]> git.ipfire.org Git - thirdparty/u-boot.git/commitdiff
Xilinx: ARM: Add initial NAND flash support.
authorBrian Hill <brian.hill@xilinx.com>
Thu, 28 Oct 2010 19:42:50 +0000 (13:42 -0600)
committerGIT Repo <git@linrock7.(none)>
Fri, 29 Oct 2010 17:23:08 +0000 (11:23 -0600)
Exmaple usage:
pele-boot> nand device 0
pele-boot> nand erase

pele-boot> tftpboot 0x8000 linux-2.6-xlnx/vmlinux.bin
nand write <mem> <flash offset> <bytes>
pele-boot> nand write 0x8000 0 0x2d2000

pele-boot> tftpboot 0x800000 ramdisk3M.image.gz
pele-boot> nand write 0x800000 0x500000 0xef000

nand read <mem> <flash offset> <bytes>
pele-boot> nand read 0x8000 0 0x2d2000
pele-boot> nand read 0x800000 0x500000 0xef000
pele-boot> go 0x8000

board/xilinx/dfe/Makefile
board/xilinx/dfe/xilinx_nand_smc.h [new file with mode: 0755]
board/xilinx/dfe/xilinx_nandpss.c [new file with mode: 0644]
drivers/mtd/nand/nand_base.c
include/configs/xpele.h

index 59a9017d24040969876723ddc3c2645fb926e55c..2350ef8596dfa8e16909c51ea132eba7db7a6e5d 100644 (file)
@@ -31,6 +31,7 @@ LIB   = $(obj)lib$(BOARD).a
 COBJS  := board.o \
           xemacpss_g.o xemacpss_control.o xemacpss_sinit.o \
           xemacpss_bdring.o xemacpss.o xgmac.o \
+          xilinx_nandpss.o \
           ../common/xbasic_types.o
 
 SOBJS  := lowlevel_init.o
diff --git a/board/xilinx/dfe/xilinx_nand_smc.h b/board/xilinx/dfe/xilinx_nand_smc.h
new file mode 100755 (executable)
index 0000000..82806f9
--- /dev/null
@@ -0,0 +1,85 @@
+/* arch/arm/mach-xilinx/include/mach/smc.h
+ *
+ *  Copyright (C) 2009 Xilinx, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+
+#ifndef __ASM_ARCH_SMC_H__
+#define __ASM_ARCH_SMC_H__
+
+/*
+ * This file smc.h in \arch\arm\mach-xilinx\include\mach folder is designed to
+ * provide same register set definitions to NAND and NOR flash driver
+ */
+
+/* Memory controller configuration register offset */
+#define XSMCPSS_MC_STATUS              0x000   /* Controller status reg, RO */
+#define XSMCPSS_MC_INTERFACE_CONFIG    0x004   /* Interface config reg, RO */
+#define XSMCPSS_MC_SET_CONFIG          0x008   /* Set configuration reg, WO */
+#define XSMCPSS_MC_CLR_CONFIG          0x00C   /* Clear config reg, WO */
+#define XSMCPSS_MC_DIRECT_CMD          0x010   /* Direct command reg, WO */
+#define XSMCPSS_MC_SET_CYCLES          0x014   /* Set cycles register, WO */
+#define XSMCPSS_MC_SET_OPMODE          0x018   /* Set opmode register, WO */
+#define XSMCPSS_MC_REFRESH_PERIOD_0    0x020   /* Refresh period_0 reg, RW */
+#define XSMCPSS_MC_REFRESH_PERIOD_1    0x024   /* Refresh period_1 reg, RW */
+
+/* Chip select configuration register offset */
+#define XSMCPSS_CS_IF0_CHIP_0_OFFSET   0x100   /* Interface 0 chip 0 config */
+#define XSMCPSS_CS_IF0_CHIP_1_OFFSET   0x120   /* Interface 0 chip 1 config */
+#define XSMCPSS_CS_IF0_CHIP_2_OFFSET   0x140   /* Interface 0 chip 2 config */
+#define XSMCPSS_CS_IF0_CHIP_3_OFFSET   0x160   /* Interface 0 chip 3 config */
+#define XSMCPSS_CS_IF1_CHIP_0_OFFSET   0x180   /* Interface 1 chip 0 config */
+#define XSMCPSS_CS_IF1_CHIP_1_OFFSET   0x1A0   /* Interface 1 chip 1 config */
+#define XSMCPSS_CS_IF1_CHIP_2_OFFSET   0x1C0   /* Interface 1 chip 2 config */
+#define XSMCPSS_CS_IF1_CHIP_3_OFFSET   0x1E0   /* Interface 1 chip 3 config */
+
+/* User configuration register offset */
+#define XSMCPSS_UC_STATUS_OFFSET       0x200   /* User status reg, RO */
+#define XSMCPSS_UC_CONFIG_OFFSET       0x204   /* User config reg, WO */
+
+/* Integration test register offset */
+#define XSMCPSS_IT_OFFSET              0xE00
+
+/* ID configuration register offset */
+#define XSMCPSS_ID_PERIP_0_OFFSET      0xFE0
+#define XSMCPSS_ID_PERIP_1_OFFSET      0xFE4
+#define XSMCPSS_ID_PERIP_2_OFFSET      0xFE8
+#define XSMCPSS_ID_PERIP_3_OFFSET      0xFEC
+#define XSMCPSS_ID_PCELL_0_OFFSET      0xFF0
+#define XSMCPSS_ID_PCELL_1_OFFSET      0xFF4
+#define XSMCPSS_ID_PCELL_2_OFFSET      0xFF8
+#define XSMCPSS_ID_PCELL_3_OFFSET      0xFFC
+
+/* Add ECC reg, nand_cycles, sram_cycles and opmode_x_n registers
+   There are multiple interfaces also we need to take care.*/
+
+/* Register definitions */
+/* ECC register offset */
+#define XSMCPSS_ECC_IF0_OFFSET         0x300   /* Interface 0 ECC register */
+#define XSMCPSS_ECC_IF1_OFFSET         0x400   /* Interface 1 ECC register */
+#define XSMCPSS_ECC_STATUS_OFFSET(addr)        (0x000 + addr) /* ECC status register */
+#define XSMCPSS_ECC_MEMCFG_OFFSET(addr)        (0x004 + addr) /* ECC mem config reg */
+#define XSMCPSS_ECC_MEMCMD1_OFFSET(addr)(0x008 + addr) /*ECC mem cmd1 reg*/
+#define XSMCPSS_ECC_MEMCMD2_OFFSET(addr)(0x00C + addr) /*ECC mem cmd2 reg*/
+#define XSMCPSS_ECC_ADDR0_OFFSET(addr) (0x010 + addr) /* ECC address0 reg */
+#define XSMCPSS_ECC_ADDR1_OFFSET(addr) (0x014 + addr) /* ECC address1 reg */
+#define XSMCPSS_ECC_VALUE0_OFFSET(addr)        (0x018 + addr) /* ECC value 0 reg */
+#define XSMCPSS_ECC_VALUE1_OFFSET(addr)        (0x01C + addr) /* ECC value 1 reg */
+#define XSMCPSS_ECC_VALUE2_OFFSET(addr)        (0x020 + addr) /* ECC value 2 reg */
+#define XSMCPSS_ECC_VALUE3_OFFSET(addr)        (0x024 + addr) /* ECC value 3 reg */
+#define XSMCPSS_ECC_VALUE4_OFFSET(addr)        (0x028 + addr) /* ECC value 4 reg */
+
+/* nand_cycles, sram_cycles and opmode_x_n registers offsets*/
+#define XSMCPSS_FLASH_CYCLES(addr)     (0x000 + addr) /* NAND and SRAM cycle */
+#define XSMCPSS_OPMODE(addr)           (0x004 + addr) /* Chip opmode reg */
+
+#endif /* __ASM_ARCH_SMC_H__ */
diff --git a/board/xilinx/dfe/xilinx_nandpss.c b/board/xilinx/dfe/xilinx_nandpss.c
new file mode 100644 (file)
index 0000000..3823d3e
--- /dev/null
@@ -0,0 +1,1259 @@
+/*
+ * Xilinx PSS NAND Flash Controller Driver
+ *
+ * Copyright (C) 2009 Xilinx, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it under
