From c98cfd92c3766c48b599f197e8f047beb2010b61 Mon Sep 17 00:00:00 2001 From: Tom Tromey Date: Thu, 24 Jun 1999 20:15:28 +0000 Subject: [PATCH] [multiple changes] Fri May 28 22:20:03 1999 Anthony Green * java/lang/fdlibm.h: Don't use __uint32_t. Include mprec.h. * java/lang/e_log.c: Don't use __uint32_t. 1999-05-27 Eric Christopher * configure: Rebuilt * configure.in: Fixed ISO C9X and namespace collision with __uint32_t * acconfig.h: Rebuilt * include/config.h.in: Rebuilt * java/lang/mprec.h, java/lang/e_acos.c, java/lang/e_asin.c, java/lang/e_atan2.c, java/lang/e_exp.c, java/lang/e_fmod.c, e_log.c, java/lang/e_pow.c, java/lang/e_rem_pio2.c, java/lang/e_remainder.c, java/lang/e_sqrt.c, java/lang/fdlibm.h, k_tan.c, java/lang/mprec.h, java/lang/s_atan.c, java/lang/s_ceil.c, java/lang/s_copysign.c, java/lang/s_fabs.c, s_floor.c, java/lang/s_rint.c, java/lang/sf_rint.c: Fixed ISO C9X and namespace collision with __uint32_t From-SVN: r27731 --- libjava/ChangeLog | 21 + libjava/acconfig.h | 5 +- libjava/configure | 255 +++++---- libjava/configure.in | 11 +- libjava/include/config.h.in | 14 +- libjava/java/lang/dtoa.c | 909 +------------------------------- libjava/java/lang/e_acos.c | 118 +---- libjava/java/lang/e_atan2.c | 144 +---- libjava/java/lang/e_exp.c | 185 +------ libjava/java/lang/e_fmod.c | 149 +----- libjava/java/lang/e_log.c | 169 +----- libjava/java/lang/e_pow.c | 329 +----------- libjava/java/lang/e_rem_pio2.c | 220 ++------ libjava/java/lang/e_remainder.c | 87 +-- libjava/java/lang/e_sqrt.c | 484 ++--------------- libjava/java/lang/k_cos.c | 103 +--- libjava/java/lang/k_rem_pio2.c | 357 ++----------- libjava/java/lang/k_sin.c | 85 +-- libjava/java/lang/k_tan.c | 140 +---- libjava/java/lang/mprec.h | 452 +++------------- libjava/java/lang/s_atan.c | 191 +------ libjava/java/lang/s_ceil.c | 87 +-- libjava/java/lang/s_copysign.c | 84 +-- libjava/java/lang/s_cos.c | 87 +-- libjava/java/lang/s_fabs.c | 78 +-- libjava/java/lang/s_floor.c | 147 +----- libjava/java/lang/s_rint.c | 93 +--- libjava/java/lang/s_scalbn.c | 110 +--- libjava/java/lang/s_sin.c | 140 +---- libjava/java/lang/s_tan.c | 122 +---- libjava/java/lang/sf_rint.c | 85 +-- 31 files changed, 585 insertions(+), 4876 deletions(-) diff --git a/libjava/ChangeLog b/libjava/ChangeLog index 9bd18425884a..faa2bdb89a52 100644 --- a/libjava/ChangeLog +++ b/libjava/ChangeLog @@ -1,3 +1,24 @@ +Fri May 28 22:20:03 1999 Anthony Green + + * java/lang/fdlibm.h: Don't use __uint32_t. Include mprec.h. + * java/lang/e_log.c: Don't use __uint32_t. + +1999-05-27 Eric Christopher + + * configure: Rebuilt + * configure.in: Fixed ISO C9X and namespace collision with __uint32_t + * acconfig.h: Rebuilt + * include/config.h.in: Rebuilt + + * java/lang/mprec.h, java/lang/e_acos.c, java/lang/e_asin.c, + java/lang/e_atan2.c, java/lang/e_exp.c, java/lang/e_fmod.c, + e_log.c, java/lang/e_pow.c, java/lang/e_rem_pio2.c, + java/lang/e_remainder.c, java/lang/e_sqrt.c, java/lang/fdlibm.h, + k_tan.c, java/lang/mprec.h, java/lang/s_atan.c, + java/lang/s_ceil.c, java/lang/s_copysign.c, java/lang/s_fabs.c, + s_floor.c, java/lang/s_rint.c, java/lang/sf_rint.c: Fixed ISO C9X + and namespace collision with __uint32_t + 1999-06-23 Tom Tromey * java/util/zip/InflaterInputStream.java (read): Throw diff --git a/libjava/acconfig.h b/libjava/acconfig.h index 9e98b769f2e8..daddbb141027 100644 --- a/libjava/acconfig.h +++ b/libjava/acconfig.h @@ -28,9 +28,12 @@ /* Define if you have sleep. */ #undef HAVE_SLEEP -/* Define if you have __int32_t and __uint32_t. */ +/* Define if you have int32_t and uint32_t. */ #undef HAVE_INT32_DEFINED +/* Define if you have u_int32_t */ +#undef HAVE_BSD_INT32_DEFINED + /* Define if you're running eCos. */ #undef ECOS diff --git a/libjava/configure b/libjava/configure index 53e0324e11a9..563ed45f2a45 100755 --- a/libjava/configure +++ b/libjava/configure @@ -2707,10 +2707,10 @@ echo "$ac_t""$CPP" 1>&6 cat > conftest.$ac_ext < +#include EOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | - egrep "__uint32_t" >/dev/null 2>&1; then + egrep "uint32_t" >/dev/null 2>&1; then rm -rf conftest* cat >> confdefs.h <<\EOF #define HAVE_INT32_DEFINED 1 @@ -2722,10 +2722,10 @@ rm -f conftest* cat > conftest.$ac_ext < +#include EOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | - egrep "__uint32_t" >/dev/null 2>&1; then + egrep "uint32_t" >/dev/null 2>&1; then rm -rf conftest* cat >> confdefs.h <<\EOF #define HAVE_INT32_DEFINED 1 @@ -2734,9 +2734,40 @@ EOF fi rm -f conftest* +cat > conftest.$ac_ext < +EOF +if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | + egrep "u_int32_t" >/dev/null 2>&1; then + rm -rf conftest* + cat >> confdefs.h <<\EOF +#define HAVE_BSD_INT32_DEFINED 1 +EOF + +fi +rm -f conftest* + +cat > conftest.$ac_ext < +EOF +if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | + egrep "u_int32_t" >/dev/null 2>&1; then + rm -rf conftest* + cat >> confdefs.h <<\EOF +#define HAVE_BSD_INT32_DEFINED 1 +EOF + +fi +rm -f conftest* + + cat > conftest.$ac_ext < EOF @@ -2751,7 +2782,7 @@ fi rm -f conftest* cat > conftest.$ac_ext < EOF @@ -2789,7 +2820,7 @@ ZLIBSPEC= libsubdir=.libs echo $ac_n "checking for garbage collector to use""... $ac_c" 1>&6 -echo "configure:2793: checking for garbage collector to use" >&5 +echo "configure:2824: checking for garbage collector to use" >&5 # Check whether --enable-java-gc or --disable-java-gc was given. if test "${enable_java_gc+set}" = set; then enableval="$enable_java_gc" @@ -2839,7 +2870,7 @@ esac echo $ac_n "checking for threads package to use""... $ac_c" 1>&6 -echo "configure:2843: checking for threads package to use" >&5 +echo "configure:2874: checking for threads package to use" >&5 # Check whether --enable-threads or --disable-threads was given. if test "${enable_threads+set}" = set; then enableval="$enable_threads" @@ -3031,12 +3062,12 @@ else for ac_func in strerror ioctl select open fsync sleep do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3035: checking for $ac_func" >&5 +echo "configure:3066: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3094: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3086,12 +3117,12 @@ done for ac_func in ctime_r ctime do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3090: checking for $ac_func" >&5 +echo "configure:3121: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3149: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3141,12 +3172,12 @@ done for ac_func in gmtime_r localtime_r readdir_r getpwuid_r do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3145: checking for $ac_func" >&5 +echo "configure:3176: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3204: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3196,12 +3227,12 @@ done for ac_func in access stat mkdir rename rmdir unlink realpath do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3200: checking for $ac_func" >&5 +echo "configure:3231: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3259: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3251,12 +3282,12 @@ done for ac_func in inet_aton inet_addr do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3255: checking for $ac_func" >&5 +echo "configure:3286: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3314: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3306,12 +3337,12 @@ done for ac_func in inet_pton uname do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3310: checking for $ac_func" >&5 +echo "configure:3341: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3369: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3362,12 +3393,12 @@ done for ac_func in gethostbyname_r do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3366: checking for $ac_func" >&5 +echo "configure:3397: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3425: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3417,7 +3448,7 @@ EOF # We look for the one that returns `int'. # Hopefully this check is robust enough. cat > conftest.$ac_ext < EOF @@ -3441,12 +3472,12 @@ done for ac_func in gethostbyaddr_r do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3445: checking for $ac_func" >&5 +echo "configure:3476: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3504: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3496,7 +3527,7 @@ EOF # We look for the one that returns `int'. # Hopefully this check is robust enough. cat > conftest.$ac_ext < EOF @@ -3520,12 +3551,12 @@ done for ac_func in gethostname do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3524: checking for $ac_func" >&5 +echo "configure:3555: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3583: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3572,7 +3603,7 @@ EOF EOF cat > conftest.$ac_ext < EOF @@ -3599,12 +3630,12 @@ done for ac_func in pthread_mutexattr_settype pthread_mutexattr_setkind_np sched_yield do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3603: checking for $ac_func" >&5 +echo "configure:3634: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3662: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3655,12 +3686,12 @@ done for ac_func in sched_yield do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3659: checking for $ac_func" >&5 +echo "configure:3690: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3718: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3705,7 +3736,7 @@ EOF else echo "$ac_t""no" 1>&6 echo $ac_n "checking for sched_yield in -lposix4""... $ac_c" 1>&6 -echo "configure:3709: checking for sched_yield in -lposix4" >&5 +echo "configure:3740: checking for sched_yield in -lposix4" >&5 ac_lib_var=`echo posix4'_'sched_yield | sed 'y%./+-%__p_%'` if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 @@ -3713,7 +3744,7 @@ else ac_save_LIBS="$LIBS" LIBS="-lposix4 $LIBS" cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3759: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_lib_$ac_lib_var=yes" else @@ -3759,12 +3790,12 @@ done for ac_func in gettimeofday time ftime do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3763: checking for $ac_func" >&5 +echo "configure:3794: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3822: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3820,12 +3851,12 @@ done for ac_func in memmove do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3824: checking for $ac_func" >&5 +echo "configure:3855: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3883: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3881,12 +3912,12 @@ done for ac_func in memcpy do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:3885: checking for $ac_func" >&5 +echo "configure:3916: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:3944: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -3957,7 +3988,7 @@ done #-------------------------------------------------------------------- echo $ac_n "checking for socket libraries""... $ac_c" 1>&6 -echo "configure:3961: checking for socket libraries" >&5 +echo "configure:3992: checking for socket libraries" >&5 if eval "test \"`echo '$''{'gcj_cv_lib_sockets'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else @@ -3965,12 +3996,12 @@ else gcj_checkBoth=0 unset ac_cv_func_connect echo $ac_n "checking for connect""... $ac_c" 1>&6 -echo "configure:3969: checking for connect" >&5 +echo "configure:4000: checking for connect" >&5 if eval "test \"`echo '$''{'ac_cv_func_connect'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4028: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_connect=yes" else @@ -4016,7 +4047,7 @@ fi if test "$gcj_checkSocket" = 1; then unset ac_cv_func_connect echo $ac_n "checking for main in -lsocket""... $ac_c" 1>&6 -echo "configure:4020: checking for main in -lsocket" >&5 +echo "configure:4051: checking for main in -lsocket" >&5 ac_lib_var=`echo socket'_'main | sed 'y%./+-%__p_%'` if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 @@ -4024,14 +4055,14 @@ else ac_save_LIBS="$LIBS" LIBS="-lsocket $LIBS" cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4066: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_lib_$ac_lib_var=yes" else @@ -4058,12 +4089,12 @@ fi LIBS="$LIBS -lsocket -lnsl" unset ac_cv_func_accept echo $ac_n "checking for accept""... $ac_c" 1>&6 -echo "configure:4062: checking for accept" >&5 +echo "configure:4093: checking for accept" >&5 if eval "test \"`echo '$''{'ac_cv_func_accept'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4121: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_accept=yes" else @@ -4113,12 +4144,12 @@ fi gcj_oldLibs=$LIBS LIBS="$LIBS $gcj_cv_lib_sockets" echo $ac_n "checking for gethostbyname""... $ac_c" 1>&6 -echo "configure:4117: checking for gethostbyname" >&5 +echo "configure:4148: checking for gethostbyname" >&5 if eval "test \"`echo '$''{'ac_cv_func_gethostbyname'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4176: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_gethostbyname=yes" else @@ -4159,7 +4190,7 @@ if eval "test \"`echo '$ac_cv_func_'gethostbyname`\" = yes"; then else echo "$ac_t""no" 1>&6 echo $ac_n "checking for main in -lnsl""... $ac_c" 1>&6 -echo "configure:4163: checking for main in -lnsl" >&5 +echo "configure:4194: checking for main in -lnsl" >&5 ac_lib_var=`echo nsl'_'main | sed 'y%./+-%__p_%'` if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 @@ -4167,14 +4198,14 @@ else ac_save_LIBS="$LIBS" LIBS="-lnsl $LIBS" cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4209: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_lib_$ac_lib_var=yes" else @@ -4206,7 +4237,7 @@ echo "$ac_t""$gcj_cv_lib_sockets" 1>&6 if test "$with_system_zlib" = yes; then echo $ac_n "checking for deflate in -lz""... $ac_c" 1>&6 -echo "configure:4210: checking for deflate in -lz" >&5 +echo "configure:4241: checking for deflate in -lz" >&5 ac_lib_var=`echo z'_'deflate | sed 'y%./+-%__p_%'` if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 @@ -4214,7 +4245,7 @@ else ac_save_LIBS="$LIBS" LIBS="-lz $LIBS" cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4260: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_lib_$ac_lib_var=yes" else @@ -4254,7 +4285,7 @@ fi # requires -ldl. if test "$GC" = boehm; then echo $ac_n "checking for main in -ldl""... $ac_c" 1>&6 -echo "configure:4258: checking for main in -ldl" >&5 +echo "configure:4289: checking for main in -ldl" >&5 ac_lib_var=`echo dl'_'main | sed 'y%./+-%__p_%'` if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 @@ -4262,14 +4293,14 @@ else ac_save_LIBS="$LIBS" LIBS="-ldl $LIBS" cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4304: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_lib_$ac_lib_var=yes" else @@ -4374,21 +4405,21 @@ EOF -for ac_hdr in unistd.h sys/time.h sys/types.h fcntl.h sys/ioctl.h sys/filio.h sys/stat.h sys/select.h sys/socket.h netinet/in.h arpa/inet.h netdb.h pwd.h +for ac_hdr in unistd.h sys/time.h sys/types.h fcntl.h sys/ioctl.h sys/filio.h sys/stat.h sys/select.h sys/socket.h netinet/in.h arpa/inet.h netdb.h pwd.h sys/config.h inttypes.h stdint.h do ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'` echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6 -echo "configure:4382: checking for $ac_hdr" >&5 +echo "configure:4413: checking for $ac_hdr" >&5 if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext < EOF ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out" -{ (eval echo configure:4392: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; } +{ (eval echo configure:4423: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; } ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"` if test -z "$ac_err"; then rm -rf conftest* @@ -4418,17 +4449,17 @@ for ac_hdr in dirent.h do ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'` echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6 -echo "configure:4422: checking for $ac_hdr" >&5 +echo "configure:4453: checking for $ac_hdr" >&5 if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext < EOF ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out" -{ (eval echo configure:4432: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; } +{ (eval echo configure:4463: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; } ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"` if test -z "$ac_err"; then rm -rf conftest* @@ -4456,16 +4487,16 @@ done echo $ac_n "checking whether struct sockaddr_in6 is in netinet/in.h""... $ac_c" 1>&6 -echo "configure:4460: checking whether struct sockaddr_in6 is in netinet/in.h" >&5 +echo "configure:4491: checking whether struct sockaddr_in6 is in netinet/in.h" >&5 cat > conftest.$ac_ext < int main() { struct sockaddr_in6 addr6; ; return 0; } EOF -if { (eval echo configure:4469: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then +if { (eval echo configure:4500: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then rm -rf conftest* cat >> confdefs.h <<\EOF #define HAVE_INET6 1 @@ -4481,16 +4512,16 @@ fi rm -f conftest* echo $ac_n "checking for socklen_t in sys/socket.h""... $ac_c" 1>&6 -echo "configure:4485: checking for socklen_t in sys/socket.h" >&5 +echo "configure:4516: checking for socklen_t in sys/socket.h" >&5 cat > conftest.$ac_ext < int main() { socklen_t x = 5; ; return 0; } EOF -if { (eval echo configure:4494: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then +if { (eval echo configure:4525: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then rm -rf conftest* cat >> confdefs.h <<\EOF #define HAVE_SOCKLEN_T 1 @@ -4506,16 +4537,16 @@ fi rm -f conftest* echo $ac_n "checking for tm_gmtoff in struct tm""... $ac_c" 1>&6 -echo "configure:4510: checking for tm_gmtoff in struct tm" >&5 +echo "configure:4541: checking for tm_gmtoff in struct tm" >&5 cat > conftest.$ac_ext < int main() { struct tm tim; tim.tm_gmtoff = 0; ; return 0; } EOF -if { (eval echo configure:4519: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then +if { (eval echo configure:4550: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then rm -rf conftest* cat >> confdefs.h <<\EOF #define STRUCT_TM_HAS_GMTOFF 1 @@ -4528,16 +4559,16 @@ else rm -rf conftest* echo "$ac_t""no" 1>&6 echo $ac_n "checking for global timezone variable""... $ac_c" 1>&6 -echo "configure:4532: checking for global timezone variable" >&5 +echo "configure:4563: checking for global timezone variable" >&5 cat > conftest.