
1958 size_t *flushed_at)
1959 {
1960 size_t max_rec;
1961
1962 if (len_left <= decrypted)
1963 return false;
1964
1965 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1966 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1967 return false;
1968
1969 *flushed_at = done;
1970 return sk_flush_backlog(sk);
1971 }
1972
1973 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1974 bool nonblock)
1975 {
1976 long timeo;
1977 int ret;
1978
1979 timeo = sock_rcvtimeo(sk, nonblock);
1980
1981 while (unlikely(ctx->reader_present)) {
1982 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1983
1984 ctx->reader_contended = 1;
1985
1986 add_wait_queue(&ctx->wq, &wait);
1987 ret = sk_wait_event(sk, &timeo,
1988 !READ_ONCE(ctx->reader_present), &wait);
1989 remove_wait_queue(&ctx->wq, &wait);
1990
1991 if (timeo <= 0)
1992 return -EAGAIN;
1993 if (signal_pending(current))
1994 return sock_intr_errno(timeo);
1995 if (ret < 0)
1996 return ret;
1997 }
1998
1999 WRITE_ONCE(ctx->reader_present, 1);
2000
2001 return 0;
2002 }
2003
2004 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
2005 bool nonblock)
2006 {
2007 int err;
2008
2009 lock_sock(sk);
2010 err = tls_rx_reader_acquire(sk, ctx, nonblock);
2011 if (err)
2012 release_sock(sk);
2013 return err;
2014 }
2015
2016 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
2017 {
2018 if (unlikely(ctx->reader_contended)) {
2019 if (wq_has_sleeper(&ctx->wq))
2020 wake_up(&ctx->wq);
2021 else
2022 ctx->reader_contended = 0;
2023
2024 WARN_ON_ONCE(!ctx->reader_present);
2025 }
2026
2027 WRITE_ONCE(ctx->reader_present, 0);
2028 }
2029
2030 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
2031 {
2032 tls_rx_reader_release(sk, ctx);
2033 release_sock(sk);
2034 }
2035
2036 int tls_sw_recvmsg(struct sock *sk,
2037 struct msghdr *msg,
2038 size_t len,
2039 int flags,
2040 int *addr_len)
2041 {
2042 struct tls_context *tls_ctx = tls_get_ctx(sk);
2043 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2044 struct tls_prot_info *prot = &tls_ctx->prot_info;
2045 ssize_t decrypted = 0, async_copy_bytes = 0;
2046 struct sk_psock *psock;
2047 unsigned char control = 0;
2048 size_t flushed_at = 0;
2049 struct strp_msg *rxm;
2050 struct tls_msg *tlm;
2051 ssize_t copied = 0;
2052 ssize_t peeked = 0;
2053 bool async = false;
2054 int target, err;
2055 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
2056 bool is_peek = flags & MSG_PEEK;
2057 bool rx_more = false;
2058 bool released = true;
2059 bool bpf_strp_enabled;
2060 bool zc_capable;
2061
2062 if (unlikely(flags & MSG_ERRQUEUE))
2063 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
2064
2065 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
2066 if (err < 0)
2067 return err;
2068 psock = sk_psock_get(sk);
2069 bpf_strp_enabled = sk_psock_strp_enabled(psock);
2070
2071 /* If crypto failed the connection is broken */
2072 err = ctx->async_wait.err;
2073 if (err)
2074 goto end;
2075
2076 /* Process pending decrypted records. It must be non-zero-copy */
2077 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2078 if (err < 0)
2079 goto end;
2080
2081 copied = err;
2082 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
2083 goto end;
2084
2085 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2086 len = len - copied;
2087
2088 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2089 ctx->zc_capable;
2090 decrypted = 0;
2091 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2092 struct tls_decrypt_arg darg;
2093 int to_decrypt, chunk;
2094
2095 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2096 released);
2097 if (err <= 0) {
2098 if (psock) {
2099 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2100 flags);
2101 if (chunk > 0) {
2102 decrypted += chunk;
2103 len -= chunk;
2104 continue;
2105 }
2106 }
2107 goto recv_end;
2108 }
2109
2110 memset(&darg.inargs, 0, sizeof(darg.inargs));
2111
2112 rxm = strp_msg(tls_strp_msg(ctx));
2113 tlm = tls_msg(tls_strp_msg(ctx));
2114
2115 to_decrypt = rxm->full_len - prot->overhead_size;
2116
2117 if (zc_capable && to_decrypt <= len &&
2118 tlm->control == TLS_RECORD_TYPE_DATA)
2119 darg.zc = true;
2120
2121 /* Do not use async mode if record is non-data */
2122 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2123 darg.async = ctx->async_capable;
2124 else
2125 darg.async = false;
2126
2127 err = tls_rx_one_record(sk, msg, &darg);
2128 if (err < 0) {
2129 tls_err_abort(sk, -EBADMSG);
2130 goto recv_end;
2131 }
2132
2133 async |= darg.async;
2134
2135 /* If the type of records being processed is not known yet,
2136 * set it to record type just dequeued. If it is already known,
2137 * but does not match the record type just dequeued, go to end.
