long initrd_base;
int64_t initrd_size;
- initrd_size = get_image_size(initrd_filename);
+ initrd_size = get_image_size(initrd_filename, NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
/* Put the initrd image as high in memory as possible. */
initrd_base = (ram_size - initrd_size) & TARGET_PAGE_MASK;
load_image_targphys(initrd_filename, initrd_base,
- ram_size - initrd_base);
+ ram_size - initrd_base, NULL);
address_space_stq(&address_space_memory, param_offset + 0x100,
initrd_base + 0xfffffc0000000000ULL,
NULL, ELFDATA2LSB, EM_ARM, 1, 0, as);
if (image_size < 0) {
image_size = load_image_targphys_as(kernel_filename, mem_base,
- mem_size, as);
+ mem_size, as, NULL);
}
if (image_size < 0) {
error_report("Could not load kernel '%s'", kernel_filename);
/* 32-bit ARM */
entry = info->loader_start + KERNEL_LOAD_ADDR;
kernel_size = load_image_targphys_as(info->kernel_filename, entry,
- ram_end - KERNEL_LOAD_ADDR, as);
+ ram_end - KERNEL_LOAD_ADDR, as,
+ NULL);
is_linux = 1;
if (kernel_size >= 0) {
image_low_addr = entry;
info->initrd_start,
ram_end -
info->initrd_start,
- as);
+ as, NULL);
}
if (initrd_size < 0) {
error_report("could not load initrd '%s'",
exit(1);
}
- rom_size = load_image_targphys(fn, addr, max_size);
+ rom_size = load_image_targphys(fn, addr, max_size, NULL);
if (rom_size < 0 || rom_size > max_size) {
error_report("Couldn't load rom image '%s'.", filename);
exit(1);
if (machine->firmware != NULL) {
sysboot_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, machine->firmware);
if (sysboot_filename != NULL) {
- if (load_image_targphys(sysboot_filename, 0xfff88000, 0x8000) < 0) {
+ if (load_image_targphys(sysboot_filename, 0xfff88000, 0x8000,
+ NULL) < 0) {
error_report("Unable to load %s", machine->firmware);
exit(1);
}
? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
/* load the firmware image (typically kernel.img) */
r = load_image_targphys(machine->firmware, firmware_addr,
- ram_size - firmware_addr);
+ ram_size - firmware_addr, NULL);
if (r < 0) {
error_report("Failed to load firmware from %s", machine->firmware);
exit(1);
exit(1);
}
image_size = load_image_targphys(fn, map[VE_NORFLASH0],
- VEXPRESS_FLASH_SIZE);
+ VEXPRESS_FLASH_SIZE, NULL);
g_free(fn);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", machine->firmware);
if (size < 0 || s->force_raw) {
/* Default to the maximum size being the machine's ram size */
- size = load_image_targphys_as(s->file, s->addr, current_machine->ram_size, as);
+ size = load_image_targphys_as(s->file, s->addr,
+ current_machine->ram_size, as, NULL);
} else {
s->addr = entry;
}
/* Default to the maximum size being the machine's ram size */
size = load_image_targphys_as(file, s->addr, current_machine->ram_size,
- NULL);
+ NULL, NULL);
if (size < 0) {
error_setg(errp, "Cannot load specified image %s", file);
return;
#include "qapi/error.h"
#include "qapi/qapi-commands-machine.h"
#include "qapi/type-helpers.h"
+#include "qemu/units.h"
#include "trace.h"
#include "hw/hw.h"
#include "disas/disas.h"
static int roms_loaded;
/* return the size or -1 if error */
-int64_t get_image_size(const char *filename)
+int64_t get_image_size(const char *filename, Error **errp)
{
int fd;
int64_t size;
- fd = qemu_open(filename, O_RDONLY | O_BINARY, NULL);
+ fd = qemu_open(filename, O_RDONLY | O_BINARY, errp);
if (fd < 0)
return -1;
size = lseek(fd, 0, SEEK_END);
}
ssize_t load_image_targphys(const char *filename,
- hwaddr addr, uint64_t max_sz)
+ hwaddr addr, uint64_t max_sz, Error **errp)
{
