#include "pycore_moduleobject.h" // _PyModule_GetState()
#include "pycore_time.h" // _PyTime_t
+#include <stdbool.h>
#include <stddef.h> // offsetof()
typedef struct {
#define simplequeue_get_state_by_type(type) \
(simplequeue_get_state(PyType_GetModuleByDef(type, &queuemodule)))
+static const Py_ssize_t INITIAL_RING_BUF_CAPACITY = 8;
+
+typedef struct {
+ // Where to place the next item
+ Py_ssize_t put_idx;
+
+ // Where to get the next item
+ Py_ssize_t get_idx;
+
+ PyObject **items;
+
+ // Total number of items that may be stored
+ Py_ssize_t items_cap;
+
+ // Number of items stored
+ Py_ssize_t num_items;
+} RingBuf;
+
+static int
+RingBuf_Init(RingBuf *buf)
+{
+ buf->put_idx = 0;
+ buf->get_idx = 0;
+ buf->items_cap = INITIAL_RING_BUF_CAPACITY;
+ buf->num_items = 0;
+ buf->items = PyMem_Calloc(buf->items_cap, sizeof(PyObject *));
+ if (buf->items == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ return 0;
+}
+
+static PyObject *
+RingBuf_At(RingBuf *buf, Py_ssize_t idx)
+{
+ assert(idx >= 0 && idx < buf->num_items);
+ return buf->items[(buf->get_idx + idx) % buf->items_cap];
+}
+
+static void
+RingBuf_Fini(RingBuf *buf)
+{
+ PyObject **items = buf->items;
+ Py_ssize_t num_items = buf->num_items;
+ Py_ssize_t cap = buf->items_cap;
+ Py_ssize_t idx = buf->get_idx;
+ buf->items = NULL;
+ buf->put_idx = 0;
+ buf->get_idx = 0;
+ buf->num_items = 0;
+ buf->items_cap = 0;
+ for (Py_ssize_t n = num_items; n > 0; idx = (idx + 1) % cap, n--) {
+ Py_DECREF(items[idx]);
+ }
+ PyMem_Free(items);
+}
+
+// Resize the underlying items array of buf to the new capacity and arrange
+// the items contiguously in the new items array.
+//
+// Returns -1 on allocation failure or 0 on success.
+static int
+resize_ringbuf(RingBuf *buf, Py_ssize_t capacity)
+{
+ Py_ssize_t new_capacity = Py_MAX(INITIAL_RING_BUF_CAPACITY, capacity);
+ if (new_capacity == buf->items_cap) {
+ return 0;
+ }
+ assert(buf->num_items <= new_capacity);
+
+ PyObject **new_items = PyMem_Calloc(new_capacity, sizeof(PyObject *));
+ if (new_items == NULL) {
+ return -1;
+ }
+
+ // Copy the "tail" of the old items array. This corresponds to "head" of
+ // the abstract ring buffer.
+ Py_ssize_t tail_size =
+ Py_MIN(buf->num_items, buf->items_cap - buf->get_idx);
+ if (tail_size > 0) {
+ memcpy(new_items, buf->items + buf->get_idx,
+ tail_size * sizeof(PyObject *));
+ }
+
+ // Copy the "head" of the old items array, if any. This corresponds to the
+ // "tail" of the abstract ring buffer.
+ Py_ssize_t head_size = buf->num_items - tail_size;
+ if (head_size > 0) {
+ memcpy(new_items + tail_size, buf->items,
+ head_size * sizeof(PyObject *));
+ }
+
+ PyMem_Free(buf->items);
+ buf->items = new_items;
+ buf->items_cap = new_capacity;
+ buf->get_idx = 0;
+ buf->put_idx = buf->num_items;
+
+ return 0;
+}
+
+// Returns a strong reference from the head of the buffer.
+static PyObject *
+RingBuf_Get(RingBuf *buf)
+{
+ assert(buf->num_items > 0);
+
+ if (buf->num_items < (buf->items_cap / 4)) {
+ // Items is less than 25% occupied, shrink it by 50%. This allows for
+ // growth without immediately needing to resize the underlying items
+ // array.
+ //
+ // It's safe it ignore allocation failures here; shrinking is an
+ // optimization that isn't required for correctness.
+ (void)resize_ringbuf(buf, buf->items_cap / 2);
+ }
+
+ PyObject *item = buf->items[buf->get_idx];
+ buf->items[buf->get_idx] = NULL;
+ buf->get_idx = (buf->get_idx + 1) % buf->items_cap;
+ buf->num_items--;
+ return item;
+}
+
+// Returns 0 on success or -1 if the buffer failed to grow
+static int
+RingBuf_Put(RingBuf *buf, PyObject *item)
+{
+ assert(buf->num_items <= buf->items_cap);
+
+ if (buf->num_items == buf->items_cap) {
+ // Buffer is full, grow it.