2138 * We always get record type here since for tls1.2, record type
2139 * is known just after record is dequeued from stream parser.
2140 * For tls1.3, we disable async.
2141 */
2142 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2143 if (err <= 0) {
2144 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2145 tls_rx_rec_done(ctx);
2146 put_on_rx_list_err:
2147 __skb_queue_tail(&ctx->rx_list, darg.skb);
2148 goto recv_end;
2149 }
2150
2151 /* periodically flush backlog, and feed strparser */
2152 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2153 decrypted + copied,
2154 &flushed_at);
2155
2156 /* TLS 1.3 may have updated the length by more than overhead */
2157 rxm = strp_msg(darg.skb);
2158 chunk = rxm->full_len;
2159 tls_rx_rec_done(ctx);
2160
2161 if (!darg.zc) {
2162 bool partially_consumed = chunk > len;
2163 struct sk_buff *skb = darg.skb;
2164
2165 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2166
2167 if (async) {
2168 /* TLS 1.2-only, to_decrypt must be text len */
2169 chunk = min_t(int, to_decrypt, len);
2170 async_copy_bytes += chunk;
2171 put_on_rx_list:
2172 decrypted += chunk;
2173 len -= chunk;
2174 __skb_queue_tail(&ctx->rx_list, skb);
2175 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2176 break;
2177 continue;
2178 }
2179
2180 if (bpf_strp_enabled) {
2181 released = true;
2182 err = sk_psock_tls_strp_read(psock, skb);
2183 if (err != __SK_PASS) {
2184 rxm->offset = rxm->offset + rxm->full_len;
2185 rxm->full_len = 0;
2186 if (err == __SK_DROP)
2187 consume_skb(skb);
2188 continue;
2189 }
2190 }
2191
2192 if (partially_consumed)
2193 chunk = len;
2194
2195 err = skb_copy_datagram_msg(skb, rxm->offset,
2196 msg, chunk);
2197 if (err < 0)
2198 goto put_on_rx_list_err;
2199
2200 if (is_peek) {
2201 peeked += chunk;
2202 goto put_on_rx_list;
2203 }
2204
2205 if (partially_consumed) {
2206 rxm->offset += chunk;
2207 rxm->full_len -= chunk;
2208 goto put_on_rx_list;
2209 }
2210
2211 consume_skb(skb);
2212 }
2213
2214 decrypted += chunk;
2215 len -= chunk;
2216
2217 /* Return full control message to userspace before trying
2218 * to parse another message type
2219 */
2220 msg->msg_flags |= MSG_EOR;
2221 if (control != TLS_RECORD_TYPE_DATA)
2222 break;
2223 }
2224
2225 recv_end:
2226 if (async) {
2227 int ret;
2228
2229 /* Wait for all previously submitted records to be decrypted */
2230 ret = tls_decrypt_async_wait(ctx);
2231 __skb_queue_purge(&ctx->async_hold);
2232
2233 if (ret) {
2234 if (err >= 0 || err == -EINPROGRESS)
2235 err = ret;
2236 decrypted = 0;
2237 goto end;
2238 }
2239
2240 /* Drain records from the rx_list & copy if required */
2241 if (is_peek)
2242 err = process_rx_list(ctx, msg, &control, copied + peeked,
2243 decrypted - peeked, is_peek, NULL);
2244 else
2245 err = process_rx_list(ctx, msg, &control, 0,
2246 async_copy_bytes, is_peek, NULL);
2247
2248 /* we could have copied less than we wanted, and possibly nothing */
2249 decrypted += max(err, 0) - async_copy_bytes;
2250 }
2251
2252 copied += decrypted;
2253
2254 end:
2255 tls_rx_reader_unlock(sk, ctx);
2256 if (psock)
2257 sk_psock_put(sk, psock);
2258 return copied ? : err;
2259 }
2260
2261 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2262 struct pipe_inode_info *pipe,
2263 size_t len, unsigned int flags)
2264 {