- return load_image_targphys_as(filename, addr, max_sz, NULL);
+ return load_image_targphys_as(filename, addr, max_sz, NULL, errp);
}
/* return the size or -1 if error */
ssize_t load_image_targphys_as(const char *filename,
- hwaddr addr, uint64_t max_sz, AddressSpace *as)
+ hwaddr addr, uint64_t max_sz, AddressSpace *as,
+ Error **errp)
{
ssize_t size;
- size = get_image_size(filename);
+ size = get_image_size(filename, errp);
if (size < 0 || size > max_sz) {
return -1;
}
return -1;
}
- size = get_image_size(filename);
+ size = get_image_size(filename, NULL);
if (size < 0 || size > memory_region_size(mr)) {
return -1;
ram_addr_t initrd_base;
int64_t initrd_size;
- initrd_size = get_image_size(initrd_filename);
+ initrd_size = get_image_size(initrd_filename, NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
- load_image_targphys(initrd_filename, initrd_base, initrd_size);
+ load_image_targphys(initrd_filename, initrd_base, initrd_size,
+ NULL);
cpu[0]->env.initrd_base = initrd_base;
cpu[0]->env.initrd_end = initrd_base + initrd_size;
}
*next_space = '\0';
}
mb_debug("multiboot loading module: %s", one_file);
- mb_mod_length = get_image_size(one_file);
+ mb_mod_length = get_image_size(one_file, NULL);
if (mb_mod_length < 0) {
error_report("Failed to open file '%s'", one_file);
exit(1);
exit(1);
}
- dtb_size = get_image_size(dtb_filename);
+ dtb_size = get_image_size(dtb_filename, NULL);
if (dtb_size <= 0) {
fprintf(stderr, "qemu: error reading dtb %s: %s\n",
dtb_filename, strerror(errno));
bios_name = MACHINE(x86ms)->firmware ?: default_firmware;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
- bios_size = get_image_size(filename);
+ bios_size = get_image_size(filename, NULL);
} else {
bios_size = -1;
}
goto out;
}
- fsize = get_image_size(fru->filename);
+ fsize = get_image_size(fru->filename, NULL);
if (fsize > 0) {
size = QEMU_ALIGN_UP(fsize, fru->areasize);
fru->data = g_malloc0(size);
}
if (info->initrd_filename) {
- ssize_t initrd_size = get_image_size(info->initrd_filename);
-
+ ssize_t initrd_size = get_image_size(info->initrd_filename, NULL);
if (initrd_size > 0) {
initrd_offset = ROUND_UP(kernel_high + 4 * kernel_size, 64 * KiB);
initrd_offset = alloc_initrd_memory(info, initrd_offset,
initrd_size);
initrd_size = load_image_targphys(info->initrd_filename,
- initrd_offset, initrd_size);
+ initrd_offset, initrd_size, NULL);
}
if (initrd_size == -1) {
}
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR,
- ram_size - KERNEL_LOAD_ADDR);
+ ram_size - KERNEL_LOAD_ADDR, NULL);
entry = KERNEL_LOAD_ADDR;
}
if (kernel_size < 0) {
error_report("Could not find ROM image '%s'", machine->firmware);
exit(1);
}
- if (load_image_targphys(fn, 0x0, ROM_SIZE) < 8) {
+ if (load_image_targphys(fn, 0x0, ROM_SIZE, NULL) < 8) {
error_report("Could not load ROM image '%s'", machine->firmware);
exit(1);
}
}
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, 0x40000000,
- ram_size);
+ ram_size, NULL);
entry = 0x40000000;
}
if (kernel_size < 0) {
memory_region_init_alias(&m->rom2, NULL, "next.rom2", &m->rom, 0x0,
0x20000);
memory_region_add_subregion(sysmem, 0x0, &m->rom2);
- if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
+ if (load_image_targphys(bios_name, 0x01000000, 0x20000, NULL) < 8) {
if (!qtest_enabled()) {
error_report("Failed to load firmware '%s'.", bios_name);
}
/* load initrd */
if (initrd_filename) {
- initrd_size = get_image_size(initrd_filename);
+ initrd_size = get_image_size(initrd_filename, NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
