Currently, the S1G channelisation implementation differs from that of
VHT, which is the PHY that S1G is based on. The major difference between
the clock rate is 1/10th of VHT. However how their channelisation is
represented within cfg80211 and mac80211 vastly differ.
To rectify this, remove the use of IEEE80211_CHAN_1/2/4.. flags that were
previously used to indicate the control channel width, however it should be
implied that the control channels are 1MHz in the case of S1G. Additionally,
introduce the invert - being IEEE80211_CHAN_NO_4/8/16MHz - that imply
the control channel may not be used for a certain bandwidth. With these
new flags, we can perform regulatory and chandef validation just as we would
for VHT.
To deal with the notion that S1G PHYs may contain a 2MHz primary channel,
introduce a new variable, s1g_primary_2mhz, which indicates whether we are
operating on a 2MHz primary channel. In this case, the chandef::chan points to
the 1MHz primary channel pointed to by the primary channel location. Alongside
this, introduce some new helper routines that can extract the sibling 1MHz
channel. The sibling being the alternate 1MHz primary subchannel within the
2MHz primary channel that is not pointed to by chandef::chan.
Furthermore, due to unique restrictions imposed on S1G PHYs, introduce
a new flag, IEEE80211_CHAN_S1G_NO_PRIMARY, which states that the 1MHz channel
cannot be used as a primary channel. This is assumed to be set by vendors
as it is hardware and regdom specific, When we validate a 2MHz primary channel,
we need to ensure both 1MHz subchannels do not contain this flag. If one or
both of the 1MHz subchannels contain this flag then the 2MHz primary is not
permitted for use as a primary channel.
Properly integrate S1G channel validation such that it is implemented
according with other PHY types such as VHT. Additionally, implement a new
S1G-specific regulatory flag to allow cfg80211 to understand specific
vendor requirements for S1G PHYs.
Signed-off-by: Arien Judge <arien.judge@morsemicro.com>
Signed-off-by: Andrew Pope <andrew.pope@morsemicro.com>
Signed-off-by: Lachlan Hodges <lachlan.hodges@morsemicro.com>
Link: https://patch.msgid.link/20250918051913.500781-2-lachlan.hodges@morsemicro.com
[remove redundant NL80211_ATTR_S1G_PRIMARY_2MHZ check]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
* with very low power (VLP), even if otherwise set to NO_IR.
* @IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY: Allow activity on a 20 MHz channel,
* even if otherwise set to NO_IR.
+ * @IEEE80211_CHAN_S1G_NO_PRIMARY: Prevents the channel for use as an S1G
+ * primary channel. Does not prevent the wider operating channel
+ * described by the chandef from being used. In order for a 2MHz primary
+ * to be used, both 1MHz subchannels shall not contain this flag.
+ * @IEEE80211_CHAN_NO_4MHZ: 4 MHz bandwidth is not permitted on this channel.
+ * @IEEE80211_CHAN_NO_8MHZ: 8 MHz bandwidth is not permitted on this channel.
+ * @IEEE80211_CHAN_NO_16MHZ: 16 MHz bandwidth is not permitted on this channel.
*/
enum ieee80211_channel_flags {
IEEE80211_CHAN_DISABLED = BIT(0),
IEEE80211_CHAN_CAN_MONITOR = BIT(24),
IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP = BIT(25),
IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY = BIT(26),
+ IEEE80211_CHAN_S1G_NO_PRIMARY = BIT(27),
+ IEEE80211_CHAN_NO_4MHZ = BIT(28),
+ IEEE80211_CHAN_NO_8MHZ = BIT(29),
+ IEEE80211_CHAN_NO_16MHZ = BIT(30),
};
#define IEEE80211_CHAN_NO_HT40 \
* @punctured: mask of the punctured 20 MHz subchannels, with
* bits turned on being disabled (punctured); numbered
* from lower to higher frequency (like in the spec)
+ * @s1g_primary_2mhz: Indicates if the control channel pointed to
+ * by 'chan' exists as a 1MHz primary subchannel within an
+ * S1G 2MHz primary channel.