+ * the terms of the GNU General Public License version 2 as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
+ * Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+/*
+ * This driver is based on plat_nand.c and mxc_nand.c drivers
+ */
+
+#ifdef LINUX_ONLY_NOT_UBOOT
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/ioport.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/delay.h>
+#include <linux/mtd/nand_ecc.h>
+#include <mach/smc.h>
+#endif
+
+#include "xbasic_types.h"
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include "xilinx_nand_smc.h"
+
+/********** stubs - Make Linux code compile in this environment **************/
+#define EIO              5
+#define ENXIO            6
+#define ENOMEM          12
+#define EFAULT          14
+#define ENODEV          19
+
+#define dev_dbg(dev, format, arg...)            \
+        printf(format , ## arg)
+
+#define dev_err(dev, format, arg...)            \
+        printf(format , ## arg)
+
+#define dev_info(dev, format, arg...)            \
+        printf(format , ## arg)
+
+#define __devinitdata
+#define __force
+
+/*********************************/
+
+#define XNANDPSS_DRIVER_NAME "Xilinx_PSS_NAND"
+
+/*
+ * The NAND flash driver defines
+ */
+
+#define XNANDPSS_CMD_PHASE     1       /* End command valid in command phase */
+#define XNANDPSS_DATA_PHASE    2       /* End command valid in data phase */
+#define XNANDPSS_ECC_SIZE      512     /* Size of data for ECC operation */
+
+/*
+ * Register values for using NAND interface of NAND controller
+ * The SET_CYCLES_REG register value depends on the flash device. Look in to the
+ * device datasheet and change its value, This value is for 2Gb Numonyx flash.
+ */
+
+/* Flash memory controller operating parameters */
+#define XNANDPSS_CLR_CONFIG    ((0x1 << 1)  |  /* Disable interrupt */ \
+                               (0x1 << 4)   |  /* Clear interrupt */ \
+                               (0x1 << 6))     /* Disable ECC interrupt */
+
+/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
+#define XNANDPSS_SET_CYCLES    ((0x1 << 20) |  /* t_rr from nand_cycles */ \
+                               (0x1 << 17)  |  /* t_ar from nand_cycles */ \
+                               (0x1 << 14)  |  /* t_clr from nand_cycles */ \
+                               (0x1 << 11)  |  /* t_wp from nand_cycles */ \
+                               (0x1 << 8)   |  /* t_rea from nand_cycles */ \
+                               (0x2 << 4)   |  /* t_wc from nand_cycles */ \
+                               (0x2 << 0))     /* t_rc from nand_cycles */
+
+#define XNANDPSS_SET_OPMODE    0x0
+
+#define XNANDPSS_DIRECT_CMD    ((0x4 << 23) |  /* Chip 0 from interface 1 */ \
+                               (0x2 << 21))    /* UpdateRegs operation */
+
+#define XNANDPSS_ECC_CONFIG    ((0x1 << 2)  |  /* ECC available on APB */ \
+                               (0x1 << 4)   |  /* ECC read at end of page */ \
+                               (0x0 << 5))     /* No Jumping */
+
+#define XNANDPSS_ECC_CMD1      ((0x80)      |  /* Write command */ \
+                               (0x00 << 8)  |  /* Read command */ \
+                               (0x30 << 16) |  /* Read End command */ \
+                               (0x1 << 24))    /* Read End command calid */
+
+#define XNANDPSS_ECC_CMD2      ((0x85)      |  /* Write col change cmd */ \
+                               (0x05 << 8)  |  /* Read col change cmd */ \
+                               (0xE0 << 16) |  /* Read col change end cmd */ \
+                               (0x1 << 24))    /* Read col change
+                                                       end cmd valid */
+/*
+ * AXI Address definitions
+ */
+#define START_CMD_SHIFT                3
+#define END_CMD_SHIFT          11
+#define END_CMD_VALID_SHIFT    20
+#define ADDR_CYCLES_SHIFT      21
+#define CLEAR_CS_SHIFT         21
+#define ECC_LAST_SHIFT         10
+#define COMMAND_PHASE          (0 << 19)
+#define DATA_PHASE             (1 << 19)
+
+#define XNANDPSS_ECC_LAST      (1 << ECC_LAST_SHIFT)   /* Set ECC_Last */
+#define XNANDPSS_CLEAR_CS      (1 << CLEAR_CS_SHIFT)   /* Clear chip select */
+
+/*
+ * ECC block registers bit position and bit mask
+ */
+#define XNANDPSS_ECC_BUSY      (1 << 6)        /* ECC block is busy */
+#define XNANDPSS_ECC_MASK      0x00FFFFFF      /* ECC value mask */
+
+/*
+ * Macros for the NAND controller register read/write
+ */
+extern void XIo_Out32(u32 OutAddress, u32 Value);
+extern u32  XIo_In32(u32 InAddress);
+
+#define xnandpss_read32(addr)       XIo_In32((u32)(addr))
+#define xnandpss_write32(addr, val)    XIo_Out32((u32)(addr), (val))
+#define readl(addr)                 XIo_In32((u32)(addr))
+#define writel(val, addr)           XIo_Out32((u32)(addr), (val))
+
+
+/**
+ * struct xnandpss_command_format - Defines NAND flash command format
+ * @start_cmd:         First cycle command (Start command)
+ * @end_cmd:           Second cycle command (Last command)
+ * @addr_cycles:       Number of address cycles required to send the address
+ * @end_cmd_valid:     The second cycle command is valid for cmd or data phase
+ **/
+struct xnandpss_command_format {
+       int start_cmd;
+       int end_cmd;
+       u8 addr_cycles;
+       u8 end_cmd_valid;
+};
+
+/**
+ * struct xnandpss_info - Defines the NAND flash driver instance
+ * @chip:              NAND chip information structure
+ * @mtd:               MTD information structure
+ * @parts:             Pointer to the mtd_partition structure
+ * @nand_base:         Virtual address of the NAND flash device
+ * @smc_regs:          Virtual address of the NAND controller registers
+ * @end_cmd_pending:   End command is pending
+ * @end_cmd:           End command
+ **/
+struct xnandpss_info {
+#ifdef LINUX_ONLY_NOT_UBOOT
+       struct nand_chip        chip;