2265 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2266 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2267 struct strp_msg *rxm = NULL;
2268 struct sock *sk = sock->sk;
2269 struct tls_msg *tlm;
2270 struct sk_buff *skb;
2271 ssize_t copied = 0;
2272 int chunk;
2273 int err;
2274
2275 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2276 if (err < 0)
2277 return err;
2278
2279 if (!skb_queue_empty(&ctx->rx_list)) {
2280 skb = __skb_dequeue(&ctx->rx_list);
2281 } else {
2282 struct tls_decrypt_arg darg;
2283
2284 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2285 true);
2286 if (err <= 0)
2287 goto splice_read_end;
2288
2289 memset(&darg.inargs, 0, sizeof(darg.inargs));
2290
2291 err = tls_rx_one_record(sk, NULL, &darg);
2292 if (err < 0) {
2293 tls_err_abort(sk, -EBADMSG);
2294 goto splice_read_end;
2295 }
2296
2297 tls_rx_rec_done(ctx);
2298 skb = darg.skb;
2299 }
2300
2301 rxm = strp_msg(skb);
2302 tlm = tls_msg(skb);
2303
2304 /* splice does not support reading control messages */
2305 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2306 err = -EINVAL;
2307 goto splice_requeue;
2308 }
2309
2310 chunk = min_t(unsigned int, rxm->full_len, len);
2311 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2312 if (copied < 0)
2313 goto splice_requeue;
2314
2315 if (chunk < rxm->full_len) {
2316 rxm->offset += len;
2317 rxm->full_len -= len;
2318 goto splice_requeue;
2319 }
2320
2321 consume_skb(skb);
2322
2323 splice_read_end:
2324 tls_rx_reader_unlock(sk, ctx);
2325 return copied ? : err;
2326
2327 splice_requeue:
2328 __skb_queue_head(&ctx->rx_list, skb);
2329 goto splice_read_end;
2330 }
2331
2332 bool tls_sw_sock_is_readable(struct sock *sk)
2333 {
2334 struct tls_context *tls_ctx = tls_get_ctx(sk);
2335 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2336 bool ingress_empty = true;
2337 struct sk_psock *psock;
2338
2339 rcu_read_lock();
2340 psock = sk_psock(sk);
2341 if (psock)
2342 ingress_empty = list_empty(&psock->ingress_msg);
2343 rcu_read_unlock();
2344
2345 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2346 !skb_queue_empty(&ctx->rx_list);
2347 }
2348
2349 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2350 {
2351 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2352 struct tls_prot_info *prot = &tls_ctx->prot_info;
2353 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2354 size_t cipher_overhead;
2355 size_t data_len = 0;
2356 int ret;
2357
2358 /* Verify that we have a full TLS header, or wait for more data */
2359 if (strp->stm.offset + prot->prepend_size > skb->len)
2360 return 0;
2361
2362 /* Sanity-check size of on-stack buffer. */
2363 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2364 ret = -EINVAL;
2365 goto read_failure;
2366 }
2367
2368 /* Linearize header to local buffer */
2369 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2370 if (ret < 0)
2371 goto read_failure;
2372
2373 strp->mark = header[0];
2374
2375 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2376
2377 cipher_overhead = prot->tag_size;
2378 if (prot->version != TLS_1_3_VERSION &&
2379 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2380 cipher_overhead += prot->iv_size;
2381
2382 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2383 prot->tail_size) {
2384 ret = -EMSGSIZE;
2385 goto read_failure;