$ac_ext < int main() { long z2 = timezone; ; return 0; } EOF -if { (eval echo configure:4541: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then +if { (eval echo configure:4572: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then rm -rf conftest* cat >> confdefs.h <<\EOF #define HAVE_TIMEZONE 1 @@ -4557,19 +4588,19 @@ rm -f conftest* # The Ultrix 4.2 mips builtin alloca declared by alloca.h only works # for constant arguments. Useless! echo $ac_n "checking for working alloca.h""... $ac_c" 1>&6 -echo "configure:4561: checking for working alloca.h" >&5 +echo "configure:4592: checking for working alloca.h" >&5 if eval "test \"`echo '$''{'ac_cv_header_alloca_h'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext < int main() { char *p = alloca(2 * sizeof(int)); ; return 0; } EOF -if { (eval echo configure:4573: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4604: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* ac_cv_header_alloca_h=yes else @@ -4590,12 +4621,12 @@ EOF fi echo $ac_n "checking for alloca""... $ac_c" 1>&6 -echo "configure:4594: checking for alloca" >&5 +echo "configure:4625: checking for alloca" >&5 if eval "test \"`echo '$''{'ac_cv_func_alloca_works'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4658: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* ac_cv_func_alloca_works=yes else @@ -4655,12 +4686,12 @@ EOF echo $ac_n "checking whether alloca needs Cray hooks""... $ac_c" 1>&6 -echo "configure:4659: checking whether alloca needs Cray hooks" >&5 +echo "configure:4690: checking whether alloca needs Cray hooks" >&5 if eval "test \"`echo '$''{'ac_cv_os_cray'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&6 if test $ac_cv_os_cray = yes; then for ac_func in _getb67 GETB67 getb67; do echo $ac_n "checking for $ac_func""... $ac_c" 1>&6 -echo "configure:4689: checking for $ac_func" >&5 +echo "configure:4720: checking for $ac_func" >&5 if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then +if { (eval echo configure:4748: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then rm -rf conftest* eval "ac_cv_func_$ac_func=yes" else @@ -4740,7 +4771,7 @@ done fi echo $ac_n "checking stack direction for C alloca""... $ac_c" 1>&6 -echo "configure:4744: checking stack direction for C alloca" >&5 +echo "configure:4775: checking stack direction for C alloca" >&5 if eval "test \"`echo '$''{'ac_cv_c_stack_direction'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else @@ -4748,7 +4779,7 @@ else ac_cv_c_stack_direction=0 else cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext} && (./conftest; exit) 2>/dev/null +if { (eval echo configure:4802: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext} && (./conftest; exit) 2>/dev/null then ac_cv_c_stack_direction=1 else @@ -4794,7 +4825,7 @@ do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 echo $ac_n "checking for $ac_word""... $ac_c" 1>&6 -echo "configure:4798: checking for $ac_word" >&5 +echo "configure:4829: checking for $ac_word" >&5 if eval "test \"`echo '$''{'ac_cv_prog_PERL'+set}'`\" = set"; then echo $ac_n "(cached) $ac_c" 1>&6 else diff --git a/libjava/configure.in b/libjava/configure.in index 4e7b63b33161..9ba86e5a3277 100644 --- a/libjava/configure.in +++ b/libjava/configure.in @@ -1,7 +1,7 @@ dnl Process this with autoconf to create configure AC_INIT(java/lang/System.java) -dnl Can't be done in LIBGCJ_CONFIGURE because that confuses automake. +dnl Can't be done in LIBGCJ_CONFIGURE because that confuses automake. AC_CONFIG_AUX_DIR(..) AC_CANONICAL_SYSTEM @@ -64,8 +64,11 @@ case "$TARGET_ECOS" in ;; esac -AC_EGREP_HEADER(__uint32_t, sys/types.h, AC_DEFINE(HAVE_INT32_DEFINED)) -AC_EGREP_HEADER(__uint32_t, sys/config.h, AC_DEFINE(HAVE_INT32_DEFINED)) +AC_EGREP_HEADER(uint32_t, stdint.h, AC_DEFINE(HAVE_INT32_DEFINED)) +AC_EGREP_HEADER(uint32_t, inttypes.h, AC_DEFINE(HAVE_INT32_DEFINED)) +AC_EGREP_HEADER(u_int32_t, sys/types.h, AC_DEFINE(HAVE_BSD_INT32_DEFINED)) +AC_EGREP_HEADER(u_int32_t, sys/config.h, AC_DEFINE(HAVE_BSD_INT32_DEFINED)) + dnl These may not be defined in a non-ANS conformant embedded system. dnl FIXME: Should these case a runtime exception in that case? @@ -466,7 +469,7 @@ AC_SUBST(AM_RUNTESTFLAGS) dnl We check for sys/filio.h because Solaris 2.5 defines FIONREAD there. dnl On that system, sys/ioctl.h will not include sys/filio.h unless dnl BSD_COMP is defined; just including sys/filio.h is simpler. -AC_CHECK_HEADERS(unistd.h sys/time.h sys/types.h fcntl.h sys/ioctl.h sys/filio.h sys/stat.h sys/select.h sys/socket.h netinet/in.h arpa/inet.h netdb.h pwd.h) +AC_CHECK_HEADERS(unistd.h sys/time.h sys/types.h fcntl.h sys/ioctl.h sys/filio.h sys/stat.h sys/select.h sys/socket.h netinet/in.h arpa/inet.h netdb.h pwd.h sys/config.h inttypes.h stdint.h) dnl We avoid AC_HEADER_DIRENT since we really only care about dirent.h dnl for now. If you change this, you also must update natFile.cc. AC_CHECK_HEADERS(dirent.h) diff --git a/libjava/include/config.h.in b/libjava/include/config.h.in index c4acd69299f6..be94a759c0db 100644 --- a/libjava/include/config.h.in +++ b/libjava/include/config.h.in @@ -40,9 +40,12 @@ /* Define if you have strerror. */ #undef HAVE_STRERROR -/* Define if you have __int32_t and __uint32_t. */ +/* Define if you have int32_t and uint32_t. */ #undef HAVE_INT32_DEFINED +/* Define if you have u_int32_t */ +#undef HAVE_BSD_INT32_DEFINED + /* Define if you're running eCos. */ #undef ECOS @@ -214,6 +217,9 @@ /* Define if you have the header file. */ #undef HAVE_FCNTL_H +/* Define if you have the header file. */ +#undef HAVE_INTTYPES_H + /* Define if you have the header file. */ #undef HAVE_NETDB_H @@ -223,6 +229,12 @@ /* Define if you have the header file. */ #undef HAVE_PWD_H +/* Define if you have the header file. */ +#undef HAVE_STDINT_H + +/* Define if you have the header file. */ +#undef HAVE_SYS_CONFIG_H + /* Define if you have the header file. */ #undef HAVE_SYS_FILIO_H diff --git a/libjava/java/lang/dtoa.c b/libjava/java/lang/dtoa.c index fae45c5aeb48..c55415413b1d 100644 --- a/libjava/java/lang/dtoa.c +++ b/libjava/java/lang/dtoa.c @@ -1,906 +1,3 @@ -/**************************************************************** - * - * The author of this software is David M. Gay. - * - * Copyright (c) 1991 by AT&T. - * - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY - * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY - * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - * - ***************************************************************/ - -/* Please send bug reports to - David M. Gay - AT&T Bell Laboratories, Room 2C-463 - 600 Mountain Avenue - Murray Hill, NJ 07974-2070 - U.S.A. - dmg@research.att.com or research!dmg - */ - -#include "mprec.h" - -static int -_DEFUN (quorem, - (b, S), - _Jv_Bigint * b _AND _Jv_Bigint * S) -{ - int n; - long borrow, y; - unsigned long carry, q, ys; - unsigned long *bx, *bxe, *sx, *sxe; -#ifdef Pack_32 - long z; - unsigned long si, zs; -#endif - - n = S->_wds; -#ifdef DEBUG - /*debug*/ if (b->_wds > n) - /*debug*/ Bug ("oversize b in quorem"); -#endif - if (b->_wds < n) - return 0; - sx = S->_x; - sxe = sx + --n; - bx = b->_x; - bxe = bx + n; - q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ -#ifdef DEBUG - /*debug*/ if (q > 9) - /*debug*/ Bug ("oversized quotient in quorem"); -#endif - if (q) - { - borrow = 0; - carry = 0; - do - { -#ifdef Pack_32 - si = *sx++; - ys = (si & 0xffff) * q + carry; - zs = (si >> 16) * q + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend (borrow, y); - z = (*bx >> 16) - (zs & 0xffff) + borrow; - borrow = z >> 16; - Sign_Extend (borrow, z); - Storeinc (bx, z, y); -#else - ys = *sx++ * q + carry; - carry = ys >> 16; - y = *bx - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend (borrow, y); - *bx++ = y & 0xffff; -#endif - } - while (sx <= sxe); - if (!*bxe) - { - bx = b->_x; - while (--bxe > bx && !*bxe) - --n; - b->_wds = n; - } - } - if (cmp (b, S) >= 0) - { - q++; - borrow = 0; - carry = 0; - bx = b->_x; - sx = S->_x; - do - { -#ifdef Pack_32 - si = *sx++; - ys = (si & 0xffff) + carry; - zs = (si >> 16) + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend (borrow, y); - z = (*bx >> 16) - (zs & 0xffff) + borrow; - borrow = z >> 16; - Sign_Extend (borrow, z); - Storeinc (bx, z, y); -#else - ys = *sx++ + carry; - carry = ys >> 16; - y = *bx - (ys & 0xffff) + borrow; - borrow = y >> 16; - Sign_Extend (borrow, y); - *bx++ = y & 0xffff; -#endif - } - while (sx <= sxe); - bx = b->_x; - bxe = bx + n; - if (!*bxe) - { - while (--bxe > bx && !*bxe) - --n; - b->_wds = n; - } - } - return q; -} - -#ifdef DEBUG -#include - -void -print (_Jv_Bigint * b) -{ - int i, wds; - unsigned long *x, y; - wds = b->_wds; - x = b->_x+wds; - i = 0; - do - { - x--; - fprintf (stderr, "%08x", *x); - } - while (++i < wds); - fprintf (stderr, "\n"); -} -#endif - -/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. - * - * Inspired by "How to Print Floating-Point Numbers Accurately" by - * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. - * - * Modifications: - * 1. Rather than iterating, we use a simple numeric overestimate - * to determine k = floor(log10(d)). We scale relevant - * quantities using O(log2(k)) rather than O(k) multiplications. - * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't - * try to generate digits strictly left to right. Instead, we - * compute with fewer bits and propagate the carry if necessary - * when rounding the final digit up. This is often faster. - * 3. Under the assumption that input will be rounded nearest, - * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. - * That is, we allow equality in stopping tests when the - * round-nearest rule will give the same floating-point value - * as would satisfaction of the stopping test with strict - * inequality. - * 4. We remove common factors of powers of 2 from relevant - * quantities. - * 5. When converting floating-point integers less than 1e16, - * we use floating-point arithmetic rather than resorting - * to multiple-precision integers. - * 6. When asked to produce fewer than 15 digits, we first try - * to get by with floating-point arithmetic; we resort to - * multiple-precision integer arithmetic only if we cannot - * guarantee that the floating-point calculation has given - * the correctly rounded result. For k requested digits and - * "uniformly" distributed input, the probability is - * something like 10^(k-15) that we must resort to the long - * calculation. - */ - - -char * -_DEFUN (_dtoa_r, - (ptr, _d, mode, ndigits, decpt, sign, rve, float_type), - struct _Jv_reent *ptr _AND - double _d _AND - int mode _AND - int ndigits _AND - int *decpt _AND - int *sign _AND - char **rve _AND - int float_type) -{ - /* - float_type == 0 for double precision, 1 for float. - - Arguments ndigits, decpt, sign are similar to those - of ecvt and fcvt; trailing zeros are suppressed from - the returned string. If not null, *rve is set to point - to the end of the return value. If d is +-Infinity or NaN, - then *decpt is set to 9999. - - mode: - 0 ==> shortest string that yields d when read in - and rounded to nearest. - 1 ==> like 0, but with Steele & White stopping rule; - e.g. with IEEE P754 arithmetic , mode 0 gives - 1e23 whereas mode 1 gives 9.999999999999999e22. - 2 ==> max(1,ndigits) significant digits. This gives a - return value similar to that of ecvt, except - that trailing zeros are suppressed. - 3 ==> through ndigits past the decimal point. This - gives a return value similar to that from fcvt, - except that trailing zeros are suppressed, and - ndigits can be negative. - 4-9 should give the same return values as 2-3, i.e., - 4 <= mode <= 9 ==> same return as mode - 2 + (mode & 1). These modes are mainly for - debugging; often they run slower but sometimes - faster than modes 2-3. - 4,5,8,9 ==> left-to-right digit generation. - 6-9 ==> don't try fast floating-point estimate - (if applicable). - - > 16 ==> Floating-point arg is treated as single precision. - - Values of mode other than 0-9 are treated as mode 0. - - Sufficient space is allocated to the return value - to hold the suppressed trailing zeros. - */ - - int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, - k_check, leftright, m2, m5, s2, s5, spec_case, try_quick; - union double_union d, d2, eps; - long L; -#ifndef Sudden_Underflow - int denorm; - unsigned long x; -#endif - _Jv_Bigint *b, *b1, *delta, *mlo, *mhi, *S; - double ds; - char *s, *s0; - - d.d = _d; - - if (ptr->_result) - { - ptr->_result->_k = ptr->_result_k; - ptr->_result->_maxwds = 1 << ptr->_result_k; - Bfree (ptr, ptr->_result); - ptr->_result = 0; - } - - if (word0 (d) & Sign_bit) - { - /* set sign for everything, including 0's and NaNs */ - *sign = 1; - word0 (d) &= ~Sign_bit; /* clear sign bit */ - } - else - *sign = 0; - -#if defined(IEEE_Arith) + defined(VAX) -#ifdef IEEE_Arith - if ((word0 (d) & Exp_mask) == Exp_mask) -#else - if (word0 (d) == 0x8000) -#endif - { - /* Infinity or NaN */ - *decpt = 9999; - s = -#ifdef IEEE_Arith - !word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" : -#endif - "NaN"; - if (rve) - *rve = -#ifdef IEEE_Arith - s[3] ? s + 8 : -#endif - s + 3; - return s; - } -#endif -#ifdef IBM - d.d += 0; /* normalize */ -#endif - if (!d.d) - { - *decpt = 1; - s = "0"; - if (rve) - *rve = s + 1; - return s; - } - - b = d2b (ptr, d.d, &be, &bbits); -#ifdef Sudden_Underflow - i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); -#else - if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) - { -#endif - d2.d = d.d; - word0 (d2) &= Frac_mask1; - word0 (d2) |= Exp_11; -#ifdef IBM - if (j = 11 - hi0bits (word0 (d2) & Frac_mask)) - d2.d /= 1 << j; -#endif - - /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 - * log10(x) = log(x) / log(10) - * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) - * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) - * - * This suggests computing an approximation k to log10(d) by - * - * k = (i - Bias)*0.301029995663981 - * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); - * - * We want k to be too large rather than too small. - * The error in the first-order Taylor series approximation - * is in our favor, so we just round up the constant enough - * to compensate for any error in the multiplication of - * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, - * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, - * adding 1e-13 to the constant term more than suffices. - * Hence we adjust the constant term to 0.1760912590558. - * (We could get a more accurate k by invoking log10, - * but this is probably not worthwhile.) - */ - - i -= Bias; -#ifdef IBM - i <<= 2; - i += j; -#endif -#ifndef Sudden_Underflow - denorm = 0; - } - else - { - /* d is denormalized */ - - i = bbits + be + (Bias + (P - 1) - 1); - x = i > 32 ? word0 (d) << (64 - i) | word1 (d) >> (i - 32) - : word1 (d) << (32 - i); - d2.d = x; - word0 (d2) -= 31 * Exp_msk1; /* adjust exponent */ - i -= (Bias + (P - 1) - 1) + 1; - denorm = 1; - } -#endif - ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981; - k = (int) ds; - if (ds < 0. && ds != k) - k--; /* want k = floor(ds) */ - k_check = 1; - if (k >= 0 && k <= Ten_pmax) - { - if (d.d < tens[k]) - k--; - k_check = 0; - } - j = bbits - i - 1; - if (j >= 0) - { - b2 = 0; - s2 = j; - } - else - { - b2 = -j; - s2 = 0; - } - if (k >= 0) - { - b5 = 0; - s5 = k; - s2 += k; - } - else - { - b2 -= k; - b5 = -k; - s5 = 0; - } - if (mode < 0 || mode > 9) - mode = 0; - try_quick = 1; - if (mode > 5) - { - mode -= 4; - try_quick = 0; - } - leftright = 1; - switch (mode) - { - case 0: - case 1: - ilim = ilim1 = -1; - i = 18; - ndigits = 0; - break; - case 2: - leftright = 0; - /* no break */ - case 4: - if (ndigits <= 0) - ndigits = 1; - ilim = ilim1 = i = ndigits; - break; - case 3: - leftright = 0; - /* no break */ - case 5: - i = ndigits + k + 1; - ilim = i; - ilim1 = i - 1; - if (i <= 0) - i = 1; - } - j = sizeof (unsigned long); - for (ptr->_result_k = 0; (int) (sizeof (_Jv_Bigint) - sizeof (unsigned long)) + j <= i; - j <<= 1) - ptr->_result_k++; - ptr->_result = Balloc (ptr, ptr->_result_k); - s = s0 = (char *) ptr->_result; - - if (ilim >= 0 && ilim <= Quick_max && try_quick) - { - /* Try to get by with floating-point arithmetic. */ - - i = 0; - d2.d = d.d; - k0 = k; - ilim0 = ilim; - ieps = 2; /* conservative */ - if (k > 0) - { - ds = tens[k & 0xf]; - j = k >> 4; - if (j & Bletch) - { - /* prevent overflows */ - j &= Bletch - 1; - d.d /= bigtens[n_bigtens - 1]; - ieps++; - } - for (; j; j >>= 1, i++) - if (j & 1) - { - ieps++; - ds *= bigtens[i]; - } - d.d /= ds; - } - else if ((j1 = -k)) - { - d.d *= tens[j1 & 0xf]; - for (j = j1 >> 4; j; j >>= 1, i++) - if (j & 1) - { - ieps++; - d.d *= bigtens[i]; - } - } - if (k_check && d.d < 1. && ilim > 0) - { - if (ilim1 <= 0) - goto fast_failed; - ilim = ilim1; - k--; - d.d *= 10.; - ieps++; - } - eps.d = ieps * d.d + 7.; - word0 (eps) -= (P - 1) * Exp_msk1; - if (ilim == 0) - { - S = mhi = 0; - d.d -= 5.; - if (d.d > eps.d) - goto one_digit; - if (d.d < -eps.d) - goto no_digits; - goto fast_failed; - } -#ifndef No_leftright - if (leftright) - { - /* Use Steele & White method of only - * generating digits needed. - */ - eps.d = 0.5 / tens[ilim - 1] - eps.d; - for (i = 0;;) - { - L = d.d; - d.d -= L; - *s++ = '0' + (int) L; - if (d.d < eps.d) - goto ret1; - if (1. - d.d < eps.d) - goto bump_up; - if (++i >= ilim) - break; - eps.d *= 10.; - d.d *= 10.; - } - } - else - { -#endif - /* Generate ilim digits, then fix them up. */ - eps.d *= tens[ilim - 1]; - for (i = 1;; i++, d.d *= 10.) - { - L = d.d; - d.d -= L; - *s++ = '0' + (int) L; - if (i == ilim) - { - if (d.d > 0.5 + eps.d) - goto bump_up; - else if (d.d < 0.5 - eps.d) - { - while (*--s == '0'); - s++; - goto ret1; - } - break; - } - } -#ifndef No_leftright - } -#endif - fast_failed: - s = s0; - d.d = d2.d; - k = k0; - ilim = ilim0; - } - - /* Do we have a "small" integer? */ - - if (be >= 0 && k <= Int_max) - { - /* Yes. */ - ds = tens[k]; - if (ndigits < 0 && ilim <= 0) - { - S = mhi = 0; - if (ilim < 0 || d.d <= 5 * ds) - goto no_digits; - goto one_digit; - } - for (i = 1;; i++) - { - L = d.d / ds; - d.d -= L * ds; -#ifdef Check_FLT_ROUNDS - /* If FLT_ROUNDS == 2, L will usually be high by 1 */ - if (d.d < 0) - { - L--; - d.d += ds; - } -#endif - *s++ = '0' + (int) L; - if (i == ilim) - { - d.d += d.d; - if (d.d > ds || (d.d == ds && L & 1)) - { - bump_up: - while (*--s == '9') - if (s == s0) - { - k++; - *s = '0'; - break; - } - ++*s++; - } - break; - } - if (!