+       struct mtd_info         mtd;
+#endif
+#ifdef CONFIG_MTD_PARTITIONS
+       struct mtd_partition    *parts;
+#endif
+       void __iomem            *nand_base;
+       void __iomem            *smc_regs;
+       unsigned long           end_cmd_pending;
+       unsigned long           end_cmd;
+};
+
+/*
+ * The NAND flash operations command format
+ */
+static struct xnandpss_command_format xnandpss_commands[] __devinitdata = {
+       {NAND_CMD_READ0, NAND_CMD_READSTART, 5, XNANDPSS_CMD_PHASE},
+       {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, XNANDPSS_CMD_PHASE},
+       {NAND_CMD_READID, NAND_CMD_NONE, 1, NAND_CMD_NONE},
+       {NAND_CMD_STATUS, NAND_CMD_NONE, 0, NAND_CMD_NONE},
+       {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, XNANDPSS_DATA_PHASE},
+       {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, NAND_CMD_NONE},
+       {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, XNANDPSS_CMD_PHASE},
+       {NAND_CMD_RESET, NAND_CMD_NONE, 0, NAND_CMD_NONE},
+       {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
+       /* Add all the flash commands supported by the flash device and Linux */
+       /* The cache program command is not supported by driver because driver
+        * cant differentiate between page program and cached page program from
+        * start command, these commands can be differentiated through end
+        * command, which doesn't fit in to the driver design. The cache program
+        * command is not supported by NAND subsystem also, look at 1612 line
+        * number (in nand_write_page function) of nand_base.c file.
+        * {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, XNANDPSS_YES}, */
+};
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_16 = {
+       .eccbytes = 3,
+       .eccpos = {0, 1, 2},
+       .oobfree = {
+               {.offset = 8,
+                . length = 8}}
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+       .eccbytes = 12,
+       .eccpos = {
+                  52, 53, 54, 55, 56, 57,
+                  58, 59, 60, 61, 62, 63},
+       .oobfree = {
+               {.offset = 2,
+                .length = 50}}
+};
+
+/**
+ * xnandpss_init_nand_flash - Initialize NAND controller
+ * @smc_regs:  Virtual address of the NAND controller registers
+ * @option:    Device property flags
+ *
+ * This function initializes the NAND flash interface on the NAND controller.
+ **/
+static void xnandpss_init_nand_flash(void __iomem *smc_regs, int option)
+{
+       /* disable interrupts */
+       xnandpss_write32(smc_regs + XSMCPSS_MC_CLR_CONFIG, XNANDPSS_CLR_CONFIG);
+       /* Initialize the NAND interface by setting cycles and operation mode */
+       xnandpss_write32(smc_regs + XSMCPSS_MC_SET_CYCLES, XNANDPSS_SET_CYCLES);
+       if (option & NAND_BUSWIDTH_16)
+               xnandpss_write32(smc_regs + XSMCPSS_MC_SET_OPMODE,
+                               (XNANDPSS_SET_OPMODE | 0x1));
+       else
+               xnandpss_write32(smc_regs + XSMCPSS_MC_SET_OPMODE,
+                               XNANDPSS_SET_OPMODE);
+       xnandpss_write32(smc_regs + XSMCPSS_MC_DIRECT_CMD, XNANDPSS_DIRECT_CMD);
+
+       /* Wait till the ECC operation is complete */
+       while ( (xnandpss_read32(smc_regs + XSMCPSS_ECC_STATUS_OFFSET(
+                       XSMCPSS_ECC_IF1_OFFSET))) & XNANDPSS_ECC_BUSY)
+                       ;
+       /* Set the command1 and command2 register */
+       xnandpss_write32(smc_regs +
+               (XSMCPSS_ECC_MEMCMD1_OFFSET(XSMCPSS_ECC_IF1_OFFSET)),
+               XNANDPSS_ECC_CMD1);
+       xnandpss_write32(smc_regs +
+               (XSMCPSS_ECC_MEMCMD2_OFFSET(XSMCPSS_ECC_IF1_OFFSET)),
+               XNANDPSS_ECC_CMD2);
+}
+
+/**
+ * xnandpss_calculate_hwecc - Calculate Hardware ECC
+ * @mtd:       Pointer to the mtd_info structure
+ * @data:      Pointer to the page data
+ * @ecc_code:  Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and returns
+ * ECC data back to the MTD subsystem.
+ *
+ * returns:    0 on success or error value on failure
+ **/
+static int
+xnandpss_calculate_hwecc(struct mtd_info *mtd, const u8 *data, u8 *ecc_code)
+{
+       struct xnandpss_info *xnand;
+       struct nand_chip *chip;
+       u32 ecc_value = 0;
+       u8 ecc_reg, ecc_byte;
+       u32 ecc_status;
+       
+       chip = (struct nand_chip *)mtd->priv;
+       xnand = (struct xnandpss_info *)chip->priv;
+
+       /* Wait till the ECC operation is complete */
+       do {
+               ecc_status = xnandpss_read32(xnand->smc_regs +
+                       XSMCPSS_ECC_STATUS_OFFSET(XSMCPSS_ECC_IF1_OFFSET));
+       } while (ecc_status & XNANDPSS_ECC_BUSY);
+
+       for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+               /* Read ECC value for each block */
+               ecc_value = (xnandpss_read32(xnand->smc_regs +
+                       (XSMCPSS_ECC_VALUE0_OFFSET(XSMCPSS_ECC_IF1_OFFSET) +
+                       (ecc_reg*4))));
+               ecc_status = (ecc_value >> 24) & 0xFF;
+               /* ECC value valid */
+               if (ecc_status & 0x40) {
+                       for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+                               /* Copy ECC bytes to MTD buffer */
+                               *ecc_code = ecc_value & 0xFF;
+                               ecc_value = ecc_value >> 8;
+                               ecc_code++;
+                       }
+               } else {
+                       printk(KERN_INFO "pl350: ecc status failed\n");
+               }
+       }
+       return 0;
+}
+
+/**
+ * onehot - onehot function
+ * @value:     value to check for onehot
+ *
+ * This function checks whether a value is onehot or not.
+ * onehot is if and only if onebit is set.