2386 }
2387 if (data_len < cipher_overhead) {
2388 ret = -EBADMSG;
2389 goto read_failure;
2390 }
2391
2392 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2393 if (header[1] != TLS_1_2_VERSION_MINOR ||
2394 header[2] != TLS_1_2_VERSION_MAJOR) {
2395 ret = -EINVAL;
2396 goto read_failure;
2397 }
2398
2399 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2400 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2401 return data_len + TLS_HEADER_SIZE;
2402
2403 read_failure:
2404 tls_err_abort(strp->sk, ret);
2405
2406 return ret;
2407 }
2408
2409 void tls_rx_msg_ready(struct tls_strparser *strp)
2410 {
2411 struct tls_sw_context_rx *ctx;
2412
2413 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2414 ctx->saved_data_ready(strp->sk);
2415 }
2416
2417 static void tls_data_ready(struct sock *sk)
2418 {
2419 struct tls_context *tls_ctx = tls_get_ctx(sk);
2420 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2421 struct sk_psock *psock;
2422 gfp_t alloc_save;
2423
2424 alloc_save = sk->sk_allocation;
2425 sk->sk_allocation = GFP_ATOMIC;
2426 tls_strp_data_ready(&ctx->strp);
2427 sk->sk_allocation = alloc_save;
2428
2429 psock = sk_psock_get(sk);
2430 if (psock) {
2431 if (!list_empty(&psock->ingress_msg))
2432 ctx->saved_data_ready(sk);
2433 sk_psock_put(sk, psock);
2434 }
2435 }
2436
2437 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2438 {
2439 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2440
2441 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2442 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2443 cancel_delayed_work_sync(&ctx->tx_work.work);
2444 }
2445
2446 void tls_sw_release_resources_tx(struct sock *sk)
2447 {
2448 struct tls_context *tls_ctx = tls_get_ctx(sk);
2449 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2450 struct tls_rec *rec, *tmp;
2451
2452 /* Wait for any pending async encryptions to complete */
2453 tls_encrypt_async_wait(ctx);
2454
2455 tls_tx_records(sk, -1);
2456
2457 /* Free up un-sent records in tx_list. First, free
2458 * the partially sent record if any at head of tx_list.
2459 */
2460 if (tls_ctx->partially_sent_record) {
2461 tls_free_partial_record(sk, tls_ctx);
2462 rec = list_first_entry(&ctx->tx_list,
2463 struct tls_rec, list);
2464 list_del(&rec->list);
2465 sk_msg_free(sk, &rec->msg_plaintext);
2466 kfree(rec);
2467 }
2468
2469 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2470 list_del(&rec->list);
2471 sk_msg_free(sk, &rec->msg_encrypted);
2472 sk_msg_free(sk, &rec->msg_plaintext);
2473 kfree(rec);
2474 }
2475
2476 crypto_free_aead(ctx->aead_send);
2477 tls_free_open_rec(sk);
2478 }
2479
2480 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2481 {
2482 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2483
2484 kfree(ctx);
2485 }
2486
2487 void tls_sw_release_resources_rx(struct sock *sk)
2488 {
2489 struct tls_context *tls_ctx = tls_get_ctx(sk);
2490 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2491
2492 kfree(tls_ctx->rx.rec_seq);
2493 kfree(tls_ctx->rx.iv);
2494
2495 if (ctx->aead_recv) {
2496 __skb_queue_purge(&ctx->rx_list);
2497 crypto_free_aead(ctx->aead_recv);
2498 tls_strp_stop(&ctx->strp);
2499 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2500 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2501 * never swapped.