*/
struct cfg80211_chan_def {
struct ieee80211_channel *chan;
struct ieee80211_edmg edmg;
u16 freq1_offset;
u16 punctured;
+ bool s1g_primary_2mhz;
};
/*
return chandef->edmg.channels || chandef->edmg.bw_config;
}
+/**
+ * cfg80211_chandef_is_s1g - check if chandef represents an S1G channel
+ * @chandef: the channel definition
+ *
+ * Return: %true if S1G.
+ */
+static inline bool
+cfg80211_chandef_is_s1g(const struct cfg80211_chan_def *chandef)
+{
+ return chandef->chan->band == NL80211_BAND_S1GHZ;
+}
+
/**
* cfg80211_chandef_compatible - check if two channel definitions are compatible
* @chandef1: first channel definition
void *data);
#endif
+/**
+ * cfg80211_s1g_get_start_freq_khz - get S1G chandef start frequency
+ * @chandef: the chandef to use
+ *
+ * Return: the chandefs starting frequency in KHz
+ */
+static inline u32
+cfg80211_s1g_get_start_freq_khz(const struct cfg80211_chan_def *chandef)
+{
+ u32 bw_mhz = cfg80211_chandef_get_width(chandef);
+ u32 center_khz =
+ MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
+ return center_khz - bw_mhz * 500 + 500;
+}
+
+/**
+ * cfg80211_s1g_get_end_freq_khz - get S1G chandef end frequency
+ * @chandef: the chandef to use
+ *
+ * Return: the chandefs ending frequency in KHz
+ */
+static inline u32
+cfg80211_s1g_get_end_freq_khz(const struct cfg80211_chan_def *chandef)
+{
+ u32 bw_mhz = cfg80211_chandef_get_width(chandef);
+ u32 center_khz =
+ MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
+ return center_khz + bw_mhz * 500 - 500;
+}
+
+/**
+ * cfg80211_s1g_get_primary_sibling - retrieve the sibling 1MHz subchannel
+ * for an S1G chandef using a 2MHz primary channel.
+ * @wiphy: wiphy the channel belongs to
+ * @chandef: the chandef to use
+ *
+ * When chandef::s1g_primary_2mhz is set to true, we are operating on a 2MHz
+ * primary channel. The 1MHz subchannel designated by the primary channel
+ * location exists within chandef::chan, whilst the 'sibling' is denoted as
+ * being the other 1MHz subchannel that make up the 2MHz primary channel.
+ *
+ * Returns: the sibling 1MHz &struct ieee80211_channel, or %NULL on failure.
+ */
+static inline struct ieee80211_channel *
+cfg80211_s1g_get_primary_sibling(struct wiphy *wiphy,
+ const struct cfg80211_chan_def *chandef)
+{
+ int width_mhz = cfg80211_chandef_get_width(chandef);
+ u32 pri_1mhz_khz, sibling_1mhz_khz, op_low_1mhz_khz, pri_index;
+
+ if (!chandef->s1g_primary_2mhz || width_mhz < 2)
+ return NULL;
+
+ pri_1mhz_khz = ieee80211_channel_to_khz(chandef->chan);
+ op_low_1mhz_khz = cfg80211_s1g_get_start_freq_khz(chandef);
+
+ /*
+ * Compute the index of the primary 1 MHz subchannel within the
+ * operating channel, relative to the lowest 1 MHz center frequency.
+ * Flip the least significant bit to select the even/odd sibling,
+ * then translate that index back into a channel frequency.
+ */
+ pri_index = (pri_1mhz_khz - op_low_1mhz_khz) / 1000;
+ sibling_1mhz_khz = op_low_1mhz_khz + ((pri_index ^ 1) * 1000);
+
+ return ieee80211_get_channel_khz(wiphy, sibling_1mhz_khz);
+}
+
#endif /* __NET_CFG80211_H */
* capabilities supported by the driver. See &enum nl80211_nan_capabilities
* for details.