+ *
+ **/
+int onehot(unsigned short value)
+{
+       return ((value & (value-1)) == 0);
+}
+
+/**
+ * xnandpss_correct_data - ECC correction function
+ * @mtd:       Pointer to the mtd_info structure
+ * @buf:       Pointer to the page data
+ * @read_ecc:  Pointer to the ECC value read from spare data area
+ * @calc_ecc:  Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * returns:    0 if no ECC errors found
+ *             1 if single bit error found and corrected.
+ *             -1 if multiple ECC errors found.
+ **/
+int xnandpss_correct_data(struct mtd_info *mtd, unsigned char *buf,
+                       unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+       unsigned char bit_addr;
+       unsigned int byte_addr;
+       unsigned short ecc_odd, ecc_even;
+       unsigned short read_ecc_lower, read_ecc_upper;
+       unsigned short calc_ecc_lower, calc_ecc_upper;
+
+       read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
+       read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
+
+       calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
+       calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
+
+       ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+       ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+       if ((ecc_odd == 0) && (ecc_even == 0))
+               return 0;       /* no error */
+       else if (ecc_odd == (~ecc_even & 0xfff)) {
+               /* bits [11:3] of error code is byte offset */
+               byte_addr = (ecc_odd >> 3) & 0x1ff;
+               /* bits [2:0] of error code is bit offset */
+               bit_addr = ecc_odd & 0x7;
+               /* Toggling error bit */
+               buf[byte_addr] ^= (1 << bit_addr);
+               return 1;
+       } else if (onehot(ecc_odd | ecc_even) == 1) {
+               return 1; /* one error in parity */
+       }
+       else {
+               printk(KERN_ERR "xnandpss: uncorrectable error\r\n");
+               return -1;
+       }
+}
+
+/**
+ * xnandpss_read_oob - [REPLACABLE] the most common OOB data read function
+ * @mtd:       mtd info structure
+ * @chip:      nand chip info structure
+ * @page:      page number to read
+ * @sndcmd:    flag whether to issue read command or not
+ */
+static int xnandpss_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                       int page, int sndcmd)
+{
+       unsigned long data_width = 4;
+       unsigned long data_phase_addr = 0;
+       uint8_t *p;
+
+       if (sndcmd) {
+               chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+               sndcmd = 0;
+       }
+
+       p = chip->oob_poi;
+       chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+       p += (mtd->oobsize - data_width);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= XNANDPSS_CLEAR_CS;
+       chip->IO_ADDR_R = (void __iomem *__force)data_phase_addr;
+       chip->read_buf(mtd, p, data_width);
+
+       return sndcmd;
+}
+
+/**
+ * xnandpss_write_oob - [REPLACABLE] the most common OOB data write function
+ * @mtd:       mtd info structure
+ * @chip:      nand chip info structure
+ * @page:      page number to write
+ */
+static int xnandpss_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                       int page)
+{
+       int status = 0;
+       const uint8_t *buf = chip->oob_poi;
+       unsigned long data_width = 4;
+       unsigned long data_phase_addr = 0;
+
+       chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+
+       chip->write_buf(mtd, buf, (mtd->oobsize - data_width));
+       buf += (mtd->oobsize - data_width);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= XNANDPSS_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       chip->IO_ADDR_W = (void __iomem *__force)data_phase_addr;
+       chip->write_buf(mtd, buf, data_width);
+
+       /* Send command to program the OOB data */
+       chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+       status = chip->waitfunc(mtd, chip);
+
+       return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * xnandpss_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd:        mtd info structure
+ * @chip:       nand chip info structure
+ * @buf:        buffer to store read data
+ * @page:       page number to read
+ *
+ */
+static int xnandpss_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+                             uint8_t *buf, int page)
+{
+       unsigned long data_width = 4;
+       unsigned long data_phase_addr = 0;
+       uint8_t *p;
+
+       chip->read_buf(mtd, buf, mtd->writesize);
+
+       p = chip->oob_poi;
+       chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+       p += (mtd->oobsize - data_width);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= XNANDPSS_CLEAR_CS;
+       chip->IO_ADDR_R = (void __iomem *__force)data_phase_addr;
+
+       chip->read_buf(mtd, p, data_width);
+       return 0;
+}
+
+/**
+ * xnandpss_write_page_raw - [Intern] raw page write function
+ * @mtd:        mtd info structure
+ * @chip:       nand chip info structure
+ * @buf:        data buffer
+ *
+ */
+static void xnandpss_write_page_raw(struct mtd_info *mtd,
+                       struct nand_chip *chip, const uint8_t *buf)
+{
+       unsigned long data_width = 4;
+       unsigned long data_phase_addr = 0;
+       uint8_t *p;
+
+       chip->write_buf(mtd, buf, mtd->writesize);
+
+       p = chip->oob_poi;
+       chip->write_buf(mtd, p, (mtd->oobsize - data_width));
+       p += (mtd->oobsize - data_width);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= XNANDPSS_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       chip->IO_ADDR_W = (void __iomem *__force)data_phase_addr;
+
+       chip->write_buf(mtd, p, data_width);
+}
+
+/**
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ * @buf:       Pointer to the data buffer
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ */
+void xnandpss_write_page_hwecc(struct mtd_info *mtd,
+                               struct nand_chip *chip, const uint8_t *buf)
+{
+       int i, eccsize = chip->ecc.size;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *ecc_calc = chip->buffers->ecccalc;
+       const uint8_t *p = buf;
+       uint32_t *eccpos = chip->ecc.layout->eccpos;
+       unsigned long data_phase_addr = 0;
+       unsigned long data_width = 4;
+       uint8_t *oob_ptr;
+
+       for ( ; (eccsteps - 1); eccsteps--) {
+               chip->write_buf(mtd, p, eccsize);
+               p += eccsize;
+       }
+       chip->write_buf(mtd, p, (eccsize - data_width));
+       p += (eccsize - data_width);
+
+       /* Set ECC Last bit to 1 */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= XNANDPSS_ECC_LAST;
+       chip->IO_ADDR_W = (void __iomem *__force)data_phase_addr;
+       chip->write_buf(mtd, p, data_width);
+
+       /* Wait for ECC to be calculated and read the error values */
+       p = buf;
+       chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+       for (i = 0; i < chip->ecc.total; i++)
+               chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
+
+       /* Clear ECC last bit */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr &= ~XNANDPSS_ECC_LAST;
+       chip->IO_ADDR_W = (void __iomem *__force)data_phase_addr;
+
+       /* Write the spare area with ECC bytes */
+       oob_ptr = chip->oob_poi;
