* Count number of actually tracked objects, instead of trackable objects. This ensures that untracking tuples has the desired effect of reducing GC overhead
* Do not track most untrackable tuples during creation. This prevents large numbers of small tuples causing execessive GCs.
#endif
}
+extern void _Py_ScheduleGC(PyThreadState *tstate);
+
+#ifndef Py_GIL_DISABLED
+extern void _Py_TriggerGC(struct _gc_runtime_state *gcstate);
+#endif
+
/* Tell the GC to track this object.
*
"object is in generation which is garbage collected",
filename, lineno, __func__);
- PyInterpreterState *interp = _PyInterpreterState_GET();
- PyGC_Head *generation0 = &interp->gc.young.head;
+ struct _gc_runtime_state *gcstate = &_PyInterpreterState_GET()->gc;
+ PyGC_Head *generation0 = &gcstate->young.head;
PyGC_Head *last = (PyGC_Head*)(generation0->_gc_prev);
_PyGCHead_SET_NEXT(last, gc);
_PyGCHead_SET_PREV(gc, last);
- uintptr_t not_visited = 1 ^ interp->gc.visited_space;
+ uintptr_t not_visited = 1 ^ gcstate->visited_space;
gc->_gc_next = ((uintptr_t)generation0) | not_visited;
generation0->_gc_prev = (uintptr_t)gc;
+ gcstate->young.count++; /* number of tracked GC objects */
+ gcstate->heap_size++;
+ if (gcstate->young.count > gcstate->young.threshold) {
+ _Py_TriggerGC(gcstate);
+ }
#endif
}
_PyGCHead_SET_PREV(next, prev);
gc->_gc_next = 0;
gc->_gc_prev &= _PyGC_PREV_MASK_FINALIZED;
+ struct _gc_runtime_state *gcstate = &_PyInterpreterState_GET()->gc;
+ if (gcstate->young.count > 0) {
+ gcstate->young.count--;
+ }
+ gcstate->heap_size--;
#endif
}
// Functions to clear types free lists
extern void _PyGC_ClearAllFreeLists(PyInterpreterState *interp);
-extern void _Py_ScheduleGC(PyThreadState *tstate);
extern void _Py_RunGC(PyThreadState *tstate);
union _PyStackRef;
def tearDown(self):
gc.disable()
+ @unittest.skipIf(Py_GIL_DISABLED, "requires GC generations or increments")
def test_bug1055820c(self):
# Corresponds to temp2c.py in the bug report. This is pretty
# elaborate.
# The free-threaded build doesn't have multiple generations, so
# just trigger a GC manually.
gc.collect()
+ assert not detector.gc_happened
while not detector.gc_happened:
i += 1
- if i > 10000:
- self.fail("gc didn't happen after 10000 iterations")
+ if i > 100000:
+ self.fail("gc didn't happen after 100000 iterations")
self.assertEqual(len(ouch), 0)
junk.append([]) # this will eventually trigger gc
gc.collect()
while not detector.gc_happened:
i += 1
- if i > 10000:
- self.fail("gc didn't happen after 10000 iterations")
+ if i > 50000:
+ self.fail("gc didn't happen after 50000 iterations")
self.assertEqual(len(ouch), 0)
junk.append([]) # this will eventually trigger gc
detector = GC_Detector()
while not detector.gc_happened:
i += 1
- if i > 10000:
- self.fail("gc didn't happen after 10000 iterations")
+ if i > 100000:
+ self.fail("gc didn't happen after 100000 iterations")
junk.append([]) # this will eventually trigger gc
try:
detector = GC_Detector()
while not detector.gc_happened:
i += 1
- if i > 10000:
+ if i > 100000:
break
junk.append([]) # this may eventually trigger gc (if it is enabled)
- self.assertEqual(i, 10001)
+ self.assertEqual(i, 100001)
finally:
gc.enable()
--- /dev/null
+Fixes a regression in GC performance for a growing heap composed mostly of
+small tuples.
+
+* Counts number of actually tracked objects, instead of trackable objects.
+ This ensures that untracking tuples has the desired effect of reducing GC overhead.
+* Does not track most untrackable tuples during creation.
+ This prevents large numbers of small tuples causing excessive GCs.
_PyObject_GC_UNTRACK(op);
}
+/* Fast, but conservative check if an object maybe tracked
+ May return true for an object that is not tracked,
+ Will always return true for an object that is tracked.
+ This is a temporary workaround until _PyObject_GC_IS_TRACKED
+ becomes fast and safe to call on non-GC objects.
+*/
+static bool
+maybe_tracked(PyObject *ob)
+{
+ return _PyType_IS_GC(Py_TYPE(ob));
+}
+
PyObject *
PyTuple_Pack(Py_ssize_t n, ...)
