number generator. This is useful for creating reproducible results,
even in a multi-threading context.
+ .. versionchanged:: 3.13
+
+ Switched to a faster algorithm. To reproduce samples from previous
+ versions, use :func:`random.seed` and :func:`random.gauss`.
+
.. method:: NormalDist.pdf(x)
Using a `probability density function (pdf)
>>> noise = NormalDist().samples(5, seed=42)
>>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
>>> linear_regression(x, y) #doctest: +ELLIPSIS
- LinearRegression(slope=3.09078914170..., intercept=1.75684970486...)
+ LinearRegression(slope=3.17495..., intercept=1.00925...)
If *proportional* is true, the independent variable *x* and the
dependent variable *y* are assumed to be directly proportional.
>>> y = [3 * x[i] + noise[i] for i in range(5)]
>>> linear_regression(x, y, proportional=True) #doctest: +ELLIPSIS
- LinearRegression(slope=3.02447542484..., intercept=0.0)
+ LinearRegression(slope=2.90475..., intercept=0.0)
"""
n = len(x)
def samples(self, n, *, seed=None):
"Generate *n* samples for a given mean and standard deviation."
- gauss = random.gauss if seed is None else random.Random(seed).gauss
- mu, sigma = self._mu, self._sigma
- return [gauss(mu, sigma) for _ in repeat(None, n)]
+ rnd = random.random if seed is None else random.Random(seed).random
+ inv_cdf = _normal_dist_inv_cdf
+ mu = self._mu
+ sigma = self._sigma
+ return [inv_cdf(rnd(), mu, sigma) for _ in repeat(None, n)]
def pdf(self, x):
"Probability density function. P(x <= X < x+dx) / dx"