+       chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= XNANDPSS_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       chip->IO_ADDR_W = (void __iomem *__force)data_phase_addr;
+       oob_ptr += (mtd->oobsize - data_width);
+       chip->write_buf(mtd, oob_ptr, data_width);
+}
+
+/**
+ * xnandpss_write_page_swecc - [REPLACABLE] software ecc based page write function
+ * @mtd:       mtd info structure
+ * @chip:      nand chip info structure
+ * @buf:       data buffer
+ */
+static void xnandpss_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+                                 const uint8_t *buf)
+{
+       int i, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *ecc_calc = chip->buffers->ecccalc;
+       const uint8_t *p = buf;
+       uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+       /* Software ecc calculation */
+       for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+               chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+       for (i = 0; i < chip->ecc.total; i++)
+               chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+       chip->ecc.write_page_raw(mtd, chip, buf);
+}
+
+/**
+ * nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ * @buf:       Pointer to the buffer to store read data
+ *
+ * This functions reads data and checks the data integrity by comparing hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * returns:    0 always and updates ECC operation status in to MTD structure
+ */
+int xnandpss_read_page_hwecc(struct mtd_info *mtd,
+                               struct nand_chip *chip, uint8_t *buf, int page)
+{
+       int i, stat, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *p = buf;
+       uint8_t *ecc_calc = chip->buffers->ecccalc;
+       uint8_t *ecc_code = chip->buffers->ecccode;
+       uint32_t *eccpos = chip->ecc.layout->eccpos;
+       unsigned long data_phase_addr = 0;
+       unsigned long data_width = 4;
+       uint8_t *oob_ptr;
+
+       for ( ; (eccsteps - 1); eccsteps--) {
+               chip->read_buf(mtd, p, eccsize);
+               p += eccsize;
+       }
+       chip->read_buf(mtd, p, (eccsize - data_width));
+       p += (eccsize - data_width);
+
+       /* Set ECC Last bit to 1 */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= XNANDPSS_ECC_LAST;
+       chip->IO_ADDR_R = (void __iomem *__force)data_phase_addr;
+       chip->read_buf(mtd, p, data_width);
+
+       /* Read the calculated ECC value */
+       p = buf;
+       chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+       /* Clear ECC last bit */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr &= ~XNANDPSS_ECC_LAST;
+       chip->IO_ADDR_R = (void __iomem *__force)data_phase_addr;
+
+       /* Read the stored ECC value */
+       oob_ptr = chip->oob_poi;
+       chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+       /* de-assert chip select */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= XNANDPSS_CLEAR_CS;
+       chip->IO_ADDR_R = (void __iomem *__force)data_phase_addr;
+
+       oob_ptr += (mtd->oobsize - data_width);
+       chip->read_buf(mtd, oob_ptr, data_width);
+
+       for (i = 0; i < chip->ecc.total; i++)
+               ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
+
+       eccsteps = chip->ecc.steps;
+       p = buf;
+
+       /* Check ECC error for all blocks and correct if it is correctable */
+       for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+               stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+       }
+       return 0;
+}
+
+/**
+ * xnandpss_read_page_swecc - [REPLACABLE] software ecc based page read function
+ * @mtd:       mtd info structure
+ * @chip:      nand chip info structure
+ * @buf:       buffer to store read data
+ * @page:      page number to read
+ */
+static int xnandpss_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+                               uint8_t *buf, int page)
+{
+       int i, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *p = buf;
+       uint8_t *ecc_calc = chip->buffers->ecccalc;
+       uint8_t *ecc_code = chip->buffers->ecccode;
+       uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+       chip->ecc.read_page_raw(mtd, chip, buf, page);
+
+       for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+               chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+       for (i = 0; i < chip->ecc.total; i++)
+               ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+       eccsteps = chip->ecc.steps;
+       p = buf;
+
+       for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+               int stat;
+
+               stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+       }
+       return 0;
+}
+
+/**
+ * xnandpss_select_chip - Select the flash device
+ * @mtd:       Pointer to the mtd_info structure
+ * @chip:      Chip number to be selected
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ **/
+static void xnandpss_select_chip(struct mtd_info *mtd, int chip)
+{
+       return;
+}
+
+/**
+ * xnandpss_cmd_function - Send command to NAND device
+ * @mtd:       Pointer to the mtd_info structure
+ * @command:   The command to be sent to the flash device
+ * @column:    The column address for this command, -1 if none
+ * @page_addr: The page address for this command, -1 if none
+ */
+static void xnandpss_cmd_function(struct mtd_info *mtd, unsigned int command,
+                           int column, int page_addr)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct xnandpss_command_format *curr_cmd = NULL;
+       struct xnandpss_info *xnand;
+       void *cmd_addr;
+       unsigned long cmd_data = 0;
+       unsigned long cmd_phase_addr = 0;
+       unsigned long data_phase_addr = 0;
+       unsigned long end_cmd = 0;
+       unsigned long end_cmd_valid = 0;
+       unsigned long i;
+
+       xnand = (struct xnandpss_info *)chip->priv;
+       if (xnand->end_cmd_pending) {
+               /* Check for end command if this command request is same as the
+                * pending command then return */
+               if (xnand->end_cmd == command) {
+                       xnand->end_cmd = 0;
+                       xnand->end_cmd_pending = 0;
+                       return;
+               }
+       }
+
+       /* Emulate NAND_CMD_READOOB for large page device */
+       if ((mtd->writesize > XNANDPSS_ECC_SIZE) &&
+               (command == NAND_CMD_READOOB)) {
+               column += mtd->writesize;
+               command = NAND_CMD_READ0;
+       }
+
+       /* Get the command format */
+       for (i = 0; (xnandpss_commands[i].start_cmd != NAND_CMD_NONE ||
+               xnandpss_commands[i].end_cmd != NAND_CMD_NONE); i++) {
+               if (command == xnandpss_commands[i].start_cmd)
+                       curr_cmd = &xnandpss_commands[i];
+       }
+       if (curr_cmd == NULL)
+               return;
+
+       /* Clear interrupt */
+       xnandpss_write32((xnand->smc_regs + XSMCPSS_MC_CLR_CONFIG), (1 << 4));
+
+       /* Get the command phase address */
+       if (curr_cmd->end_cmd_valid == XNANDPSS_CMD_PHASE)
+               end_cmd_valid = 1;
+
+       if (curr_cmd->end_cmd == NAND_CMD_NONE)
+               end_cmd = 0x0;
+       else
+               end_cmd = curr_cmd->end_cmd;
+
+       cmd_phase_addr = (unsigned long __force)xnand->nand_base        |
+                       (curr_cmd->addr_cycles << ADDR_CYCLES_SHIFT)    |
