--- /dev/null
+// dnstap: flexible, structured event replication format for DNS software
+//
+// This file contains the protobuf schemas for the "dnstap" structured event
+// replication format for DNS software.
+
+// Written in 2013-2025 by the dnstap contributors.
+//
+// To the extent possible under law, the author(s) have dedicated all
+// copyright and related and neighboring rights to this file to the public
+// domain worldwide. This file is distributed without any warranty.
+//
+// You should have received a copy of the CC0 Public Domain Dedication along
+// with this file. If not, see:
+//
+// <https://creativecommons.org/publicdomain/zero/1.0/>.
+
+syntax = "proto2";
+package dnstap;
+
+// "Dnstap": this is the top-level dnstap type, which is a "union" type that
+// contains other kinds of dnstap payloads, although currently only one type
+// of dnstap payload is defined.
+// See: https://developers.google.com/protocol-buffers/docs/techniques#union
+message Dnstap {
+ // DNS server identity.
+ // If enabled, this is the identity string of the DNS server which generated
+ // this message. Typically this would be the same string as returned by an
+ // "NSID" (RFC 5001) query.
+ optional bytes identity = 1;
+
+ // DNS server version.
+ // If enabled, this is the version string of the DNS server which generated
+ // this message. Typically this would be the same string as returned by a
+ // "version.bind" query.
+ optional bytes version = 2;
+
+ // Extra data for this payload.
+ // This field can be used for adding an arbitrary byte-string annotation to
+ // the payload. No encoding or interpretation is applied or enforced.
+ optional bytes extra = 3;
+
+ // Identifies which field below is filled in.
+ enum Type {
+ MESSAGE = 1;
+ }
+ required Type type = 15;
+
+ // One of the following will be filled in.
+ optional Message message = 14;
+}
+
+// SocketFamily: the network protocol family of a socket. This specifies how
+// to interpret "network address" fields.
+enum SocketFamily {
+ INET = 1; // IPv4 (RFC 791)
+ INET6 = 2; // IPv6 (RFC 2460)
+}
+
+// SocketProtocol: the protocol used to transport a DNS message.
+enum SocketProtocol {
+ UDP = 1; // DNS over UDP transport (RFC 1035 section 4.2.1)
+ TCP = 2; // DNS over TCP transport (RFC 1035 section 4.2.2)
+ DOT = 3; // DNS over TLS (RFC 7858)
+ DOH = 4; // DNS over HTTPS (RFC 8484)
+ DNSCryptUDP = 5; // DNSCrypt over UDP (https://dnscrypt.info/protocol)
+ DNSCryptTCP = 6; // DNSCrypt over TCP (https://dnscrypt.info/protocol)
+ DOQ = 7; // DNS over QUIC (RFC 9250)
+}
+
+// HttpProtocol: the HTTP protocol version used to transport a DNS message over
+// an HTTP-based protocol such as DNS over HTTPS.
+enum HttpProtocol {
+ HTTP1 = 1; // HTTP/1
+ HTTP2 = 2; // HTTP/2
+ HTTP3 = 3; // HTTP/3
+}
+
+// Policy: information about any name server operator policy
+// applied to the processing of a DNS message.
+message Policy {
+
+ // Match: what aspect of the message or message exchange
+ // triggered the application of the Policy.
+ enum Match {
+ QNAME = 1; // Name in question section of query
+ CLIENT_IP = 2; // Client IP address
+ RESPONSE_IP = 3; // Address in A/AAAA RRSet
+ NS_NAME = 4; // Authoritative name server, by name
+ NS_IP = 5; // Authoritative name server, by IP address
+ }
+
+ // The Action taken to implement the Policy.
+ enum Action {
+ NXDOMAIN = 1; // Respond with NXDOMAIN
+ NODATA = 2; // Respond with empty answer section
+ PASS = 3; // Do not alter the response (passthrough)
+ DROP = 4; // Do not respond.
+ TRUNCATE = 5; // Truncate UDP response, forcing TCP retry
+ LOCAL_DATA = 6; // Respond with local data from policy
+ }
+
+ // type: the type of policy applied, e.g. "RPZ" for a
+ // policy from a Response Policy Zone.
+ optional string type = 1;
+
+ // rule: the rule matched by the message.
