when parsing source code containing null bytes. (Contributed by Pablo Galindo
in :gh:`96670`.)
+* The Garbage Collector now runs only on the eval breaker mechanism of the
+ Python bytecode evaluation loop instead on object allocations. The GC can
+ also run when :c:func:`PyErr_CheckSignals` is called so C extensions that
+ need to run for a long time without executing any Python code also have a
+ chance to execute the GC periodically. (Contributed by Pablo Galindo in
+ :gh:`97922`.)
+
New Modules
===========
extern void _PyDict_ClearFreeList(PyInterpreterState *interp);
extern void _PyAsyncGen_ClearFreeLists(PyInterpreterState *interp);
extern void _PyContext_ClearFreeList(PyInterpreterState *interp);
+extern void _Py_ScheduleGC(PyInterpreterState *interp);
+extern void _Py_RunGC(PyThreadState *tstate);
#ifdef __cplusplus
}
_Py_atomic_int eval_breaker;
/* Request for dropping the GIL */
_Py_atomic_int gil_drop_request;
+ /* The GC is ready to be executed */
+ _Py_atomic_int gc_scheduled;
struct _pending_calls pending;
};
frame!
"""
nonlocal sneaky_frame_object
- sneaky_frame_object = sys._getframe().f_back
+ sneaky_frame_object = sys._getframe().f_back.f_back
# We're done here:
gc.callbacks.remove(callback)
--- /dev/null
+The Garbage Collector now runs only on the eval breaker mechanism of the
+Python bytecode evaluation loop instead on object allocations. The GC can
+also run when :c:func:`PyErr_CheckSignals` is called so C extensions that
+need to run for a long time without executing any Python code also have a
+chance to execute the GC periodically.
return _PyObject_IS_GC(obj);
}
+void
+_Py_ScheduleGC(PyInterpreterState *interp)
+{
+ GCState *gcstate = &interp->gc;
+ if (gcstate->collecting == 1) {
+ return;
+ }
+ struct _ceval_state *ceval = &interp->ceval;
+ if (!_Py_atomic_load_relaxed(&ceval->gc_scheduled)) {
+ _Py_atomic_store_relaxed(&ceval->gc_scheduled, 1);
+ _Py_atomic_store_relaxed(&ceval->eval_breaker, 1);
+ }
+}
+
void
_PyObject_GC_Link(PyObject *op)
{
!gcstate->collecting &&
!_PyErr_Occurred(tstate))
{
- gcstate->collecting = 1;
- gc_collect_generations(tstate);
- gcstate->collecting = 0;
+ _Py_ScheduleGC(tstate->interp);
}
}
+void
+_Py_RunGC(PyThreadState *tstate)
+{
+ GCState *gcstate = &tstate->interp->gc;
+ gcstate->collecting = 1;
+ gc_collect_generations(tstate);
+ gcstate->collecting = 0;
+}
+
static PyObject *
gc_alloc(size_t basicsize, size_t presize)
{
PyErr_CheckSignals(void)
{
PyThreadState *tstate = _PyThreadState_GET();
+
+ /* Opportunistically check if the GC is scheduled to run and run it
+ if we have a request. This is done here because native code needs
+ to call this API if is going to run for some time without executing
+ Python code to ensure signals are handled. Checking for the GC here
+ allows long running native code to clean cycles created using the C-API
+ even if it doesn't run the evaluation loop */
+ struct _ceval_state *interp_ceval_state = &tstate->interp->ceval;
+ if (_Py_atomic_load_relaxed(&interp_ceval_state->gc_scheduled)) {
+ _Py_atomic_store_relaxed(&interp_ceval_state->gc_scheduled, 0);
+ _Py_RunGC(tstate);
+ }
+
if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
return 0;
}
#include "pycore_pyerrors.h" // _PyErr_Fetch()
#include "pycore_pylifecycle.h" // _PyErr_Print()
#include "pycore_initconfig.h" // _PyStatus_OK()
+#include "pycore_interp.h" // _Py_RunGC()
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
/*
&& _Py_ThreadCanHandleSignals(interp))
| (_Py_atomic_load_relaxed_int32(&ceval2->pending.calls_to_do)
&& _Py_ThreadCanHandlePendingCalls())
- | ceval2->pending.async_exc);
+ | ceval2->pending.async_exc
+ | _Py_atomic_load_relaxed_int32(&ceval2->gc_scheduled));
}
{
_PyRuntimeState * const runtime = &_PyRuntime;
struct _ceval_runtime_state *ceval = &runtime->ceval;
+ struct _ceval_state *interp_ceval_state = &tstate->interp->ceval;
/* Pending signals */
if (_Py_atomic_load_relaxed_int32(&ceval->signals_pending)) {
}
/* Pending calls */
- struct _ceval_state *ceval2 = &tstate->interp->ceval;
- if (_Py_atomic_load_relaxed_int32(&ceval2->pending.calls_to_do)) {
+ if (_Py_atomic_load_relaxed_int32(&interp_ceval_state->pending.calls_to_do)) {
if (make_pending_calls(tstate->interp) != 0) {
return -1;
}
}
+ /* GC scheduled to run */
+ if (_Py_atomic_load_relaxed_int32(&interp_ceval_state->gc_scheduled)) {
+ _Py_atomic_store_relaxed(&interp_ceval_state->gc_scheduled, 0);
+ COMPUTE_EVAL_BREAKER(tstate->interp, ceval, interp_ceval_state);
+ _Py_RunGC(tstate);
+ }
+
/* GIL drop request */
- if (_Py_atomic_load_relaxed_int32(&ceval2->gil_drop_request)) {
+ if (_Py_atomic_load_relaxed_int32(&interp_ceval_state->gil_drop_request)) {
/* Give another thread a chance */
if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {
Py_FatalError("tstate mix-up");
}
- drop_gil(ceval, ceval2, tstate);
+ drop_gil(ceval, interp_ceval_state, tstate);
/* Other threads may run now */
return -1;
}
-#ifdef MS_WINDOWS
- // bpo-42296: On Windows, _PyEval_SignalReceived() can be called in a
- // different thread than the Python thread, in which case
+
+ // It is possible that some of the conditions that trigger the eval breaker
+ // are called in a different thread than the Python thread. An example of
+ // this is bpo-42296: On Windows, _PyEval_SignalReceived() can be called in
+ // a different thread than the Python thread, in which case
// _Py_ThreadCanHandleSignals() is wrong. Recompute eval_breaker in the
// current Python thread with the correct _Py_ThreadCanHandleSignals()
// value. It prevents to interrupt the eval loop at every instruction if
// the current Python thread cannot handle signals (if
// _Py_ThreadCanHandleSignals() is false).
- COMPUTE_EVAL_BREAKER(tstate->interp, ceval, ceval2);
-#endif
+ COMPUTE_EVAL_BREAKER(tstate->interp, ceval, interp_ceval_state);
return 0;
}