struct list_head mnt_child; /* and going through their mnt_child */
struct mount *mnt_next_for_sb; /* the next two fields are hlist_node, */
struct mount * __aligned(1) *mnt_pprev_for_sb;
- /* except that LSB of pprev will be stolen */
+ /* except that LSB of pprev is stolen */
+#define WRITE_HOLD 1 /* ... for use by mnt_hold_writers() */
const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */
struct list_head mnt_list;
struct list_head mnt_expire; /* link in fs-specific expiry list */
return m;
}
+static inline bool __test_write_hold(struct mount * __aligned(1) *val)
+{
+ return (unsigned long)val & WRITE_HOLD;
+}
+
+static inline bool test_write_hold(const struct mount *m)
+{
+ return __test_write_hold(m->mnt_pprev_for_sb);
+}
+
+static inline void set_write_hold(struct mount *m)
+{
+ m->mnt_pprev_for_sb = (void *)((unsigned long)m->mnt_pprev_for_sb
+ | WRITE_HOLD);
+}
+
+static inline void clear_write_hold(struct mount *m)
+{
+ m->mnt_pprev_for_sb = (void *)((unsigned long)m->mnt_pprev_for_sb
+ & ~WRITE_HOLD);
+}
+
struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry);
mnt_inc_writers(mnt);
/*
* The store to mnt_inc_writers must be visible before we pass
- * MNT_WRITE_HOLD loop below, so that the slowpath can see our
- * incremented count after it has set MNT_WRITE_HOLD.
+ * WRITE_HOLD loop below, so that the slowpath can see our
+ * incremented count after it has set WRITE_HOLD.
*/
smp_mb();
might_lock(&mount_lock.lock);
- while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
+ while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
cpu_relax();
} else {
/*
* This prevents priority inversion, if the task
- * setting MNT_WRITE_HOLD got preempted on a remote
+ * setting WRITE_HOLD got preempted on a remote
* CPU, and it prevents life lock if the task setting
- * MNT_WRITE_HOLD has a lower priority and is bound to
+ * WRITE_HOLD has a lower priority and is bound to
* the same CPU as the task that is spinning here.
*/
preempt_enable();
}
/*
* The barrier pairs with the barrier sb_start_ro_state_change() making
- * sure that if we see MNT_WRITE_HOLD cleared, we will also see
+ * sure that if we see WRITE_HOLD cleared, we will also see
* s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
* mnt_is_readonly() and bail in case we are racing with remount
* read-only.
* @mnt.
*
* Context: This function expects lock_mount_hash() to be held serializing
- * setting MNT_WRITE_HOLD.
+ * setting WRITE_HOLD.
* Return: On success 0 is returned.
* On error, -EBUSY is returned.
*/
static inline int mnt_hold_writers(struct mount *mnt)
{
- mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
+ set_write_hold(mnt);
/*
- * After storing MNT_WRITE_HOLD, we'll read the counters. This store
+ * After storing WRITE_HOLD, we'll read the counters. This store
* should be visible before we do.
*/
smp_mb();
* sum up each counter, if we read a counter before it is incremented,
* but then read another CPU's count which it has been subsequently
* decremented from -- we would see more decrements than we should.
- * MNT_WRITE_HOLD protects against this scenario, because
+ * WRITE_HOLD protects against this scenario, because
* mnt_want_write first increments count, then smp_mb, then spins on
- * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
+ * WRITE_HOLD, so it can't be decremented by another CPU while
* we're counting up here.
*/
if (mnt_get_writers(mnt) > 0)
*/
static inline void mnt_unhold_writers(struct mount *mnt)
{
- if (!(mnt->mnt_flags & MNT_WRITE_HOLD))
+ if (!test_write_hold(mnt))
return;
/*
- * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
+ * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
* that become unheld will see MNT_READONLY.
*/
smp_wmb();
- mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
+ clear_write_hold(mnt);
}
static inline void mnt_del_instance(struct mount *m)
{
int err = 0;
- /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
+ /* Racy optimization. Recheck the counter under WRITE_HOLD */
if (atomic_long_read(&sb->s_remove_count))
return -EBUSY;
if (!err)
sb_start_ro_state_change(sb);
for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
- if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
- m->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
+ if (test_write_hold(m))
+ clear_write_hold(m);
}
unlock_mount_hash();