+ //
+ // In a RPZ context, this is the owner name of the rule in
+ // the Reponse Policy Zone in wire format.
+ optional bytes rule = 2;
+
+ // action: the policy action taken in response to the
+ // rule match.
+ optional Action action = 3;
+
+ // match: the feature of the message exchange which matched the rule.
+ optional Match match = 4;
+
+ // The matched value. Format depends on the matched feature .
+ optional bytes value = 5;
+}
+
+// Message: a wire-format (RFC 1035 section 4) DNS message and associated
+// metadata. Applications generating "Message" payloads should follow
+// certain requirements based on the MessageType, see below.
+message Message {
+
+ // There are eight types of "Message" defined that correspond to the
+ // four arrows in the following diagram, slightly modified from RFC 1035
+ // section 2:
+
+ // +---------+ +----------+ +--------+
+ // | | query | | query | |
+ // | Stub |-SQ--------CQ->| Recursive|-RQ----AQ->| Auth. |
+ // | Resolver| | Server | | Name |
+ // | |<-SR--------CR-| |<-RR----AR-| Server |
+ // +---------+ response | | response | |
+ // +----------+ +--------+
+
+ // Each arrow has two Type values each, one for each "end" of each arrow,
+ // because these are considered to be distinct events. Each end of each
+ // arrow on the diagram above has been marked with a two-letter Type
+ // mnemonic. Clockwise from upper left, these mnemonic values are:
+ //
+ // SQ: STUB_QUERY
+ // CQ: CLIENT_QUERY
+ // RQ: RESOLVER_QUERY
+ // AQ: AUTH_QUERY
+ // AR: AUTH_RESPONSE
+ // RR: RESOLVER_RESPONSE
+ // CR: CLIENT_RESPONSE
+ // SR: STUB_RESPONSE
+
+ // Two additional types of "Message" have been defined for the
+ // "forwarding" case where an upstream DNS server is responsible for
+ // further recursion. These are not shown on the diagram above, but have
+ // the following mnemonic values:
+
+ // FQ: FORWARDER_QUERY
+ // FR: FORWARDER_RESPONSE
+
+ // The "Message" Type values are defined below.
+
+ enum Type {
+ // AUTH_QUERY is a DNS query message received from a resolver by an
+ // authoritative name server, from the perspective of the authoritative
+ // name server.
+ AUTH_QUERY = 1;
+
+ // AUTH_RESPONSE is a DNS response message sent from an authoritative
+ // name server to a resolver, from the perspective of the authoritative
+ // name server.
+ AUTH_RESPONSE = 2;
+
+ // RESOLVER_QUERY is a DNS query message sent from a resolver to an
+ // authoritative name server, from the perspective of the resolver.
+ // Resolvers typically clear the RD (recursion desired) bit when
+ // sending queries.
+ RESOLVER_QUERY = 3;
+
+ // RESOLVER_RESPONSE is a DNS response message received from an
+ // authoritative name server by a resolver, from the perspective of
+ // the resolver.
+ RESOLVER_RESPONSE = 4;
+
+ // CLIENT_QUERY is a DNS query message sent from a client to a DNS
+ // server which is expected to perform further recursion, from the
+ // perspective of the DNS server. The client may be a stub resolver or
+ // forwarder or some other type of software which typically sets the RD
+ // (recursion desired) bit when querying the DNS server. The DNS server
+ // may be a simple forwarding proxy or it may be a full recursive
+ // resolver.
+ CLIENT_QUERY = 5;
+
+ // CLIENT_RESPONSE is a DNS response message sent from a DNS server to
+ // a client, from the perspective of the DNS server. The DNS server
+ // typically sets the RA (recursion available) bit when responding.
+ CLIENT_RESPONSE = 6;
+
+ // FORWARDER_QUERY is a DNS query message sent from a downstream DNS
+ // server to an upstream DNS server which is expected to perform
+ // further recursion, from the perspective of the downstream DNS
+ // server.
+ FORWARDER_QUERY = 7;
+
+ // FORWARDER_RESPONSE is a DNS response message sent from an upstream
+ // DNS server performing recursion to a downstream DNS server, from the
+ // perspective of the downstream DNS server.
+ FORWARDER_RESPONSE = 8;
+
+ // STUB_QUERY is a DNS query message sent from a stub resolver to a DNS
+ // server, from the perspective of the stub resolver.