(d.d *= 10.)) - break; - } - goto ret1; - } - - m2 = b2; - m5 = b5; - mhi = mlo = 0; - if (leftright) - { - if (mode < 2) - { - i = -#ifndef Sudden_Underflow - denorm ? be + (Bias + (P - 1) - 1 + 1) : -#endif -#ifdef IBM - 1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3); -#else - 1 + P - bbits; -#endif - } - else - { - j = ilim - 1; - if (m5 >= j) - m5 -= j; - else - { - s5 += j -= m5; - b5 += j; - m5 = 0; - } - if ((i = ilim) < 0) - { - m2 -= i; - i = 0; - } - } - b2 += i; - s2 += i; - mhi = i2b (ptr, 1); - } - if (m2 > 0 && s2 > 0) - { - i = m2 < s2 ? m2 : s2; - b2 -= i; - m2 -= i; - s2 -= i; - } - if (b5 > 0) - { - if (leftright) - { - if (m5 > 0) - { - mhi = pow5mult (ptr, mhi, m5); - b1 = mult (ptr, mhi, b); - Bfree (ptr, b); - b = b1; - } - if ((j = b5 - m5)) - b = pow5mult (ptr, b, j); - } - else - b = pow5mult (ptr, b, b5); - } - S = i2b (ptr, 1); - if (s5 > 0) - S = pow5mult (ptr, S, s5); - - /* Check for special case that d is a normalized power of 2. */ - - if (mode < 2) - { - if (!word1 (d) && !(word0 (d) & Bndry_mask) -#ifndef Sudden_Underflow - && word0 (d) & Exp_mask -#endif - ) - { - /* The special case */ - b2 += Log2P; - s2 += Log2P; - spec_case = 1; - } - else - spec_case = 0; - } - - /* Arrange for convenient computation of quotients: - * shift left if necessary so divisor has 4 leading 0 bits. - * - * Perhaps we should just compute leading 28 bits of S once - * and for all and pass them and a shift to quorem, so it - * can do shifts and ors to compute the numerator for q. - */ - -#ifdef Pack_32 - if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0x1f)) - i = 32 - i; -#else - if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0xf)) - i = 16 - i; -#endif - if (i > 4) - { - i -= 4; - b2 += i; - m2 += i; - s2 += i; - } - else if (i < 4) - { - i += 28; - b2 += i; - m2 += i; - s2 += i; - } - if (b2 > 0) - b = lshift (ptr, b, b2); - if (s2 > 0) - S = lshift (ptr, S, s2); - if (k_check) - { - if (cmp (b, S) < 0) - { - k--; - b = multadd (ptr, b, 10, 0); /* we botched the k estimate */ - if (leftright) - mhi = multadd (ptr, mhi, 10, 0); - ilim = ilim1; - } - } - if (ilim <= 0 && mode > 2) - { - if (ilim < 0 || cmp (b, S = multadd (ptr, S, 5, 0)) <= 0) - { - /* no digits, fcvt style */ - no_digits: - k = -1 - ndigits; - goto ret; - } - one_digit: - *s++ = '1'; - k++; - goto ret; - } - if (leftright) - { - if (m2 > 0) - mhi = lshift (ptr, mhi, m2); - - /* Single precision case, */ - if (float_type) - mhi = lshift (ptr, mhi, 29); - - /* Compute mlo -- check for special case - * that d is a normalized power of 2. - */ - - mlo = mhi; - if (spec_case) - { - mhi = Balloc (ptr, mhi->_k); - Bcopy (mhi, mlo); - mhi = lshift (ptr, mhi, Log2P); - } - - for (i = 1;; i++) - { - dig = quorem (b, S) + '0'; - /* Do we yet have the shortest decimal string - * that will round to d? - */ - j = cmp (b, mlo); - delta = diff (ptr, S, mhi); - j1 = delta->_sign ? 1 : cmp (b, delta); - Bfree (ptr, delta); -#ifndef ROUND_BIASED - if (j1 == 0 && !mode && !(word1 (d) & 1)) - { - if (dig == '9') - goto round_9_up; - if (j > 0) - dig++; - *s++ = dig; - goto ret; - } -#endif - if (j < 0 || (j == 0 && !mode -#ifndef ROUND_BIASED - && !(word1 (d) & 1) -#endif - )) - { - if (j1 > 0) - { - b = lshift (ptr, b, 1); - j1 = cmp (b, S); - if ((j1 > 0 || (j1 == 0 && dig & 1)) - && dig++ == '9') - goto round_9_up; - } - *s++ = dig; - goto ret; - } - if (j1 > 0) - { - if (dig == '9') - { /* possible if i == 1 */ - round_9_up: - *s++ = '9'; - goto roundoff; - } - *s++ = dig + 1; - goto ret; - } - *s++ = dig; - if (i == ilim) - break; - b = multadd (ptr, b, 10, 0); - if (mlo == mhi) - mlo = mhi = multadd (ptr, mhi, 10, 0); - else - { - mlo = multadd (ptr, mlo, 10, 0); - mhi = multadd (ptr, mhi, 10, 0); - } - } - } - else - for (i = 1;; i++) - { - *s++ = dig = quorem (b, S) + '0'; - if (i >= ilim) - break; - b = multadd (ptr, b, 10, 0); - } - - /* Round off last digit */ - - b = lshift (ptr, b, 1); - j = cmp (b, S); - if (j > 0 || (j == 0 && dig & 1)) - { - roundoff: - while (*--s == '9') - if (s == s0) - { - k++; - *s++ = '1'; - goto ret; - } - ++*s++; - } - else - { - while (*--s == '0'); - s++; - } -ret: - Bfree (ptr, S); - if (mhi) - { - if (mlo && mlo != mhi) - Bfree (ptr, mlo); - Bfree (ptr, mhi); - } -ret1: - Bfree (ptr, b); - *s = 0; - *decpt = k + 1; - if (rve) - *rve = s; - return s0; -} - - -_VOID -_DEFUN (_dtoa, - (_d, mode, ndigits, decpt, sign, rve, buf, float_type), - double _d _AND - int mode _AND - int ndigits _AND - int *decpt _AND - int *sign _AND - char **rve _AND - char *buf _AND - int float_type) -{ - struct _Jv_reent reent; - char *p; - memset (&reent, 0, sizeof reent); - - p = _dtoa_r (&reent, _d, mode, ndigits, decpt, sign, rve, float_type); - strcpy (buf, p); - - return; -} - - + /* + && word0(d) & Exp_mask + struct _Jv_reent reent; diff --git a/libjava/java/lang/e_acos.c b/libjava/java/lang/e_acos.c index 319b1d56fa09..ded6cbb2f970 100644 --- a/libjava/java/lang/e_acos.c +++ b/libjava/java/lang/e_acos.c @@ -1,111 +1,7 @@ - -/* @(#)e_acos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_acos(x) - * Method : - * acos(x) = pi/2 - asin(x) - * acos(-x) = pi/2 + asin(x) - * For |x|<=0.5 - * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) - * For x>0.5 - * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) - * = 2asin(sqrt((1-x)/2)) - * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) - * = 2f + (2c + 2s*z*R(z)) - * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term - * for f so that f+c ~ sqrt(z). - * For x<-0.5 - * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) - * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) - * - * Special cases: - * if x is NaN, return x itself; - * if |x|>1, return NaN with invalid signal. - * - * Function needed: sqrt - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ -pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ -pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ -pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ -pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ -pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ -pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ -pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ -pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ -qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ -qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ -qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ -qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ - -#ifdef __STDC__ - double __ieee754_acos(double x) -#else - double __ieee754_acos(x) - double x; -#endif -{ - double z,p,q,r,w,s,c,df; - __int32_t hx,ix; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x3ff00000) { /* |x| >= 1 */ - __uint32_t lx; - GET_LOW_WORD(lx,x); - if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ - if(hx>0) return 0.0; /* acos(1) = 0 */ - else return pi+2.0*pio2_lo; /* acos(-1)= pi */ - } - return (x-x)/(x-x); /* acos(|x|>1) is NaN */ - } - if(ix<0x3fe00000) { /* |x| < 0.5 */ - if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ - z = x*x; - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - r = p/q; - return pio2_hi - (x - (pio2_lo-x*r)); - } else if (hx<0) { /* x < -0.5 */ - z = (one+x)*0.5; - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - s = __ieee754_sqrt(z); - r = p/q; - w = r*s-pio2_lo; - return pi - 2.0*(s+w); - } else { /* x > 0.5 */ - z = (one-x)*0.5; - s = __ieee754_sqrt(z); - df = s; - SET_LOW_WORD(df,0); - c = (z-df*df)/(s+df); - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - r = p/q; - w = r*s+c; - return 2.0*(df+w); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * software is freely granted, provided that this notice + * Method : + * = 2asin(sqrt((1-x)/2)) +static const double +static double + int32_t hx,ix; + uint32_t lx; diff --git a/libjava/java/lang/e_atan2.c b/libjava/java/lang/e_atan2.c index 8e9650f290de..f0317f7e24a0 100644 --- a/libjava/java/lang/e_atan2.c +++ b/libjava/java/lang/e_atan2.c @@ -1,131 +1,13 @@ - -/* @(#)e_atan2.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_atan2(y,x) - * Method : - * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). - * 2. Reduce x to positive by (if x and y are unexceptional): - * ARG (x+iy) = arctan(y/x) ... if x > 0, - * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, - * - * Special cases: - * - * ATAN2((anything), NaN ) is NaN; - * ATAN2(NAN , (anything) ) is NaN; - * ATAN2(+-0, +(anything but NaN)) is +-0 ; - * ATAN2(+-0, -(anything but NaN)) is +-pi ; - * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; - * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; - * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; - * ATAN2(+-INF,+INF ) is +-pi/4 ; - * ATAN2(+-INF,-INF ) is +-3pi/4; - * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -tiny = 1.0e-300, -zero = 0.0, -pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ -pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ -pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ -pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ - -#ifdef __STDC__ - double __ieee754_atan2(double y, double x) -#else - double __ieee754_atan2(y,x) - double y,x; -#endif -{ - double z; - __int32_t k,m,hx,hy,ix,iy; - __uint32_t lx,ly; - - EXTRACT_WORDS(hx,lx,x); - ix = hx&0x7fffffff; - EXTRACT_WORDS(hy,ly,y); - iy = hy&0x7fffffff; - if(((ix|((lx|-lx)>>31))>0x7ff00000)|| - ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */ - return x+y; - if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */ - m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ - - /* when y = 0 */ - if((iy|ly)==0) { - switch(m) { - case 0: - case 1: return y; /* atan(+-0,+anything)=+-0 */ - case 2: return pi+tiny;/* atan(+0,-anything) = pi */ - case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ - } - } - /* when x = 0 */ - if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* when x is INF */ - if(ix==0x7ff00000) { - if(iy==0x7ff00000) { - switch(m) { - case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ - case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ - case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ - case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ - } - } else { - switch(m) { - case 0: return zero ; /* atan(+...,+INF) */ - case 1: return -zero ; /* atan(-...,+INF) */ - case 2: return pi+tiny ; /* atan(+...,-INF) */ - case 3: return -pi-tiny ; /* atan(-...,-INF) */ - } - } - } - /* when y is INF */ - if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* compute y/x */ - k = (iy-ix)>>20; - if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ - else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ - else z=atan(fabs(y/x)); /* safe to do y/x */ - switch (m) { - case 0: return z ; /* atan(+,+) */ - case 1: { - __uint32_t zh; - GET_HIGH_WORD(zh,z); - SET_HIGH_WORD(z,zh ^ 0x80000000); - } - return z ; /* atan(-,+) */ - case 2: return pi-(z-pi_lo);/* atan(+,-) */ - default: /* case 3 */ - return (z-pi_lo)-pi;/* atan(-,-) */ - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * software is freely granted, provided that this notice + * 2. Reduce x to positive by (if x and y are unexceptional): + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough +static const double +static double +{ + int32_t k,m,hx,hy,ix,iy; + uint32_t lx,ly; + case 0: + + uint32_t zh; diff --git a/libjava/java/lang/e_exp.c b/libjava/java/lang/e_exp.c index ce093c610650..7c377ea71d47 100644 --- a/libjava/java/lang/e_exp.c +++ b/libjava/java/lang/e_exp.c @@ -1,167 +1,20 @@ - -/* @(#)e_exp.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_exp(x) - * Returns the exponential of x. - * - * Method - * 1. Argument reduction: - * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. - * Given x, find r and integer k such that - * - * x = k*ln2 + r, |r| <= 0.5*ln2. - * - * Here r will be represented as r = hi-lo for better - * accuracy. - * - * 2. Approximation of exp(r) by a special rational function on - * the interval [0,0.34658]: - * Write - * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... - * We use a special Reme algorithm on [0,0.34658] to generate - * a polynomial of degree 5 to approximate R. The maximum error - * of this polynomial approximation is bounded by 2**-59. In - * other words, - * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 - * (where z=r*r, and the values of P1 to P5 are listed below) - * and - * | 5 | -59 - * | 2.0+P1*z+...+P5*z - R(z) | <= 2 - * | | - * The computation of exp(r) thus becomes - * 2*r - * exp(r) = 1 + ------- - * R - r - * r*R1(r) - * = 1 + r + ----------- (for better accuracy) - * 2 - R1(r) - * where - * 2 4 10 - * R1(r) = r - (P1*r + P2*r + ... + P5*r ). - * - * 3. Scale back to obtain exp(x): - * From step 1, we have - * exp(x) = 2^k * exp(r) - * - * Special cases: - * exp(INF) is INF, exp(NaN) is NaN; - * exp(-INF) is 0, and - * for finite argument, only exp(0)=1 is exact. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Misc. info. - * For IEEE double - * if x > 7.09782712893383973096e+02 then exp(x) overflow - * if x < -7.45133219101941108420e+02 then exp(x) underflow - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.0, -halF[2] = {0.5,-0.5,}, -huge = 1.0e+300, -twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ -o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ -u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ -ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ - -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ -ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ - -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ -invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ -P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ -P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ -P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ -P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ -P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ - - -#ifdef __STDC__ - double __ieee754_exp(double x) /* default IEEE double exp */ -#else - double __ieee754_exp(x) /* default IEEE double exp */ - double x; -#endif -{ - double y,hi,lo,c,t; - __int32_t k,xsb; - __uint32_t hx; - - GET_HIGH_WORD(hx,x); - xsb = (hx>>31)&1; /* sign bit of x */ - hx &= 0x7fffffff; /* high word of |x| */ - - /* filter out non-finite argument */ - if(hx >= 0x40862E42) { /* if |x|>=709.78... */ - if(hx>=0x7ff00000) { - __uint32_t lx; - GET_LOW_WORD(lx,x); - if(((hx&0xfffff)|lx)!=0) - return x+x; /* NaN */ - else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ - } - if(x > o_threshold) return huge*huge; /* overflow */ - if(x < u_threshold) return twom1000*twom1000; /* underflow */ - } - - /* argument reduction */ - if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ - if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ - hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; - } else { - k = invln2*x+halF[xsb]; - t = k; - hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ - lo = t*ln2LO[0]; - } - x = hi - lo; - } - else if(hx < 0x3e300000) { /* when |x|<2**-28 */ - if(huge+x>one) return one+x;/* trigger inexact */ - } - else k = 0; - - /* x is now in primary range */ - t = x*x; - c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - if(k==0) return one-((x*c)/(c-2.0)-x); - else y = one-((lo-(x*c)/(2.0-c))-hi); - if(k >= -1021) { - __uint32_t hy; - GET_HIGH_WORD(hy,y); - SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ - return y; - } else { - __uint32_t hy; - GET_HIGH_WORD(hy,y); - SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ - return y*twom1000; + * software is freely granted, provided that this notice + * x = k*ln2 + r, |r| <= 0.5*ln2. + * Here r will be represented as r = hi-lo for better + * We use a special Reme algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * r*R1(r) + * + * For IEEE double + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + int32_t k,xsb; + uint32_t hx; + uint32_t lx; + if(((hx&0xfffff)|lx)!