msg += ': zeros have different signs'
self.fail(msg.format(x, y))
+ def assertComplexesAreIdentical(self, x, y):
+ self.assertFloatsAreIdentical(x.real, y.real)
+ self.assertFloatsAreIdentical(x.imag, y.imag)
+
def assertClose(self, x, y, eps=1e-9):
"""Return true iff complexes x and y "are close"."""
self.assertCloseAbs(x.real, y.real, eps)
self.assertTrue(isnan(z.real))
self.assertTrue(isnan(z.imag))
+ self.assertComplexesAreIdentical(complex(INF, 1)/(0.0+1j),
+ complex(NAN, -INF))
+
+ # test recover of infs if numerator has infs and denominator is finite
+ self.assertComplexesAreIdentical(complex(INF, -INF)/(1+0j),
+ complex(INF, -INF))
+ self.assertComplexesAreIdentical(complex(INF, INF)/(0.0+1j),
+ complex(INF, -INF))
+ self.assertComplexesAreIdentical(complex(NAN, INF)/complex(2**1000, 2**-1000),
+ complex(INF, INF))
+ self.assertComplexesAreIdentical(complex(INF, NAN)/complex(2**1000, 2**-1000),
+ complex(INF, -INF))
+
+ # test recover of zeros if denominator is infinite
+ self.assertComplexesAreIdentical((1+1j)/complex(INF, INF), (0.0+0j))
+ self.assertComplexesAreIdentical((1+1j)/complex(INF, -INF), (0.0+0j))
+ self.assertComplexesAreIdentical((1+1j)/complex(-INF, INF),
+ complex(0.0, -0.0))
+ self.assertComplexesAreIdentical((1+1j)/complex(-INF, -INF),
+ complex(-0.0, 0))
+ self.assertComplexesAreIdentical((INF+1j)/complex(INF, INF),
+ complex(NAN, NAN))
+ self.assertComplexesAreIdentical(complex(1, INF)/complex(INF, INF),
+ complex(NAN, NAN))
+ self.assertComplexesAreIdentical(complex(INF, 1)/complex(1, INF),
+ complex(NAN, NAN))
+
def test_truediv_zero_division(self):
for a, b in ZERO_DIVISION:
with self.assertRaises(ZeroDivisionError):
* numerators and denominator by whichever of {b.real, b.imag} has
* larger magnitude. The earliest reference I found was to CACM
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford
- * University). As usual, though, we're still ignoring all IEEE
- * endcases.
+ * University).
*/
Py_complex r; /* the result */
const double abs_breal = b.real < 0 ? -b.real : b.real;
/* At least one of b.real or b.imag is a NaN */
r.real = r.imag = Py_NAN;
}
+
+ /* Recover infinities and zeros that computed as nan+nanj. See e.g.
+ the C11, Annex G.5.2, routine _Cdivd(). */
+ if (isnan(r.real) && isnan(r.imag)) {
+ if ((isinf(a.real) || isinf(a.imag))
+ && isfinite(b.real) && isfinite(b.imag))
+ {
+ const double x = copysign(isinf(a.real) ? 1.0 : 0.0, a.real);
+ const double y = copysign(isinf(a.imag) ? 1.0 : 0.0, a.imag);
+ r.real = Py_INFINITY * (x*b.real + y*b.imag);
+ r.imag = Py_INFINITY * (y*b.real - x*b.imag);
+ }
+ else if ((isinf(abs_breal) || isinf(abs_bimag))
+ && isfinite(a.real) && isfinite(a.imag))
+ {
+ const double x = copysign(isinf(b.real) ? 1.0 : 0.0, b.real);
+ const double y = copysign(isinf(b.imag) ? 1.0 : 0.0, b.imag);
+ r.real = 0.0 * (a.real*x + a.imag*y);
+ r.imag = 0.0 * (a.imag*x - a.real*y);
+ }
+ }
+
return r;
}
#ifdef _M_ARM64