]> git.ipfire.org Git - thirdparty/systemd.git/commitdiff
repart: add new systemd-repart tool
authorLennart Poettering <lennart@poettering.net>
Tue, 10 Dec 2019 20:31:41 +0000 (21:31 +0100)
committerLennart Poettering <lennart@poettering.net>
Mon, 20 Jan 2020 16:42:03 +0000 (17:42 +0100)
Fixes: #14052
meson.build
meson_options.txt
src/partition/meson.build [new file with mode: 0644]
src/partition/repart.c [new file with mode: 0644]

index 848140bb03fbdceb4c94824f19165807592bb69b..54820d3f6a876ac510edca4e90400a70173c7933 100644 (file)
@@ -873,6 +873,17 @@ endif
 libmount = dependency('mount',
                       version : fuzzer_build ? '>= 0' : '>= 2.30')
 
+want_libfdisk = get_option('fdisk')
+if want_libfdisk != 'false' and not skip_deps
+        libfdisk = dependency('fdisk',
+                              required : want_libfdisk == 'true')
+        have = libfdisk.found()
+else
+        have = false
+        libfdisk = []
+endif
+conf.set10('HAVE_LIBFDISK', have)
+
 want_seccomp = get_option('seccomp')
 if want_seccomp != 'false' and not skip_deps
         libseccomp = dependency('libseccomp',
@@ -1279,6 +1290,18 @@ conf.set('DEFAULT_DNS_OVER_TLS_MODE',
          'DNS_OVER_TLS_' + default_dns_over_tls.underscorify().to_upper())
 substs.set('DEFAULT_DNS_OVER_TLS_MODE', default_dns_over_tls)
 
+want_repart = get_option('repart')
+if want_repart != 'false'
+        have = (conf.get('HAVE_OPENSSL') == 1 and
+                conf.get('HAVE_LIBFDISK') == 1)
+        if want_repart == 'true' and not have
+                error('repart support was requested, but dependencies are not available')
+        endif
+else
+        have = false
+endif
+conf.set10('ENABLE_REPART', have)
+
 want_importd = get_option('importd')
 if want_importd != 'false'
         have = (conf.get('HAVE_LIBCURL') == 1 and
@@ -1535,6 +1558,7 @@ subdir('src/coredump')
 subdir('src/pstore')
 subdir('src/hostname')
 subdir('src/import')
+subdir('src/partition')
 subdir('src/kernel-install')
 subdir('src/locale')
 subdir('src/machine')
@@ -2381,6 +2405,21 @@ if conf.get('ENABLE_BINFMT') == 1
                                  mkdir_p.format(join_paths(sysconfdir, 'binfmt.d')))
 endif
 
+if conf.get('ENABLE_REPART') == 1
+        executable('systemd-repart',
+                   systemd_repart_sources,
+                   include_directories : includes,
+                   link_with : [libshared],
+                   dependencies : [threads,
+                                   libcryptsetup,
+                                   libblkid,
+                                   libfdisk,
+                                   libopenssl],
+                   install_rpath : rootlibexecdir,
+                   install : true,
+                   install_dir : rootbindir)
+endif
+
 if conf.get('ENABLE_VCONSOLE') == 1
         executable('systemd-vconsole-setup',
                    'src/vconsole/vconsole-setup.c',
@@ -3276,6 +3315,7 @@ foreach tuple : [
         ['libiptc'],
         ['elfutils'],
         ['binfmt'],
+        ['repart'],
         ['vconsole'],
         ['quotacheck'],
         ['tmpfiles'],
index 6736240f394fdff4dccc92fd2aabead5288c168f..e512d25480803aa6f039fa313cc70aed404fc6e1 100644 (file)
@@ -80,6 +80,8 @@ option('environment-d', type : 'boolean',
        description : 'support for environment.d')
 option('binfmt', type : 'boolean',
        description : 'support for custom binary formats')
+option('repart', type : 'combo', choices : ['auto', 'true', 'false'],
+       description : 'install the systemd-repart tool')
 option('coredump', type : 'boolean',
        description : 'install the coredump handler')
 option('pstore', type : 'boolean',
@@ -260,6 +262,8 @@ option('audit', type : 'combo', choices : ['auto', 'true', 'false'],
        description : 'libaudit support')
 option('blkid', type : 'combo', choices : ['auto', 'true', 'false'],
        description : 'libblkid support')
+option('fdisk', type : 'combo', choices : ['auto', 'true', 'false'],
+       description : 'libfdisk support')
 option('kmod', type : 'combo', choices : ['auto', 'true', 'false'],
        description : 'support for loadable modules')
 option('pam', type : 'combo', choices : ['auto', 'true', 'false'],
diff --git a/src/partition/meson.build b/src/partition/meson.build
new file mode 100644 (file)
index 0000000..d0c111a
--- /dev/null
@@ -0,0 +1,5 @@