2502 */
2503 if (ctx->saved_data_ready) {
2504 write_lock_bh(&sk->sk_callback_lock);
2505 sk->sk_data_ready = ctx->saved_data_ready;
2506 write_unlock_bh(&sk->sk_callback_lock);
2507 }
2508 }
2509 }
2510
2511 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2512 {
2513 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2514
2515 tls_strp_done(&ctx->strp);
2516 }
2517
2518 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2519 {
2520 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2521
2522 kfree(ctx);
2523 }
2524
2525 void tls_sw_free_resources_rx(struct sock *sk)
2526 {
2527 struct tls_context *tls_ctx = tls_get_ctx(sk);
2528
2529 tls_sw_release_resources_rx(sk);
2530 tls_sw_free_ctx_rx(tls_ctx);
2531 }
2532
2533 /* The work handler to transmitt the encrypted records in tx_list */
2534 static void tx_work_handler(struct work_struct *work)
2535 {
2536 struct delayed_work *delayed_work = to_delayed_work(work);
2537 struct tx_work *tx_work = container_of(delayed_work,
2538 struct tx_work, work);
2539 struct sock *sk = tx_work->sk;
2540 struct tls_context *tls_ctx = tls_get_ctx(sk);
2541 struct tls_sw_context_tx *ctx;
2542
2543 if (unlikely(!tls_ctx))
2544 return;
2545
2546 ctx = tls_sw_ctx_tx(tls_ctx);
2547 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2548 return;
2549
2550 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2551 return;
2552
2553 if (mutex_trylock(&tls_ctx->tx_lock)) {
2554 lock_sock(sk);
2555 tls_tx_records(sk, -1);
2556 release_sock(sk);
2557 mutex_unlock(&tls_ctx->tx_lock);
2558 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2559 /* Someone is holding the tx_lock, they will likely run Tx
2560 * and cancel the work on their way out of the lock section.
2561 * Schedule a long delay just in case.
2562 */
2563 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2564 }
2565 }
2566
2567 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2568 {
2569 struct tls_rec *rec;
2570
2571 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2572 if (!rec)
2573 return false;
2574
2575 return READ_ONCE(rec->tx_ready);
2576 }
2577
2578 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2579 {
2580 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2581
2582 /* Schedule the transmission if tx list is ready */
2583 if (tls_is_tx_ready(tx_ctx) &&
2584 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2585 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2586 }
2587
2588 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2589 {
2590 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2591
2592 write_lock_bh(&sk->sk_callback_lock);
2593 rx_ctx->saved_data_ready = sk->sk_data_ready;
2594 sk->sk_data_ready = tls_data_ready;
2595 write_unlock_bh(&sk->sk_callback_lock);
2596 }
2597
2598 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2599 {
2600 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2601
2602 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2603 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2604 }
2605
2606 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2607 {
2608 struct tls_sw_context_tx *sw_ctx_tx;
2609
2610 if (!ctx->priv_ctx_tx) {
2611 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2612 if (!sw_ctx_tx)
2613 return NULL;
2614 } else {
2615 sw_ctx_tx = ctx->priv_ctx_tx;
2616 }
2617
2618 crypto_init_wait(&sw_ctx_tx->async_wait);
2619 atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2620 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2621 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2622 sw_ctx_tx->tx_work.sk = sk;
2623
2624 return sw_ctx_tx;
2625 }
2626
2627 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2628 {
2629 struct tls_sw_context_rx *sw_ctx_rx;
2630
2631 if (!ctx->priv_ctx_rx) {
2632 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2633 if (!sw_ctx_rx)
2634 return NULL;
2635 } else {
2636 sw_ctx_rx = ctx->priv_ctx_rx;
2637 }
2638
2639 crypto_init_wait(&sw_ctx_rx->async_wait);
2640 atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2641 init_waitqueue_head(&sw_ctx_rx->wq);
2642 skb_queue_head_init(&sw_ctx_rx->rx_list);
2643 skb_queue_head_init(&sw_ctx_rx->async_hold);
2644
2645 return sw_ctx_rx;
2646 }
2647
2648 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2649 {
2650 struct tls_context *tls_ctx = tls_get_ctx(sk);
2651 struct tls_prot_info *prot = &tls_ctx->prot_info;
2652 struct tls_crypto_info *crypto_info;