=0) + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + if(k==0) return one-((x*c)/(c-2.0)-x); + uint32_t hy; + uint32_t hy; diff --git a/libjava/java/lang/e_fmod.c b/libjava/java/lang/e_fmod.c index f9739eec25d7..f64e9c4c0f35 100644 --- a/libjava/java/lang/e_fmod.c +++ b/libjava/java/lang/e_fmod.c @@ -1,140 +1,11 @@ - -/* @(#)e_fmod.c 5.1 93/09/24 */ + * software is freely granted, provided that this notice /* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_fmod(x,y) - * Return x mod y in exact arithmetic - * Method: shift and subtract - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, Zero[] = {0.0, -0.0,}; -#else -static double one = 1.0, Zero[] = {0.0, -0.0,}; -#endif - -#ifdef __STDC__ - double __ieee754_fmod(double x, double y) -#else - double __ieee754_fmod(x,y) - double x,y ; -#endif -{ - __int32_t n,hx,hy,hz,ix,iy,sx,i; - __uint32_t lx,ly,lz; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hy,ly,y); - sx = hx&0x80000000; /* sign of x */ - hx ^=sx; /* |x| */ - hy &= 0x7fffffff; /* |y| */ - - /* purge off exception values */ - if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ - ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ - return (x*y)/(x*y); - if(hx<=hy) { - if((hx>31]; /* |x|=|y| return x*0*/ - } - - /* determine ix = ilogb(x) */ - if(hx<0x00100000) { /* subnormal x */ - if(hx==0) { - for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; - } else { - for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; - } - } else ix = (hx>>20)-1023; - - /* determine iy = ilogb(y) */ - if(hy<0x00100000) { /* subnormal y */ - if(hy==0) { - for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; - } else { - for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; - } - } else iy = (hy>>20)-1023; - - /* set up {hx,lx}, {hy,ly} and align y to x */ - if(ix >= -1022) - hx = 0x00100000|(0x000fffff&hx); - else { /* subnormal x, shift x to normal */ - n = -1022-ix; - if(n<=31) { - hx = (hx<>(32-n)); - lx <<= n; - } else { - hx = lx<<(n-32); - lx = 0; - } - } - if(iy >= -1022) - hy = 0x00100000|(0x000fffff&hy); - else { /* subnormal y, shift y to normal */ - n = -1022-iy; - if(n<=31) { - hy = (hy<>(32-n)); - ly <<= n; - } else { - hy = ly<<(n-32); - ly = 0; - } - } - - /* fix point fmod */ - n = ix - iy; - while(n--) { - hz=hx-hy;lz=lx-ly; if(lx>31); lx = lx+lx;} - else { - if((hz|lz)==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - hx = hz+hz+(lz>>31); lx = lz+lz; - } - } - hz=hx-hy;lz=lx-ly; if(lx=0) {hx=hz;lx=lz;} - - /* convert back to floating value and restore the sign */ - if((hx|lx)==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - while(hx<0x00100000) { /* normalize x */ - hx = hx+hx+(lx>>31); lx = lx+lx; - iy -= 1; - } - if(iy>= -1022) { /* normalize output */ - hx = ((hx-0x00100000)|((iy+1023)<<20)); - INSERT_WORDS(x,hx|sx,lx); - } else { /* subnormal output */ - n = -1022 - iy; - if(n<=20) { - lx = (lx>>n)|((__uint32_t)hx<<(32-n)); - hx >>= n; - } else if (n<=31) { - lx = (hx<<(32-n))|(lx>>n); hx = sx; - } else { - lx = hx>>(n-32); hx = sx; - } - INSERT_WORDS(x,hx|sx,lx); - x *= one; /* create necessary signal */ - } - return x; /* exact output */ -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + int32_t n,hx,hy,hz,ix,iy,sx,i; + uint32_t lx,ly,lz; + if(lx==ly) + return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/ + if(ix >= -1022) + if(iy >= -1022) + return Zero[(uint32_t)sx>>31]; + return Zero[(uint32_t)sx>>31]; + lx = (lx>>n)|((uint32_t)hx<<(32-n)); diff --git a/libjava/java/lang/e_log.c b/libjava/java/lang/e_log.c index ea6c55f6c36f..fbeb13a90012 100644 --- a/libjava/java/lang/e_log.c +++ b/libjava/java/lang/e_log.c @@ -1,152 +1,21 @@ - -/* @(#)e_log.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * software is freely granted, provided that this notice + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * | Lg1*s +...+Lg7*s - R(z) | <= 2 * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_log(x) - * Return the logrithm of x - * - * Method : - * 1. Argument Reduction: find k and f such that - * x = 2^k * (1+f), - * where sqrt(2)/2 < 1+f < sqrt(2) . - * - * 2. Approximation of log(1+f). - * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) - * = 2s + 2/3 s**3 + 2/5 s**5 + ....., - * = 2s + s*R - * We use a special Reme algorithm on [0,0.1716] to generate - * a polynomial of degree 14 to approximate R The maximum error - * of this polynomial approximation is bounded by 2**-58.45. In - * other words, - * 2 4 6 8 10 12 14 - * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s - * (the values of Lg1 to Lg7 are listed in the program) - * and - * | 2 14 | -58.45 - * | Lg1*s +...+Lg7*s - R(z) | <= 2 - * | | - * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. - * In order to guarantee error in log below 1ulp, we compute log - * by - * log(1+f) = f - s*(f - R) (if f is not too large) - * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) - * - * 3. Finally, log(x) = k*ln2 + log(1+f). - * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) - * Here ln2 is split into two floating point number: - * ln2_hi + ln2_lo, - * where n*ln2_hi is always exact for |n| < 2000. - * - * Special cases: - * log(x) is NaN with signal if x < 0 (including -INF) ; - * log(+INF) is +INF; log(0) is -INF with signal; - * log(NaN) is that NaN with no signal. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ -ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ -two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ -Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ -Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ -Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ -Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ -Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ -Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ -Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double __ieee754_log(double x) -#else - double __ieee754_log(x) - double x; -#endif -{ - double hfsq,f,s,z,R,w,t1,t2,dk; - __int32_t k,hx,i,j; - __uint32_t lx; - - EXTRACT_WORDS(hx,lx,x); - - k=0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (((hx&0x7fffffff)|lx)==0) - return -two54/zero; /* log(+-0)=-inf */ - if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ - k -= 54; x *= two54; /* subnormal number, scale up x */ - GET_HIGH_WORD(hx,x); - } - if (hx >= 0x7ff00000) return x+x; - k += (hx>>20)-1023; - hx &= 0x000fffff; - i = (hx+0x95f64)&0x100000; - SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ - k += (i>>20); - f = x-1.0; - if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ - if(f==zero) { - if(k==0) - return zero; - else { - dk=(double)k; - return dk*ln2_hi+dk*ln2_lo; - } - } - R = f*f*(0.5-0.33333333333333333*f); - if(k==0) return f-R; else {dk=(double)k; - return dk*ln2_hi-((R-dk*ln2_lo)-f);} - } - s = f/(2.0+f); - dk = (double)k; - z = s*s; - i = hx-0x6147a; - w = z*z; - j = 0x6b851-hx; - t1= w*(Lg2+w*(Lg4+w*Lg6)); - t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); - i |= j; - R = t2+t1; - if(i>0) { - hfsq=0.5*f*f; - if(k==0) return f-(hfsq-s*(hfsq+R)); else - return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); - } else { - if(k==0) return f-s*(f-R); else - return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); + * 3. Finally, log(x) = k*ln2 + log(1+f). + * Here ln2 is split into two floating point number: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + int32_t k,hx,i,j; + uint32_t lx; + if (((hx&0x7fffffff)|lx)==0) } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + s = f/(2.0+f); + t1= w*(Lg2+w*(Lg4+w*Lg6)); + t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); diff --git a/libjava/java/lang/e_pow.c b/libjava/java/lang/e_pow.c index f078dff344db..705794bb1950 100644 --- a/libjava/java/lang/e_pow.c +++ b/libjava/java/lang/e_pow.c @@ -1,312 +1,27 @@ - -/* @(#)e_pow.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_pow(x,y) return x**y - * - * n - * Method: Let x = 2 * (1+f) - * 1. Compute and return log2(x) in two pieces: - * log2(x) = w1 + w2, - * where w1 has 53-24 = 29 bit trailing zeros. - * 2. Perform y*log2(x) = n+y' by simulating muti-precision - * arithmetic, where |y'|<=0.5. - * 3. Return x**y = 2**n*exp(y'*log2) - * - * Special cases: - * 1. (anything) ** 0 is 1 - * 2. (anything) ** 1 is itself - * 3. (anything) ** NAN is NAN - * 4. NAN ** (anything except 0) is NAN - * 5. +-(|x| > 1) ** +INF is +INF - * 6. +-(|x| > 1) ** -INF is +0 - * 7. +-(|x| < 1) ** +INF is +0 - * 8. +-(|x| < 1) ** -INF is +INF - * 9. +-1 ** +-INF is NAN - * 10. +0 ** (+anything except 0, NAN) is +0 - * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 - * 12. +0 ** (-anything except 0, NAN) is +INF - * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF - * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) - * 15. +INF ** (+anything except 0,NAN) is +INF - * 16. +INF ** (-anything except 0,NAN) is +0 - * 17. -INF ** (anything) = -0 ** (-anything) - * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) - * 19. (-anything except 0 and inf) ** (non-integer) is NAN - * - * Accuracy: - * pow(x,y) returns x**y nearly rounded. In particular - * pow(integer,integer) - * always returns the correct integer provided it is - * representable. - * - * Constants : - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -bp[] = {1.0, 1.5,}, -dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ -dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ -zero = 0.0, -one = 1.0, -two = 2.0, -two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ -huge = 1.0e300, -tiny = 1.0e-300, - /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ -L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ -L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ -L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ -L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ -L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ -L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ -P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ -P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ -P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ -P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ -P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ -lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ -lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ -lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ -ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ -cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ -cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ -cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ -ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ -ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ -ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ - -#ifdef __STDC__ - double __ieee754_pow(double x, double y) -#else - double __ieee754_pow(x,y) - double x, y; -#endif -{ - double z,ax,z_h,z_l,p_h,p_l; - double y1,t1,t2,r,s,t,u,v,w; - __int32_t i,j,k,yisint,n; - __int32_t hx,hy,ix,iy; - __uint32_t lx,ly; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hy,ly,y); - ix = hx&0x7fffffff; iy = hy&0x7fffffff; - - /* y==zero: x**0 = 1 */ - if((iy|ly)==0) return one; - - /* +-NaN return x+y */ - if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || - iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) - return x+y; - - /* determine if y is an odd int when x < 0 - * yisint = 0 ... y is not an integer - * yisint = 1 ... y is an odd int - * yisint = 2 ... y is an even int - */ - yisint = 0; - if(hx<0) { - if(iy>=0x43400000) yisint = 2; /* even integer y */ - else if(iy>=0x3ff00000) { - k = (iy>>20)-0x3ff; /* exponent */ - if(k>20) { - j = ly>>(52-k); - if((__uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1); - } else if(ly==0) { - j = iy>>(20-k); - if((j<<(20-k))==iy) yisint = 2-(j&1); - } - } - } - - /* special value of y */ - if(ly==0) { - if (iy==0x7ff00000) { /* y is +-inf */ - if(((ix-0x3ff00000)|lx)==0) - return y - y; /* inf**+-1 is NaN */ - else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ - return (hy>=0)? y: zero; - else /* (|x|<1)**-,+inf = inf,0 */ - return (hy<0)?-y: zero; - } - if(iy==0x3ff00000) { /* y is +-1 */ - if(hy<0) return one/x; else return x; - } - if(hy==0x40000000) return x*x; /* y is 2 */ - if(hy==0x3fe00000) { /* y is 0.5 */ - if(hx>=0) /* x >= +0 */ - return __ieee754_sqrt(x); - } - } - - ax = fabs(x); - /* special value of x */ - if(lx==0) { - if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ - z = ax; /*x is +-0,+-inf,+-1*/ - if(hy<0) z = one/z; /* z = (1/|x|) */ - if(hx<0) { - if(((ix-0x3ff00000)|yisint)==0) { - z = (z-z)/(z-z); /* (-1)**non-int is NaN */ - } else if(yisint==1) - z = -z; /* (x<0)**odd = -(|x|**odd) */ - } - return z; + * software is freely granted, provided that this notice + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * always returns the correct integer provided it is + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough +static const double +static double + int32_t i,j,k,yisint,n; + int32_t hx,hy,ix,iy; + uint32_t lx,ly; + if((iy|ly)==0) return one; + iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) + return x+y; + if(hx<0) { + if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1); } } - - /* (x<0)**(non-int) is NaN */ - /* CYGNUS LOCAL: This used to be - if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x); - but ANSI C says a right shift of a signed negative quantity is - implementation defined. */ - if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); - - /* |y| is huge */ - if(iy>0x41e00000) { /* if |y| > 2**31 */ - if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ - if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; - if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; + if(ly==0) { } - /* over/underflow if x is not close to one */ - if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; - if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; - /* now |1-x| is tiny <= 2**-20, suffice to compute - log(x) by x-x^2/2+x^3/3-x^4/4 */ - t = x-1; /* t has 20 trailing zeros */ - w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); - u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ - v = t*ivln2_l-w*ivln2; - t1 = u+v; - SET_LOW_WORD(t1,0); - t2 = v-(t1-u); - } else { - double s2,s_h,s_l,t_h,t_l; - n = 0; - /* take care subnormal number */ - if(ix<0x00100000) - {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } - n += ((ix)>>20)-0x3ff; - j = ix&0x000fffff; - /* determine interval */ - ix = j|0x3ff00000; /* normalize ix */ - if(j<=0x3988E) k=0; /* |x|>1)|0x20000000)+0x00080000+(k<<18)); - t_l = ax - (t_h-bp[k]); - s_l = v*((u-s_h*t_h)-s_h*t_l); - /* compute log(ax) */ - s2 = s*s; - r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); - r += s_l*(s_h+s); - s2 = s_h*s_h; - t_h = 3.0+s2+r; - SET_LOW_WORD(t_h,0); - t_l = r-((t_h-3.0)-s2); - /* u+v = s*(1+...) */ - u = s_h*t_h; - v = s_l*t_h+t_l*s; - /* 2/(3log2)*(s+...) */ - p_h = u+v; - SET_LOW_WORD(p_h,0); - p_l = v-(p_h-u); - z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ - z_l = cp_l*p_h+p_l*cp+dp_l[k]; - /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ - t = (double)n; - t1 = (((z_h+z_l)+dp_h[k])+t); - SET_LOW_WORD(t1,0); - t2 = z_l-(((t1-t)-dp_h[k])-z_h); + if(((((uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); + /* now |1-x| is tiny <= 2**-20, suffice to compute + if(((((uint32_t)hx>>31)-1)|(yisint-1))==0) } - - s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ - if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0) - s = -one;/* (-ve)**(odd int) */ - - /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ - y1 = y; - SET_LOW_WORD(y1,0); - p_l = (y-y1)*t1+y*t2; - p_h = y1*t1; - z = p_l+p_h; - EXTRACT_WORDS(j,i,z); - if (j>=0x40900000) { /* z >= 1024 */ - if(((j-0x40900000)|i)!=0) /* if z > 1024 */ - return s*huge*huge; /* overflow */ - else { - if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ - } - } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ - if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ - return s*tiny*tiny; /* underflow */ - else { - if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ - } - } - /* - * compute 2**(p_h+p_l) - */ - i = j&0x7fffffff; - k = (i>>20)-0x3ff; - n = 0; - if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ - n = j+(0x00100000>>(k+1)); - k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ - t = zero; - SET_HIGH_WORD(t,n&~(0x000fffff>>k)); - n = ((n&0x000fffff)|0x00100000)>>(20-k); - if(j<0) n = -n; - p_h -= t; - } - t = p_l+p_h; - SET_LOW_WORD(t,0); - u = t*lg2_h; - v = (p_l-(t-p_h))*lg2+t*lg2_l; - z = u+v; - w = v-(z-u); - t = z*z; - t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - r = (z*t1)/(t1-two)-(w+z*w); - z = one-(r-z); - GET_HIGH_WORD(j,z); - j += (n<<20); - if((j>>20)<=0) z = scalbn(z,(int)n); /* subnormal output */ - else SET_HIGH_WORD(z,j); - return s*z; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/libjava/java/lang/e_rem_pio2.c b/libjava/java/lang/e_rem_pio2.c index 3e5d0f7a2277..04665fb35bf3 100644 --- a/libjava/java/lang/e_rem_pio2.c +++ b/libjava/java/lang/e_rem_pio2.c @@ -1,185 +1,37 @@ - -/* @(#)e_rem_pio2.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * software is freely granted, provided that this notice * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_rem_pio2(x,y) - * - * return the remainder of x rem pi/2 in y[0]+y[1] - * use __kernel_rem_pio2() - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -/* - * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi - */ -#ifdef __STDC__ -static const __int32_t two_over_pi[] = { -#else -static __int32_t two_over_pi[] = { -#endif -0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, -0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, -0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, -0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, -0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, -0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, -0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, -0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, -0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, -0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, -0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, -}; - -#ifdef __STDC__ -static const __int32_t npio2_hw[] = { -#else -static __int32_t npio2_hw[] = { -#endif -0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, -0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, -0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, -0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, -0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, -0x404858EB, 0x404921FB, -}; - -/* - * invpio2: 53 bits of 2/pi - * pio2_1: first 33 bit of pi/2 - * pio2_1t: pi/2 - pio2_1 - * pio2_2: second 33 bit of pi/2 - * pio2_2t: pi/2 - (pio2_1+pio2_2) - * pio2_3: third 33 bit of pi/2 - * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) - */ - -#ifdef __STDC__ -static const double -#else -static double -#endif -zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ -half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ -invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ -pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ -pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ -pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ -pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ -pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ -pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ - -#ifdef __STDC__ - __int32_t __ieee754_rem_pio2(double x, double *y) -#else - __int32_t __ieee754_rem_pio2(x,y) - double x,y[]; -#endif -{ - double z,w,t,r,fn; - double tx[3]; - __int32_t i,j,n,ix,hx; - int e0,nx; - __uint32_t low; - - GET_HIGH_WORD(hx,x); /* high word of x */ - ix = hx&0x7fffffff; - if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ - {y[0] = x; y[1] = 0; return 0;} - if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ - if(hx>0) { - z = x - pio2_1; - if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ - y[0] = z - pio2_1t; - y[1] = (z-y[0])-pio2_1t; - } else { /* near pi/2, use 33+33+53 bit pi */ - z -= pio2_2; - y[0] = z - pio2_2t; - y[1] = (z-y[0])-pio2_2t; - } - return 1; - } else { /* negative x */ - z = x + pio2_1; - if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ - y[0] = z + pio2_1t; - y[1] = (z-y[0])+pio2_1t; - } else { /* near pi/2, use 33+33+53 bit pi */ - z += pio2_2; - y[0] = z + pio2_2t; - y[1] = (z-y[0])+pio2_2t; - } - return -1; - } - } - if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ - t = fabs(x); - n = (__int32_t) (t*invpio2+half); - fn = (double)n; - r = t-fn*pio2_1; - w = fn*pio2_1t; /* 1st round good to 85 bit */ - if(n<32&&ix!