*
+ * @NL80211_ATTR_S1G_PRIMARY_2MHZ: flag attribute indicating that the S1G
+ * primary channel is 2 MHz wide, and the control channel designates
+ * the 1 MHz primary subchannel within that 2 MHz primary.
+ *
* @NUM_NL80211_ATTR: total number of nl80211_attrs available
* @NL80211_ATTR_MAX: highest attribute number currently defined
* @__NL80211_ATTR_AFTER_LAST: internal use
NL80211_ATTR_NAN_NEW_CLUSTER,
NL80211_ATTR_NAN_CAPABILITIES,
+ NL80211_ATTR_S1G_PRIMARY_2MHZ,
+
/* add attributes here, update the policy in nl80211.c */
__NL80211_ATTR_AFTER_LAST,
* very low power (VLP) AP, despite being NO_IR.
* @NL80211_FREQUENCY_ATTR_ALLOW_20MHZ_ACTIVITY: This channel can be active in
* 20 MHz bandwidth, despite being NO_IR.
+ * @NL80211_FREQUENCY_ATTR_NO_4MHZ: 4 MHz operation is not allowed on this
+ * channel in current regulatory domain.
+ * @NL80211_FREQUENCY_ATTR_NO_8MHZ: 8 MHz operation is not allowed on this
+ * channel in current regulatory domain.
+ * @NL80211_FREQUENCY_ATTR_NO_16MHZ: 16 MHz operation is not allowed on this
+ * channel in current regulatory domain.
* @NL80211_FREQUENCY_ATTR_MAX: highest frequency attribute number
* currently defined
* @__NL80211_FREQUENCY_ATTR_AFTER_LAST: internal use
NL80211_FREQUENCY_ATTR_CAN_MONITOR,
NL80211_FREQUENCY_ATTR_ALLOW_6GHZ_VLP_AP,
NL80211_FREQUENCY_ATTR_ALLOW_20MHZ_ACTIVITY,
+ NL80211_FREQUENCY_ATTR_NO_4MHZ,
+ NL80211_FREQUENCY_ATTR_NO_8MHZ,
+ NL80211_FREQUENCY_ATTR_NO_16MHZ,
/* keep last */
__NL80211_FREQUENCY_ATTR_AFTER_LAST,
punctured = 0) : (punctured >>= 1))) \
if (!(punctured & 1))
+#define for_each_s1g_subchan(chandef, freq_khz) \
+ for (freq_khz = cfg80211_s1g_get_start_freq_khz(chandef); \
+ freq_khz <= cfg80211_s1g_get_end_freq_khz(chandef); \
+ freq_khz += MHZ_TO_KHZ(1))
+
struct cfg80211_per_bw_puncturing_values {
u8 len;
const u16 *valid_values;
bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
{
- u32 control_freq, oper_freq;
- int oper_width, control_width;
+ u32 control_freq, control_freq_khz, start_khz, end_khz;
if (!chandef->chan)
return false;
case NL80211_CHAN_WIDTH_4:
case NL80211_CHAN_WIDTH_8:
case NL80211_CHAN_WIDTH_16:
- if (chandef->chan->band != NL80211_BAND_S1GHZ)
- return false;
-
- control_freq = ieee80211_channel_to_khz(chandef->chan);
- oper_freq = ieee80211_chandef_to_khz(chandef);
- control_width = nl80211_chan_width_to_mhz(
- ieee80211_s1g_channel_width(
- chandef->chan));
- oper_width = cfg80211_chandef_get_width(chandef);
-
- if (oper_width < 0 || control_width < 0)
+ if (!cfg80211_chandef_is_s1g(chandef))
return false;
if (chandef->center_freq2)
return false;
- if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
- oper_freq + MHZ_TO_KHZ(oper_width) / 2)
- return false;
+ control_freq_khz = ieee80211_channel_to_khz(chandef->chan);
+ start_khz = cfg80211_s1g_get_start_freq_khz(chandef);
+ end_khz = cfg80211_s1g_get_end_freq_khz(chandef);
- if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
