As microcode patch sizes continue to grow, late-loading latency spikes can
lead to timeouts and disruptions in running workloads. This trend of
increasing patch sizes is expected to continue, so a foundational solution is
needed to address the issue.
To mitigate the problem, introduce a microcode staging feature. This option
processes most of the microcode update (excluding activation) on
a non-critical path, allowing CPUs to remain operational during the majority
of the update. By offloading work from the critical path, staging can
significantly reduce latency spikes.
Integrate staging as a preparatory step in late-loading. Introduce a new
callback for staging, which is invoked at the beginning of
load_late_stop_cpus(), before CPUs enter the rendezvous phase.
Staging follows an opportunistic model:
* If successful, it reduces CPU rendezvous time
* Even though it fails, the process falls back to the legacy path to
finish the loading process but with potentially higher latency.
Extend struct microcode_ops to incorporate staging properties, which will be
implemented in the vendor code separately.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Anselm Busse <abusse@amazon.de>
Link: https://lore.kernel.org/20250320234104.8288-1-chang.seok.bae@intel.com
pr_err("You should switch to early loading, if possible.\n");
}
+ /*
+ * Pre-load the microcode image into a staging device. This
+ * process is preemptible and does not require stopping CPUs.
+ * Successful staging simplifies the subsequent late-loading
+ * process, reducing rendezvous time.
+ *
+ * Even if the transfer fails, the update will proceed as usual.
+ */
+ if (microcode_ops->use_staging)
+ microcode_ops->stage_microcode();
+
atomic_set(&late_cpus_in, num_online_cpus());
atomic_set(&offline_in_nmi, 0);
loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
* See also the "Synchronization" section in microcode_core.c.
*/
enum ucode_state (*apply_microcode)(int cpu);
+ void (*stage_microcode)(void);
int (*collect_cpu_info)(int cpu, struct cpu_signature *csig);
void (*finalize_late_load)(int result);
unsigned int nmi_safe : 1,
- use_nmi : 1;
+ use_nmi : 1,
+ use_staging : 1;
};
struct early_load_data {