=npio2_hw[n-1]) { - y[0] = r-w; /* quick check no cancellation */ - } else { - __uint32_t high; - j = ix>>20; - y[0] = r-w; - GET_HIGH_WORD(high,y[0]); - i = j-((high>>20)&0x7ff); - if(i>16) { /* 2nd iteration needed, good to 118 */ - t = r; - w = fn*pio2_2; - r = t-w; - w = fn*pio2_2t-((t-r)-w); - y[0] = r-w; - GET_HIGH_WORD(high,y[0]); - i = j-((high>>20)&0x7ff); - if(i>49) { /* 3rd iteration need, 151 bits acc */ - t = r; /* will cover all possible cases */ - w = fn*pio2_3; - r = t-w; - w = fn*pio2_3t-((t-r)-w); - y[0] = r-w; - } - } - } - y[1] = (r-y[0])-w; - if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} - else return n; - } - /* - * all other (large) arguments - */ - if(ix>=0x7ff00000) { /* x is inf or NaN */ - y[0]=y[1]=x-x; return 0; - } - /* set z = scalbn(|x|,ilogb(x)-23) */ - GET_LOW_WORD(low,x); - SET_LOW_WORD(z,low); - e0 = (int)((ix>>20)-1046); /* e0 = ilogb(z)-23; */ - SET_HIGH_WORD(z, ix - ((__int32_t)e0<<20)); - for(i=0;i<2;i++) { - tx[i] = (double)((__int32_t)(z)); - z = (z-tx[i])*two24; - } - tx[2] = z; - nx = 3; - while(tx[nx-1]==zero) nx--; /* skip zero term */ - n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); - if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} - return n; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * return the remainder of x rem pi/2 in y[0]+y[1] + * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi +static const int32_t two_over_pi[] = { +static int32_t two_over_pi[] = { +0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, +0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, +0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, +0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, +0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, +0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, +0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, +0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, +0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, +0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, +0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, +static const int32_t npio2_hw[] = { +static int32_t npio2_hw[] = { +static const double +static double + int32_t __ieee754_rem_pio2(double x, double *y) + int32_t __ieee754_rem_pio2(x,y) + int32_t i,j,n,ix,hx; + uint32_t low; + if(hx>0) { + n = (int32_t) (t*invpio2+half); + if(n<32&&ix!=npio2_hw[n-1]) { + uint32_t high; + y[0] = r-w; + w = fn*pio2_2; + w = fn*pio2_2t-((t-r)-w); + w = fn*pio2_3; + w = fn*pio2_3t-((t-r)-w); + /* + SET_HIGH_WORD(z, ix - ((int32_t)e0<<20)); + tx[i] = (double)((int32_t)(z)); diff --git a/libjava/java/lang/e_remainder.c b/libjava/java/lang/e_remainder.c index ae7ce649ad5b..0c72a6bd8618 100644 --- a/libjava/java/lang/e_remainder.c +++ b/libjava/java/lang/e_remainder.c @@ -1,80 +1,7 @@ - -/* @(#)e_remainder.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_remainder(x,p) - * Return : - * returns x REM p = x - [x/p]*p as if in infinite - * precise arithmetic, where [x/p] is the (infinite bit) - * integer nearest x/p (in half way case choose the even one). - * Method : - * Based on fmod() return x-[x/p]chopped*p exactlp. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - - -#ifdef __STDC__ - double __ieee754_remainder(double x, double p) -#else - double __ieee754_remainder(x,p) - double x,p; -#endif -{ - __int32_t hx,hp; - __uint32_t sx,lx,lp; - double p_half; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hp,lp,p); - sx = hx&0x80000000; - hp &= 0x7fffffff; - hx &= 0x7fffffff; - - /* purge off exception values */ - if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ - if((hx>=0x7ff00000)|| /* x not finite */ - ((hp>=0x7ff00000)&& /* p is NaN */ - (((hp-0x7ff00000)|lp)!=0))) - return (x*p)/(x*p); - - - if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */ - if (((hx-hp)|(lx-lp))==0) return zero*x; - x = fabs(x); - p = fabs(p); - if (hp<0x00200000) { - if(x+x>p) { - x-=p; - if(x+x>=p) x -= p; - } - } else { - p_half = 0.5*p; - if(x>p_half) { - x-=p; - if(x>=p_half) x -= p; - } - } - GET_HIGH_WORD(hx,x); - SET_HIGH_WORD(x,hx^sx); - return x; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * software is freely granted, provided that this notice + * Return : + * returns x REM p = x - [x/p]*p as if in infinite + * precise arithmetic, where [x/p] is the (infinite bit) + * Method : + int32_t hx,hp; + uint32_t sx,lx,lp; diff --git a/libjava/java/lang/e_sqrt.c b/libjava/java/lang/e_sqrt.c index b56b1eedc94c..5a1225fbff7c 100644 --- a/libjava/java/lang/e_sqrt.c +++ b/libjava/java/lang/e_sqrt.c @@ -1,452 +1,52 @@ - -/* @(#)e_sqrt.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_sqrt(x) - * Return correctly rounded sqrt. - * ------------------------------------------ - * | Use the hardware sqrt if you have one | - * ------------------------------------------ - * Method: - * Bit by bit method using integer arithmetic. (Slow, but portable) - * 1. Normalization - * Scale x to y in [1,4) with even powers of 2: - * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then - * sqrt(x) = 2^k * sqrt(y) - * 2. Bit by bit computation - * Let q = sqrt(y) truncated to i bit after binary point (q = 1), - * i 0 - * i+1 2 - * s = 2*q , and y = 2 * ( y - q ). (1) - * i i i i - * - * To compute q from q , one checks whether - * i+1 i - * - * -(i+1) 2 - * (q + 2 ) <= y. (2) - * i - * -(i+1) - * If (2) is false, then q = q ; otherwise q = q + 2 . - * i+1 i i+1 i - * - * With some algebric manipulation, it is not difficult to see - * that (2) is equivalent to - * -(i+1) - * s + 2 <= y (3) - * i i + * software is freely granted, provided that this notice + * Method: + * Bit by bit method using integer arithmetic. (Slow, but portable) + * Scale x to y in [1,4) with even powers of 2: * - * The advantage of (3) is that s and y can be computed by - * i i - * the following recurrence formula: - * if (3) is false + * To compute q from q , one checks whether + * i+1 i + * that (2) is equivalent to + * The advantage of (3) is that s and y can be computed by * - * s = s , y = y ; (4) - * i+1 i i+1 i + * One may easily use induction to prove (4) and (5). + * it does not necessary to do a full (53-bit) comparison * - * otherwise, - * -i -(i+1) - * s = s + 2 , y = y - s - 2 (5) - * i+1 i i+1 i i - * - * One may easily use induction to prove (4) and (5). - * Note. Since the left hand side of (3) contain only i+2 bits, - * it does not necessary to do a full (53-bit) comparison - * in (3). - * 3. Final rounding - * After generating the 53 bits result, we compute one more bit. - * Together with the remainder, we can decide whether the - * result is exact, bigger than 1/2ulp, or less than 1/2ulp - * (it will never equal to 1/2ulp). - * The rounding mode can be detected by checking whether - * huge + tiny is equal to huge, and whether huge - tiny is - * equal to huge for some floating point number "huge" and "tiny". - * - * Special cases: - * sqrt(+-0) = +-0 ... exact - * sqrt(inf) = inf - * sqrt(-ve) = NaN ... with invalid signal - * sqrt(NaN) = NaN ... with invalid signal for signaling NaN - * - * Other methods : see the appended file at the end of the program below. - *--------------- - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, tiny=1.0e-300; -#else -static double one = 1.0, tiny=1.0e-300; -#endif - -#ifdef __STDC__ - double __ieee754_sqrt(double x) -#else - double __ieee754_sqrt(x) - double x; -#endif -{ - double z; - __int32_t sign = (int)0x80000000; - __uint32_t r,t1,s1,ix1,q1; - __int32_t ix0,s0,q,m,t,i; - - EXTRACT_WORDS(ix0,ix1,x); - - /* take care of Inf and NaN */ - if((ix0&0x7ff00000)==0x7ff00000) { - return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf - sqrt(-inf)=sNaN */ - } - /* take care of zero */ - if(ix0<=0) { - if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ - else if(ix0<0) - return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ - } - /* normalize x */ - m = (ix0>>20); - if(m==0) { /* subnormal x */ - while(ix0==0) { - m -= 21; - ix0 |= (ix1>>11); ix1 <<= 21; - } - for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; - m -= i-1; - ix0 |= (ix1>>(32-i)); - ix1 <<= i; - } - m -= 1023; /* unbias exponent */ - ix0 = (ix0&0x000fffff)|0x00100000; - if(m&1){ /* odd m, double x to make it even */ - ix0 += ix0 + ((ix1&sign)>>31); - ix1 += ix1; - } - m >>= 1; /* m = [m/2] */ - - /* generate sqrt(x) bit by bit */ - ix0 += ix0 + ((ix1&sign)>>31); - ix1 += ix1; - q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ - r = 0x00200000; /* r = moving bit from right to left */ - - while(r!=0) { - t = s0+r; - if(t<=ix0) { - s0 = t+r; - ix0 -= t; - q += r; - } - ix0 += ix0 + ((ix1&sign)>>31); - ix1 += ix1; - r>>=1; - } - - r = sign; - while(r!=0) { - t1 = s1+r; - t = s0; - if((t>31); - ix1 += ix1; - r>>=1; - } - - /* use floating add to find out rounding direction */ - if((ix0|ix1)!=0) { - z = one-tiny; /* trigger inexact flag */ - if (z>=one) { - z = one+tiny; - if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;} - else if (z>one) { - if (q1==(__uint32_t)0xfffffffe) q+=1; - q1+=2; - } else - q1 += (q1&1); + q += r; } - } - ix0 = (q>>1)+0x3fe00000; - ix1 = q1>>1; - if ((q&1)==1) ix1 |= sign; - ix0 += (m <<20); - INSERT_WORDS(z,ix0,ix1); - return z; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - -/* -Other methods (use floating-point arithmetic) -------------- -(This is a copy of a drafted paper by Prof W. Kahan -and K.C. Ng, written in May, 1986) - - Two algorithms are given here to implement sqrt(x) - (IEEE double precision arithmetic) in software. - Both supply sqrt(x) correctly rounded. The first algorithm (in - Section A) uses newton iterations and involves four divisions. - The second one uses reciproot iterations to avoid division, but - requires more multiplications. Both algorithms need the ability - to chop results of arithmetic operations instead of round them, - and the INEXACT flag to indicate when an arithmetic operation - is executed exactly with no roundoff error, all part of the - standard (IEEE 754-1985). The ability to perform shift, add, - subtract and logical AND operations upon 32-bit words is needed - too, though not part of the standard. - -A. sqrt(x) by Newton Iteration - - (1) Initial approximation - - Let x0 and x1 be the leading and the trailing 32-bit words of - a floating point number x (in IEEE double format) respectively - - 1 11 52 ...widths - ------------------------------------------------------ - x: |s| e | f | - ------------------------------------------------------ - msb lsb msb lsb ...order - - - ------------------------ ------------------------ - x0: |s| e | f1 | x1: | f2 | - ------------------------ ------------------------ - - By performing shifts and subtracts on x0 and x1 (both regarded - as integers), we obtain an 8-bit approximation of sqrt(x) as - follows. - - k := (x0>>1) + 0x1ff80000; - y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits - Here k is a 32-bit integer and T1[] is an integer array containing - correction terms. Now magically the floating value of y (y's - leading 32-bit word is y0, the value of its trailing word is 0) - approximates sqrt(x) to almost 8-bit. - - Value of T1: - static int T1[32]= { - 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, - 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, - 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, - 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; - - (2) Iterative refinement - - Apply Heron's rule three times to y, we have y approximates - sqrt(x) to within 1 ulp (Unit in the Last Place): - - y := (y+x/y)/2 ... almost 17 sig. bits - y := (y+x/y)/2 ... almost 35 sig. bits - y := y-(y-x/y)/2 ... within 1 ulp - - - Remark 1. - Another way to improve y to within 1 ulp is: - - y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) - y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) - - 2 - (x-y )*y - y := y + 2* ---------- ...within 1 ulp - 2 - 3y + x - - - This formula has one division fewer than the one above; however, - it requires more multiplications and additions. Also x must be - scaled in advance to avoid spurious overflow in evaluating the - expression 3y*y+x. Hence it is not recommended uless division - is slow. If division is very slow, then one should use the - reciproot algorithm given in section B. - - (3) Final adjustment - - By twiddling y's last bit it is possible to force y to be - correctly rounded according to the prevailing rounding mode - as follows. Let r and i be copies of the rounding mode and - inexact flag before entering the square root program. Also we - use the expression y+-ulp for the next representable floating - numbers (up and down) of y. Note that y+-ulp = either fixed - point y+-1, or multiply y by nextafter(1,+-inf) in chopped - mode. - - I := FALSE; ... reset INEXACT flag I - R := RZ; ... set rounding mode to round-toward-zero - z := x/y; ... chopped quotient, possibly inexact - If(not I) then { ... if the quotient is exact - if(z=y) { - I := i; ... restore inexact flag - R := r; ... restore rounded mode - return sqrt(x):=y. - } else { - z := z - ulp; ... special rounding - } - } - i := TRUE; ... sqrt(x) is inexact - If (r=RN) then z=z+ulp ... rounded-to-nearest - If (r=RP) then { ... round-toward-+inf - y = y+ulp; z=z+ulp; - } - y := y+z; ... chopped sum - y0:=y0-0x00100000; ... y := y/2 is correctly rounded. - I := i; ... restore inexact flag - R := r; ... restore rounded mode - return sqrt(x):=y. - - (4) Special cases - - Square root of +inf, +-0, or NaN is itself; - Square root of a negative number is NaN with invalid signal. - - -B. sqrt(x) by Reciproot Iteration - - (1) Initial approximation - - Let x0 and x1 be the leading and the trailing 32-bit words of + t1 = s1+r; + if((t>1); - y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits - - Here k is a 32-bit integer and T2[] is an integer array - containing correction terms. Now magically the floating - value of y (y's leading 32-bit word is y0, the value of - its trailing word y1 is set to zero) approximates 1/sqrt(x) - to almost 7.8-bit. - - Value of T2: - static int T2[64]= { - 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, - 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, - 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, - 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, - 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, - 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, - 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, - 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; - - (2) Iterative refinement - - Apply Reciproot iteration three times to y and multiply the - result by x to get an approximation z that matches sqrt(x) - to about 1 ulp. To be exact, we will have - -1ulp < sqrt(x)-z<1.0625ulp. - - ... set rounding mode to Round-to-nearest - y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) - y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) - ... special arrangement for better accuracy - z := x*y ... 29 bits to sqrt(x), with z*y<1 - z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) - - Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that - (a) the term z*y in the final iteration is always less than 1; - (b) the error in the final result is biased upward so that - -1 ulp < sqrt(x) - z < 1.0625 ulp - instead of |sqrt(x)-z|<1.03125ulp. - - (3) Final adjustment - - By twiddling y's last bit it is possible to force y to be - correctly rounded according to the prevailing rounding mode - as follows. Let r and i be copies of the rounding mode and - inexact flag before entering the square root program. Also we - use the expression y+-ulp for the next representable floating - numbers (up and down) of y. Note that y+-ulp = either fixed - point y+-1, or multiply y by nextafter(1,+-inf) in chopped - mode. - - R := RZ; ... set rounding mode to round-toward-zero - switch(r) { - case RN: ... round-to-nearest - if(x<= z*(z-ulp)...chopped) z = z - ulp; else - if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; - break; - case RZ:case RM: ... round-to-zero or round-to--inf - R:=RP; ... reset rounding mod to round-to-+inf - if(x=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; - break; - case RP: ... round-to-+inf - if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else - if(x>z*z ...chopped) z = z+ulp; - break; - } - - Remark 3. The above comparisons can be done in fixed point. For - example, to compare x and w=z*z chopped, it suffices to compare - x1 and w1 (the trailing parts of x and w), regarding them as - two's complement integers. - - ...Is z an exact square root? - To determine whether z is an exact square root of x, let z1 be the - trailing part of z, and also let x0 and x1 be the leading and - trailing parts of x. - - If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 - I := 1; ... Raise Inexact flag: z is not exact - else { - j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 - k := z1 >> 26; ... get z's 25-th and 26-th - fraction bits - I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); - } - R:= r ... restore rounded mode - return sqrt(x):=z. - - If multiplication is cheaper then the foregoing red tape, the - Inexact flag can be evaluated by - - I := i; - I := (z*z!