initrd_base = (ram_size - initrd_size) & TARGET_PAGE_MASK;
load_image_targphys(initrd_filename, initrd_base,
- ram_size - initrd_base);
+ ram_size - initrd_base, NULL);
BOOTINFO2(param_ptr, BI_RAMDISK, initrd_base,
initrd_size);
} else {
/* Load MacROM binary */
if (filename) {
- bios_size = load_image_targphys(filename, MACROM_ADDR, MACROM_SIZE);
+ bios_size = load_image_targphys(filename, MACROM_ADDR, MACROM_SIZE,
+ NULL);
g_free(filename);
} else {
bios_size = -1;
/* load initrd */
if (initrd_filename) {
- initrd_size = get_image_size(initrd_filename);
+ initrd_size = get_image_size(initrd_filename, NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
initrd_base = (ram_size - initrd_size) & TARGET_PAGE_MASK;
load_image_targphys(initrd_filename, initrd_base,
- ram_size - initrd_base);
+ ram_size - initrd_base, NULL);
BOOTINFO2(param_ptr, BI_RAMDISK, initrd_base,
initrd_size);
} else {
/* Not an ELF image nor an u-boot image, try a RAW image. */
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, ddr_base,
- ramsize);
+ ramsize, NULL);
boot_info.bootstrap_pc = ddr_base;
high = (ddr_base + kernel_size + 3) & ~3;
}
if (initrd_size < 0) {
initrd_size = load_image_targphys(initrd_filename,
boot_info.initrd_start,
- ramsize - initrd_offset);
+ ramsize - initrd_offset,
+ NULL);
}
if (initrd_size < 0) {
error_report("could not load initrd '%s'",
if (machine->firmware) {
fw_size = load_image_targphys(machine->firmware,
- 0x1fc00000, 4 * MiB);
+ 0x1fc00000, 4 * MiB, NULL);
if (fw_size == -1) {
error_report("unable to load firmware image '%s'",
machine->firmware);
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
- initrd_size = get_image_size(loaderparams.initrd_filename);
+ initrd_size = get_image_size(loaderparams.initrd_filename, NULL);
if (initrd_size > 0) {
initrd_offset = ROUND_UP(kernel_high, INITRD_PAGE_SIZE);
if (initrd_offset + initrd_size > loaderparams.ram_size) {
exit(1);
}
initrd_size = load_image_targphys(loaderparams.initrd_filename,
- initrd_offset,
- loaderparams.ram_size - initrd_offset);
+ initrd_offset,
+ loaderparams.ram_size - initrd_offset,
+ NULL);
}
if (initrd_size == (target_ulong) -1) {
error_report("could not load initial ram disk '%s'",
machine->firmware ?: FULOONG_BIOSNAME);
if (filename) {
bios_size = load_image_targphys(filename, 0x1fc00000LL,
- BIOS_SIZE);
+ BIOS_SIZE, NULL);
g_free(filename);
} else {
bios_size = -1;
machine->firmware ?: bios_name);
if (filename) {
bios_size = load_image_targphys(filename, 0xfff00000LL,
- MAGNUM_BIOS_SIZE);
+ MAGNUM_BIOS_SIZE, NULL);
g_free(filename);
} else {
bios_size = -1;
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
- initrd_size = get_image_size(loaderparams.initrd_filename);
+ initrd_size = get_image_size(loaderparams.initrd_filename, NULL);
if (initrd_size > 0) {
initrd_offset = MAX(loader_memmap[LOADER_INITRD].base,
ROUND_UP(kernel_high, INITRD_PAGE_SIZE));
}
initrd_size = load_image_targphys(loaderparams.initrd_filename,
- initrd_offset,
- loaderparams.ram_size - initrd_offset);
+ initrd_offset,
+ loaderparams.ram_size - initrd_offset,
+ NULL);
}
if (initrd_size == (target_ulong) -1) {
if (filename) {
bios_size = load_image_targphys(filename,
virt_memmap[VIRT_BIOS_ROM].base,
- virt_memmap[VIRT_BIOS_ROM].size);
+ virt_memmap[VIRT_BIOS_ROM].size,
+ NULL);
g_free(filename);
} else {
bios_size = -1;
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
- initrd_size = get_image_size(loaderparams.initrd_filename);
+ initrd_size = get_image_size(loaderparams.initrd_filename, NULL);