+# SPDX-License-Identifier: LGPL-2.1+
+
+systemd_repart_sources = files('''
+        repart.c
+'''.split())
diff --git a/src/partition/repart.c b/src/partition/repart.c
new file mode 100644 (file)
index 0000000..9844de5
--- /dev/null
@@ -0,0 +1,3096 @@
+/* SPDX-License-Identifier: LGPL-2.1+ */
+
+#if HAVE_VALGRIND_MEMCHECK_H
+#include <valgrind/memcheck.h>
+#endif
+
+#include <fcntl.h>
+#include <getopt.h>
+#include <libfdisk.h>
+#include <linux/fs.h>
+#include <linux/loop.h>
+#include <sys/file.h>
+#include <sys/ioctl.h>
+#include <sys/stat.h>
+
+#include <openssl/hmac.h>
+#include <openssl/sha.h>
+
+#include "sd-id128.h"
+
+#include "alloc-util.h"
+#include "blkid-util.h"
+#include "blockdev-util.h"
+#include "btrfs-util.h"
+#include "conf-files.h"
+#include "conf-parser.h"
+#include "def.h"
+#include "efivars.h"
+#include "errno-util.h"
+#include "fd-util.h"
+#include "format-table.h"
+#include "format-util.h"
+#include "fs-util.h"
+#include "gpt.h"
+#include "id128-util.h"
+#include "list.h"
+#include "locale-util.h"
+#include "main-func.h"
+#include "parse-util.h"
+#include "path-util.h"
+#include "pretty-print.h"
+#include "proc-cmdline.h"
+#include "sort-util.h"
+#include "stat-util.h"
+#include "stdio-util.h"
+#include "string-util.h"
+#include "strv.h"
+#include "terminal-util.h"
+#include "utf8.h"
+
+/* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks
+ * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B
+ * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll
+ * waste 3K per partition, which is probably fine. */
+
+static enum {
+        EMPTY_REFUSE,   /* refuse empty disks, never create a partition table */
+        EMPTY_ALLOW,    /* allow empty disks, create partition table if necessary */
+        EMPTY_REQUIRE,  /* require an empty disk, create a partition table */
+        EMPTY_FORCE,    /* make disk empty, erase everything, create a partition table always */
+} arg_empty = EMPTY_REFUSE;
+
+static bool arg_dry_run = true;
+static const char *arg_node = NULL;
+static char *arg_root = NULL;
+static char *arg_definitions = NULL;
+static bool arg_discard = true;
+static bool arg_can_factory_reset = false;
+static int arg_factory_reset = -1;
+static sd_id128_t arg_seed = SD_ID128_NULL;
+static bool arg_randomize = false;
+static int arg_pretty = -1;
+
+STATIC_DESTRUCTOR_REGISTER(arg_root, freep);
+STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep);
+
+typedef struct Partition Partition;
+typedef struct FreeArea FreeArea;
+typedef struct Context Context;
+
+struct Partition {
+        char *definition_path;
+
+        sd_id128_t type_uuid;
+        sd_id128_t current_uuid, new_uuid;
+        char *current_label, *new_label;
+
+        bool dropped;
+        bool factory_reset;
+        int32_t priority;
+
+        uint32_t weight, padding_weight;
+
+        uint64_t current_size, new_size;
+        uint64_t size_min, size_max;
+
+        uint64_t current_padding, new_padding;
+        uint64_t padding_min, padding_max;
+
+        uint64_t partno;
+        uint64_t offset;
+
+        struct fdisk_partition *current_partition;
+        struct fdisk_partition *new_partition;
+        FreeArea *padding_area;
+        FreeArea *allocated_to_area;
+
+        LIST_FIELDS(Partition, partitions);
+};
+
+#define PARTITION_IS_FOREIGN(p) (!(p)->definition_path)
+#define PARTITION_EXISTS(p) (!!(p)->current_partition)
+
+struct FreeArea {
+        Partition *after;
+        uint64_t size;
+        uint64_t allocated;
+};
+
+struct Context {
+        LIST_HEAD(Partition, partitions);
+        size_t n_partitions;
+
+        FreeArea **free_areas;
+        size_t n_free_areas, n_allocated_free_areas;
+
+        uint64_t start, end, total;
+
+        struct fdisk_context *fdisk_context;
+
+        sd_id128_t seed;
+};
+
+static uint64_t round_down_size(uint64_t v, uint64_t p) {
+        return (v / p) * p;
+}
+
+static uint64_t round_up_size(uint64_t v, uint64_t p) {
+
+        v = DIV_ROUND_UP(v, p);
+
+        if (v > UINT64_MAX / p)
+                return UINT64_MAX; /* overflow */
+
+        return v * p;
+}
+
+static Partition *partition_new(void) {
+        Partition *p;
+
+        p = new(Partition, 1);
+        if (!p)
+                return NULL;
+
+        *p = (Partition) {
+                .weight = 1000,
+                .padding_weight = 0,
+                .current_size = UINT64_MAX,