{
PyObject *o;
PyObject **items;
va_list vargs;
+ bool track = false;
if (n == 0) {
return tuple_get_empty();
items = result->ob_item;
for (i = 0; i < n; i++) {
o = va_arg(vargs, PyObject *);
+ if (!track && maybe_tracked(o)) {
+ track = true;
+ }
items[i] = Py_NewRef(o);
}
va_end(vargs);
- _PyObject_GC_TRACK(result);
+ if (track) {
+ _PyObject_GC_TRACK(result);
+ }
return (PyObject *)result;
}
return NULL;
}
PyObject **dst = tuple->ob_item;
+ bool track = false;
for (Py_ssize_t i = 0; i < n; i++) {
PyObject *item = src[i];
+ if (!track && maybe_tracked(item)) {
+ track = true;
+ }
dst[i] = Py_NewRef(item);
}
- _PyObject_GC_TRACK(tuple);
+ if (track) {
+ _PyObject_GC_TRACK(tuple);
+ }
return (PyObject *)tuple;
}
return NULL;
}
PyObject **dst = tuple->ob_item;
+ bool track = false;
for (Py_ssize_t i = 0; i < n; i++) {
- dst[i] = PyStackRef_AsPyObjectSteal(src[i]);
+ PyObject *item = PyStackRef_AsPyObjectSteal(src[i]);
+ if (!track && maybe_tracked(item)) {
+ track = true;
+ }
+ dst[i] = item;
+ }
+ if (track) {
+ _PyObject_GC_TRACK(tuple);
}
- _PyObject_GC_TRACK(tuple);
return (PyObject *)tuple;
}
scale_factor = 2;
}
intptr_t new_objects = gcstate->young.count;
- intptr_t max_heap_fraction = new_objects*3/2;
+ intptr_t max_heap_fraction = new_objects*2;
intptr_t heap_fraction = gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
if (heap_fraction > max_heap_fraction) {
heap_fraction = max_heap_fraction;
GC_STAT_ADD(1, collections, 1);
GCState *gcstate = &tstate->interp->gc;
gcstate->work_to_do += assess_work_to_do(gcstate);
+ if (gcstate->work_to_do < 0) {
+ return;
+ }
untrack_tuples(&gcstate->young.head);
if (gcstate->phase == GC_PHASE_MARK) {
Py_ssize_t objects_marked = mark_at_start(tstate);
gc_collect_region(tstate, &increment, &survivors, stats);
gc_list_merge(&survivors, visited);
assert(gc_list_is_empty(&increment));
- gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
gcstate->work_to_do -= increment_size;
add_stats(gcstate, 1, stats);
}
void
-_PyObject_GC_Link(PyObject *op)
+_Py_TriggerGC(struct _gc_runtime_state *gcstate)
{
- PyGC_Head *gc = AS_GC(op);
- // gc must be correctly aligned
- _PyObject_ASSERT(op, ((uintptr_t)gc & (sizeof(uintptr_t)-1)) == 0);
-
PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- gc->_gc_next = 0;
- gc->_gc_prev = 0;
- gcstate->young.count++; /* number of allocated GC objects */
- gcstate->heap_size++;
- if (gcstate->young.count > gcstate->young.threshold &&
- gcstate->enabled &&
- gcstate->young.threshold &&
+ if (gcstate->enabled &&
+ gcstate->young.threshold != 0 &&
!_Py_atomic_load_int_relaxed(&gcstate->collecting) &&
!_PyErr_Occurred(tstate))
{
}
}
+void
+_PyObject_GC_Link(PyObject *op)
+{
+ PyGC_Head *gc = AS_GC(op);
+ // gc must be correctly aligned
+ _PyObject_ASSERT(op, ((uintptr_t)gc & (sizeof(uintptr_t)-1)) == 0);
+ gc->_gc_next = 0;
+ gc->_gc_prev = 0;
+
+}
+
void
_Py_RunGC(PyThreadState *tstate)
{
PyGC_Head *g = AS_GC(op);
if (_PyObject_GC_IS_TRACKED(op)) {
gc_list_remove(g);
+ GCState *gcstate = get_gc_state();
+ if (gcstate->young.count > 0) {
+ gcstate->young.count--;
+ }
+ gcstate->heap_size--;
#ifdef Py_DEBUG
PyObject *exc = PyErr_GetRaisedException();
if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
PyErr_SetRaisedException(exc);
#endif
}
- GCState *gcstate = get_gc_state();
- if (gcstate->young.count > 0) {
- gcstate->young.count--;
- }
- gcstate->heap_size--;
PyObject_Free(((char *)op)-presize);
}