#endif
#include "pycore_modsupport.h" // _PyArg_CheckPositional()
+PyDoc_STRVAR(math_gcd__doc__,
+"gcd($module, /, *integers)\n"
+"--\n"
+"\n"
+"Greatest Common Divisor.");
+
+#define MATH_GCD_METHODDEF \
+ {"gcd", _PyCFunction_CAST(math_gcd), METH_FASTCALL, math_gcd__doc__},
+
+static PyObject *
+math_gcd_impl(PyObject *module, Py_ssize_t nargs, PyObject *const *args);
+
+static PyObject *
+math_gcd(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
+{
+ PyObject *return_value = NULL;
+ Py_ssize_t nvararg = nargs - 0;
+ PyObject *const *__clinic_args = NULL;
+
+ if (!_PyArg_CheckPositional("gcd", nargs, 0, PY_SSIZE_T_MAX)) {
+ goto exit;
+ }
+ __clinic_args = args + 0;
+ return_value = math_gcd_impl(module, nvararg, __clinic_args);
+
+exit:
+ return return_value;
+}
+
+PyDoc_STRVAR(math_lcm__doc__,
+"lcm($module, /, *integers)\n"
+"--\n"
+"\n"
+"Least Common Multiple.");
+
+#define MATH_LCM_METHODDEF \
+ {"lcm", _PyCFunction_CAST(math_lcm), METH_FASTCALL, math_lcm__doc__},
+
+static PyObject *
+math_lcm_impl(PyObject *module, Py_ssize_t nargs, PyObject *const *args);
+
+static PyObject *
+math_lcm(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
+{
+ PyObject *return_value = NULL;
+ Py_ssize_t nvararg = nargs - 0;
+ PyObject *const *__clinic_args = NULL;
+
+ if (!_PyArg_CheckPositional("lcm", nargs, 0, PY_SSIZE_T_MAX)) {
+ goto exit;
+ }
+ __clinic_args = args + 0;
+ return_value = math_lcm_impl(module, nvararg, __clinic_args);
+
+exit:
+ return return_value;
+}
+
PyDoc_STRVAR(math_ceil__doc__,
"ceil($module, x, /)\n"
"--\n"
return return_value;
}
+PyDoc_STRVAR(math_hypot__doc__,
+"hypot($module, /, *coordinates)\n"
+"--\n"
+"\n"
+"Multidimensional Euclidean distance from the origin to a point.\n"
+"\n"
+"Roughly equivalent to:\n"
+" sqrt(sum(x**2 for x in coordinates))\n"
+"\n"
+"For a two dimensional point (x, y), gives the hypotenuse\n"
+"using the Pythagorean theorem: sqrt(x*x + y*y).\n"
+"\n"
+"For example, the hypotenuse of a 3/4/5 right triangle is:\n"
+"\n"
+" >>> hypot(3.0, 4.0)\n"
+" 5.0");
+
+#define MATH_HYPOT_METHODDEF \
+ {"hypot", _PyCFunction_CAST(math_hypot), METH_FASTCALL, math_hypot__doc__},
+
+static PyObject *
+math_hypot_impl(PyObject *module, Py_ssize_t nargs, PyObject *const *args);
+
+static PyObject *
+math_hypot(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
+{
+ PyObject *return_value = NULL;
+ Py_ssize_t nvararg = nargs - 0;
+ PyObject *const *__clinic_args = NULL;
+
+ if (!_PyArg_CheckPositional("hypot", nargs, 0, PY_SSIZE_T_MAX)) {
+ goto exit;
+ }
+ __clinic_args = args + 0;
+ return_value = math_hypot_impl(module, nvararg, __clinic_args);
+
+exit:
+ return return_value;
+}
+
PyDoc_STRVAR(math_sumprod__doc__,
"sumprod($module, p, q, /)\n"
"--\n"
exit:
return return_value;
}
-/*[clinic end generated code: output=755da3b1dbd9e45f input=a9049054013a1b77]*/
+/*[clinic end generated code: output=ee0a2f6bd1220061 input=a9049054013a1b77]*/
}
+/*[clinic input]
+math.gcd
+
+ *integers as args: object
+
+Greatest Common Divisor.