+                .new_size = UINT64_MAX,
+                .size_min = UINT64_MAX,
+                .size_max = UINT64_MAX,
+                .current_padding = UINT64_MAX,
+                .new_padding = UINT64_MAX,
+                .padding_min = UINT64_MAX,
+                .padding_max = UINT64_MAX,
+                .partno = UINT64_MAX,
+                .offset = UINT64_MAX,
+        };
+
+        return p;
+}
+
+static Partition* partition_free(Partition *p) {
+        if (!p)
+                return NULL;
+
+        free(p->current_label);
+        free(p->new_label);
+        free(p->definition_path);
+
+        if (p->current_partition)
+                fdisk_unref_partition(p->current_partition);
+        if (p->new_partition)
+                fdisk_unref_partition(p->new_partition);
+
+        return mfree(p);
+}
+
+static Partition* partition_unlink_and_free(Context *context, Partition *p) {
+        if (!p)
+                return NULL;
+
+        LIST_REMOVE(partitions, context->partitions, p);
+
+        assert(context->n_partitions > 0);
+        context->n_partitions--;
+
+        return partition_free(p);
+}
+
+DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free);
+
+static Context *context_new(sd_id128_t seed) {
+        Context *context;
+
+        context = new(Context, 1);
+        if (!context)
+                return NULL;
+
+        *context = (Context) {
+                .start = UINT64_MAX,
+                .end = UINT64_MAX,
+                .total = UINT64_MAX,
+                .seed = seed,
+        };
+
+        return context;
+}
+
+static void context_free_free_areas(Context *context) {
+        assert(context);
+
+        for (size_t i = 0; i < context->n_free_areas; i++)
+                free(context->free_areas[i]);
+
+        context->free_areas = mfree(context->free_areas);
+        context->n_free_areas = 0;
+        context->n_allocated_free_areas = 0;
+}
+
+static Context *context_free(Context *context) {
+        if (!context)
+                return NULL;
+
+        while (context->partitions)
+                partition_unlink_and_free(context, context->partitions);
+        assert(context->n_partitions == 0);
+
+        context_free_free_areas(context);
+
+        if (context->fdisk_context)
+                fdisk_unref_context(context->fdisk_context);
+
+        return mfree(context);
+}
+
+DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free);
+
+static int context_add_free_area(
+                Context *context,
+                uint64_t size,
+                Partition *after) {
+
+        FreeArea *a;
+
+        assert(context);
+        assert(!after || !after->padding_area);
+
+        if (!GREEDY_REALLOC(context->free_areas, context->n_allocated_free_areas, context->n_free_areas + 1))
+                return -ENOMEM;
+
+        a = new(FreeArea, 1);
+        if (!a)
+                return -ENOMEM;
+
+        *a = (FreeArea) {
+                .size = size,
+                .after = after,
+        };
+
+        context->free_areas[context->n_free_areas++] = a;
+
+        if (after)
+                after->padding_area = a;
+
+        return 0;
+}
+
+static bool context_drop_one_priority(Context *context) {
+        int32_t priority = 0;
+        Partition *p;
+        bool exists = false;
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                if (p->dropped)
+                        continue;
+                if (p->priority < priority)
+                        continue;
+                if (p->priority == priority) {
+                        exists = exists || PARTITION_EXISTS(p);
+                        continue;
+                }
+
+                priority = p->priority;
+                exists = PARTITION_EXISTS(p);
+        }
+
+        /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at
+         * least one existing priority */
+        if (priority <= 0 || exists)
+                return false;
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                if (p->priority < priority)
+                        continue;
+
+                if (p->dropped)
+                        continue;
+
+                p->dropped = true;
+                log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority);
+        }
+
+        return true;
+}
+
+static uint64_t partition_min_size(const Partition *p) {
+        uint64_t sz;
+