+                       (end_cmd_valid << END_CMD_VALID_SHIFT)          |
+                       (COMMAND_PHASE)                                 |
+                       (end_cmd << END_CMD_SHIFT)                      |
+                       (curr_cmd->start_cmd << START_CMD_SHIFT);
+
+       cmd_addr = (void __iomem * __force)cmd_phase_addr;
+
+       /* Get the data phase address */
+       end_cmd_valid = 0;
+#if 0
+       if (curr_cmd->end_cmd_valid == XNANDPSS_DATA_PHASE)
+               end_cmd_valid = 1;
+#endif
+
+       data_phase_addr = (unsigned long __force)xnand->nand_base       |
+                       (0x0 << CLEAR_CS_SHIFT)                         |
+                       (end_cmd_valid << END_CMD_VALID_SHIFT)          |
+                       (DATA_PHASE)                                    |
+                       (end_cmd << END_CMD_SHIFT)                      |
+                       (0x0 << ECC_LAST_SHIFT);
+
+       chip->IO_ADDR_R = (void  __iomem * __force)data_phase_addr;
+       chip->IO_ADDR_W = chip->IO_ADDR_R;
+
+       /* Command phase AXI write */
+       /* Read & Write */
+       if (column != -1 && page_addr != -1) {
+               /* Adjust columns for 16 bit bus width */
+               if (chip->options & NAND_BUSWIDTH_16)
+                       column >>= 1;
+               cmd_data = column;
+               if (mtd->writesize > XNANDPSS_ECC_SIZE) {
+                       cmd_data |= page_addr << 16;
+                       /* Another address cycle for devices > 128MiB */
+                       if (chip->chipsize > (128 << 20)) {
+                               xnandpss_write32(cmd_addr, cmd_data);
+                               cmd_data = (page_addr >> 16);
+                       }
+               } else
+                       cmd_data |= page_addr << 8;
+       }
+       /* Erase */
+       else if (page_addr != -1)
+               cmd_data = page_addr;
+       /* Change read/write column, read id etc */
+       else if (column != -1)
+               cmd_data = column;
+       else
+               ;
+
+       xnandpss_write32(cmd_addr, cmd_data);
+
+       if (curr_cmd->end_cmd_valid) {
+               xnand->end_cmd = curr_cmd->end_cmd;
+               xnand->end_cmd_pending = 1;
+       }
+
+       ndelay(100);
+#define READ_CMD_HACK
+#ifdef READ_CMD_HACK
+       if (command == NAND_CMD_READ0) {
+               while(!chip->dev_ready(mtd));
+               //udelay(20);
+               return;
+       }
+#endif
+}
+
+/**
+ * xnandpss_read_buf - read chip data into buffer
+ * @mtd:        MTD device structure
+ * @buf:        buffer to store date
+ * @len:        number of bytes to read
+ *
+ */
+void xnandpss_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+       int i;
+       struct nand_chip *chip = mtd->priv;
+       unsigned long *ptr = (unsigned long *)buf;
+
+       len >>= 2;
+       for (i = 0; i < len; i++)
+               ptr[i] = readl(chip->IO_ADDR_R);
+}
+
+/**
+ * xnandpss_write_buf - write buffer to chip
+ * @mtd:        MTD device structure
+ * @buf:        data buffer
+ * @len:        number of bytes to write
+ *
+ */
+void xnandpss_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+       int i;
+       struct nand_chip *chip = mtd->priv;
+       unsigned long *ptr = (unsigned long *)buf;
+       len >>= 2;
+
+       for (i = 0; i < len; i++)
+               writel(ptr[i], chip->IO_ADDR_W);
+}
+
+/**
+ * xnandpss_verify_buf - Verify chip data against buffer
+ * @mtd:        MTD device structure
+ * @buf:        buffer containing the data to compare
+ * @len:        number of bytes to compare
+ *
+ */
+static int xnandpss_verify_buf(struct mtd_info *mtd, const uint8_t *buf,
+                               int len)
+{
+       int i;
+       struct nand_chip *chip = mtd->priv;
+       unsigned long *ptr = (unsigned long *)buf;
+       unsigned long addr;
+
+       len >>= 2;
+       for (i = 0; i < (len - 1); i++) {
+               if (ptr[i] != readl(chip->IO_ADDR_R))
+                       return -EFAULT;
+       }
+       addr = (unsigned long __force)chip->IO_ADDR_R;
+       addr |= XNANDPSS_CLEAR_CS;
+       chip->IO_ADDR_R = (void __iomem *__force)addr;
+       if (ptr[i] != readl(chip->IO_ADDR_R))
+               return -EFAULT;
+       return 0;
+}
+
+/**
+ * xnandpss_device_ready - Check device ready/busy line
+ * @mtd:       Pointer to the mtd_info structure
+ *
+ * returns:    0 on busy or 1 on ready state
+ **/
+static int xnandpss_device_ready(struct mtd_info *mtd)
+{
+       struct xnandpss_info *xnand;
+       struct nand_chip *chip;
+       unsigned long status;
+
+       chip = (struct nand_chip *)mtd->priv;
+       xnand = (struct xnandpss_info *)chip->priv;
+
+       /* Check the raw_int_status1 bit */
+       status = xnandpss_read32(xnand->smc_regs + XSMCPSS_MC_STATUS) & 0x40;
+       return status?1:0;
+}
+
+/**
+ * xnandpss_probe - Probe method for the NAND driver
+ * @pdev:      Pointer to the platform_device structure
+ *
+ * This function initializes the driver data structures and the hardware.
+ *
+ * returns:    0 on success or error value on failure
+ **/
+#ifdef LINUX_ONLY_NOT_UBOOT
+static int __init xnandpss_probe(struct platform_device *pdev)
+#else
+int board_nand_init(struct nand_chip *nand_chip)
+#endif
+{
+       struct xnandpss_info *xnand;
+       struct mtd_info *mtd;
+#ifdef LINUX_ONLY_NOT_UBOOT
+       struct nand_chip *nand_chip;
+       struct resource *nand_res, *smc_res;
+#else
+       extern struct mtd_info nand_info[];
+#endif
+       unsigned long ecc_page_size;
+       int err = 0;
+#ifdef CONFIG_MTD_PARTITIONS
+       int  nr_parts;
+       static const char *part_probe_types[] = {"cmdlinepart", NULL};
+#endif
+#ifdef LINUX_ONLY_NOT_UBOOT
+       xnand = kzalloc(sizeof(struct xnandpss_info), GFP_KERNEL);
+#else
+       xnand = malloc(sizeof(struct xnandpss_info));
+       memset(xnand, 0, sizeof(struct xnandpss_info));
+#endif
+       if (!xnand) {
+               dev_err(&pdev->dev, "failed to allocate device structure.\n");
+               return -ENOMEM;
+       }
+
+#ifdef LINUX_ONLY_NOT_UBOOT
+       /* Map physical address of NAND flash */
+       nand_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       if (nand_res == NULL) {
+               err = -ENODEV;
+               dev_err(&pdev->dev, "platform_get_resource for NAND failed\n");
+               goto out_free_data;
+       }
+
+       nand_res = request_mem_region(nand_res->start, resource_size(nand_res),
+                                       pdev->name);
+       if (nand_res == NULL) {
+               err = -ENOMEM;
+               dev_err(&pdev->dev, "request_mem_region for cont failed\n");
+               goto out_free_data;
+       }
+
+       xnand->nand_base = ioremap(nand_res->start, resource_size(nand_res));
+       if (xnand->nand_base == NULL) {
+               err = -EIO;
+               dev_err(&pdev->dev, "ioremap for NAND failed\n");
+               goto out_release_nand_mem_region;
+       }
+
+       /* Get the NAND controller virtual address */
+       smc_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+       if (smc_res == NULL) {
+               err = -ENODEV;
+               dev_err(&pdev->dev, "platform_get_resource for cont failed\n");
+               goto out_nand_iounmap;
+       }
+
+       smc_res = request_mem_region(smc_res->start, resource_size(smc_res),