- oper_freq - MHZ_TO_KHZ(oper_width) / 2)
+ if (control_freq_khz < start_khz || control_freq_khz > end_khz)
return false;
break;
case NL80211_CHAN_WIDTH_80P80:
!cfg80211_edmg_chandef_valid(chandef))
return false;
+ if (!cfg80211_chandef_is_s1g(chandef) && chandef->s1g_primary_2mhz)
+ return false;
+
return valid_puncturing_bitmap(chandef);
}
EXPORT_SYMBOL(cfg80211_chandef_valid);
{
struct ieee80211_channel *c;
+ /* DFS is not required for S1G */
+ if (cfg80211_chandef_is_s1g(chandef))
+ return 0;
+
for_each_subchan(chandef, freq, cf) {
c = ieee80211_get_channel_khz(wiphy, freq);
if (!c)
return true;
}
+static bool cfg80211_s1g_usable(struct wiphy *wiphy,
+ const struct cfg80211_chan_def *chandef)
+{
+ u32 freq_khz;
+ const struct ieee80211_channel *chan;
+ u32 pri_khz = ieee80211_channel_to_khz(chandef->chan);
+ u32 end_khz = cfg80211_s1g_get_end_freq_khz(chandef);
+ u32 start_khz = cfg80211_s1g_get_start_freq_khz(chandef);
+ int width_mhz = cfg80211_chandef_get_width(chandef);
+ u32 prohibited_flags = IEEE80211_CHAN_DISABLED;
+
+ if (width_mhz >= 16)
+ prohibited_flags |= IEEE80211_CHAN_NO_16MHZ;
+ if (width_mhz >= 8)
+ prohibited_flags |= IEEE80211_CHAN_NO_8MHZ;
+ if (width_mhz >= 4)
+ prohibited_flags |= IEEE80211_CHAN_NO_4MHZ;
+
+ if (chandef->chan->flags & IEEE80211_CHAN_S1G_NO_PRIMARY)
+ return false;
+
+ if (pri_khz < start_khz || pri_khz > end_khz)
+ return false;
+
+ for_each_s1g_subchan(chandef, freq_khz) {
+ chan = ieee80211_get_channel_khz(wiphy, freq_khz);
+ if (!chan || (chan->flags & prohibited_flags))
+ return false;
+ }
+
+ if (chandef->s1g_primary_2mhz) {
+ u32 sib_khz;
+ const struct ieee80211_channel *sibling;
+
+ sibling = cfg80211_s1g_get_primary_sibling(wiphy, chandef);
+ if (!sibling)
+ return false;
+
+ if (sibling->flags & IEEE80211_CHAN_S1G_NO_PRIMARY)
+ return false;
+
+ sib_khz = ieee80211_channel_to_khz(sibling);
+ if (sib_khz < start_khz || sib_khz > end_khz)
+ return false;
+ }
+
+ return true;
+}
+
bool _cfg80211_chandef_usable(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef,
u32 prohibited_flags,
ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
+ if (cfg80211_chandef_is_s1g(chandef))
+ return cfg80211_s1g_usable(wiphy, chandef);
+
if (edmg_cap->channels &&
!cfg80211_edmg_usable(wiphy,
chandef->edmg.channels,
control_freq = chandef->chan->center_freq;
switch (chandef->width) {
- case NL80211_CHAN_WIDTH_1:
- width = 1;
- break;
- case NL80211_CHAN_WIDTH_2:
- width = 2;
- break;
- case NL80211_CHAN_WIDTH_4:
- width = 4;
- break;
- case NL80211_CHAN_WIDTH_8:
- width = 8;
- break;
- case NL80211_CHAN_WIDTH_16:
- width = 16;
- break;
case NL80211_CHAN_WIDTH_5:
width = 5;
break;
[NL80211_ATTR_S1G_SHORT_BEACON] =
NLA_POLICY_NESTED(nl80211_s1g_short_beacon),
[NL80211_ATTR_BSS_PARAM] = { .type = NLA_FLAG },
+ [NL80211_ATTR_S1G_PRIMARY_2MHZ] = { .type = NLA_FLAG },
};
/* policy for the key attributes */
nla_put_flag(msg,
NL80211_FREQUENCY_ATTR_ALLOW_20MHZ_ACTIVITY))
goto nla_put_failure;