+        /* Calculate the disk space we really need at minimum for this partition. If the partition already
+         * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less
+         * than 4K. */
+
+        if (PARTITION_IS_FOREIGN(p)) {
+                /* Don't allow changing size of partitions not managed by us */
+                assert(p->current_size != UINT64_MAX);
+                return p->current_size;
+        }
+
+        sz = p->current_size != UINT64_MAX ? p->current_size : 4096;
+        if (p->size_min != UINT64_MAX)
+                return MAX(p->size_min, sz);
+
+        return sz;
+}
+
+static uint64_t partition_max_size(const Partition *p) {
+        /* Calculate how large the partition may become at max. This is generally the configured maximum
+         * size, except when it already exists and is larger than that. In that case it's the existing size,
+         * since we never want to shrink partitions. */
+
+        if (PARTITION_IS_FOREIGN(p)) {
+                /* Don't allow changing size of partitions not managed by us */
+                assert(p->current_size != UINT64_MAX);
+                return p->current_size;
+        }
+
+        if (p->current_size != UINT64_MAX)
+                return MAX(p->current_size, p->size_max);
+
+        return p->size_max;
+}
+
+static uint64_t partition_min_size_with_padding(const Partition *p) {
+        uint64_t sz;
+
+        /* Calculate the disk space we need for this partition plus any free space coming after it. This
+         * takes user configured padding into account as well as any additional whitespace needed to align
+         * the next partition to 4K again. */
+
+        sz = partition_min_size(p);
+
+        if (p->padding_min != UINT64_MAX)
+                sz += p->padding_min;
+
+        if (PARTITION_EXISTS(p)) {
+                /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */
+                assert(p->offset != UINT64_MAX);
+                return round_up_size(p->offset + sz, 4096) - p->offset;
+        }
+
+        /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */
+        return round_up_size(sz, 4096);
+}
+
+static uint64_t free_area_available(const FreeArea *a) {
+        assert(a);
+
+        /* Determines how much of this free area is not allocated yet */
+
+        assert(a->size >= a->allocated);
+        return a->size - a->allocated;
+}
+
+static uint64_t free_area_available_for_new_partitions(const FreeArea *a) {
+        uint64_t avail;
+
+        /* Similar to free_area_available(), but takes into account that the required size and padding of the
+         * preceeding partition is honoured. */
+
+        avail = free_area_available(a);
+        if (a->after) {
+                uint64_t need, space;
+
+                need = partition_min_size_with_padding(a->after);
+
+                assert(a->after->offset != UINT64_MAX);
+                assert(a->after->current_size != UINT64_MAX);
+
+                space = round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset + avail;
+                if (need >= space)
+                        return 0;
+
+                return space - need;
+        }
+
+        return avail;
+}
+
+static int free_area_compare(FreeArea *const *a, FreeArea *const*b) {
+        return CMP(free_area_available_for_new_partitions(*a),
+                   free_area_available_for_new_partitions(*b));
+}
+
+static uint64_t charge_size(uint64_t total, uint64_t amount) {
+        uint64_t rounded;
+
+        assert(amount <= total);
+
+        /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */
+        rounded = round_up_size(amount, 4096);
+        if (rounded >= total)
+                return 0;
+
+        return total - rounded;
+}
+
+static uint64_t charge_weight(uint64_t total, uint64_t amount) {
+        assert(amount <= total);
+        return total - amount;
+}
+
+static bool context_allocate_partitions(Context *context) {
+        Partition *p;
+
+        assert(context);
+
+        /* A simple first-fit algorithm, assuming the array of free areas is sorted by size in decreasing
+         * order. */
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                bool fits = false;
+                uint64_t required;
+                FreeArea *a = NULL;
+
+                /* Skip partitions we already dropped or that already exist */
