]> git.ipfire.org Git - thirdparty/Python/cpython.git/commitdiff
totally redone for new overloading scheme
authorGuido van Rossum <guido@python.org>
Sat, 8 Oct 1994 18:56:41 +0000 (18:56 +0000)
committerGuido van Rossum <guido@python.org>
Sat, 8 Oct 1994 18:56:41 +0000 (18:56 +0000)
Demo/classes/Complex.py

index b7ba2e0f5ce8421128936a3d3bdeee72278034bb..5ac6b186c6a8abbed15f1b445b0fdbbf60da329d 100755 (executable)
 # Complex numbers
+# ---------------
 
+# This module represents complex numbers as instances of the class Complex.
+# A Complex instance z has two data attribues, z.re (the real part) and z.im
+# (the imaginary part).  In fact, z.re and z.im can have any value -- all
+# arithmetic operators work regardless of the type of z.re and z.im (as long
+# as they support numerical operations).
+#
+# The following functions exist (Complex is actually a class):
+# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
+# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
+# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
+#                 if z is a tuple(re, im) it will also be converted
+# PolarToComplex([r [,phi [,fullcircle]]]) ->
+#      the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
+#      (r and phi default to 0)
+#
+# Complex numbers have the following methods:
+# z.abs() -> absolute value of z
+# z.radius() == z.abs()
+# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
+# z.phi([fullcircle]) == z.angle(fullcircle)
+#
+# These standard functions and unary operators accept complex arguments:
+# abs(z)
+# -z
+# +z
+# not z
+# repr(z) == `z`
+# str(z)
+# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
+#            the result equals hash(z.re)
+# Note that hex(z) and oct(z) are not defined.
+#
+# These conversions accept complex arguments only if their imaginary part is zero:
+# int(z)
+# long(z)
+# float(z)
+#
+# The following operators accept two complex numbers, or one complex number
+# and one real number (int, long or float):
+# z1 + z2
+# z1 - z2
+# z1 * z2
+# z1 / z2
+# pow(z1, z2)
+# cmp(z1, z2)
+# Note that z1 % z2 and divmod(z1, z2) are not defined,
+# nor are shift and mask operations.
+#
+# The standard module math does not support complex numbers.
+# (I suppose it would be easy to implement a cmath module.)
+#
+# Idea:
+# add a class Polar(r, phi) and mixed-mode arithmetic which
+# chooses the most appropriate type for the result:
+# Complex for +,-,cmp
+# Polar   for *,/,pow
 
-from math import sqrt
 
+import types, math
 
-class complex:
+twopi = math.pi*2.0
+halfpi = math.pi/2.0
 
-       def __init__(self, re, im):
-               self.re = float(re)
-               self.im = float(im)
+def IsComplex(obj):
+       return hasattr(obj, 're') and hasattr(obj, 'im')
 
-       def __coerce__(self, other):
-               if type(other) == type(self):
-                       if other.__class__ == self.__class__:
-                               return self, other
-                       else:
-                               raise TypeError, 'cannot coerce to complex'
-               else:
-                       # The cast to float() may raise an exception!
-                       return self, complex(float(other), 0.0)
+def ToComplex(obj):
+       if IsComplex(obj):
+               return obj
+       elif type(obj) == types.TupleType:
+               return apply(Complex, obj)
+       else:
+               return Complex(obj)
+
+def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
+       phi = phi * (twopi / fullcircle)
+       return Complex(math.cos(phi)*r, math.sin(phi)*r)
+
+def Re(obj):
+       if IsComplex(obj):
+               return obj.re
+       else:
+               return obj
+
+def Im(obj):
+       if IsComplex(obj):
+               return obj.im
+       else:
+               return obj
+
+class Complex:
+
+       def __init__(self, re=0, im=0):
+               if IsComplex(re):
+                       im = i + Complex(0, re.im)
+                       re = re.re
+               if IsComplex(im):
+                       re = re - im.im
+                       im = im.re
+               self.__dict__['re'] = re
+               self.__dict__['im'] = im
+       
+       def __setattr__(self, name, value):
+                       raise TypeError, 'Complex numbers are immutable'
+
+       def __hash__(self):
+               if not self.im: return hash(self.re)
+               mod = sys.maxint + 1L
+               return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
 