2653 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2654 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2655 struct cipher_context *cctx;
2656 struct crypto_aead **aead;
2657 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2658 struct crypto_tfm *tfm;
2659 char *iv, *rec_seq, *key, *salt, *cipher_name;
2660 size_t keysize;
2661 int rc = 0;
2662
2663 if (!ctx) {
2664 rc = -EINVAL;
2665 goto out;
2666 }
2667
2668 if (tx) {
2669 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2670 if (!ctx->priv_ctx_tx)
2671 return -ENOMEM;
2672
2673 sw_ctx_tx = ctx->priv_ctx_tx;
2674 crypto_info = &ctx->crypto_send.info;
2675 cctx = &ctx->tx;
2676 aead = &sw_ctx_tx->aead_send;
2677 } else {
2678 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2679 if (!ctx->priv_ctx_rx)
2680 return -ENOMEM;
2681
2682 sw_ctx_rx = ctx->priv_ctx_rx;
2683 crypto_info = &ctx->crypto_recv.info;
2684 cctx = &ctx->rx;
2685 aead = &sw_ctx_rx->aead_recv;
2686 }
2687
2688 switch (crypto_info->cipher_type) {
2689 case TLS_CIPHER_AES_GCM_128: {
2690 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2691
2692 gcm_128_info = (void *)crypto_info;
2693 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2694 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2695 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2696 iv = gcm_128_info->iv;
2697 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2698 rec_seq = gcm_128_info->rec_seq;
2699 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2700 key = gcm_128_info->key;
2701 salt = gcm_128_info->salt;
2702 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2703 cipher_name = "gcm(aes)";
2704 break;
2705 }
2706 case TLS_CIPHER_AES_GCM_256: {
2707 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2708
2709 gcm_256_info = (void *)crypto_info;
2710 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2711 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2712 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2713 iv = gcm_256_info->iv;
2714 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2715 rec_seq = gcm_256_info->rec_seq;
2716 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2717 key = gcm_256_info->key;
2718 salt = gcm_256_info->salt;
2719 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2720 cipher_name = "gcm(aes)";
2721 break;
2722 }
2723 case TLS_CIPHER_AES_CCM_128: {
2724 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2725
2726 ccm_128_info = (void *)crypto_info;
2727 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2728 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2729 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2730 iv = ccm_128_info->iv;
2731 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2732 rec_seq = ccm_128_info->rec_seq;
2733 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2734 key = ccm_128_info->key;
2735 salt = ccm_128_info->salt;
2736 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2737 cipher_name = "ccm(aes)";
2738 break;
2739 }
2740 case TLS_CIPHER_CHACHA20_POLY1305: {
2741 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2742
2743 chacha20_poly1305_info = (void *)crypto_info;
2744 nonce_size = 0;
2745 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2746 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2747 iv = chacha20_poly1305_info->iv;
2748 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2749 rec_seq = chacha20_poly1305_info->rec_seq;
2750 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2751 key = chacha20_poly1305_info->key;
2752 salt = chacha20_poly1305_info->salt;
2753 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2754 cipher_name = "rfc7539(chacha20,poly1305)";
2755 break;
2756 }
2757 case TLS_CIPHER_SM4_GCM: {
2758 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2759
2760 sm4_gcm_info = (void *)crypto_info;
2761 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2762 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2763 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2764 iv = sm4_gcm_info->iv;
2765 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2766 rec_seq = sm4_gcm_info->rec_seq;
2767 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2768 key = sm4_gcm_info->key;
2769 salt = sm4_gcm_info->salt;
2770 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2771 cipher_name = "gcm(sm4)";
2772 break;
2773 }
2774 case TLS_CIPHER_SM4_CCM: {
2775 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2776
2777 sm4_ccm_info = (void *)crypto_info;