=x) or I. - - Note that z*z can overwrite I; this value must be sensed if it is - True. - - Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be - zero. - -------------------- - z1: | f2 | - -------------------- - bit 31 bit 0 + Apply Heron's rule three times to y, we have y approximates + is slow. If division is very slow, then one should use the + By twiddling y's last bit it is possible to force y to be - Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd - or even of logb(x) have the following relations: + Here k is a 32-bit integer and T2[] is an integer array + to about 1 ulp. To be exact, we will have - ------------------------------------------------- - bit 27,26 of z1 bit 1,0 of x1 logb(x) - ------------------------------------------------- - 00 00 odd and even - 01 01 even - 10 10 odd - 10 00 even - 11 01 even - ------------------------------------------------- + (a) the term z*y in the final iteration is always less than 1; + By twiddling y's last bit it is possible to force y to be + k := z1 >> 26; ... get z's 25-th and 26-th + If multiplication is cheaper then the foregoing red tape, the + Note that z*z can overwrite I; this value must be sensed if it is + z1: | f2 | + (4) Special cases (see (4) of Section A). - (4) Special cases (see (4) of Section A). - - */ diff --git a/libjava/java/lang/k_cos.c b/libjava/java/lang/k_cos.c index 6c60c243856e..0cb566ea2eed 100644 --- a/libjava/java/lang/k_cos.c +++ b/libjava/java/lang/k_cos.c @@ -1,96 +1,11 @@ - -/* @(#)k_cos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * software is freely granted, provided that this notice + * Input y is the tail of x. * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __kernel_cos( x, y ) - * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. + * | | * - * Algorithm - * 1. Since cos(-x) = cos(x), we need only to consider positive x. - * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. - * 3. cos(x) is approximated by a polynomial of degree 14 on - * [0,pi/4] - * 4 14 - * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x - * where the remez error is - * - * | 2 4 6 8 10 12 14 | -58 - * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 - * | | - * - * 4 6 8 10 12 14 - * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then - * cos(x) = 1 - x*x/2 + r - * since cos(x+y) ~ cos(x) - sin(x)*y - * ~ cos(x) - x*y, - * a correction term is necessary in cos(x) and hence - * cos(x+y) = 1 - (x*x/2 - (r - x*y)) - * For better accuracy when x > 0.3, let qx = |x|/4 with - * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. - * Then - * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). - * Note that 1-qx and (x*x/2-qx) is EXACT here, and the - * magnitude of the latter is at least a quarter of x*x/2, - * thus, reducing the rounding error in the subtraction. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ -C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ -C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ -C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ -C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ -C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ - -#ifdef __STDC__ - double __kernel_cos(double x, double y) -#else - double __kernel_cos(x, y) - double x,y; -#endif -{ - double a,hz,z,r,qx; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; /* ix = |x|'s high word*/ - if(ix<0x3e400000) { /* if x < 2**27 */ - if(((int)x)==0) return one; /* generate inexact */ - } - z = x*x; - r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); - if(ix < 0x3FD33333) /* if |x| < 0.3 */ - return one - (0.5*z - (z*r - x*y)); - else { - if(ix > 0x3fe90000) { /* x > 0.78125 */ - qx = 0.28125; - } else { - INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ - } - hz = 0.5*z-qx; - a = one-qx; - return a - (hz - (z*r-x*y)); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * 4 6 8 10 12 14 + * since cos(x+y) ~ cos(x) - sin(x)*y +static const double +static double + int32_t ix; + if(ix < 0x3FD33333) /* if |x| < 0.3 */ diff --git a/libjava/java/lang/k_rem_pio2.c b/libjava/java/lang/k_rem_pio2.c index 8569256686c8..438e85134180 100644 --- a/libjava/java/lang/k_rem_pio2.c +++ b/libjava/java/lang/k_rem_pio2.c @@ -1,320 +1,39 @@ - -/* @(#)k_rem_pio2.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) - * double x[],y[]; int e0,nx,prec; int ipio2[]; - * - * __kernel_rem_pio2 return the last three digits of N with - * y = x - N*pi/2 - * so that |y| < pi/2. - * - * The method is to compute the integer (mod 8) and fraction parts of - * (2/pi)*x without doing the full multiplication. In general we - * skip the part of the product that are known to be a huge integer ( - * more accurately, = 0 mod 8 ). Thus the number of operations are - * independent of the exponent of the input. - * - * (2/pi) is represented by an array of 24-bit integers in ipio2[]. - * - * Input parameters: - * x[] The input value (must be positive) is broken into nx - * pieces of 24-bit integers in double precision format. - * x[i] will be the i-th 24 bit of x. The scaled exponent - * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 - * match x's up to 24 bits. - * - * Example of breaking a double positive z into x[0]+x[1]+x[2]: - * e0 = ilogb(z)-23 - * z = scalbn(z,-e0) - * for i = 0,1,2 - * x[i] = floor(z) - * z = (z-x[i])*2**24 - * - * - * y[] ouput result in an array of double precision numbers. - * The dimension of y[] is: - * 24-bit precision 1 - * 53-bit precision 2 - * 64-bit precision 2 - * 113-bit precision 3 - * The actual value is the sum of them. Thus for 113-bit - * precison, one may have to do something like: - * - * long double t,w,r_head, r_tail; - * t = (long double)y[2] + (long double)y[1]; - * w = (long double)y[0]; - * r_head = t+w; - * r_tail = w - (r_head - t); - * - * e0 The exponent of x[0] - * - * nx dimension of x[] - * - * prec an integer indicating the precision: - * 0 24 bits (single) - * 1 53 bits (double) - * 2 64 bits (extended) - * 3 113 bits (quad) - * - * ipio2[] - * integer array, contains the (24*i)-th to (24*i+23)-th - * bit of 2/pi after binary point. The corresponding - * floating value is - * - * ipio2[i] * 2^(-24(i+1)). - * - * External function: - * double scalbn(), floor(); - * - * - * Here is the description of some local variables: - * - * jk jk+1 is the initial number of terms of ipio2[] needed - * in the computation. The recommended value is 2,3,4, - * 6 for single, double, extended,and quad. - * - * jz local integer variable indicating the number of - * terms of ipio2[] used. - * - * jx nx - 1 - * - * jv index for pointing to the suitable ipio2[] for the - * computation. In general, we want - * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 - * is an integer. Thus - * e0-3-24*jv >= 0 or (e0-3)/24 >= jv - * Hence jv = max(0,(e0-3)/24). - * - * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. - * - * q[] double array with integral value, representing the - * 24-bits chunk of the product of x and 2/pi. - * - * q0 the corresponding exponent of q[0]. Note that the - * exponent for q[i] would be q0-24*i. - * - * PIo2[] double precision array, obtained by cutting pi/2 - * into 24 bits chunks. - * - * f[] ipio2[] in floating point - * - * iq[] integer array by breaking up q[] in 24-bits chunk. - * - * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] - * - * ih integer. If >0 it indicates q[] is >= 0.5, hence - * it also indicates the *sign* of the result. - * - */ - - -/* - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ -#else -static int init_jk[] = {2,3,4,6}; -#endif - -#ifdef __STDC__ -static const double PIo2[] = { -#else -static double PIo2[] = { -#endif - 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ - 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ - 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ - 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ - 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ - 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ - 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ - 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ -}; - -#ifdef __STDC__ -static const double -#else -static double -#endif -zero = 0.0, -one = 1.0, -two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ -twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ - -#ifdef __STDC__ - int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const __int32_t *ipio2) -#else - int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) - double x[], y[]; int e0,nx,prec; __int32_t ipio2[]; -#endif -{ - __int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; - double z,fw,f[20],fq[20],q[20]; - - /* initialize jk*/ - jk = init_jk[prec]; - jp = jk; - - /* determine jx,jv,q0, note that 3>q0 */ - jx = nx-1; - jv = (e0-3)/24; if(jv<0) jv=0; - q0 = e0-24*(jv+1); - - /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ - j = jv-jx; m = jx+jk; - for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; - - /* compute q[0],q[1],...q[jk] */ - for (i=0;i<=jk;i++) { - for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; - } - - jz = jk; -recompute: - /* distill q[] into iq[] reversingly */ - for(i=0,j=jz,z=q[jz];j>0;i++,j--) { - fw = (double)((__int32_t)(twon24* z)); - iq[i] = (__int32_t)(z-two24*fw); - z = q[j-1]+fw; - } - - /* compute n */ - z = scalbn(z,(int)q0); /* actual value of z */ - z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ - n = (__int32_t) z; - z -= (double)n; - ih = 0; - if(q0>0) { /* need iq[jz-1] to determine n */ - i = (iq[jz-1]>>(24-q0)); n += i; - iq[jz-1] -= i<<(24-q0); - ih = iq[jz-1]>>(23-q0); - } - else if(q0==0) ih = iq[jz-1]>>23; - else if(z>=0.5) ih=2; - - if(ih>0) { /* q > 0.5 */ - n += 1; carry = 0; - for(i=0;i0) { /* rare case: chance is 1 in 12 */ - switch(q0) { - case 1: - iq[jz-1] &= 0x7fffff; break; - case 2: - iq[jz-1] &= 0x3fffff; break; - } - } - if(ih==2) { - z = one - z; - if(carry!=0) z -= scalbn(one,(int)q0); - } - } - - /* check if recomputation is needed */ - if(z==zero) { - j = 0; - for (i=jz-1;i>=jk;i--) j |= iq[i]; - if(j==0) { /* need recomputation */ - for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ - - for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ - f[jx+i] = (double) ipio2[jv+i]; - for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; - q[i] = fw; - } - jz += k; - goto recompute; - } - } - - /* chop off zero terms */ - if(z==0.0) { - jz -= 1; q0 -= 24; - while(iq[jz]==0) { jz--; q0-=24;} - } else { /* break z into 24-bit if necessary */ - z = scalbn(z,-(int)q0); - if(z>=two24) { - fw = (double)((__int32_t)(twon24*z)); - iq[jz] = (__int32_t)(z-two24*fw); - jz += 1; q0 += 24; - iq[jz] = (__int32_t) fw; - } else iq[jz] = (__int32_t) z ; - } - - /* convert integer "bit" chunk to floating-point value */ - fw = scalbn(one,(int)q0); - for(i=jz;i>=0;i--) { - q[i] = fw*(double)iq[i]; fw*=twon24; - } - - /* compute PIo2[0,...,jp]*q[jz,...,0] */ - for(i=jz;i>=0;i--) { - for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; - fq[jz-i] = fw; - } - - /* compress fq[] into y[] */ - switch(prec) { - case 0: - fw = 0.0; + * software is freely granted, provided that this notice + * + * __kernel_rem_pio2 return the last three digits of N with + * The method is to compute the integer (mod 8) and fraction parts of + * x[] The input value (must be positive) is broken into nx + * x[i] will be the i-th 24 bit of x. The scaled exponent + * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 + * integer array, contains the (24*i)-th to (24*i+23)-th + * bit of 2/pi after binary point. The corresponding + * jz local integer variable indicating the number of + * terms of ipio2[] used. + * into 24 bits chunks. + * f[] ipio2[] in floating point + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough +static int init_jk[] = {2,3,4,6}; +static const double +static double + int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) + int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) + double x[], y[]; int e0,nx,prec; int32_t ipio2[]; + int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; + fw = (double)((int32_t)(twon24* z)); + iq[i] = (int32_t)(z-two24*fw); + n = (int32_t) z; + } + if(z>=two24) { + fw = (double)((int32_t)(twon24*z)); + iq[jz] = (int32_t)(z-two24*fw); + iq[jz] = (int32_t) fw; + } else iq[jz] = (int32_t) z ; + y[0] = (ih==0)? fw: -fw; for (i=jz;i>=0;i--) fw += fq[i]; - y[0] = (ih==0)? fw: -fw; - break; - case 1: - case 2: - fw = 0.0; - for (i=jz;i>=0;i--) fw += fq[i]; - y[0] = (ih==0)? fw: -fw; - fw = fq[0]-fw; - for (i=1;i<=jz;i++) fw += fq[i]; - y[1] = (ih==0)? fw: -fw; - break; - case 3: /* painful */ - for (i=jz;i>0;i--) { - fw = fq[i-1]+fq[i]; - fq[i] += fq[i-1]-fw; - fq[i-1] = fw; - } - for (i=jz;i>1;i--) { - fw = fq[i-1]+fq[i]; - fq[i] += fq[i-1]-fw; - fq[i-1] = fw; - } - for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; - if(ih==0) { - y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; - } else { - y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; - } - } - return n&7; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + y[0] = (ih==0)? fw: -fw; + y[1] = (ih==0)? fw: -fw; + fw = fq[i-1]+fq[i]; + fw = fq[i-1]+fq[i]; + for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; diff --git a/libjava/java/lang/k_sin.c b/libjava/java/lang/k_sin.c index f119916dfbc4..fbf2c22ea2ca 100644 --- a/libjava/java/lang/k_sin.c +++ b/libjava/java/lang/k_sin.c @@ -1,79 +1,10 @@ - -/* @(#)k_sin.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * software is freely granted, provided that this notice + * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). + * 1. Since sin(-x) = -sin(x), we need only to consider positive x. * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __kernel_sin( x, y, iy) - * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. - * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). + * | x | * - * Algorithm - * 1. Since sin(-x) = -sin(x), we need only to consider positive x. - * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. - * 3. sin(x) is approximated by a polynomial of degree 13 on - * [0,pi/4] - * 3 13 - * sin(x) ~ x + S1*x + ... + S6*x - * where - * - * |sin(x) 2 4 6 8 10 12 | -58 - * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 - * | x | - * - * 4. sin(x+y) = sin(x) + sin'(x')*y - * ~ sin(x) + (1-x*x/2)*y - * For better accuracy, let - * 3 2 2 2 2 - * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) - * then 3 2 - * sin(x) = x + (S1*x + (x *(r-y/2)+y)) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ -S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ -S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ -S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ -S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ -S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ - -#ifdef __STDC__ - double __kernel_sin(double x, double y, int iy) -#else - double __kernel_sin(x, y, iy) - double x,y; int iy; /* iy=0 if y is zero */ -#endif -{ - double z,r,v; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; /* high word of x */ - if(ix<0x3e400000) /* |x| < 2**-27 */ - {if((int)x==0) return x;} /* generate inexact */ - z = x*x; - v = z*x; - r = S2+z*(S3+z*(S4+z*(S5+z*S6))); - if(iy==0) return x+v*(S1+z*r); - else return x-((z*(half*y-v*r)-y)-v*S1); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * For better accuracy, let +static const double +static double + int32_t ix; diff --git a/libjava/java/lang/k_tan.c b/libjava/java/lang/k_tan.c index 9f5b307600cf..0520be60b132 100644 --- a/libjava/java/lang/k_tan.c +++ b/libjava/java/lang/k_tan.c @@ -1,132 +1,12 @@ - -/* @(#)k_tan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * software is freely granted, provided that this notice + * Input k indicates whether tan (if k=1) or + * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __kernel_tan( x, y, k ) - * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. - * Input k indicates whether tan (if k=1) or - * -1/tan (if k= -1) is returned. + * | x | * - * Algorithm - * 1. Since tan(-x) = -tan(x), we need only to consider positive x. - * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. - * 3. tan(x) is approximated by a odd polynomial of degree 27 on - * [0,0.67434] - * 3 27 - * tan(x) ~ x + T1*x + ... + T13*x - * where - * - * |tan(x) 2 4 26 | -59.2 - * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 - * | x | - * - * Note: tan(x+y) = tan(x) + tan'(x)*y - * ~ tan(x) + (1+x*x)*y - * Therefore, for better accuracy in computing tan(x+y), let - * 3 2 2 2 2 - * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) - * then - * 3 2 - * tan(x+y) = x + (T1*x + (x *(r+y)+y)) - * - * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then - * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) - * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ -pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ -T[] = { - 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ - 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ - 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ - 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ - 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ - 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ - 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ - 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ - 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ - 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ - 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ - -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ - 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ -}; - -#ifdef __STDC__ - double __kernel_tan(double x, double y, int iy) -#else - double __kernel_tan(x, y, iy) - double x,y; int iy; -#endif -{ - double z,r,v,w,s; - __int32_t ix,hx; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; /* high word of |x| */ - if(ix<0x3e300000) /* x < 2**-28 */ - {if((int)x==0) { /* generate inexact */ - __uint32_t low; - GET_LOW_WORD(low,x); - if(((ix|low)|(iy+1))==0) return one/fabs(x); - else return (iy==1)? x: -one/x; - } - } - if(ix>=0x3FE59428) { /* |x|>=0.6744 */ - if(hx<0) {x = -x; y = -y;} - z = pio4-x; - w = pio4lo-y; - x = z+w; y = 0.0; - } - z = x*x; - w = z*z; - /* Break x^5*(T[1]+x^2*T[2]+...) into - * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + - * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) - */ - r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); - v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); - s = z*x; - r = y + z*(s*(r+v)+y); - r += T[0]*s; - w = x+r; - if(ix>=0x3FE59428) { - v = (double)iy; - return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); - } - if(iy==1) return w; - else { /* if allow error up to 2 ulp, - simply return -1.0/(x+r) here */ - /* compute -1.0/(x+r) accurately */ - double a,t; - z = w; - SET_LOW_WORD(z,0); - v = r-(z - x); /* z+v = r+x */ - t = a = -1.0/w; /* a = -1.0/w */ - SET_LOW_WORD(t,0); - s = 1.0+t*z; - return t+a*(s+t*v); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * Therefore, for better accuracy in computing tan(x+y), let +static const double +static double + int32_t ix,hx; + uint32_t low; + else { /* if allow error up to 2 ulp, diff --git a/libjava/java/lang/mprec.h b/libjava/java/lang/mprec.h index 192243157dfa..8bc8aefb9ea9 100644 --- a/libjava/java/lang/mprec.h +++ b/libjava/java/lang/mprec.h @@ -1,374 +1,78 @@ -/**************************************************************** - * - * The author of this software is David M. Gay. - * - * Copyright (c) 1991 by AT&T. - * - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY - * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY - * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - * - ***************************************************************/ - -/* Please send bug reports to - David M. Gay - AT&T Bell Laboratories, Room 2C-463 - 600 Mountain Avenue - Murray Hill, NJ 07974-2070 - U.S.A. - dmg@research.att.com or research!dmg - */ - -#ifdef __cplusplus -extern "C" { -#endif - -#include -#include "ieeefp.h" - -#include -// #include -// #include - -/* These typedefs are true for the targets running Java. */ - -#ifndef HAVE_INT32_DEFINED -typedef int __int32_t; -typedef unsigned int __uint32_t; -#endif - -#ifdef __IEEE_LITTLE_ENDIAN -#define IEEE_8087 -#endif - -#ifdef __IEEE_BIG_ENDIAN -#define IEEE_MC68k -#endif - -#ifdef __Z8000__ -#define Just_16 -#endif - -#ifdef DEBUG -#include "stdio.h" -#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} -#endif - - -#ifdef Unsigned_Shifts -#define Sign_Extend(a,b) if (b < 0) a |= (__uint32_t)0xffff0000; -#else -#define Sign_Extend(a,b) /*no-op*/ -#endif - -#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 -Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. -#endif - -/* If we are going to examine or modify specific bits in a double using - the word0 and/or word1 macros, then we must wrap the double inside - a union. This is necessary to avoid undefined behavior according to - the ANSI C spec. */ -union double_union -{ - double d; - // FIXME: This should be some well-defined 32 bit type. - __uint32_t i[2]; -}; - -#ifdef IEEE_8087 -#define word0(x) (x.i[1]) -#define word1(x) (x.i[0]) -#else -#define word0(x) (x.i[0]) -#define word1(x) (x.i[1]) -#endif - -/* The following definition of Storeinc is appropriate for MIPS processors. - * An alternative that might be better on some machines is - * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) - */ -#if defined(IEEE_8087) + defined(VAX) -#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ -((unsigned short *)a)[0] = (unsigned short)c, a++) -#else -#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ -((unsigned short *)a)[1] = (unsigned short)c, a++) -#endif - -/* #define P DBL_MANT_DIG */ -/* Ten_pmax = floor(P*log(2)/log(5)) */ -/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ -/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ -/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ - -#if defined(IEEE_8087) + defined(IEEE_MC68k) -#if defined (_DOUBLE_IS_32BITS) -#define Exp_shift 23 -#define Exp_shift1 23 -#define Exp_msk1 ((__uint32_t)0x00800000L) -#define Exp_msk11 ((__uint32_t)0x00800000L) -#define Exp_mask ((__uint32_t)0x7f800000L) -#define P 24 -#define Bias 127 -#if 0 -#define IEEE_Arith /* it is, but the code doesn't handle IEEE singles yet */ -#endif -#define Emin (-126) -#define Exp_1 ((__uint32_t)0x3f800000L) -#define Exp_11 ((__uint32_t)0x3f800000L) -#define Ebits 8 -#define Frac_mask ((__uint32_t)0x007fffffL) -#define Frac_mask1 ((__uint32_t)0x007fffffL) -#define Ten_pmax 10 -#define Sign_bit ((__uint32_t)0x80000000L) -#define Ten_pmax 10 -#define Bletch 2 -#define Bndry_mask ((__uint32_t)0x007fffffL) -#define Bndry_mask1 ((__uint32_t)0x007fffffL) -#define LSB 1 -#define Sign_bit ((__uint32_t)0x80000000L) -#define Log2P 1 -#define Tiny0 0 -#define Tiny1 1 -#define Quick_max 5 -#define Int_max 6 -#define Infinite(x) (word0(x) == ((__uint32_t)0x7f800000L)) -#undef word0 -#undef word1 - -#define word0(x) (x.i[0]) -#define word1(x) 0 -#else - -#define Exp_shift 20 -#define Exp_shift1 20 -#define Exp_msk1 ((__uint32_t)0x100000L) -#define Exp_msk11 ((__uint32_t)0x100000L) -#define Exp_mask ((__uint32_t)0x7ff00000L) -#define P 53 -#define Bias 1023 -#define IEEE_Arith -#define Emin (-1022) -#define Exp_1 ((__uint32_t)0x3ff00000L) -#define Exp_11 ((__uint32_t)0x3ff00000L) -#define Ebits 11 -#define Frac_mask ((__uint32_t)0xfffffL) -#define Frac_mask1 ((__uint32_t)0xfffffL) -#define Ten_pmax 22 -#define Bletch 0x10 -#define Bndry_mask ((__uint32_t)0xfffffL) -#define Bndry_mask1 ((__uint32_t)0xfffffL) -#define LSB 1 -#define Sign_bit ((__uint32_t)0x80000000L) -#define Log2P 1 -#define Tiny0 0 -#define Tiny1 1 -#define Quick_max 14 -#define Int_max 14 -#define Infinite(x) (word0(x) == ((__uint32_t)0x7ff00000L)) /* sufficient test for here */ -#endif - -#else -#undef Sudden_Underflow -#define Sudden_Underflow -#ifdef IBM -#define Exp_shift 24 -#define Exp_shift1 24 -#define Exp_msk1 ((__uint32_t)0x1000000L) -#define Exp_msk11 ((__uint32_t)0x1000000L) -#define Exp_mask ((__uint32_t)0x7f000000L) -#define P 14 -#define Bias 65 -#define Exp_1 ((__uint32_t)0x41000000L) -#define Exp_11 ((__uint32_t)0x41000000L) -#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ -#define Frac_mask ((__uint32_t)0xffffffL) -#define Frac_mask1 ((__uint32_t)0xffffffL) -#define Bletch 4 -#define Ten_pmax 22 -#define Bndry_mask ((__uint32_t)0xefffffL) -#define Bndry_mask1 ((__uint32_t)0xffffffL) -#define LSB 1 -#define Sign_bit ((__uint32_t)0x80000000L) -#define Log2P 4 -#define Tiny0 ((__uint32_t)0x100000L) -#define Tiny1 0 -#define Quick_max 14 -#define Int_max 15 -#else /* VAX */ -#define Exp_shift 23 -#define Exp_shift1 7 -#define Exp_msk1 0x80 -#define Exp_msk11 ((__uint32_t)0x800000L) -#define Exp_mask ((__uint32_t)0x7f80L) -#define P 56 -#define Bias 129 -#define Exp_1 ((__uint32_t)0x40800000L) -#define Exp_11 ((__uint32_t)0x4080L) -#define Ebits 8 -#define Frac_mask ((__uint32_t)0x7fffffL) -#define Frac_mask1 ((__uint32_t)0xffff007fL) -#define Ten_pmax 24 -#define Bletch 2 -#define Bndry_mask ((__uint32_t)0xffff007fL) -#define Bndry_mask1 ((__uint32_t)0xffff007fL) -#define LSB ((__uint32_t)0x10000L) -#define Sign_bit ((__uint32_t)0x8000L) -#define Log2P 1 -#define Tiny0 0x80 -#define Tiny1 0 -#define Quick_max 15 -#define Int_max 15 -#endif -#endif - -#ifndef IEEE_Arith -#define ROUND_BIASED -#endif - -#ifdef RND_PRODQUOT -#define rounded_product(a,b) a = rnd_prod(a, b) -#define rounded_quotient(a,b) a = rnd_quot(a, b) -#ifdef KR_headers -extern double rnd_prod(), rnd_quot(); -#else -extern double rnd_prod(double, double), rnd_quot(double, double); -#endif -#else -#define rounded_product(a,b) a *= b -#define rounded_quotient(a,b) a /= b -#endif - -#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) -#define Big1 ((__uint32_t)0xffffffffL) - -#ifndef Just_16 -/* When Pack_32 is not defined, we store 16 bits per 32-bit long. - * This makes some inner loops simpler and sometimes saves work - * during multiplications, but it often seems to make things slightly - * slower. Hence the default is now to store 32 bits per long. - */ - -#ifndef Pack_32 -#define Pack_32 -#endif -#endif - - -#define MAX_BIGNUMS 16 -#define MAX_BIGNUM_WDS 32 - -struct _Jv_Bigint -{ - struct _Jv_Bigint *_next; - int _k, _maxwds, _sign, _wds; - unsigned long _x[MAX_BIGNUM_WDS]; -}; - - -#define _PTR void * -#define _AND , -#define _NOARGS void -#define _CONST const -#define _VOLATILE volatile -#define _SIGNED signed -#define _DOTS , ... -#define _VOID void -#define _EXFUN(name, proto) name proto -#define _DEFUN(name, arglist, args) name(args) -#define _DEFUN_VOID(name) name(_NOARGS) -#define _CAST_VOID (void) - - -struct _Jv_reent -{ - /* local copy of errno */ - int _errno; - - /* used by mprec routines */ - struct _Jv_Bigint *_result; - int _result_k; - struct _Jv_Bigint *_p5s; - - struct _Jv_Bigint _freelist[MAX_BIGNUMS]; - int _allocation_map; - - int num; -}; - - -typedef struct _Jv_Bigint _Jv_Bigint; - -#define Balloc _Jv_Balloc -#define Bfree _Jv_Bfree -#define multadd _Jv_multadd -#define s2b _Jv_s2b -#define lo0bits _Jv_lo0bits -#define hi0bits _Jv_hi0bits -#define i2b _Jv_i2b -#define mult _Jv_mult -#define pow5mult _Jv_pow5mult -#define lshift _Jv_lshift -#define cmp _Jv__mcmp -#define diff _Jv__mdiff -#define ulp _Jv_ulp -#define b2d _Jv_b2d -#define d2b _Jv_d2b -#define ratio _Jv_ratio - -#define tens _Jv__mprec_tens -#define bigtens _Jv__mprec_bigtens -#define tinytens _Jv__mprec_tinytens - -#define _dtoa _Jv_dtoa -#define _dtoa_r _Jv_dtoa_r -#define _strtod_r _Jv_strtod_r - -extern double _EXFUN(_strtod_r, (struct _Jv_reent *ptr, const char *s00, char **se)); -extern char* _EXFUN(_dtoa_r, (struct _Jv_reent *ptr, double d, - int mode, int ndigits, int *decpt, int *sign, - char **rve, int float_type)); -void _EXFUN(_dtoa, (double d, int mode, int ndigits, int *decpt, int *sign, - char **rve, char *buf, int float_type)); - -double _EXFUN(ulp,(double x)); -double _EXFUN(b2d,(_Jv_Bigint *a , int *e)); -_Jv_Bigint * _EXFUN(Balloc,(struct _Jv_reent *p, int k)); -void _EXFUN(Bfree,(struct _Jv_reent *p, _Jv_Bigint *v)); -_Jv_Bigint * _EXFUN(multadd,(struct _Jv_reent *p, _Jv_Bigint *, int, int)); -_Jv_Bigint * _EXFUN(s2b,(struct _Jv_reent *, const char*, int, int, unsigned long)); -_Jv_Bigint * _EXFUN(i2b,(struct _Jv_reent *,int)); -_Jv_Bigint * _EXFUN(mult, (struct _Jv_reent *, _Jv_Bigint *, _Jv_Bigint *)); -_Jv_Bigint * _EXFUN(pow5mult, (struct _Jv_reent *, _Jv_Bigint *, int k)); -int _EXFUN(hi0bits,(unsigned long)); -int _EXFUN(lo0bits,(unsigned long *)); -_Jv_Bigint * _EXFUN(d2b,(struct _Jv_reent *p, double d, int *e, int *bits)); -_Jv_Bigint * _EXFUN(lshift,(struct _Jv_reent *p, _Jv_Bigint *b, int k)); -_Jv_Bigint * _EXFUN(diff,(struct _Jv_reent *p, _Jv_Bigint *a, _Jv_Bigint *b)); -int _EXFUN(cmp,(_Jv_Bigint *a, _Jv_Bigint *b)); - -double _EXFUN(ratio,(_Jv_Bigint *a, _Jv_Bigint *b)); -#define Bcopy(x,y) memcpy((char *)&x->_sign, (char *)&y->_sign, y->_wds*sizeof(long) + 2*sizeof(int)) - -#if defined(_DOUBLE_IS_32BITS) && defined(__v800) -#define n_bigtens 2 -#else -#define n_bigtens 5 -#endif - -extern _CONST double tinytens[]; -extern _CONST double bigtens[]; -extern _CONST double tens[]; - -#ifdef __cplusplus -} -#endif - +#if defined HAVE_STDINT_H +#include +#elif defined HAVE_INTTYPES_H +#include +#endif + +#if defined HAVE_SYS_TYPES_H +#include +#endif +#if defined HAVE_SYS_CONFIG_H +#include + +/* ISO C9X int type declarations */ + +#if !defined HAVE_INT32_DEFINED && defined HAVE_BSD_INT32_DEFINED +typedef u_int32_t uint32_t; +#endif + +#if !defined HAVE_BSD_INT32_DEFINED && !defined HAVE_INT32_DEFINED +// FIXME -- this could have problems with systems that don't define SI to be 4 +typedef int int32_t __attribute__((mode(SI))); +typedef unsigned int uint32_t __attribute__((mode(SI))); +#endif + + /* These typedefs are true for the targets running Java. */ + +#define Sign_Extend(a,b) if (b < 0) a |= (uint32_t)0xffff0000; + uint32_t i[2]; +#if defined (_DOUBLE_IS_32BITS) +#define Exp_msk1 ((uint32_t)0x00800000L) +#define Exp_msk11 ((uint32_t)0x00800000L) +#define Exp_mask ((uint32_t)0x7f800000L) +#define Exp_1 ((uint32_t)0x3f800000L) +#define Exp_11 ((uint32_t)0x3f800000L) +#define Frac_mask ((uint32_t)0x007fffffL) +#define Frac_mask1 ((uint32_t)0x007fffffL) +#define Sign_bit ((uint32_t)0x80000000L) +#define Bndry_mask ((uint32_t)0x007fffffL) +#define Bndry_mask1 ((uint32_t)0x007fffffL) +#define Sign_bit ((uint32_t)0x80000000L) +#define Infinite(x) (word0(x) == ((uint32_t)0x7f800000L)) +#define Exp_msk1 ((uint32_t)0x100000L) +#define Exp_msk11 ((uint32_t)0x100000L) +#define Exp_mask ((uint32_t)0x7ff00000L) +#define Exp_1 ((uint32_t)0x3ff00000L) +#define Exp_11 ((uint32_t)0x3ff00000L) +#define Frac_mask ((uint32_t)0xfffffL) +#define Frac_mask1 ((uint32_t)0xfffffL) +#define Bndry_mask ((uint32_t)0xfffffL) +#define Bndry_mask1 ((uint32_t)0xfffffL) +#define Sign_bit ((uint32_t)0x80000000L) +#define Infinite(x) (word0(x) == ((uint32_t)0x7ff00000L)) /* sufficient test for here */ +#define Exp_msk1 ((uint32_t)0x1000000L) +#define Exp_msk11 ((uint32_t)0x1000000L) +#define Exp_mask ((uint32_t)0x7f000000L) +#define Exp_1 ((uint32_t)0x41000000L) +#define Exp_11 ((uint32_t)0x41000000L) +#define Frac_mask ((uint32_t)0xffffffL) +#define Frac_mask1 ((uint32_t)0xffffffL) +#define Bndry_mask ((uint32_t)0xefffffL) +#define Bndry_mask1 ((uint32_t)0xffffffL) +#define Sign_bit ((uint32_t)0x80000000L) +#define Tiny0 ((uint32_t)0x100000L) +#define Exp_msk11 ((uint32_t)0x800000L) +#define Exp_mask ((uint32_t)0x7f80L) +#define Exp_1 ((uint32_t)0x40800000L) +#define Exp_11 ((uint32_t)0x4080L) +#define Frac_mask ((uint32_t)0x7fffffL) +#define Frac_mask1 ((uint32_t)0xffff007fL) +#define Bndry_mask ((uint32_t)0xffff007fL) +#define Bndry_mask1 ((uint32_t)0xffff007fL) +#define LSB ((uint32_t)0x10000L) +#define Sign_bit ((uint32_t)0x8000L) +#define Big1 ((uint32_t)0xffffffffL) +struct _Jv_Bigint +extern char* _EXFUN(_dtoa_r, (struct _Jv_reent *ptr, double d, + int mode, int ndigits, int *decpt, int *sign, +void _EXFUN(_dtoa, (double d, int mode, int ndigits, int *decpt, int *sign, diff --git a/libjava/java/lang/s_atan.c b/libjava/java/lang/s_atan.c index b1410ecca557..92f03286062e 100644 --- a/libjava/java/lang/s_atan.c +++ b/libjava/java/lang/s_atan.c @@ -1,181 +1,10 @@ - -/* @(#)s_atan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION - <>, <>---arc tangent - -INDEX - atan -INDEX - atanf - -ANSI_SYNOPSIS - #include - double atan(double <[x]>); - float atanf(float <[x]>); - -TRAD_SYNOPSIS - #include - double atan(<[x]>); - double <[x]>; - - float atanf(<[x]>); - float <[x]>; - -DESCRIPTION - -<> computes the inverse tangent (arc tangent) of the input value. - -<> is identical to <>, save that it operates on <>. - -RETURNS -@ifinfo -<> returns a value in radians, in the range of -pi/2 to pi/2. -@end ifinfo -@tex -<> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$. -@end tex - -PORTABILITY -<> is ANSI C. <> is an extension. - -*/ - -/* atan(x) - * Method - * 1. Reduce x to positive by atan(x) = -atan(-x). - * 2. According to the integer k=4t+0.25 chopped, t=x, the argument - * is further reduced to one of the following intervals and the - * arctangent of t is evaluated by the corresponding formula: - * - * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) - * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) - * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) - * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) - * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double atanhi[] = { -#else -static double atanhi[] = { -#endif - 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ - 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ - 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ - 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ -}; - -#ifdef __STDC__ -static const double atanlo[] = { -#else -static double atanlo[] = { -#endif - 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ - 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ - 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ - 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ -}; - -#ifdef __STDC__ -static const double aT[] = { -#else -static double aT[] = { -#endif - 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ - -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ - 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ - -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ - 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ - -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ - 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ - -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ - 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ - -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ - 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ -}; - -#ifdef __STDC__ - static const double -#else - static double -#endif -one = 1.0, -huge = 1.0e300; - -#ifdef __STDC__ - double atan(double x) -#else - double atan(x) - double x; -#endif -{ - double w,s1,s2,z; - __int32_t ix,hx,id; - - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x44100000) { /* if |x| >= 2^66 */ - __uint32_t low; - GET_LOW_WORD(low,x); - if(ix>0x7ff00000|| - (ix==0x7ff00000&&(low!=0))) - return x+x; /* NaN */ - if(hx>0) return atanhi[3]+atanlo[3]; - else return -atanhi[3]-atanlo[3]; - } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ - if (ix < 0x3e200000) { /* |x| < 2^-29 */ - if(huge+x>one) return x; /* raise inexact */ - } - id = -1; - } else { - x = fabs(x); - if (ix < 0x3ff30000) { /* |x| < 1.1875 */ - if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ - id = 0; x = (2.0*x-one)/(2.0+x); - } else { /* 11/16<=|x|< 19/16 */ - id = 1; x = (x-one)/(x+one); - } - } else { - if (ix < 0x40038000) { /* |x| < 2.4375 */ - id = 2; x = (x-1.5)/(one+1.5*x); - } else { /* 2.4375 <= |x| < 2^66 */ - id = 3; x = -1.0/x; - } - }} - /* end of argument reduction */ - z = x*x; - w = z*z; - /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ - s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); - s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); - if (id<0) return x - x*(s1+s2); - else { - z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); - return (hx<0)? -z:z; - } -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + static const double + static double + int32_t ix,hx,id; + uint32_t low; + id = 0; x = (2.0*x-one)/(2.0+x); + id = 1; x = (x-one)/(x+one); diff --git a/libjava/java/lang/s_ceil.c b/libjava/java/lang/s_ceil.c index 1476ef821bef..8e60601f2be1 100644 --- a/libjava/java/lang/s_ceil.c +++ b/libjava/java/lang/s_ceil.c @@ -1,80 +1,7 @@ - -/* @(#)s_ceil.