import re
import decimal
+try:
+ import _decimal
+except ImportError:
+ _decimal = None
def int_to_decimal(n):
def int_to_decimal_string(n):
"""Asymptotically fast conversion of an 'int' to a decimal string."""
- return str(int_to_decimal(n))
+ w = n.bit_length()
+ if w > 450_000 and _decimal is not None:
+ # It is only usable with the C decimal implementation.
+ # _pydecimal.py calls str() on very large integers, which in its
+ # turn calls int_to_decimal_string(), causing very deep recursion.
+ return str(int_to_decimal(n))
+
+ # Fallback algorithm for the case when the C decimal module isn't
+ # available. This algorithm is asymptotically worse than the algorithm
+ # using the decimal module, but better than the quadratic time
+ # implementation in longobject.c.
+ def inner(n, w):
+ if w <= 1000:
+ return str(n)
+ w2 = w >> 1
+ d = pow10_cache.get(w2)
+ if d is None:
+ d = pow10_cache[w2] = 5**w2 << w2 # 10**i = (5*2)**i = 5**i * 2**i
+ hi, lo = divmod(n, d)
+ return inner(hi, w - w2) + inner(lo, w2).zfill(w2)
+
+ # The estimation of the number of decimal digits.
+ # There is no harm in small error. If we guess too large, there may
+ # be leading 0's that need to be stripped. If we guess too small, we
+ # may need to call str() recursively for the remaining highest digits,
+ # which can still potentially be a large integer. This is manifested
+ # only if the number has way more than 10**15 digits, that exceeds
+ # the 52-bit physical address limit in both Intel64 and AMD64.
+ w = int(w * 0.3010299956639812 + 1) # log10(2)
+ pow10_cache = {}
+ if n < 0:
+ n = -n
+ sign = '-'
+ else:
+ sign = ''
+ s = inner(n, w)
+ if s[0] == '0' and n:
+ # If our guess of w is too large, there may be leading 0's that
+ # need to be stripped.
+ s = s.lstrip('0')
+ return sign + s
def _str_to_int_inner(s):
sys.set_int_max_str_digits(self._previous_limit)
super().tearDown()
- def test_pylong_int_to_decimal(self):
- n = (1 << 100_000) - 1
- suffix = '9883109375'
+ def _test_pylong_int_to_decimal(self, n, suffix):
s = str(n)
- assert s[-10:] == suffix
- s = str(-n)
- assert s[-10:] == suffix
- s = '%d' % n
- assert s[-10:] == suffix
- s = b'%d' % n
- assert s[-10:] == suffix.encode('ascii')
+ self.assertEqual(s[-10:], suffix)
+ s2 = str(-n)
+ self.assertEqual(s2, '-' + s)
+ s3 = '%d' % n
+ self.assertEqual(s3, s)
+ s4 = b'%d' % n
+ self.assertEqual(s4, s.encode('ascii'))
+
+ def test_pylong_int_to_decimal(self):
+ self._test_pylong_int_to_decimal((1 << 100_000), '9883109376')
+ self._test_pylong_int_to_decimal((1 << 100_000) - 1, '9883109375')
+ self._test_pylong_int_to_decimal(10**30_000, '0000000000')
+ self._test_pylong_int_to_decimal(10**30_000 - 1, '9999999999')
+ self._test_pylong_int_to_decimal(3**60_000, '9313200001')
+
+ @support.requires_resource('cpu')
+ def test_pylong_int_to_decimal_2(self):
+ self._test_pylong_int_to_decimal(2**1_000_000, '2747109376')
+ self._test_pylong_int_to_decimal(10**300_000, '0000000000')
+ self._test_pylong_int_to_decimal(3**600_000, '3132000001')
def test_pylong_int_divmod(self):
n = (1 << 100_000)
--- /dev/null
+Break a loop between the Python implementation of the :mod:`decimal` module
+and the Python code for integer to string conversion. Also optimize integer
+to string conversion for values in the range from 9_000 to 135_000 decimal
+digits.