+ if ((chan->flags & IEEE80211_CHAN_NO_4MHZ) &&
+ nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_4MHZ))
+ goto nla_put_failure;
+ if ((chan->flags & IEEE80211_CHAN_NO_8MHZ) &&
+ nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_8MHZ))
+ goto nla_put_failure;
+ if ((chan->flags & IEEE80211_CHAN_NO_16MHZ) &&
+ nla_put_flag(msg, NL80211_FREQUENCY_ATTR_NO_16MHZ))
+ goto nla_put_failure;
}
if (nla_put_u32(msg, NL80211_FREQUENCY_ATTR_MAX_TX_POWER,
chandef->center_freq1 = KHZ_TO_MHZ(control_freq);
chandef->freq1_offset = control_freq % 1000;
chandef->center_freq2 = 0;
+ chandef->s1g_primary_2mhz = false;
if (!chandef->chan) {
NL_SET_ERR_MSG_ATTR(extack, attrs[NL80211_ATTR_WIPHY_FREQ],
return -EINVAL;
}
} else if (attrs[NL80211_ATTR_CHANNEL_WIDTH]) {
- chandef->width =
- nla_get_u32(attrs[NL80211_ATTR_CHANNEL_WIDTH]);
- if (chandef->chan->band == NL80211_BAND_S1GHZ) {
- /* User input error for channel width doesn't match channel */
- if (chandef->width != ieee80211_s1g_channel_width(chandef->chan)) {
- NL_SET_ERR_MSG_ATTR(extack,
- attrs[NL80211_ATTR_CHANNEL_WIDTH],
- "bad channel width");
- return -EINVAL;
- }
- }
+ chandef->width = nla_get_u32(attrs[NL80211_ATTR_CHANNEL_WIDTH]);
if (attrs[NL80211_ATTR_CENTER_FREQ1]) {
chandef->center_freq1 =
nla_get_u32(attrs[NL80211_ATTR_CENTER_FREQ1]);
- chandef->freq1_offset =
- nla_get_u32_default(attrs[NL80211_ATTR_CENTER_FREQ1_OFFSET],
- 0);
+ chandef->freq1_offset = nla_get_u32_default(
+ attrs[NL80211_ATTR_CENTER_FREQ1_OFFSET], 0);
}
+
if (attrs[NL80211_ATTR_CENTER_FREQ2])
chandef->center_freq2 =
nla_get_u32(attrs[NL80211_ATTR_CENTER_FREQ2]);
+
+ chandef->s1g_primary_2mhz = nla_get_flag(
+ attrs[NL80211_ATTR_S1G_PRIMARY_2MHZ]);
}
if (info->attrs[NL80211_ATTR_WIPHY_EDMG_CHANNELS]) {
goto out_free;
}
- /* ignore disabled channels */
+ /* Ignore disabled / no primary channels */
if (chan->flags & IEEE80211_CHAN_DISABLED ||
+ chan->flags & IEEE80211_CHAN_S1G_NO_PRIMARY ||
!cfg80211_wdev_channel_allowed(wdev, chan))
continue;
chan = &wiphy->bands[band]->channels[j];
if (chan->flags & IEEE80211_CHAN_DISABLED ||
+ chan->flags &
+ IEEE80211_CHAN_S1G_NO_PRIMARY ||
!cfg80211_wdev_channel_allowed(wdev, chan))
continue;
if (reg_rule->flags & NL80211_RRF_AUTO_BW)
max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
+ if (is_s1g) {
+ if (max_bandwidth_khz < MHZ_TO_KHZ(16))
+ bw_flags |= IEEE80211_CHAN_NO_16MHZ;
+ if (max_bandwidth_khz < MHZ_TO_KHZ(8))
+ bw_flags |= IEEE80211_CHAN_NO_8MHZ;
+ if (max_bandwidth_khz < MHZ_TO_KHZ(4))
+ bw_flags |= IEEE80211_CHAN_NO_4MHZ;
+ return bw_flags;
+ }
+
/* If we get a reg_rule we can assume that at least 5Mhz fit */
if (!cfg80211_does_bw_fit_range(freq_range,
center_freq_khz,
MHZ_TO_KHZ(20)))
bw_flags |= IEEE80211_CHAN_NO_20MHZ;
- if (is_s1g) {
- /* S1G is strict about non overlapping channels. We can
- * calculate which bandwidth is allowed per channel by finding
- * the largest bandwidth which cleanly divides the freq_range.