+                if (p->dropped || PARTITION_EXISTS(p))
+                        continue;
+
+                /* Sort by size */
+                typesafe_qsort(context->free_areas, context->n_free_areas, free_area_compare);
+
+                /* How much do we need to fit? */
+                required = partition_min_size_with_padding(p);
+                assert(required % 4096 == 0);
+
+                for (size_t i = 0; i < context->n_free_areas; i++) {
+                        a = context->free_areas[i];
+
+                        if (free_area_available_for_new_partitions(a) >= required) {
+                                fits = true;
+                                break;
+                        }
+                }
+
+                if (!fits)
+                        return false; /* ðŸ˜¢ Oh no! We can't fit this partition into any free area! */
+
+                /* Assign the partition to this free area */
+                p->allocated_to_area = a;
+
+                /* Budget the minimal partition size */
+                a->allocated += required;
+        }
+
+        return true;
+}
+
+static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) {
+        uint64_t weight_sum = 0;
+        Partition *p;
+
+        assert(context);
+        assert(a);
+        assert(ret);
+
+        /* Determine the sum of the weights of all partitions placed in or before the specified free area */
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                if (p->padding_area != a && p->allocated_to_area != a)
+                        continue;
+
+                if (p->weight > UINT64_MAX - weight_sum)
+                        goto overflow_sum;
+                weight_sum += p->weight;
+
+                if (p->padding_weight > UINT64_MAX - weight_sum)
+                        goto overflow_sum;
+                weight_sum += p->padding_weight;
+        }
+
+        *ret = weight_sum;
+        return 0;
+
+overflow_sum:
+        return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing.");
+}
+
+static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) {
+        assert(weight_sum >= weight);
+        assert(ret);
+
+        if (weight == 0) {
+                *ret = 0;
+                return 0;
+        }
+
+        if (value > UINT64_MAX / weight)
+                return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing.");
+
+        *ret = value * weight / weight_sum;
+        return 0;
+}
+
+typedef enum GrowPartitionPhase {
+        /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */
+        PHASE_OVERCHARGE,
+
+        /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */
+        PHASE_UNDERCHARGE,
+
+        /* The third phase: we distribute what remains among the remaining partitions, according to the weights */
+        PHASE_DISTRIBUTE,
+} GrowPartitionPhase;
+
+static int context_grow_partitions_phase(
+                Context *context,
+                FreeArea *a,
+                GrowPartitionPhase phase,
+                uint64_t *span,
+                uint64_t *weight_sum) {
+
+        Partition *p;
+        int r;
+
+        assert(context);
+        assert(a);
+
+        /* Now let's look at the intended weights and adjust them taking the minimum space assignments into
+         * account. i.e. if a partition has a small weight but a high minimum space value set it should not
+         * get any additional room from the left-overs. Similar, if two partitions have the same weight they
+         * should get the same space if possible, even if one has a smaller minimum size than the other. */
+        LIST_FOREACH(partitions, p, context->partitions) {
+
+                /* Look only at partitions associated with this free area, i.e. immediately
+                 * preceeding it, or allocated into it */
+                if (p->allocated_to_area != a && p->padding_area != a)
+                        continue;
+
+                if (p->new_size == UINT64_MAX) {
+                        bool charge = false, try_again = false;
+                        uint64_t share, rsz, xsz;
+
+                        /* Calculate how much this space this partition needs if everyone would get
+                         * the weight based share */
+                        r = scale_by_weight(*span, p->weight, *weight_sum, &share);
+                        if (r < 0)
+                                return r;
