Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.
To minimize loss of information during the accumulation of fractional
-values, the lo**2 term has a separate accumulator.
+values, each term has a separate accumulator.
The square root differential correction is needed because a
correctly rounded square root of a correctly rounded sum of
vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
{
const double T27 = 134217729.0; /* ldexp(1.0, 27)+1.0) */
- double x, csum = 1.0, oldcsum, frac = 0.0, frac_lo = 0.0, scale;
+ double x, csum = 1.0, oldcsum, scale, frac=0.0, frac_mid=0.0, frac_lo=0.0;
double t, hi, lo, h;
int max_e;
Py_ssize_t i;
assert(fabs(csum) >= fabs(x));
oldcsum = csum;
csum += x;
- frac += (oldcsum - csum) + x;
+ frac_mid += (oldcsum - csum) + x;
assert(csum + lo * lo == csum);
frac_lo += lo * lo;
}
- frac += frac_lo;
+ frac += frac_lo + frac_mid;
h = sqrt(csum - 1.0 + frac);
x = h;