return forward, reverse
+ # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1.
+ #
+ # Assume input fractions a and b are normalized.
+ #
+ # 1) Consider addition/substraction.
+ #
+ # Let g = gcd(da, db). Then
+ #
+ # na nb na*db ± nb*da
+ # a ± b == -- ± -- == ------------- ==
+ # da db da*db
+ #
+ # na*(db//g) ± nb*(da//g) t
+ # == ----------------------- == -
+ # (da*db)//g d
+ #
+ # Now, if g > 1, we're working with smaller integers.
+ #
+ # Note, that t, (da//g) and (db//g) are pairwise coprime.
+ #
+ # Indeed, (da//g) and (db//g) share no common factors (they were
+ # removed) and da is coprime with na (since input fractions are
+ # normalized), hence (da//g) and na are coprime. By symmetry,
+ # (db//g) and nb are coprime too. Then,
+ #
+ # gcd(t, da//g) == gcd(na*(db//g), da//g) == 1
+ # gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1
+ #
+ # Above allows us optimize reduction of the result to lowest
+ # terms. Indeed,
+ #
+ # g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g)
+ #
+ # t//g2 t//g2
+ # a ± b == ----------------------- == ----------------
+ # (da//g)*(db//g)*(g//g2) (da//g)*(db//g2)
+ #
+ # is a normalized fraction. This is useful because the unnormalized
+ # denominator d could be much larger than g.
+ #
+ # We should special-case g == 1, since 60.8% of randomly-chosen
+ # integers are coprime:
+ # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality
+ #
+ # 2) Consider multiplication
+ #
+ # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then
+ #
+ # na*nb na*nb (na//g1)*(nb//g2)
+ # a*b == ----- == ----- == -----------------
+ # da*db db*da (db//g1)*(da//g2)
+ #
+ # Note, that after divisions we're multiplying smaller integers.
+ #
+ # Also, the resulting fraction is normalized, because each of
+ # two factors in the numerator is coprime to each of the two factors
+ # in the denominator.
+ #
+ # Indeed, pick (na//g1). It's coprime with (da//g2), because input
+ # fractions are normalized. It's also coprime with (db//g1), because
+ # common factors are removed by g1 == gcd(na, db).
+
def _add_sub_(a, b, pm=int.__add__):
- da, db = a.denominator, b.denominator
- return Fraction(pm(a.numerator * db, b.numerator * da),
- da * db)
+ na, da = a.numerator, a.denominator
+ nb, db = b.numerator, b.denominator
+ g = math.gcd(da, db)
+ if g == 1:
+ return Fraction(pm(na * db, da * nb), da * db, _normalize=False)
+ else:
+ s = da // g
+ t = pm(na * (db // g), nb * s)
+ g2 = math.gcd(t, g)
+ return Fraction(t // g2, s * (db // g2), _normalize=False)
_add = functools.partial(_add_sub_)
_add.__doc__ = 'a + b'
def _mul(a, b):
"""a * b"""
- return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
+ na, da = a.numerator, a.denominator
+ nb, db = b.numerator, b.denominator
+ g1 = math.gcd(na, db)
+ g2 = math.gcd(nb, da)
+ return Fraction((na // g1) * (nb // g2),
+ (db // g1) * (da // g2), _normalize=False)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
- return Fraction(a.numerator * b.denominator,
- a.denominator * b.numerator)
+ # Same as _mul(), with inversed b.
+ na, da = a.numerator, a.denominator
+ nb, db = b.numerator, b.denominator
+ g1 = math.gcd(na, nb)
+ g2 = math.gcd(db, da)
+ n, d = (na // g1) * (db // g2), (nb // g1) * (da // g2)
+ if nb < 0:
+ n, d = -n, -d
+ return Fraction(n, d, _normalize=False)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)