+ if (resize_ringbuf(buf, buf->items_cap * 2) < 0) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ }
+ buf->items[buf->put_idx] = Py_NewRef(item);
+ buf->put_idx = (buf->put_idx + 1) % buf->items_cap;
+ buf->num_items++;
+ return 0;
+}
+
+static Py_ssize_t
+RingBuf_Len(RingBuf *buf)
+{
+ return buf->num_items;
+}
+
+static bool
+RingBuf_IsEmpty(RingBuf *buf)
+{
+ return buf->num_items == 0;
+}
+
typedef struct {
PyObject_HEAD
PyThread_type_lock lock;
int locked;
- PyObject *lst;
- Py_ssize_t lst_pos;
+ RingBuf buf;
PyObject *weakreflist;
} simplequeueobject;
static int
simplequeue_clear(simplequeueobject *self)
{
- Py_CLEAR(self->lst);
+ RingBuf_Fini(&self->buf);
return 0;
}
static int
simplequeue_traverse(simplequeueobject *self, visitproc visit, void *arg)
{
- Py_VISIT(self->lst);
+ RingBuf *buf = &self->buf;
+ for (Py_ssize_t i = 0, num_items = buf->num_items; i < num_items; i++) {
+ Py_VISIT(RingBuf_At(buf, i));
+ }
Py_VISIT(Py_TYPE(self));
return 0;
}
self = (simplequeueobject *) type->tp_alloc(type, 0);
if (self != NULL) {
self->weakreflist = NULL;
- self->lst = PyList_New(0);
self->lock = PyThread_allocate_lock();
- self->lst_pos = 0;
if (self->lock == NULL) {
Py_DECREF(self);
PyErr_SetString(PyExc_MemoryError, "can't allocate lock");
return NULL;
}
- if (self->lst == NULL) {
+ if (RingBuf_Init(&self->buf) < 0) {
Py_DECREF(self);
return NULL;
}
/*[clinic end generated code: output=4333136e88f90d8b input=6e601fa707a782d5]*/
{
/* BEGIN GIL-protected critical section */
- if (PyList_Append(self->lst, item) < 0)
+ if (RingBuf_Put(&self->buf, item) < 0)
return NULL;
if (self->locked) {
/* A get() may be waiting, wake it up */
return _queue_SimpleQueue_put_impl(self, item, 0, Py_None);
}
-static PyObject *
-simplequeue_pop_item(simplequeueobject *self)
-{
- Py_ssize_t count, n;
- PyObject *item;
-
- n = PyList_GET_SIZE(self->lst);
- assert(self->lst_pos < n);
-
- item = PyList_GET_ITEM(self->lst, self->lst_pos);
- Py_INCREF(Py_None);
- PyList_SET_ITEM(self->lst, self->lst_pos, Py_None);
- self->lst_pos += 1;
- count = n - self->lst_pos;
- if (self->lst_pos > count) {
- /* The list is more than 50% empty, reclaim space at the beginning */
- if (PyList_SetSlice(self->lst, 0, self->lst_pos, NULL)) {
- /* Undo pop */
- self->lst_pos -= 1;
- PyList_SET_ITEM(self->lst, self->lst_pos, item);
- return NULL;
- }
- self->lst_pos = 0;
- }
- return item;
-}
-
/*[clinic input]
_queue.SimpleQueue.get
* So we simply try to acquire the lock in a loop, until the condition
* (queue non-empty) becomes true.
*/
- while (self->lst_pos == PyList_GET_SIZE(self->lst)) {
+ while (RingBuf_IsEmpty(&self->buf)) {
/* First a simple non-blocking try without releasing the GIL */
r = PyThread_acquire_lock_timed(self->lock, 0, 0);
if (r == PY_LOCK_FAILURE && microseconds != 0) {
}
/* BEGIN GIL-protected critical section */
- assert(self->lst_pos < PyList_GET_SIZE(self->lst));
- item = simplequeue_pop_item(self);
+ item = RingBuf_Get(&self->buf);
if (self->locked) {
PyThread_release_lock(self->lock);
self->locked = 0;
_queue_SimpleQueue_empty_impl(simplequeueobject *self)
/*[clinic end generated code: output=1a02a1b87c0ef838 input=1a98431c45fd66f9]*/
{
- return self->lst_pos == PyList_GET_SIZE(self->lst);
+ return RingBuf_IsEmpty(&self->buf);
}
/*[clinic input]
_queue_SimpleQueue_qsize_impl(simplequeueobject *self)
/*[clinic end generated code: output=f9dcd9d0a90e121e input=7a74852b407868a1]*/
{
- return PyList_GET_SIZE(self->lst) - self->lst_pos;
+ return RingBuf_Len(&self->buf);
}
static int