+                                       pdev->name);
+       if (smc_res == NULL) {
+               err = -ENOMEM;
+               dev_err(&pdev->dev, "request_mem_region for cont failed\n");
+               goto out_nand_iounmap;
+       }
+
+       xnand->smc_regs = ioremap(smc_res->start, resource_size(smc_res));
+       if (!xnand->smc_regs) {
+               err = -EIO;
+               dev_err(&pdev->dev, "ioremap for cont failed\n");
+               goto out_release_smc_mem_region;
+       }
+
+       /* Link the private data with the MTD structure */
+       mtd = &xnand->mtd;
+       nand_chip = &xnand->chip;
+#else
+       xnand->smc_regs = (void*)XPSS_CRTL_PARPORT_BASEADDR;
+       xnand->nand_base = (void*)XPSS_NAND_BASEADDR;
+       mtd = &nand_info[0];
+#endif
+
+       nand_chip->priv = xnand;
+       mtd->priv = nand_chip;
+#ifdef LINUX_ONLY_NOT_UBOOT
+       mtd->owner = THIS_MODULE;
+       mtd->name = "xilinx_nand";
+#endif
+
+       /* Set address of NAND IO lines */
+       nand_chip->IO_ADDR_R = xnand->nand_base;
+       nand_chip->IO_ADDR_W = xnand->nand_base;
+
+       /* Set the driver entry points for MTD */
+       nand_chip->cmdfunc = xnandpss_cmd_function;
+       //nand_chip->dev_ready = NULL;
+       nand_chip->dev_ready = xnandpss_device_ready;
+       nand_chip->select_chip = xnandpss_select_chip;
+
+       /* If we don't set this delay driver sets 20us by default */
+       nand_chip->chip_delay = 30;
+
+       /* Buffer read/write routines */
+       nand_chip->read_buf = xnandpss_read_buf;
+       nand_chip->write_buf = xnandpss_write_buf;
+       nand_chip->verify_buf = xnandpss_verify_buf;
+
+       /* Set the device option and flash width */
+#ifdef LINUX_ONLY_NOT_UBOOT
+       nand_chip->options = *((u32 *)pdev->dev.platform_data);
+#else
+       /* arch/arm/mach-xilinx/devices.c */
+       nand_chip->options = NAND_NO_AUTOINCR | NAND_USE_FLASH_BBT;
+#endif
+
+       /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+       nand_chip->ecc.mode = NAND_ECC_HW;
+       nand_chip->ecc.size = XNANDPSS_ECC_SIZE;
+       nand_chip->ecc.bytes = 3;
+       nand_chip->ecc.calculate = xnandpss_calculate_hwecc;
+       nand_chip->ecc.correct = xnandpss_correct_data;
+       nand_chip->ecc.hwctl = NULL;
+       nand_chip->ecc.read_page = xnandpss_read_page_hwecc;
+       nand_chip->ecc.write_page = xnandpss_write_page_hwecc;
+       nand_chip->ecc.read_page_raw = xnandpss_read_page_raw;
+       nand_chip->ecc.write_page_raw = xnandpss_write_page_raw;
+       nand_chip->ecc.read_oob = xnandpss_read_oob;
+       nand_chip->ecc.write_oob = xnandpss_write_oob;
+#ifdef LINUX_ONLY_NOT_UBOOT
+       platform_set_drvdata(pdev, xnand);
+#endif
+
+       /* Initialize the NAND flash interface on NAND controller */
+       xnandpss_init_nand_flash(xnand->smc_regs, nand_chip->options);
+
+       /* first scan to find the device and get the page size */
+#ifdef LINUX_ONLY_NOT_UBOOT
+       if (nand_scan_ident(mtd, 1, NULL)) {
+#else
+       if (nand_scan_ident(mtd, 1)) {
+#endif
+               err = -ENXIO;
+               dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
+               goto out_unmap_all_mem;
+       }
+
+       switch (mtd->writesize) {
+       case 512:
+               ecc_page_size = 0x1;
+               /* Set the ECC memory config register */
+               xnandpss_write32(xnand->smc_regs +
+                       (XSMCPSS_ECC_MEMCFG_OFFSET(XSMCPSS_ECC_IF1_OFFSET)),
+                       (XNANDPSS_ECC_CONFIG | ecc_page_size));
+               break;
+       case 1024:
+               ecc_page_size = 0x2;
+               /* Set the ECC memory config register */
+               xnandpss_write32(xnand->smc_regs +
+                       (XSMCPSS_ECC_MEMCFG_OFFSET(XSMCPSS_ECC_IF1_OFFSET)),
+                       (XNANDPSS_ECC_CONFIG | ecc_page_size));
+               break;
+       case 2048:
+               ecc_page_size = 0x3;
+               /* Set the ECC memory config register */
+               xnandpss_write32(xnand->smc_regs +
+                       (XSMCPSS_ECC_MEMCFG_OFFSET(XSMCPSS_ECC_IF1_OFFSET)),
+                       (XNANDPSS_ECC_CONFIG | ecc_page_size));
+               break;
+       default:
+               /* The software ECC routines won't work with the SMC controller */
+               nand_chip->ecc.mode = NAND_ECC_HW;
+               nand_chip->ecc.calculate = nand_calculate_ecc;
+               nand_chip->ecc.correct = nand_correct_data;
+               nand_chip->ecc.read_page = xnandpss_read_page_swecc;
+               /* nand_chip->ecc.read_subpage = nand_read_subpage; */
+               nand_chip->ecc.write_page = xnandpss_write_page_swecc;
+               nand_chip->ecc.read_page_raw = xnandpss_read_page_raw;
+               nand_chip->ecc.write_page_raw = xnandpss_write_page_raw;
+               nand_chip->ecc.read_oob = xnandpss_read_oob;
+               nand_chip->ecc.write_oob = xnandpss_write_oob;
+               nand_chip->ecc.size = 256;
+               nand_chip->ecc.bytes = 3;
+               break;
+       }
+
+       if (mtd->oobsize == 16)
+               nand_chip->ecc.layout = &nand_oob_16;
+       else if (mtd->oobsize == 64)
+               nand_chip->ecc.layout = &nand_oob_64;
+       else
+               ;
+
+       /* second phase scan */
+       if (nand_scan_tail(mtd)) {
+               err = -ENXIO;
+               dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
+               goto out_unmap_all_mem;
+       }
+
+#ifdef CONFIG_MTD_PARTITIONS
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+       /* Get the partition information from command line argument */
+       nr_parts = parse_mtd_partitions(mtd, part_probe_types,
+                                       &xnand->parts, 0);
+       if (nr_parts > 0) {
+               dev_info(&pdev->dev, "found %d number of partition information"
+               " through command line", nr_parts);
+               add_mtd_partitions(mtd, xnand->parts, nr_parts);
+               return 0;
+       } else {
+#endif
+               dev_info(&pdev->dev, "Command line partition table is not"
+               " available, or command line partition option is not enabled"
+               "creating single partition on flash\n");
+#endif
+               err = add_mtd_device(mtd);
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+       }
+#endif
+       if (!err) {
+#ifdef LINUX_ONLY_NOT_UBOOT
+               dev_info(&pdev->dev, "at 0x%08X mapped to 0x%08X\n",
+                               smc_res->start, (u32 __force) xnand->nand_base);
+#endif
+               return 0;
+       }
+printf("%s: ERROR *********** %d\n", __FUNCTION__, err);
+
+       nand_release(mtd);
+out_unmap_all_mem:
+#ifdef LINUX_ONLY_NOT_UBOOT
+       platform_set_drvdata(pdev, NULL);
+       iounmap(xnand->smc_regs);
+out_release_smc_mem_region:
+       release_mem_region(smc_res->start, resource_size(smc_res));
+out_nand_iounmap:
+       iounmap(xnand->nand_base);
+out_release_nand_mem_region:
+       release_mem_region(nand_res->start, resource_size(nand_res));
+out_free_data:
+#endif
+       kfree(xnand);
+       return err;
+}
+
+/**
+ * xnandpss_remove - Remove method for the NAND driver
+ * @pdev:      Pointer to the platform_device structure
+ *
+ * This function is called if the driver module is being unloaded. It frees all
+ * resources allocated to the device.