if (initrd_size > 0) {
/*
* The kernel allocates the bootmap memory in the low memory after
exit(1);
}
initrd_size = load_image_targphys(loaderparams.initrd_filename,
- initrd_offset,
- loaderparams.ram_size - initrd_offset);
+ initrd_offset,
+ loaderparams.ram_size - initrd_offset,
+ NULL);
}
if (initrd_size == (target_ulong) -1) {
error_report("could not load initial ram disk '%s'",
machine->firmware ?: bios_name);
if (filename) {
bios_size = load_image_targphys(filename, FLASH_ADDRESS,
- BIOS_SIZE);
+ BIOS_SIZE, NULL);
g_free(filename);
} else {
bios_size = -1;
path = g_strdup(nd->romfile);
}
- size = get_image_size(path);
+ size = get_image_size(path, NULL);
if (size < 0) {
error_setg(errp, "failed to find romfile \"%s\"", nd->romfile);
g_free(path);
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
- ram_size - KERNEL_LOAD_ADDR);
+ ram_size - KERNEL_LOAD_ADDR,
+ NULL);
high_addr = KERNEL_LOAD_ADDR + kernel_size;
}
size = load_ramdisk(filename, start, mem_size - start);
if (size < 0) {
- size = load_image_targphys(filename, start, mem_size - start);
+ size = load_image_targphys(filename, start, mem_size - start, NULL);
if (size < 0) {
error_report("could not load ramdisk '%s'", filename);
exit(1);
path = g_strdup(pdev->romfile);
}
- size = get_image_size(path);
+ size = get_image_size(path, NULL);
if (size < 0) {
error_setg(errp, "failed to find romfile \"%s\"", pdev->romfile);
return;
error_report("Could not find firmware '%s'", machine->firmware);
exit(1);
}
- sz = load_image_targphys(filename, PROM_ADDR, PROM_SIZE);
+ sz = load_image_targphys(filename, PROM_ADDR, PROM_SIZE, NULL);
if (sz <= 0 || sz > PROM_SIZE) {
error_report("Could not load firmware '%s'", filename);
exit(1);
loadaddr = ROUND_UP(loadaddr + 4 * MiB, 4 * KiB);
loadaddr = MAX(loadaddr, INITRD_MIN_ADDR);
sz = load_image_targphys(machine->initrd_filename, loadaddr,
- bi->bd_info - loadaddr);
+ bi->bd_info - loadaddr, NULL);
if (sz <= 0) {
error_report("Could not load initrd '%s'",
machine->initrd_filename);
kernel_base = cur_base;
kernel_size = load_image_targphys(machine->kernel_filename,
cur_base,
- machine->ram_size - cur_base);
+ machine->ram_size - cur_base, NULL);
if (kernel_size < 0) {
error_report("could not load kernel '%s'",
machine->kernel_filename);
if (machine->initrd_filename) {
initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
initrd_size = load_image_targphys(machine->initrd_filename, initrd_base,
- machine->ram_size - initrd_base);
+ machine->ram_size - initrd_base,
+ NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
if (bios_size <= 0) {
/* or load binary ROM image */
- bios_size = load_image_targphys(filename, PROM_BASE, PROM_SIZE);
+ bios_size = load_image_targphys(filename, PROM_BASE, PROM_SIZE,
+ NULL);
}
g_free(filename);
}
if (kernel_size < 0) {
kernel_size = load_image_targphys(machine->kernel_filename,
kernel_base,
- machine->ram_size - kernel_base);
+ machine->ram_size - kernel_base,
+ NULL);
}
if (kernel_size < 0) {
error_report("could not load kernel '%s'",
initrd_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP);
initrd_size = load_image_targphys(machine->initrd_filename,
initrd_base,
- machine->ram_size - initrd_base);
+ machine->ram_size - initrd_base,
+ NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
machine->initrd_filename);
if (bios_size <= 0) {
/* or if could not load ELF try loading a binary ROM image */
- bios_size = load_image_targphys(filename, PROM_BASE, PROM_SIZE);