        def __repr__(self):
-               return 'complex' + `self.re, self.im`
+               if not self.im:
+                       return 'Complex(%s)' % `self.re`
+               else:
+                       return 'Complex(%s, %s)' % (`self.re`, `self.im`)
 
-       def __cmp__(a, b):
-               a = a.__abs__()
-               b = b.__abs__()
-               return (a > b) - (a < b)
+       def __str__(self):
+               if not self.im:
+                       return `self.re`
+               else:
+                       return 'Complex(%s, %s)' % (`self.re`, `self.im`)
+
+       def __neg__(self):
+               return Complex(-self.re, -self.im)
+
+       def __pos__(self):
+               return self
+
+       def __abs__(self):
+               # XXX could be done differently to avoid overflow!
+               return math.sqrt(self.re*self.re + self.im*self.im)
+
+       def __int__(self):
+               if self.im:
+                       raise ValueError, "can't convert Complex with nonzero im to int"
+               return int(self.re)
+
+       def __long__(self):
+               if self.im:
+                       raise ValueError, "can't convert Complex with nonzero im to long"
+               return long(self.re)
 
        def __float__(self):
                if self.im:
-                       raise ValueError, 'cannot convert complex to float'
+                       raise ValueError, "can't convert Complex with nonzero im to float"
                return float(self.re)
 
-       def __long__(self):
-               return long(float(self))
+       def __cmp__(self, other):
+               other = ToComplex(other)
+               return cmp((self.re, self.im), (other.re, other.im))
 
-       def __int__(self):
-               return int(float(self))
+       def __rcmp__(self, other):
+               other = ToComplex(other)
+               return cmp(other, self)
+       
+       def __nonzero__(self):
+               return not (self.re == self.im == 0)
 
-       def __abs__(self):
-               # XXX overflow?
-               return sqrt(self.re*self.re + self.im*self.im)
+       abs = radius = __abs__
 
-       def __add__(a, b):
-               return complex(a.re + b.re, a.im + b.im)
+       def angle(self, fullcircle = twopi):
+               return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
 
-       def __sub__(a, b):
-               return complex(a.re - b.re, a.im - b.im)
+       phi = angle
 
-       def __mul__(a, b):
-               return complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re)
+       def __add__(self, other):
+               other = ToComplex(other)
+               return Complex(self.re + other.re, self.im + other.im)
 
-       def __div__(a, b):
-               q = (b.re*b.re + b.im*b.im)
-               re = (a.re*b.re + a.im*b.im) / q
-               im = (a.im*b.re - b.im*a.re) / q
-               return complex(re, im)
+       __radd__ = __add__
 
