\index{False}
\index{True}
-\subsection{Boolean Operations \label{boolean}}
+\subsection{Boolean Operations ---
+ \keyword{and}, \keyword{or}, \keyword{not}
+ \label{boolean}}
These are the Boolean operations, ordered by ascending priority:
\indexii{Boolean}{operations}
only by sequence types (below).
-\subsection{Numeric Types \label{typesnumeric}}
+\subsection{Numeric Types ---
+ \class{int}, \class{float}, \class{long}, \class{complex}
+ \label{typesnumeric}}
There are four distinct numeric types: \dfn{plain integers},
\dfn{long integers},
\lineiii{float(\var{x})}{\var{x} converted to floating point}{}
\lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}. \var{im} defaults to zero.}{}
\lineiii{\var{c}.conjugate()}{conjugate of the complex number \var{c}}{}
- \lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)(4)}
+ \lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} // \var{y}, \var{x} \%{} \var{y})}}{(3)(4)}
\lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
\lineiii{\var{x} ** \var{y}}{\var{x} to the power \var{y}}{}
\end{tableiii}
supplying the \method{__iter__()} and \method{next()} methods.
-\subsection{Sequence Types \label{typesseq}}
+\subsection{Sequence Types ---
+ \class{str}, \class{unicode}, \class{list},
+ \class{tuple}, \class{buffer}, \class{xrange}
+ \label{typesseq}}
There are six sequence types: strings, Unicode strings, lists,
tuples, buffers, and xrange objects.
that the list has been mutated during a sort.
\end{description}
-\subsection{Set Types \label{types-set}}
+\subsection{Set Types ---
+ \class{set}, \class{frozenset}
+ \label{types-set}}
\obindex{set}
A \dfn{set} object is an unordered collection of immutable values.
as an argument.
-\subsection{Mapping Types \label{typesmapping}}
+\subsection{Mapping Types --- class{dict} \label{typesmapping}}
\obindex{mapping}
\obindex{dictionary}