+ bios_size = load_image_targphys(filename, PROM_BASE, PROM_SIZE,
+ NULL);
bios_addr = PROM_BASE;
}
g_free(filename);
if (kernel_size < 0) {
kernel_size = load_image_targphys(machine->kernel_filename,
kernel_base,
- machine->ram_size - kernel_base);
+ machine->ram_size - kernel_base,
+ NULL);
}
if (kernel_size < 0) {
error_report("could not load kernel '%s'",
KERNEL_GAP);
initrd_size = load_image_targphys(machine->initrd_filename,
initrd_base,
- machine->ram_size - initrd_base);
+ machine->ram_size - initrd_base,
+ NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
machine->initrd_filename);
sz = load_elf(filename, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
ELFDATA2MSB, PPC_ELF_MACHINE, 0, 0);
if (sz <= 0) {
- sz = load_image_targphys(filename, pm->vof ? 0 : prom_addr, PROM_SIZE);
+ sz = load_image_targphys(filename, pm->vof ? 0 : prom_addr, PROM_SIZE,
+ NULL);
}
if (sz <= 0 || sz > PROM_SIZE) {
error_report("Could not load firmware '%s'", filename);
pm->initrd_addr = ROUND_UP(pm->initrd_addr, 4);
pm->initrd_addr = MAX(pm->initrd_addr, INITRD_MIN_ADDR);
sz = load_image_targphys(machine->initrd_filename, pm->initrd_addr,
- machine->ram_size - pm->initrd_addr);
+ machine->ram_size - pm->initrd_addr, NULL);
if (sz <= 0) {
error_report("Could not load initrd '%s'",
machine->initrd_filename);
exit(1);
}
- fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
+ fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE,
+ NULL);
if (fw_size < 0) {
error_report("Could not load OPAL firmware '%s'", fw_filename);
exit(1);
long kernel_size;
kernel_size = load_image_targphys(machine->kernel_filename,
- KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
+ KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE,
+ NULL);
if (kernel_size < 0) {
error_report("Could not load kernel '%s'",
machine->kernel_filename);
if (machine->initrd_filename) {
pnv->initrd_base = INITRD_LOAD_ADDR;
pnv->initrd_size = load_image_targphys(machine->initrd_filename,
- pnv->initrd_base, INITRD_MAX_SIZE);
+ pnv->initrd_base,
+ INITRD_MAX_SIZE, NULL);
if (pnv->initrd_size < 0) {
error_report("Could not load initial ram disk '%s'",
machine->initrd_filename);
/* Load initrd. */
if (initrd_filename) {
initrd_size = load_image_targphys(initrd_filename, RAMDISK_ADDR,
- machine->ram_size - RAMDISK_ADDR);
+ machine->ram_size - RAMDISK_ADDR,
+ NULL);
if (initrd_size < 0) {
error_report("could not load ram disk '%s' at %x",
bios_size = load_elf(filename, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
ELFDATA2MSB, PPC_ELF_MACHINE, 0, 0);
if (bios_size < 0) {
- bios_size = load_image_targphys(filename, BIOS_ADDR, BIOS_SIZE);
+ bios_size = load_image_targphys(filename, BIOS_ADDR, BIOS_SIZE, NULL);
}
if (bios_size < 0 || bios_size > BIOS_SIZE) {
error_report("Could not load bios image '%s'", filename);
kernel_base = KERNEL_LOAD_ADDR;
kernel_size = load_image_targphys(machine->kernel_filename,
kernel_base,
- machine->ram_size - kernel_base);
+ machine->ram_size - kernel_base,
+ NULL);
if (kernel_size < 0) {
error_report("could not load kernel '%s'",
machine->kernel_filename);
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image_targphys(machine->initrd_filename,
initrd_base,
- machine->ram_size - initrd_base);
+ machine->ram_size - initrd_base,
+ NULL);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
machine->initrd_filename);
if (machine->initrd_filename) {
initrd_size = load_image_targphys(machine->initrd_filename,
RAMDISK_ADDR,
- machine->ram_size - RAMDISK_ADDR);
