vpternlogd $0x96, \t0, \mi, \hi
.endm
+// This is a specialized version of _ghash_mul that computes \a * \a, i.e. it
+// squares \a. It skips computing MI = (a_L * a_H) + (a_H * a_L) = 0.
+.macro _ghash_square a, dst, gfpoly, t0, t1
+ vpclmulqdq $0x00, \a, \a, \t0 // LO = a_L * a_L
+ vpclmulqdq $0x11, \a, \a, \dst // HI = a_H * a_H
+ vpclmulqdq $0x01, \t0, \gfpoly, \t1 // LO_L*(x^63 + x^62 + x^57)
+ vpshufd $0x4e, \t0, \t0 // Swap halves of LO
+ vpxord \t0, \t1, \t1 // Fold LO into MI
+ vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
+ vpshufd $0x4e, \t1, \t1 // Swap halves of MI
+ vpternlogd $0x96, \t0, \t1, \dst // Fold MI into HI
+.endm
+
// void aes_gcm_precompute_vaes_avx512(struct aes_gcm_key_vaes_avx512 *key);
//
// Given the expanded AES key |key->base.aes_key|, derive the GHASH subkey and
// special needs to be done to make this happen, though: H^1 * H^1 would
// end up with two factors of x^-1, but the multiplication consumes one.
// So the product H^2 ends up with the desired one factor of x^-1.
- _ghash_mul H_CUR_XMM, H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, \
- %xmm0, %xmm1, %xmm2
+ _ghash_square H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, %xmm0, %xmm1
// Create H_CUR_YMM = [H^2, H^1] and H_INC_YMM = [H^2, H^2].
vinserti128 $1, H_CUR_XMM, H_INC_YMM, H_CUR_YMM