:meth:`__divmod__` method should be the equivalent to using
:meth:`__floordiv__` and :meth:`__mod__`; it should not be related to
:meth:`__truediv__`. Note that :meth:`__pow__` should be defined to accept
- an optional third argument if the ternary version of the built-in :func:`pow`
+ an optional third argument if the three-argument version of the built-in :func:`pow`
function is to be supported.
If one of those methods does not support the operation with the supplied
is called if ``type(x).__sub__(x, y)`` returns :data:`NotImplemented` or ``type(y)``
is a subclass of ``type(x)``. [#]_
- .. index:: pair: built-in function; pow
+ Note that :meth:`__rpow__` should be defined to accept an optional third
+ argument if the three-argument version of the built-in :func:`pow` function
+ is to be supported.
- Note that ternary :func:`pow` will not try calling :meth:`__rpow__` (the
- coercion rules would become too complicated).
+ .. versionchanged:: next
+
+ Three-argument :func:`pow` now try calling :meth:`~object.__rpow__` if necessary.
+ Previously it was only called in two-argument :func:`!pow` and the binary
+ power operator.
.. note::
The testbed can also be used to run the test suite of projects other than
CPython itself. (Contributed by Russell Keith-Magee in :gh:`127592`.)
+* Three-argument :func:`pow` now try calling :meth:`~object.__rpow__` if necessary.
+ Previously it was only called in two-argument :func:`!pow` and the binary
+ power operator.
+ (Contributed by Serhiy Storchaka in :gh:`130104`.)
+
* Add a built-in implementation for HMAC (:rfc:`2104`) using formally verified
code from the `HACL* <https://github.com/hacl-star/hacl-star/>`__ project.
This implementation is used as a fallback when the OpenSSL implementation
return ans
- def __rpow__(self, other, context=None):
+ def __rpow__(self, other, modulo=None, context=None):
"""Swaps self/other and returns __pow__."""
other = _convert_other(other)
if other is NotImplemented:
return other
- return other.__pow__(self, context=context)
+ return other.__pow__(self, modulo, context=context)
def normalize(self, context=None):
"""Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
else:
return NotImplemented
- def __rpow__(b, a):
+ def __rpow__(b, a, modulo=None):
"""a ** b"""
+ if modulo is not None:
+ return NotImplemented
if b._denominator == 1 and b._numerator >= 0:
# If a is an int, keep it that way if possible.
return a ** b._numerator
x = X()
self.assertEqual(power(4, x), (x, 4))
self.assertEqual(inplacepower(4, x), (x, 4))
- # XXX: Three-arg power doesn't use __rpow__.
- self.assertRaises(TypeError, power, 4, x, 5)
- self.assertRaises(TypeError, inplacepower, 4, x, 5)
+ self.assertEqual(power(4, x, 5), (x, 4, 5))
+ self.assertEqual(inplacepower(4, x, 5), (x, 4, 5))
class X:
def __ipow__(*args):
self.assertIs(Decimal("NaN").fma(7, 1).is_nan(), True)
# three arg power
self.assertEqual(pow(Decimal(10), 2, 7), 2)
+ self.assertEqual(pow(10, Decimal(2), 7), 2)
if self.decimal == C:
- self.assertEqual(pow(10, Decimal(2), 7), 2)
self.assertEqual(pow(10, 2, Decimal(7)), 2)
else:
- # XXX: Three-arg power doesn't use __rpow__.
- self.assertRaises(TypeError, pow, 10, Decimal(2), 7)
# XXX: There is no special method to dispatch on the
# third arg of three-arg power.
self.assertRaises(TypeError, pow, 10, 2, Decimal(7))
self.assertEqual(repr(2 ** I(3)), "I(8)")
self.assertEqual(repr(I(2) ** 3), "I(8)")
self.assertEqual(repr(pow(I(2), I(3), I(5))), "I(3)")
+ self.assertEqual(repr(pow(I(2), I(3), 5)), "I(3)")
+ self.assertEqual(repr(pow(I(2), 3, 5)), "I(3)")
+ self.assertEqual(repr(pow(2, I(3), 5)), "I(3)")
+ self.assertEqual(repr(pow(2, 3, I(5))), "3")
class S(str):
def __eq__(self, other):
return self.lower() == other.lower()
self.assertRaisesMessage(TypeError,
message % ("Fraction", "int", "int"),
pow, F(3), 4, 5)
+ self.assertRaisesMessage(TypeError,
+ message % ("int", "Fraction", "int"),
+ pow, 3, F(4), 5)
+ self.assertRaisesMessage(TypeError,
+ message % ("int", "int", "Fraction"),
+ pow, 3, 4, F(5))
if __name__ == '__main__':
--- /dev/null
+Three-argument :func:`pow` now try calling :meth:`~object.__rpow__` if
+necessary.
+Previously it was only called in two-argument :func:`!pow` and the binary
+power operator.
{
if (modulus == Py_None)
return slot_nb_power_binary(self, other);
- /* Three-arg power doesn't use __rpow__. But ternary_op
- can call this when the second argument's type uses
- slot_nb_power, so check before calling self.__pow__. */
+
+ /* The following code is a copy of SLOT1BINFULL, but for three arguments. */
+ PyObject* stack[3];
+ PyThreadState *tstate = _PyThreadState_GET();
+ int do_other = !Py_IS_TYPE(self, Py_TYPE(other)) &&
+ Py_TYPE(other)->tp_as_number != NULL &&
+ Py_TYPE(other)->tp_as_number->nb_power == slot_nb_power;
if (Py_TYPE(self)->tp_as_number != NULL &&
Py_TYPE(self)->tp_as_number->nb_power == slot_nb_power) {
- PyObject* stack[3] = {self, other, modulus};
- return vectorcall_method(&_Py_ID(__pow__), stack, 3);
+ PyObject *r;
+ if (do_other && PyType_IsSubtype(Py_TYPE(other), Py_TYPE(self))) {
+ int ok = method_is_overloaded(self, other, &_Py_ID(__rpow__));
+ if (ok < 0) {
+ return NULL;
+ }
+ if (ok) {
+ stack[0] = other;
+ stack[1] = self;
+ stack[2] = modulus;
+ r = vectorcall_maybe(tstate, &_Py_ID(__rpow__), stack, 3);
+ if (r != Py_NotImplemented)
+ return r;
+ Py_DECREF(r);
+ do_other = 0;
+ }
+ }
+ stack[0] = self;
+ stack[1] = other;
+ stack[2] = modulus;
+ r = vectorcall_maybe(tstate, &_Py_ID(__pow__), stack, 3);
+ if (r != Py_NotImplemented ||
+ Py_IS_TYPE(other, Py_TYPE(self)))
+ return r;
+ Py_DECREF(r);
+ }
+ if (do_other) {
+ stack[0] = other;
+ stack[1] = self;
+ stack[2] = modulus;
+ return vectorcall_maybe(tstate, &_Py_ID(__rpow__), stack, 3);
}
Py_RETURN_NOTIMPLEMENTED;
}