+ machine->ram_size - RAMDISK_ADDR,
+ NULL);
if (initrd_size < 0) {
error_report("could not load ram disk '%s' at %x",
machine->initrd_filename, RAMDISK_ADDR);
error_report("Could not find LPAR firmware '%s'", bios_name);
exit(1);
}
- fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
+ fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE, NULL);
if (fw_size <= 0) {
error_report("Could not load LPAR firmware '%s'", filename);
exit(1);
spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
+ 0x1ffff) & ~0xffff;
spapr->initrd_size = load_image_targphys(initrd_filename,
- spapr->initrd_base,
- load_limit
- - spapr->initrd_base);
+ spapr->initrd_base,
+ load_limit - spapr->initrd_base,
+ NULL);
if (spapr->initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
/* If we failed loading ELF's try a raw image. */
kernel_size = load_image_targphys(kernel_filename,
boot_offset,
- machine->ram_size);
+ machine->ram_size, NULL);
boot_info.bootstrap_pc = boot_offset;
high = boot_info.bootstrap_pc + kernel_size + 8192;
}
if (machine->initrd_filename) {
initrd_base = high = ROUND_UP(high, 4);
initrd_size = load_image_targphys(machine->initrd_filename,
- high, machine->ram_size - high);
+ high, machine->ram_size - high,
+ NULL);
if (initrd_size < 0) {
error_report("couldn't load ram disk '%s'",
firmware_size = load_image_targphys_as(firmware_filename,
*firmware_load_addr,
- current_machine->ram_size, NULL);
+ current_machine->ram_size, NULL,
+ NULL);
if (firmware_size > 0) {
return *firmware_load_addr + firmware_size;
size = load_ramdisk(filename, start, mem_size - start);
if (size == -1) {
- size = load_image_targphys(filename, start, mem_size - start);
+ size = load_image_targphys(filename, start, mem_size - start, NULL);
if (size == -1) {
error_report("could not load ramdisk '%s'", filename);
exit(1);
}
kernel_size = load_image_targphys_as(kernel_filename, kernel_start_addr,
- current_machine->ram_size, NULL);
+ current_machine->ram_size, NULL, NULL);
if (kernel_size > 0) {
info->kernel_size = kernel_size;
info->image_low_addr = kernel_start_addr;
long kernel_size;
int i;
- kernel_size = load_image_targphys(filename, start, size);
+ kernel_size = load_image_targphys(filename, start, size, NULL);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n", filename);
exit(1);
} else {
/* Try to load non-ELF file */
bios_size = load_image_targphys(bios_filename, ZIPL_IMAGE_START,
- 4096);
+ 4096, NULL);
ipl->bios_start_addr = ZIPL_IMAGE_START;
}
g_free(bios_filename);
&pentry, NULL,
NULL, NULL, ELFDATA2MSB, EM_S390, 0, 0);
if (kernel_size < 0) {
- kernel_size = load_image_targphys(ipl->kernel, 0, ms->ram_size);
+ kernel_size = load_image_targphys(ipl->kernel, 0, ms->ram_size,
+ NULL);
if (kernel_size < 0) {
error_setg(errp, "could not load kernel '%s'", ipl->kernel);
return;
initrd_offset += 0x100000;
}
initrd_size = load_image_targphys(ipl->initrd, initrd_offset,
- ms->ram_size - initrd_offset);
+ ms->ram_size - initrd_offset,
+ NULL);
if (initrd_size == -1) {
error_setg(errp, "could not load initrd '%s'", ipl->initrd);
return;
int kernel_size;
kernel_size = load_image_targphys(kernel_filename,
- SDRAM_BASE + LINUX_LOAD_OFFSET,
- INITRD_LOAD_OFFSET - LINUX_LOAD_OFFSET);
+ SDRAM_BASE + LINUX_LOAD_OFFSET,
+ INITRD_LOAD_OFFSET - LINUX_LOAD_OFFSET,
+ NULL);
if (kernel_size < 0) {
error_report("qemu: could not load kernel '%s'", kernel_filename);
exit(1);
initrd_size = load_image_targphys(initrd_filename,
SDRAM_BASE + INITRD_LOAD_OFFSET,
- SDRAM_SIZE - INITRD_LOAD_OFFSET);