+ STUB_QUERY = 9;
+
+ // STUB_RESPONSE is a DNS response message sent from a DNS server to a
+ // stub resolver, from the perspective of the stub resolver.
+ STUB_RESPONSE = 10;
+
+ // TOOL_QUERY is a DNS query message sent from a DNS software tool to a
+ // DNS server, from the perspective of the tool.
+ TOOL_QUERY = 11;
+
+ // TOOL_RESPONSE is a DNS response message received by a DNS software
+ // tool from a DNS server, from the perspective of the tool.
+ TOOL_RESPONSE = 12;
+
+ // UPDATE_QUERY is a Dynamic DNS Update request (RFC 2136) received
+ // by an authoritative name server, from the perspective of the
+ // authoritative name server.
+ UPDATE_QUERY = 13;
+
+ // UPDATE_RESPONSE is a Dynamic DNS Update response (RFC 2136) sent
+ // from an authoritative name server, from the perspective of the
+ // authoritative name server.
+ UPDATE_RESPONSE = 14;
+ }
+
+ // One of the Type values described above.
+ required Type type = 1;
+
+ // One of the SocketFamily values described above.
+ optional SocketFamily socket_family = 2;
+
+ // One of the SocketProtocol values described above.
+ optional SocketProtocol socket_protocol = 3;
+
+ // The network address of the message initiator.
+ // For SocketFamily INET, this field is 4 octets (IPv4 address).
+ // For SocketFamily INET6, this field is 16 octets (IPv6 address).
+ optional bytes query_address = 4;
+
+ // The network address of the message responder.
+ // For SocketFamily INET, this field is 4 octets (IPv4 address).
+ // For SocketFamily INET6, this field is 16 octets (IPv6 address).
+ optional bytes response_address = 5;
+
+ // The transport port of the message initiator.
+ // This is a 16-bit UDP or TCP port number, depending on SocketProtocol.
+ optional uint32 query_port = 6;
+
+ // The transport port of the message responder.
+ // This is a 16-bit UDP or TCP port number, depending on SocketProtocol.
+ optional uint32 response_port = 7;
+
+ // The time at which the DNS query message was sent or received, depending
+ // on whether this is an AUTH_QUERY, RESOLVER_QUERY, or CLIENT_QUERY.
+ // This is the number of seconds since the UNIX epoch.
+ optional uint64 query_time_sec = 8;
+
+ // The time at which the DNS query message was sent or received.
+ // This is the seconds fraction, expressed as a count of nanoseconds.
+ optional fixed32 query_time_nsec = 9;
+
+ // The initiator's original wire-format DNS query message, verbatim.
+ optional bytes query_message = 10;
+
+ // The "zone" or "bailiwick" pertaining to the DNS query message.
+ // This is a wire-format DNS domain name.
+ optional bytes query_zone = 11;
+
+ // The time at which the DNS response message was sent or received,
+ // depending on whether this is an AUTH_RESPONSE, RESOLVER_RESPONSE, or
+ // CLIENT_RESPONSE.
+ // This is the number of seconds since the UNIX epoch.
+ optional uint64 response_time_sec = 12;
+
+ // The time at which the DNS response message was sent or received.
+ // This is the seconds fraction, expressed as a count of nanoseconds.
+ optional fixed32 response_time_nsec = 13;
+
+ // The responder's original wire-format DNS response message, verbatim.
+ optional bytes response_message = 14;
+
+ // Operator policy applied to the processing of this message, if any.
+ optional Policy policy = 15;
+
+ // One of the HttpProtocol values described above. This field should only be
+ // set if socket_protocol is set to DOH.
+ optional HttpProtocol http_protocol = 16;
+}
+
+// All fields except for 'type' in the Message schema are optional.
+// It is recommended that at least the following fields be filled in for
+// particular types of Messages.