-       def __neg__(self):
-               return complex(-self.re, -self.im)
+       def __sub__(self, other):
+               other = ToComplex(other)
+               return Complex(self.re - other.re, self.im - other.im)
+
+       def __rsub__(self, other):
+               other = ToComplex(other)
+               return other - self
+
+       def __mul__(self, other):
+               other = ToComplex(other)
+               return Complex(self.re*other.re - self.im*other.im,
+                              self.re*other.im + self.im*other.re)
+
+       __rmul__ = __mul__
+
+       def __div__(self, other):
+               other = ToComplex(other)
+               d = float(other.re*other.re + other.im*other.im)
+               if not d: raise ZeroDivisionError, 'Complex division'
+               return Complex((self.re*other.re + self.im*other.im) / d,
+                              (self.im*other.re - self.re*other.im) / d)
+
+       def __rdiv__(self, other):
+               other = ToComplex(other)
+               return other / self
+
+       def __pow__(self, n, z=None):
+               if z is not None:
+                       raise TypeError, 'Complex does not support ternary pow()'
+               if IsComplex(n):
+                       if n.im: raise TypeError, 'Complex to the Complex power'
+                       n = n.re
+               r = pow(self.abs(), n)
+               phi = n*self.angle()
+               return Complex(math.cos(phi)*r, math.sin(phi)*r)
+       
+       def __rpow__(self, base):
+               base = ToComplex(base)
+               return pow(base, self)
+
+
+def checkop(expr, a, b, value, fuzz = 1e-6):
+       import sys
+       print '       ', a, 'and', b,
+       try:
+               result = eval(expr)
+       except:
+               result = sys.exc_type
+       print '->', result
+       if (type(result) == type('') or type(value) == type('')):
+               ok = result == value
+       else:
+               ok = abs(result - value) <= fuzz
+       if not ok:
+               print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
 
 
 def test():
-       a = complex(2, 0)
-       b = complex(3, 4)
-       print a
-       print b
-       print a+b
-       print a-b
-       print a*b
-       print a/b
-       print b+a
-       print b-a
-       print b*a
-       print b/a
-       i = complex(0, 1)
-       print i, i*i, i*i*i, i*i*i*i
-       j = complex(1, 1)
-       print j, j*j, j*j*j, j*j*j*j
-       print abs(j), abs(j*j), abs(j*j*j), abs(j*j*j*j)
-       print i/-i
-
-test()
+       testsuite = {
+               'a+b': [
+                       (1, 10, 11),
+                       (1, Complex(0,10), Complex(1,10)),
+                       (Complex(0,10), 1, Complex(1,10)),
+                       (Complex(0,10), Complex(1), Complex(1,10)),
+                       (Complex(1), Complex(0,10), Complex(1,10)),
+               ],
+               'a-b': [
+                       (1, 10, -9),
+                       (1, Complex(0,10), Complex(1,-10)),
+                       (Complex(0,10), 1, Complex(-1,10)),
+                       (Complex(0,10), Complex(1), Complex(-1,10)),
+                       (Complex(1), Complex(0,10), Complex(1,-10)),
+               ],
+               'a*b': [
+                       (1, 10, 10),
+                       (1, Complex(0,10), Complex(0, 10)),
+                       (Complex(0,10), 1, Complex(0,10)),
+                       (Complex(0,10), Complex(1), Complex(0,10)),
+                       (Complex(1), Complex(0,10), Complex(0,10)),
+               ],
+               'a/b': [
+                       (1., 10, 0.1),
+                       (1, Complex(0,10), Complex(0, -0.1)),
+                       (Complex(0, 10), 1, Complex(0, 10)),
+                       (Complex(0, 10), Complex(1), Complex(0, 10)),
+                       (Complex(1), Complex(0,10), Complex(0, -0.1)),
+               ],
+               'pow(a,b)': [
+                       (1, 10, 1),
+                       (1, Complex(0,10), 'TypeError'),
+                       (Complex(0,10), 1, Complex(0,10)),
+                       (Complex(0,10), Complex(1), Complex(0,10)),
+                       (Complex(1), Complex(0,10), 'TypeError'),
+                       (2, Complex(4,0), 16),
+               ],
+               'cmp(a,b)': [
+                       (1, 10, -1),
+                       (1, Complex(0,10), 1),
+                       (Complex(0,10), 1, -1),
+                       (Complex(0,10), Complex(1), -1),
+                       (Complex(1), Complex(0,10), 1),
+               ],
+       }
+       exprs = testsuite.keys()
+       exprs.sort()
+       for expr in exprs:
+               print expr + ':'
+               t = (expr,)
+               for item in testsuite[expr]:
+                       apply(checkop, t+item)
+       
+
+if __name__ == '__main__':
+       test()