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * ceil(x) - * Return x rounded toward -inf to integral value - * Method: - * Bit twiddling. - * Exception: - * Inexact flag raised if x not equal to ceil(x). - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double huge = 1.0e300; -#else -static double huge = 1.0e300; -#endif - -#ifdef __STDC__ - double ceil(double x) -#else - double ceil(x) - double x; -#endif -{ - __int32_t i0,i1,j0; - __uint32_t i,j; - EXTRACT_WORDS(i0,i1,x); - j0 = ((i0>>20)&0x7ff)-0x3ff; - if(j0<20) { - if(j0<0) { /* raise inexact if x != 0 */ - if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ - if(i0<0) {i0=0x80000000;i1=0;} - else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;} - } - } else { - i = (0x000fffff)>>j0; - if(((i0&i)|i1)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0>0) i0 += (0x00100000)>>j0; - i0 &= (~i); i1=0; - } - } - } else if (j0>51) { - if(j0==0x400) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } else { - i = ((__uint32_t)(0xffffffff))>>(j0-20); - if((i1&i)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0>0) { - if(j0==20) i0+=1; - else { - j = i1 + (1<<(52-j0)); - if(j<(__uint32_t)i1) i0+=1; /* got a carry */ - i1 = j; - } - } - i1 &= (~i); - } - } - INSERT_WORDS(x,i0,i1); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice + int32_t i0,i1,j0; + uint32_t i,j; + if(i0<0) {i0=0x80000000;i1=0;} + i = ((uint32_t)(0xffffffff))>>(j0-20); + if(j0==20) i0+=1; + if(j<(uint32_t)i1) i0+=1; /* got a carry */ diff --git a/libjava/java/lang/s_copysign.c b/libjava/java/lang/s_copysign.c index bfc546db5034..065cd8b52e00 100644 --- a/libjava/java/lang/s_copysign.c +++ b/libjava/java/lang/s_copysign.c @@ -1,82 +1,2 @@ - -/* @(#)s_copysign.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<>, <>---sign of <[y]>, magnitude of <[x]> - -INDEX - copysign -INDEX - copysignf - -ANSI_SYNOPSIS - #include - double copysign (double <[x]>, double <[y]>); - float copysignf (float <[x]>, float <[y]>); - -TRAD_SYNOPSIS - #include - double copysign (<[x]>, <[y]>) - double <[x]>; - double <[y]>; - - float copysignf (<[x]>, <[y]>) - float <[x]>; - float <[y]>; - -DESCRIPTION -<> constructs a number with the magnitude (absolute value) -of its first argument, <[x]>, and the sign of its second argument, -<[y]>. - -<> does the same thing; the two functions differ only in -the type of their arguments and result. - -RETURNS -<> returns a <> with the magnitude of -<[x]> and the sign of <[y]>. -<> returns a <> with the magnitude of -<[x]> and the sign of <[y]>. - -PORTABILITY -<> is not required by either ANSI C or the System V Interface -Definition (Issue 2). - -*/ - -/* - * copysign(double x, double y) - * copysign(x,y) returns a value with the magnitude of x and - * with the sign bit of y. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double copysign(double x, double y) -#else - double copysign(x,y) - double x,y; -#endif -{ - __uint32_t hx,hy; - GET_HIGH_WORD(hx,x); - GET_HIGH_WORD(hy,y); - SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000)); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice + uint32_t hx,hy; diff --git a/libjava/java/lang/s_cos.c b/libjava/java/lang/s_cos.c index c47123301374..1ab61b1813af 100644 --- a/libjava/java/lang/s_cos.c +++ b/libjava/java/lang/s_cos.c @@ -1,82 +1,5 @@ - -/* @(#)s_cos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* cos(x) - * Return cosine function of x. - * - * kernel function: - * __kernel_sin ... sine function on [-pi/4,pi/4] - * __kernel_cos ... cosine function on [-pi/4,pi/4] - * __ieee754_rem_pio2 ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double cos(double x) -#else - double cos(x) - double x; -#endif -{ - double y[2],z=0.0; - __int32_t n,ix; - - /* High word of x. */ - GET_HIGH_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3fe921fb) return __kernel_cos(x,z); - - /* cos(Inf or NaN) is NaN */ - else if (ix>=0x7ff00000) return x-x; - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2(x,y); - switch(n&3) { - case 0: return __kernel_cos(y[0],y[1]); - case 1: return -__kernel_sin(y[0],y[1],1); - case 2: return -__kernel_cos(y[0],y[1]); - default: - return __kernel_sin(y[0],y[1],1); - } - } -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * TRIG(x) returns trig(x) nearly rounded + int32_t n,ix; diff --git a/libjava/java/lang/s_fabs.c b/libjava/java/lang/s_fabs.c index 95b871ca53ac..1c3fba62daf4 100644 --- a/libjava/java/lang/s_fabs.c +++ b/libjava/java/lang/s_fabs.c @@ -1,73 +1,5 @@ - -/* @(#)s_fabs.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <>, <>---absolute value (magnitude) -INDEX - fabs -INDEX - fabsf - -ANSI_SYNOPSIS - #include - double fabs(double <[x]>); - float fabsf(float <[x]>); - -TRAD_SYNOPSIS - #include - double fabs(<[x]>) - double <[x]>; - - float fabsf(<[x]>) - float <[x]>; - -DESCRIPTION -<> and <> calculate -@tex -$|x|$, -@end tex -the absolute value (magnitude) of the argument <[x]>, by direct -manipulation of the bit representation of <[x]>. - -RETURNS -The calculated value is returned. No errors are detected. - -PORTABILITY -<> is ANSI. -<> is an extension. - -*/ - -/* - * fabs(x) returns the absolute value of x. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double fabs(double x) -#else - double fabs(x) - double x; -#endif -{ - __uint32_t high; - GET_HIGH_WORD(high,x); - SET_HIGH_WORD(x,high&0x7fffffff); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice + double fabs(<[x]>) +<> and <> calculate +$|x|$, + uint32_t high; diff --git a/libjava/java/lang/s_floor.c b/libjava/java/lang/s_floor.c index 86f73e0e1362..73909b3008a1 100644 --- a/libjava/java/lang/s_floor.c +++ b/libjava/java/lang/s_floor.c @@ -1,134 +1,13 @@ - -/* @(#)s_floor.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<>, <>, <>, <>---floor and ceiling -INDEX - floor -INDEX - floorf -INDEX - ceil -INDEX - ceilf - -ANSI_SYNOPSIS - #include - double floor(double <[x]>); - float floorf(float <[x]>); - double ceil(double <[x]>); - float ceilf(float <[x]>); - -TRAD_SYNOPSIS - #include - double floor(<[x]>) - double <[x]>; - float floorf(<[x]>) - float <[x]>; - double ceil(<[x]>) - double <[x]>; - float ceilf(<[x]>) - float <[x]>; - -DESCRIPTION -<> and <> find -@tex -$\lfloor x \rfloor$, -@end tex -the nearest integer less than or equal to <[x]>. -<> and <> find -@tex -$\lceil x\rceil$, -@end tex -the nearest integer greater than or equal to <[x]>. - -RETURNS -<> and <> return the integer result as a double. -<> and <> return the integer result as a float. - -PORTABILITY -<> and <> are ANSI. -<> and <> are extensions. - - -*/ - -/* - * floor(x) - * Return x rounded toward -inf to integral value - * Method: - * Bit twiddling. - * Exception: - * Inexact flag raised if x not equal to floor(x). - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double huge = 1.0e300; -#else -static double huge = 1.0e300; -#endif - -#ifdef __STDC__ - double floor(double x) -#else - double floor(x) - double x; -#endif -{ - __int32_t i0,i1,j0; - __uint32_t i,j; - EXTRACT_WORDS(i0,i1,x); - j0 = ((i0>>20)&0x7ff)-0x3ff; - if(j0<20) { - if(j0<0) { /* raise inexact if x != 0 */ - if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ - if(i0>=0) {i0=i1=0;} - else if(((i0&0x7fffffff)|i1)!=0) - { i0=0xbff00000;i1=0;} - } - } else { - i = (0x000fffff)>>j0; - if(((i0&i)|i1)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0<0) i0 += (0x00100000)>>j0; - i0 &= (~i); i1=0; - } - } - } else if (j0>51) { - if(j0==0x400) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } else { - i = ((__uint32_t)(0xffffffff))>>(j0-20); - if((i1&i)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0<0) { - if(j0==20) i0+=1; - else { - j = i1+(1<<(52-j0)); - if(j<(__uint32_t)i1) i0 +=1 ; /* got a carry */ - i1=j; - } - } - i1 &= (~i); - } - } - INSERT_WORDS(x,i0,i1); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice + float floorf(<[x]>) + double ceil(<[x]>) + float ceilf(<[x]>) +<> and <> find +$\lfloor x \rfloor$, +<> and <> find + int32_t i0,i1,j0; + uint32_t i,j; + if(i0>=0) {i0=i1=0;} + i = ((uint32_t)(0xffffffff))>>(j0-20); + if(j0==20) i0+=1; + if(j<(uint32_t)i1) i0 +=1 ; /* got a carry */ diff --git a/libjava/java/lang/s_rint.c b/libjava/java/lang/s_rint.c index 9936a49b8018..8cd17e6ed373 100644 --- a/libjava/java/lang/s_rint.c +++ b/libjava/java/lang/s_rint.c @@ -1,87 +1,6 @@ - -/* @(#)s_rint.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * rint(x) - * Return x rounded to integral value according to the prevailing - * rounding mode. - * Method: - * Using floating addition. - * Exception: - * Inexact flag raised if x not equal to rint(x). - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -TWO52[2]={ - 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ - -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */ -}; - -#ifdef __STDC__ - double rint(double x) -#else - double rint(x) - double x; -#endif -{ - __int32_t i0,j0,sx; - __uint32_t i,i1; - double t; - volatile double w; - EXTRACT_WORDS(i0,i1,x); - sx = (i0>>31)&1; - j0 = ((i0>>20)&0x7ff)-0x3ff; - if(j0<20) { - if(j0<0) { - if(((i0&0x7fffffff)|i1)==0) return x; - i1 |= (i0&0x0fffff); - i0 &= 0xfffe0000; - i0 |= ((i1|-i1)>>12)&0x80000; - SET_HIGH_WORD(x,i0); - w = TWO52[sx]+x; - t = w-TWO52[sx]; - GET_HIGH_WORD(i0,t); - SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31)); - return t; - } else { - i = (0x000fffff)>>j0; - if(((i0&i)|i1)==0) return x; /* x is integral */ - i>>=1; - if(((i0&i)|i1)!=0) { - if(j0==19) i1 = 0x40000000; else - i0 = (i0&(~i))|((0x20000)>>j0); - } - } - } else if (j0>51) { - if(j0==0x400) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } else { - i = ((__uint32_t)(0xffffffff))>>(j0-20); - if((i1&i)==0) return x; /* x is integral */ - i>>=1; - if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20)); - } - INSERT_WORDS(x,i0,i1); - w = TWO52[sx]+x; - return w-TWO52[sx]; -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice +static double + int32_t i0,j0,sx; + uint32_t i,i1; + if(j0<0) { + i = ((uint32_t)(0xffffffff))>>(j0-20); diff --git a/libjava/java/lang/s_scalbn.c b/libjava/java/lang/s_scalbn.c index b06834e913fd..29f150e315d7 100644 --- a/libjava/java/lang/s_scalbn.c +++ b/libjava/java/lang/s_scalbn.c @@ -1,104 +1,8 @@ - -/* @(#)s_scalbn.c 5.1 93/09/24 */ + * software is freely granted, provided that this notice /* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<>, <>---scale by integer -INDEX - scalbn -INDEX - scalbnf - -ANSI_SYNOPSIS - #include - double scalbn(double <[x]>, int <[y]>); - float scalbnf(float <[x]>, int <[y]>); - -TRAD_SYNOPSIS - #include - double scalbn(<[x]>,<[y]>) - double <[x]>; - int <[y]>; - float scalbnf(<[x]>,<[y]>) - float <[x]>; - int <[y]>; - -DESCRIPTION -<> and <> scale <[x]> by <[n]>, returning <[x]> times -2 to the power <[n]>. The result is computed by manipulating the -exponent, rather than by actually performing an exponentiation or -multiplication. - -RETURNS -<[x]> times 2 to the power <[n]>. - -PORTABILITY -Neither <> nor <> is required by ANSI C or by the System V -Interface Definition (Issue 2). - -*/ - -/* - * scalbn (double x, int n) - * scalbn(x,n) returns x* 2**n computed by exponent - * manipulation rather than by actually performing an - * exponentiation or a multiplication. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ -twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ -huge = 1.0e+300, -tiny = 1.0e-300; - -#ifdef __STDC__ - double scalbn (double x, int n) -#else - double scalbn (x,n) - double x; int n; -#endif -{ - __int32_t k,hx,lx; - EXTRACT_WORDS(hx,lx,x); - k = (hx&0x7ff00000)>>20; /* extract exponent */ - if (k==0) { /* 0 or subnormal x */ - if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ - x *= two54; - GET_HIGH_WORD(hx,x); - k = ((hx&0x7ff00000)>>20) - 54; - if (n< -50000) return tiny*x; /*underflow*/ - } - if (k==0x7ff) return x+x; /* NaN or Inf */ - k = k+n; - if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ - if (k > 0) /* normal result */ - {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;} - if (k <= -54) { - if (n > 50000) /* in case integer overflow in n+k */ - return huge*copysign(huge,x); /*overflow*/ - else return tiny*copysign(tiny,x); /*underflow*/ - } - k += 54; /* subnormal result */ - SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); - return x*twom54; -} - -#endif /* _DOUBLE_IS_32BITS */ + * scalbn(x,n) returns x* 2**n computed by exponent + * manipulation rather than by actually performing an + int32_t k,hx,lx; + x *= two54; + k = ((hx&0x7ff00000)>>20) - 54; + k = k+n; diff --git a/libjava/java/lang/s_sin.c b/libjava/java/lang/s_sin.c index 28259f378fee..07216d45481d 100644 --- a/libjava/java/lang/s_sin.c +++ b/libjava/java/lang/s_sin.c @@ -1,132 +1,8 @@ - -/* @(#)s_sin.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <>, <>, <>, <>---sine or cosine -INDEX -sin -INDEX -sinf -INDEX -cos -INDEX -cosf -ANSI_SYNOPSIS - #include - double sin(double <[x]>); - float sinf(float <[x]>); - double cos(double <[x]>); - float cosf(float <[x]>); - -TRAD_SYNOPSIS - #include - double sin(<[x]>) - double <[x]>; - float sinf(<[x]>) - float <[x]>; - - double cos(<[x]>) - double <[x]>; - float cosf(<[x]>) - float <[x]>; - -DESCRIPTION - <> and <> compute (respectively) the sine and cosine - of the argument <[x]>. Angles are specified in radians. - - <> and <> are identical, save that they take and - return <> values. - - -RETURNS - The sine or cosine of <[x]> is returned. - -PORTABILITY - <> and <> are ANSI C. - <> and <> are extensions. - -QUICKREF - sin ansi pure - sinf - pure -*/ - -/* sin(x) - * Return sine function of x. - * - * kernel function: - * __kernel_sin ... sine function on [-pi/4,pi/4] - * __kernel_cos ... cose function on [-pi/4,pi/4] - * __ieee754_rem_pio2 ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double sin(double x) -#else - double sin(x) - double x; -#endif -{ - double y[2],z=0.0; - __int32_t n,ix; - - /* High word of x. */ - GET_HIGH_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); - - /* sin(Inf or NaN) is NaN */ - else if (ix>=0x7ff00000) return x-x; - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2(x,y); - switch(n&3) { - case 0: return __kernel_sin(y[0],y[1],1); - case 1: return __kernel_cos(y[0],y[1]); - case 2: return -__kernel_sin(y[0],y[1],1); - default: - return -__kernel_cos(y[0],y[1]); - } - } -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice + of the argument <[x]>. Angles are specified in radians. + return <> values. + <> and <> are ANSI C. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * TRIG(x) returns trig(x) nearly rounded + int32_t n,ix; diff --git a/libjava/java/lang/s_tan.c b/libjava/java/lang/s_tan.c index 2959f416e835..79607fda7acb 100644 --- a/libjava/java/lang/s_tan.c +++ b/libjava/java/lang/s_tan.c @@ -1,114 +1,8 @@ - -/* @(#)s_tan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - - -/* - -FUNCTION - <>, <>---tangent - -INDEX -tan -INDEX -tanf - -ANSI_SYNOPSIS - #include - double tan(double <[x]>); - float tanf(float <[x]>); - -TRAD_SYNOPSIS - #include - double tan(<[x]>) - double <[x]>; - - float tanf(<[x]>) - float <[x]>; - - -DESCRIPTION -<> computes the tangent of the argument <[x]>. -Angles are specified in radians. - -<> is identical, save that it takes and returns <> values. - -RETURNS -The tangent of <[x]> is returned. - -PORTABILITY -<> is ANSI. <> is an extension. -*/ - -/* tan(x) - * Return tangent function of x. - * - * kernel function: - * __kernel_tan ... tangent function on [-pi/4,pi/4] - * __ieee754_rem_pio2 ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double tan(double x) -#else - double tan(x) - double x; -#endif -{ - double y[2],z=0.0; - __int32_t n,ix; - - /* High word of x. */ - GET_HIGH_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); - - /* tan(Inf or NaN) is NaN */ - else if (ix>=0x7ff00000) return x-x; /* NaN */ - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2(x,y); - return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even - -1 -- n odd */ - } -} - -#endif /* _DOUBLE_IS_32BITS */ + * software is freely granted, provided that this notice +<> computes the tangent of the argument <[x]>. +Angles are specified in radians. +The tangent of <[x]> is returned. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * TRIG(x) returns trig(x) nearly rounded + int32_t n,ix; diff --git a/libjava/java/lang/sf_rint.c b/libjava/java/lang/sf_rint.c index e4769e0dc60a..f10425c7a36b 100644 --- a/libjava/java/lang/sf_rint.c +++ b/libjava/java/lang/sf_rint.c @@ -1,80 +1,5 @@ -/* sf_rint.c -- float version of s_rint.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -TWO23[2]={ - 8.3886080000e+06, /* 0x4b000000 */ - -8.3886080000e+06, /* 0xcb000000 */ -}; - -#ifdef __STDC__ - float rintf(float x) -#else - float rintf(x) - float x; -#endif -{ - __int32_t i0,j0,sx; - __uint32_t i,i1; - float w,t; - GET_FLOAT_WORD(i0,x); - sx = (i0>>31)&1; - j0 = ((i0>>23)&0xff)-0x7f; - if(j0<23) { - if(j0<0) { - if((i0&0x7fffffff)==0) return x; - i1 = (i0&0x07fffff); - i0 &= 0xfff00000; - i0 |= ((i1|-i1)>>9)&0x400000; - SET_FLOAT_WORD(x,i0); - w = TWO23[sx]+x; - t = w-TWO23[sx]; - GET_FLOAT_WORD(i0,t); - SET_FLOAT_WORD(t,(i0&0x7fffffff)|(sx<<31)); - return t; - } else { - i = (0x007fffff)>>j0; - if((i0&i)==0) return x; /* x is integral */ - i>>=1; - if((i0&i)!=0) i0 = (i0&(~i))|((0x100000)>>j0); - } - } else { - if(j0==0x80) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } - SET_FLOAT_WORD(x,i0); - w = TWO23[sx]+x; - return w-TWO23[sx]; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double rint(double x) -#else - double rint(x) - double x; -#endif -{ - return (double) rintf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ + * software is freely granted, provided that this notice +static float + int32_t i0,j0,sx; + uint32_t i,i1; + if(j0<0) { -- 2.47.2