+ SDRAM_SIZE - INITRD_LOAD_OFFSET,
+ NULL);
if (initrd_size < 0) {
error_report("qemu: could not load initrd '%s'", initrd_filename);
return;
}
- size = get_image_size(val);
+ size = get_image_size(val, NULL);
if (size == -1 || size < sizeof(struct smbios_structure_header)) {
error_setg(errp, "Cannot read SMBIOS file %s", val);
return;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
- bios_size = get_image_size(filename);
+ bios_size = get_image_size(filename, NULL);
} else {
bios_size = -1;
}
}
if (bios_size > 0) {
- ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size);
+ ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size, NULL);
if (ret < 0 || ret > prom_size) {
error_report("could not load prom '%s'", filename);
exit(1);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
- RAM_size - KERNEL_LOAD_ADDR);
+ RAM_size - KERNEL_LOAD_ADDR,
+ NULL);
if (kernel_size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
if (initrd_filename) {
*initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
- RAM_size - INITRD_LOAD_ADDR);
+ RAM_size - INITRD_LOAD_ADDR,
+ NULL);
if ((int)*initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
translate_prom_address, &addr, NULL,
NULL, NULL, NULL, ELFDATA2MSB, EM_SPARC, 0, 0);
if (ret < 0 || ret > PROM_SIZE_MAX) {
- ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
+ ret = load_image_targphys(filename, addr, PROM_SIZE_MAX, NULL);
}
g_free(filename);
} else {
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
- RAM_size - KERNEL_LOAD_ADDR);
+ RAM_size - KERNEL_LOAD_ADDR,
+ NULL);
}
if (kernel_size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
*initrd_size = load_image_targphys(initrd_filename,
*initrd_addr,
- RAM_size - *initrd_addr);
+ RAM_size - *initrd_addr, NULL);
if ((int)*initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
ret = load_elf(filename, NULL, translate_prom_address, &addr,
NULL, NULL, NULL, NULL, ELFDATA2MSB, EM_SPARCV9, 0, 0);
if (ret < 0 || ret > PROM_SIZE_MAX) {
- ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
+ ret = load_image_targphys(filename, addr, PROM_SIZE_MAX, NULL);
}
g_free(filename);
} else {
if (initrd_size < 0) {
initrd_size = load_image_targphys(initrd_filename,
cur_lowmem,
- lowmem_end - cur_lowmem);
+ lowmem_end - cur_lowmem,
+ NULL);
}
if (initrd_size < 0) {
error_report("could not load initrd '%s'", initrd_filename);
#ifndef LOADER_H
#define LOADER_H
#include "hw/nvram/fw_cfg.h"
+#include "qemu/typedefs.h"
/* loader.c */
/**
* Returns the size of the image file on success, -1 otherwise.
* On error, errno is also set as appropriate.
*/
-int64_t get_image_size(const char *filename);
+int64_t get_image_size(const char *filename, Error **errp);
/**
* load_image_size: load an image file into specified buffer
* @filename: Path to the image file
* Returns the size of the loaded image on success, -1 otherwise.
*/
ssize_t load_image_targphys_as(const char *filename,
- hwaddr addr, uint64_t max_sz, AddressSpace *as);
+ hwaddr addr, uint64_t max_sz, AddressSpace *as,
+ Error **errp);
/**load_targphys_hex_as:
* @filename: Path to the .hex file
* an AddressSpace.
*/
ssize_t load_image_targphys(const char *filename, hwaddr,
- uint64_t max_sz);
+ uint64_t max_sz, Error **errp);
/**
* load_image_mr: load an image into a memory region
void *fdt = NULL;
*sizep = 0;
- dt_size = get_image_size(filename_path);
+ dt_size = get_image_size(filename_path, NULL);
if (dt_size < 0) {
error_report("Unable to get size of device tree file '%s'",
filename_path);