+
+// AUTH_QUERY:
+// socket_family, socket_protocol
+// query_address, query_port
+// query_message
+// query_time_sec, query_time_nsec
+
+// AUTH_RESPONSE:
+// socket_family, socket_protocol
+// query_address, query_port
+// query_time_sec, query_time_nsec
+// response_message
+// response_time_sec, response_time_nsec
+
+// RESOLVER_QUERY:
+// socket_family, socket_protocol
+// query_message
+// query_time_sec, query_time_nsec
+// query_zone
+// response_address, response_port
+
+// RESOLVER_RESPONSE:
+// socket_family, socket_protocol
+// query_time_sec, query_time_nsec
+// query_zone
+// response_address, response_port
+// response_message
+// response_time_sec, response_time_nsec
+
+// CLIENT_QUERY:
+// socket_family, socket_protocol
+// query_message
+// query_time_sec, query_time_nsec
+
+// CLIENT_RESPONSE:
+// socket_family, socket_protocol
+// query_time_sec, query_time_nsec
+// response_message
+// response_time_sec, response_time_nsec
--- /dev/null
+import asyncio
+import logging
+from pathlib import Path
+
+from knot_resolver.constants import FSTRM_LIB, PROTOBUF_LIB
+from knot_resolver.manager.config_store import ConfigStore
+from knot_resolver.utils import compat
+
+logger = logging.getLogger(__name__)
+
+
+if FSTRM_LIB and PROTOBUF_LIB:
+ import fstrm # type: ignore[import-untyped]
+
+ from knot_resolver.manager.dnstap import dnstap_pb2
+
+ async def callback(reader: asyncio.StreamReader, writer: asyncio.StreamWriter) -> None:
+ peername = writer.get_extra_info("peername")
+ if not len(peername):
+ peername = "(unix-socket)"
+ logger.info(f"New connection from {peername}")
+
+ content_type = b"protobuf:dnstap.Dnstap"
+ fstrm_handler = fstrm.FstrmCodec()
+ # loop = asyncio.get_event_loop()
+ dnstap_protobuf = dnstap_pb2.Dnstap() # type: ignore[attr-defined]
+
+ try:
+ running = True
+ while running:
+ read_task = asyncio.create_task(reader.read(fstrm_handler.pending_nb_bytes()))
+ data = await read_task
+ if not len(data):
+ running = False
+ break
+
+ # append data to the buffer
+ fstrm_handler.append(data=data)
+
+ # process the buffer, check if we have received a complete frame ?
+ if fstrm_handler.process():
+ # Ok, the frame is complete so let's decode it
+ ctrl, ct, payload = fstrm_handler.decode()
+
+ # handle the DATA frame
+ if ctrl == fstrm.FSTRM_DATA_FRAME:
+ dnstap_protobuf.ParseFromString(payload)
+ dm = dnstap_protobuf.message
+ logger.debug(dm)
+
+ # handle the control frame READY
+ if ctrl == fstrm.FSTRM_CONTROL_READY:
+ if content_type not in ct:
+ raise Exception("content type error: %s" % ct)
+
+ # todo, checking content type
+ ctrl_accept = fstrm_handler.encode(ctrl=fstrm.FSTRM_CONTROL_ACCEPT, ct=[content_type])
+ # respond with accept only if the content type is dnstap
+ writer.write(ctrl_accept)
+ await writer.drain()
+
+ # handle the control frame STOP
+ if ctrl == fstrm.FSTRM_CONTROL_STOP:
+ fstrm_handler.reset()
+
+ # send finish control
+ ctrl_finish = fstrm_handler.encode(ctrl=fstrm.FSTRM_CONTROL_FINISH)
+ writer.write(ctrl_finish)
+ await writer.drain()
+
+ except asyncio.IncompleteReadError:
+ pass
+ except ConnectionError:
+ writer.close()
+ except asyncio.CancelledError:
+ writer.close()
+ await writer.wait_closed()
+
+ async def start_dnstap_listener(socket_path: Path) -> None:
+ if socket_path.exists():
+ socket_path.unlink()
+
+ server = await asyncio.start_unix_server(callback, path=socket_path)
+ logger.info(f"Listening dnstap on '{socket_path}'")
+
+ async with server:
+ await server.serve_forever()
+
+
+async def init_dnstap_listener(config_store: ConfigStore) -> None:
+ config = config_store.get()
+ if FSTRM_LIB and PROTOBUF_LIB and config.logging.dnstap:
+ socket_path = config.logging.dnstap.unix_socket.to_path()
+ if compat.asyncio.is_event_loop_running():
+ compat.asyncio.create_task(start_dnstap_listener(socket_path))
+ else:
+ compat.asyncio.run(start_dnstap_listener(socket_path))