+[clinic start generated code]*/
+
static PyObject *
-math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
+math_gcd_impl(PyObject *module, Py_ssize_t nargs, PyObject *const *args)
+/*[clinic end generated code: output=b57687fcf431c1b8 input=94e675b7ceeaf0c9]*/
{
// Fast-path for the common case: gcd(int, int)
if (nargs == 2 && PyLong_CheckExact(args[0]) && PyLong_CheckExact(args[1]))
return res;
}
-PyDoc_STRVAR(math_gcd_doc,
-"gcd($module, *integers)\n"
-"--\n"
-"\n"
-"Greatest Common Divisor.");
-
static PyObject *
long_lcm(PyObject *a, PyObject *b)
}
+/*[clinic input]
+math.lcm
+
+ *integers as args: object
+
+Least Common Multiple.
+[clinic start generated code]*/
+
static PyObject *
-math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
+math_lcm_impl(PyObject *module, Py_ssize_t nargs, PyObject *const *args)
+/*[clinic end generated code: output=f3eff0c25e4d7030 input=e64c33e85f4c47c6]*/
{
PyObject *res, *x;
Py_ssize_t i;
}
-PyDoc_STRVAR(math_lcm_doc,
-"lcm($module, *integers)\n"
-"--\n"
-"\n"
-"Least Common Multiple.");
-
-
/* Call is_error when errno != 0, and where x is the result libm
* returned. is_error will usually set up an exception and return
* true (1), but may return false (0) without setting up an exception.
return NULL;
}
-/* AC: cannot convert yet, waiting for *args support */
+/*[clinic input]
+math.hypot
+
+ *coordinates as args: object
+
+Multidimensional Euclidean distance from the origin to a point.
+
+Roughly equivalent to:
+ sqrt(sum(x**2 for x in coordinates))
+
+For a two dimensional point (x, y), gives the hypotenuse
+using the Pythagorean theorem: sqrt(x*x + y*y).
+
+For example, the hypotenuse of a 3/4/5 right triangle is:
+
+ >>> hypot(3.0, 4.0)
+ 5.0
+[clinic start generated code]*/
+
static PyObject *
-math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
+math_hypot_impl(PyObject *module, Py_ssize_t nargs, PyObject *const *args)
+/*[clinic end generated code: output=dcb6d4b7a1102ee1 input=5c0061a2d11235ed]*/
{
Py_ssize_t i;
PyObject *item;
#undef NUM_STACK_ELEMS
-PyDoc_STRVAR(math_hypot_doc,
- "hypot(*coordinates) -> value\n\n\
-Multidimensional Euclidean distance from the origin to a point.\n\
-\n\
-Roughly equivalent to:\n\
- sqrt(sum(x**2 for x in coordinates))\n\
-\n\
-For a two dimensional point (x, y), gives the hypotenuse\n\
-using the Pythagorean theorem: sqrt(x*x + y*y).\n\
-\n\
-For example, the hypotenuse of a 3/4/5 right triangle is:\n\
-\n\
- >>> hypot(3.0, 4.0)\n\
- 5.0\n\
-");
-
/** sumprod() ***************************************************************/
/* Forward declaration */
MATH_FREXP_METHODDEF
MATH_FSUM_METHODDEF
{"gamma", math_gamma, METH_O, math_gamma_doc},
- {"gcd", _PyCFunction_CAST(math_gcd), METH_FASTCALL, math_gcd_doc},
- {"hypot", _PyCFunction_CAST(math_hypot), METH_FASTCALL, math_hypot_doc},
+ MATH_GCD_METHODDEF
+ MATH_HYPOT_METHODDEF
MATH_ISCLOSE_METHODDEF
MATH_ISFINITE_METHODDEF
MATH_ISINF_METHODDEF
MATH_ISNAN_METHODDEF
MATH_ISQRT_METHODDEF
- {"lcm", _PyCFunction_CAST(math_lcm), METH_FASTCALL, math_lcm_doc},
+ MATH_LCM_METHODDEF
MATH_LDEXP_METHODDEF
{"lgamma", math_lgamma, METH_O, math_lgamma_doc},
{"log", _PyCFunction_CAST(math_log), METH_FASTCALL, math_log_doc},