from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
-from math import floor as _floor
from os import urandom as _urandom
from binascii import hexlify as _hexlify
# Math Software, 3, (1977), pp257-260.
random = self.random
- while True:
+ while 1:
u1 = random()
u2 = 1.0 - random()
z = NV_MAGICCONST*(u1-0.5)/u2
b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
r = (1.0 + b * b)/(2.0 * b)
- while True:
+ while 1:
u1 = random()
z = _cos(_pi * u1)
u2 = random()
- if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
+ if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
break
u3 = random()
bbb = alpha - LOG4
ccc = alpha + ainv
- while True:
+ while 1:
u1 = random()
if not 1e-7 < u1 < .9999999:
continue
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
- while True:
+ while 1:
u = random()
b = (_e + alpha)/_e
p = b*u
if p <= 1.0:
- x = pow(p, 1.0/alpha)
+ x = p ** (1.0/alpha)
else:
- # p > 1
x = -_log((b-p)/alpha)
u1 = random()
- if not (((p <= 1.0) and (u1 > _exp(-x))) or
- ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
+ if p > 1.0:
+ if u1 <= x ** (alpha - 1.0):
+ break
+ elif u1 <= _exp(-x):
break
return x * beta