2778 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2779 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2780 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2781 iv = sm4_ccm_info->iv;
2782 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2783 rec_seq = sm4_ccm_info->rec_seq;
2784 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2785 key = sm4_ccm_info->key;
2786 salt = sm4_ccm_info->salt;
2787 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2788 cipher_name = "ccm(sm4)";
2789 break;
2790 }
2791 case TLS_CIPHER_ARIA_GCM_128: {
2792 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2793
2794 aria_gcm_128_info = (void *)crypto_info;
2795 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2796 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2797 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2798 iv = aria_gcm_128_info->iv;
2799 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2800 rec_seq = aria_gcm_128_info->rec_seq;
2801 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2802 key = aria_gcm_128_info->key;
2803 salt = aria_gcm_128_info->salt;
2804 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2805 cipher_name = "gcm(aria)";
2806 break;
2807 }
2808 case TLS_CIPHER_ARIA_GCM_256: {
2809 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2810
2811 gcm_256_info = (void *)crypto_info;
2812 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2813 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2814 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2815 iv = gcm_256_info->iv;
2816 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2817 rec_seq = gcm_256_info->rec_seq;
2818 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2819 key = gcm_256_info->key;
2820 salt = gcm_256_info->salt;
2821 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2822 cipher_name = "gcm(aria)";
2823 break;
2824 }
2825 default:
2826 rc = -EINVAL;
2827 goto free_priv;
2828 }
2829
2830 if (crypto_info->version == TLS_1_3_VERSION) {
2831 nonce_size = 0;
2832 prot->aad_size = TLS_HEADER_SIZE;
2833 prot->tail_size = 1;
2834 } else {
2835 prot->aad_size = TLS_AAD_SPACE_SIZE;
2836 prot->tail_size = 0;
2837 }
2838
2839 /* Sanity-check the sizes for stack allocations. */
2840 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2841 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2842 prot->aad_size > TLS_MAX_AAD_SIZE) {
2843 rc = -EINVAL;
2844 goto free_priv;
2845 }
2846
2847 prot->version = crypto_info->version;
2848 prot->cipher_type = crypto_info->cipher_type;
2849 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2850 prot->tag_size = tag_size;
2851 prot->overhead_size = prot->prepend_size +
2852 prot->tag_size + prot->tail_size;
2853 prot->iv_size = iv_size;
2854 prot->salt_size = salt_size;
2855 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2856 if (!cctx->iv) {
2857 rc = -ENOMEM;
2858 goto free_priv;
2859 }
2860 /* Note: 128 & 256 bit salt are the same size */
2861 prot->rec_seq_size = rec_seq_size;
2862 memcpy(cctx->iv, salt, salt_size);
2863 memcpy(cctx->iv + salt_size, iv, iv_size);
2864 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2865 if (!cctx->rec_seq) {
2866 rc = -ENOMEM;
2867 goto free_iv;
2868 }
2869
2870 if (!*aead) {
2871 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2872 if (IS_ERR(*aead)) {
2873 rc = PTR_ERR(*aead);
2874 *aead = NULL;
2875 goto free_rec_seq;
2876 }
2877 }
2878
2879 ctx->push_pending_record = tls_sw_push_pending_record;
2880
2881 rc = crypto_aead_setkey(*aead, key, keysize);
2882
2883 if (rc)
2884 goto free_aead;
2885
2886 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2887 if (rc)
2888 goto free_aead;
2889
2890 if (sw_ctx_rx) {
2891 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2892
2893 tls_update_rx_zc_capable(ctx);
2894 sw_ctx_rx->async_capable =
2895 crypto_info->version != TLS_1_3_VERSION &&
2896 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2897
2898 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2899 if (rc)
2900 goto free_aead;
2901 }
2902
2903 goto out;
2904
2905 free_aead:
2906 crypto_free_aead(*aead);
2907 *aead = NULL;
2908 free_rec_seq:
2909 kfree(cctx->rec_seq);
2910 cctx->rec_seq = NULL;
2911 free_iv:
2912 kfree(cctx->iv);
2913 cctx->iv = NULL;
2914 free_priv:
2915 if (tx) {
2916 kfree(ctx->priv_ctx_tx);
2917 ctx->priv_ctx_tx = NULL;
2918 } else {
2919 kfree(ctx->priv_ctx_rx);
2920 ctx->priv_ctx_rx = NULL;
2921 }
2922 out:
2923 return rc;
2924 }