- */
- int edge_offset;
- int ch_bw = max_bandwidth_khz;
-
- while (ch_bw) {
- edge_offset = (center_freq_khz - ch_bw / 2) -
- freq_range->start_freq_khz;
- if (edge_offset % ch_bw == 0) {
- switch (KHZ_TO_MHZ(ch_bw)) {
- case 1:
- bw_flags |= IEEE80211_CHAN_1MHZ;
- break;
- case 2:
- bw_flags |= IEEE80211_CHAN_2MHZ;
- break;
- case 4:
- bw_flags |= IEEE80211_CHAN_4MHZ;
- break;
- case 8:
- bw_flags |= IEEE80211_CHAN_8MHZ;
- break;
- case 16:
- bw_flags |= IEEE80211_CHAN_16MHZ;
- break;
- default:
- /* If we got here, no bandwidths fit on
- * this frequency, ie. band edge.
- */
- bw_flags |= IEEE80211_CHAN_DISABLED;
- break;
- }
- break;
- }
- ch_bw /= 2;
- }
- } else {
- if (max_bandwidth_khz < MHZ_TO_KHZ(10))
- bw_flags |= IEEE80211_CHAN_NO_10MHZ;
- if (max_bandwidth_khz < MHZ_TO_KHZ(20))
- bw_flags |= IEEE80211_CHAN_NO_20MHZ;
- if (max_bandwidth_khz < MHZ_TO_KHZ(40))
- bw_flags |= IEEE80211_CHAN_NO_HT40;
- if (max_bandwidth_khz < MHZ_TO_KHZ(80))
- bw_flags |= IEEE80211_CHAN_NO_80MHZ;
- if (max_bandwidth_khz < MHZ_TO_KHZ(160))
- bw_flags |= IEEE80211_CHAN_NO_160MHZ;
- if (max_bandwidth_khz < MHZ_TO_KHZ(320))
- bw_flags |= IEEE80211_CHAN_NO_320MHZ;
- }
+ if (max_bandwidth_khz < MHZ_TO_KHZ(10))
+ bw_flags |= IEEE80211_CHAN_NO_10MHZ;
+ if (max_bandwidth_khz < MHZ_TO_KHZ(20))
+ bw_flags |= IEEE80211_CHAN_NO_20MHZ;
+ if (max_bandwidth_khz < MHZ_TO_KHZ(40))
+ bw_flags |= IEEE80211_CHAN_NO_HT40;
+ if (max_bandwidth_khz < MHZ_TO_KHZ(80))
+ bw_flags |= IEEE80211_CHAN_NO_80MHZ;
+ if (max_bandwidth_khz < MHZ_TO_KHZ(160))
+ bw_flags |= IEEE80211_CHAN_NO_160MHZ;
+ if (max_bandwidth_khz < MHZ_TO_KHZ(320))
+ bw_flags |= IEEE80211_CHAN_NO_320MHZ;
+
return bw_flags;
}