restoredseq = [newgen.random() for i in range(10)]
self.assertEqual(origseq, restoredseq)
- @test.support.cpython_only
- def test_bug_41052(self):
- # _random.Random should not be allowed to serialization
- import _random
- for proto in range(pickle.HIGHEST_PROTOCOL + 1):
- r = _random.Random()
- self.assertRaises(TypeError, pickle.dumps, r, proto)
-
- @test.support.cpython_only
- def test_bug_42008(self):
- # _random.Random should call seed with first element of arg tuple
- import _random
- r1 = _random.Random()
- r1.seed(8675309)
- r2 = _random.Random(8675309)
- self.assertEqual(r1.random(), r2.random())
-
def test_bug_1727780(self):
# verify that version-2-pickles can be loaded
# fine, whether they are created on 32-bit or 64-bit
self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
+class TestRawMersenneTwister(unittest.TestCase):
+ @test.support.cpython_only
+ def test_bug_41052(self):
+ # _random.Random should not be allowed to serialization
+ import _random
+ for proto in range(pickle.HIGHEST_PROTOCOL + 1):
+ r = _random.Random()
+ self.assertRaises(TypeError, pickle.dumps, r, proto)
+
+ @test.support.cpython_only
+ def test_bug_42008(self):
+ # _random.Random should call seed with first element of arg tuple
+ import _random
+ r1 = _random.Random()
+ r1.seed(8675309)
+ r2 = _random.Random(8675309)
+ self.assertEqual(r1.random(), r2.random())
+
+
class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
gen = random.Random()
init_by_array(self, key, Py_ARRAY_LENGTH(key));
}
-static PyObject *
+static int
random_seed(RandomObject *self, PyObject *arg)
{
- PyObject *result = NULL; /* guilty until proved innocent */
+ int result = -1; /* guilty until proved innocent */
PyObject *n = NULL;
uint32_t *key = NULL;
size_t bits, keyused;
use the current time and process identifier. */
random_seed_time_pid(self);
}
- Py_RETURN_NONE;
+ return 0;
}
/* This algorithm relies on the number being unsigned.
#endif
init_by_array(self, key, keyused);
- Py_INCREF(Py_None);
- result = Py_None;
+ result = 0;
Done:
Py_XDECREF(n);
_random_Random_seed_impl(RandomObject *self, PyObject *n)
/*[clinic end generated code: output=0fad1e16ba883681 input=78d6ef0d52532a54]*/
{
- return random_seed(self, n);
+ if (random_seed(self, n) < 0) {
+ return NULL;
+ }
+ Py_RETURN_NONE;
}
/*[clinic input]
return result;
}
-static PyObject *
-random_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+static int
+random_init(RandomObject *self, PyObject *args, PyObject *kwds)
{
- RandomObject *self;
- PyObject *tmp;
PyObject *arg = NULL;
- _randomstate *state = _randomstate_type(type);
+ _randomstate *state = _randomstate_type(Py_TYPE(self));
- if (type == (PyTypeObject*)state->Random_Type &&
+ if (Py_IS_TYPE(self, (PyTypeObject *)state->Random_Type) &&
!_PyArg_NoKeywords("Random()", kwds)) {
- return NULL;
+ return -1;
}
- self = (RandomObject *)PyType_GenericAlloc(type, 0);
- if (self == NULL)
- return NULL;
-
if (PyTuple_GET_SIZE(args) > 1) {
PyErr_SetString(PyExc_TypeError, "Random() requires 0 or 1 argument");
- return NULL;
+ return -1;
}
if (PyTuple_GET_SIZE(args) == 1)
arg = PyTuple_GET_ITEM(args, 0);
- tmp = random_seed(self, arg);
- if (tmp == NULL) {
- Py_DECREF(self);
- return NULL;
- }
- Py_DECREF(tmp);
-
- return (PyObject *)self;
+ return random_seed(self, arg);
}
static PyType_Slot Random_Type_slots[] = {
{Py_tp_doc, (void *)random_doc},
{Py_tp_methods, random_methods},
- {Py_tp_new, random_new},
+ {Py_tp_new, PyType_GenericNew},
+ {Py_tp_init, random_init},
{Py_tp_free, PyObject_Free},
{0, 0},
};