+
+                        rsz = partition_min_size(p);
+                        xsz = partition_max_size(p);
+
+                        if (phase == PHASE_OVERCHARGE && rsz > share) {
+                                /* This partition needs more than its calculated share. Let's assign
+                                 * it that, and take this partition out of all calculations and start
+                                 * again. */
+
+                                p->new_size = rsz;
+                                charge = try_again = true;
+
+                        } else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) {
+                                /* This partition accepts less than its calculated
+                                 * share. Let's assign it that, and take this partition out
+                                 * of all calculations and start again. */
+
+                                p->new_size = xsz;
+                                charge = try_again = true;
+
+                        } else if (phase == PHASE_DISTRIBUTE) {
+                                /* This partition can accept its calculated share. Let's
+                                 * assign it. There's no need to restart things here since
+                                 * assigning this shouldn't impact the shares of the other
+                                 * partitions. */
+
+                                if (PARTITION_IS_FOREIGN(p))
+                                        /* Never change of foreign partitions (i.e. those we don't manage) */
+                                        p->new_size = p->current_size;
+                                else
+                                        p->new_size = MAX(round_down_size(share, 4096), rsz);
+
+                                charge = true;
+                        }
+
+                        if (charge) {
+                                *span = charge_size(*span, p->new_size);
+                                *weight_sum = charge_weight(*weight_sum, p->weight);
+                        }
+
+                        if (try_again)
+                                return 0; /* try again */
+                }
+
+                if (p->new_padding == UINT64_MAX) {
+                        bool charge = false, try_again = false;
+                        uint64_t share;
+
+                        r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share);
+                        if (r < 0)
+                                return r;
+
+                        if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) {
+                                p->new_padding = p->padding_min;
+                                charge = try_again = true;
+                        } else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) {
+                                p->new_padding = p->padding_max;
+                                charge = try_again = true;
+                        } else if (phase == PHASE_DISTRIBUTE) {
+
+                                p->new_padding = round_down_size(share, 4096);
+                                if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min)
+                                        p->new_padding = p->padding_min;
+
+                                charge = true;
+                        }
+
+                        if (charge) {
+                                *span = charge_size(*span, p->new_padding);
+                                *weight_sum = charge_weight(*weight_sum, p->padding_weight);
+                        }
+
+                        if (try_again)
+                                return 0; /* try again */
+                }
+        }
+
+        return 1; /* done */
+}
+
+static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) {
+        uint64_t weight_sum = 0, span;
+        int r;
+
+        assert(context);
+        assert(a);
+
+        r = context_sum_weights(context, a, &weight_sum);
+        if (r < 0)
+                return r;
+
+        /* Let's calculate the total area covered by this free area and the partition before it */
+        span = a->size;
+        if (a->after) {
+                assert(a->after->offset != UINT64_MAX);
+                assert(a->after->current_size != UINT64_MAX);
+
+                span += round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset;