+ *
+ * returns:    0 on success or error value on failure
+ **/
+#ifdef LINUX_ONLY_NOT_UBOOT
+static int __devexit xnandpss_remove(struct platform_device *pdev)
+{
+       struct xnandpss_info *xnand = platform_get_drvdata(pdev);
+       struct resource *nand_res, *smc_res;
+
+       /* Release resources, unregister device */
+       nand_release(&xnand->mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+       /* kfree(NULL) is safe */
+       kfree(xnand->parts);
+#endif
+       platform_set_drvdata(pdev, NULL);
+       /* Unmap and release physical address */
+       iounmap(xnand->smc_regs);
+       smc_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+       release_mem_region(smc_res->start, resource_size(smc_res));
+
+       iounmap(xnand->nand_base);
+       nand_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       release_mem_region(nand_res->start, resource_size(nand_res));
+       /* Free the MTD device structure */
+       kfree(xnand);
+       return 0;
+}
+
+/*
+ * xnandpss_driver - This structure defines the NAND subsystem platform driver
+ */
+static struct platform_driver xnandpss_driver = {
+       .probe          = xnandpss_probe,
+       .remove         = __devexit_p(xnandpss_remove),
+       .suspend        = NULL,
+       .resume         = NULL,
+       .driver         = {
+               .name   = XNANDPSS_DRIVER_NAME,
+               .owner  = THIS_MODULE,
+       },
+};
+
+/**
+ * xnandpss_init - NAND driver module initialization function
+ *
+ * returns:    0 on success and error value on failure
+ **/
+static int __init xnandpss_init(void)
+{
+       return platform_driver_register(&xnandpss_driver);
+}
+
+/**
+ * xnandpss_exit - NAND driver module exit function
+ **/
+static void __exit xnandpss_exit(void)
+{
+       platform_driver_unregister(&xnandpss_driver);
+}
+
+module_init(xnandpss_init);
+module_exit(xnandpss_exit);
+
+MODULE_AUTHOR("Xilinx, Inc.");
+MODULE_ALIAS("platform:" XNANDPSS_DRIVER_NAME);
+MODULE_DESCRIPTION("Xilinx PSS NAND Flash Driver");
+MODULE_LICENSE("GPL");
+
+#endif
index 426bb95e9e9f10f62b13e2877428370158daa3d9..6170b45fac545afd437fa6bbab9e3ed5a698a95a 100644 (file)
@@ -871,13 +871,18 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
                        return 0x01;
                }
 
+/* HACK FIXME BHILL */
+#ifndef CONFIG_PELE
                if (this->dev_ready) {
                        if (this->dev_ready(mtd))
                                break;
                } else {
+#endif
                        if (this->read_byte(mtd) & NAND_STATUS_READY)
                                break;
+#ifndef CONFIG_PELE
                }
+#endif
        }
 #ifdef PPCHAMELON_NAND_TIMER_HACK
        reset_timer();
@@ -2010,9 +2015,9 @@ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
        int ret;
 
        /* Do not allow reads past end of device */
-       if ((to + len) > mtd->size)
+       if ((to + len) > mtd->size) 
                return -EINVAL;
-       if (!len)
+       if (!len) 
                return 0;
 
        nand_get_device(chip, mtd, FL_WRITING);
@@ -2733,7 +2738,7 @@ int nand_scan_tail(struct mtd_info *mtd)
        int i;
        struct nand_chip *chip = mtd->priv;
 
-       if (!(chip->options & NAND_OWN_BUFFERS))
+       if (!(chip->options & NAND_OWN_BUFFERS)) 
                chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
        if (!chip->buffers)
                return -ENOMEM;
@@ -2994,8 +2999,11 @@ void nand_release(struct mtd_info *mtd)
 
        /* Free bad block table memory */
        kfree(chip->bbt);
-       if (!(chip->options & NAND_OWN_BUFFERS))
+       chip->bbt = NULL;
+       if (!(chip->options & NAND_OWN_BUFFERS)) {
                kfree(chip->buffers);
+               chip->buffers = NULL;
+       }
 }
 
 /* XXX U-BOOT XXX */
index b9070d35727c95174f991e8bd15bef6166bac2b8..72c7521daca7c10b9860073c7255962f4417a292 100644 (file)
 //#define CONFIG_ENV_SIZE                      4096
 #define CONFIG_ENV_SIZE                        0x10000
 #define CONFIG_NR_DRAM_BANKS           1
-#define CONFIG_SYS_MALLOC_LEN          0x21000 
+#define CONFIG_SYS_MALLOC_LEN          0x100000        
 #define CONFIG_SYS_GBL_DATA_SIZE       128
 #define CONFIG_SYS_MAXARGS             16
 #define CONFIG_SYS_CBSIZE              256
 #define CONFIG_SYS_PBSIZE              (CONFIG_SYS_CBSIZE+sizeof(CONFIG_SYS_PROMPT)+16) /* phycore */
 
+/*
+ * NAND Flash settings
+ */
+#define CONFIG_CMD_NAND
+#define CONFIG_CMD_NAND_LOCK_UNLOCK
+#define CONFIG_SYS_MAX_NAND_DEVICE 1
+#define CONFIG_SYS_NAND_BASE XPSS_NAND_BASEADDR
+#define CONFIG_MTD_DEVICE
+
 #endif /* __CONFIG_H */