+        }
+
+        GrowPartitionPhase phase = PHASE_OVERCHARGE;
+        for (;;) {
+                r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum);
+                if (r < 0)
+                        return r;
+                if (r == 0) /* not done yet, re-run this phase */
+                        continue;
+
+                if (phase == PHASE_OVERCHARGE)
+                        phase = PHASE_UNDERCHARGE;
+                else if (phase == PHASE_UNDERCHARGE)
+                        phase = PHASE_DISTRIBUTE;
+                else if (phase == PHASE_DISTRIBUTE)
+                        break;
+        }
+
+        /* We still have space left over? Donate to preceeding partition if we have one */
+        if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) {
+                uint64_t m, xsz;
+
+                assert(a->after->new_size != UINT64_MAX);
+                m = a->after->new_size + span;
+
+                xsz = partition_max_size(a->after);
+                if (xsz != UINT64_MAX && m > xsz)
+                        m = xsz;
+
+                span = charge_size(span, m - a->after->new_size);
+                a->after->new_size = m;
+        }
+
+        /* What? Even still some space left (maybe because there was no preceeding partition, or it had a
+         * size limit), then let's donate it to whoever wants it. */
+        if (span > 0) {
+                Partition *p;
+
+                LIST_FOREACH(partitions, p, context->partitions) {
+                        uint64_t m, xsz;
+
+                        if (p->allocated_to_area != a)
+                                continue;
+
+                        if (PARTITION_IS_FOREIGN(p))
+                                continue;
+
+                        assert(p->new_size != UINT64_MAX);
+                        m = p->new_size + span;
+
+                        xsz = partition_max_size(a->after);
+                        if (xsz != UINT64_MAX && m > xsz)
+                                m = xsz;
+
+                        span = charge_size(span, m - p->new_size);
+                        p->new_size = m;
+
+                        if (span == 0)
+                                break;
+                }
+        }
+
+        /* Yuck, still noone? Then make it padding */
+        if (span > 0 && a->after) {
+                assert(a->after->new_padding != UINT64_MAX);
+                a->after->new_padding += span;
+        }
+
+        return 0;
+}
+
+static int context_grow_partitions(Context *context) {
+        Partition *p;
+        int r;
+
+        assert(context);
+
+        for (size_t i = 0; i < context->n_free_areas; i++) {
+                r = context_grow_partitions_on_free_area(context, context->free_areas[i]);
+                if (r < 0)
+                        return r;
+        }
+
+        /* All existing partitions that have no free space after them can't change size */
+        LIST_FOREACH(partitions, p, context->partitions) {
+                if (p->dropped)
+                        continue;
+
+                if (!PARTITION_EXISTS(p) || p->padding_area) {
+                        /* The algorithm above must have initialized this already */
+                        assert(p->new_size != UINT64_MAX);
+                        continue;
+                }
+
+                assert(p->new_size == UINT64_MAX);
+                p->new_size = p->current_size;
+
+                assert(p->new_padding == UINT64_MAX);
+                p->new_padding = p->current_padding;
+        }
+
+        return 0;
+}
+
+static void context_place_partitions(Context *context) {
+        uint64_t partno = 0;
+        Partition *p;
+
+        assert(context);
+
+        /* Determine next partition number to assign */
+        LIST_FOREACH(partitions, p, context->partitions) {
+                if (!PARTITION_EXISTS(p))
+                        continue;
+
+                assert(p->partno != UINT64_MAX);
+                if (p->partno >= partno)
+                        partno = p->partno + 1;
+        }
+
+        for (size_t i = 0; i < context->n_free_areas; i++) {
+                FreeArea *a = context->free_areas[i];
+                uint64_t start, left;
+
+                if (a->after) {
+                        assert(a->after->offset != UINT64_MAX);
+                        assert(a->after->new_size != UINT64_MAX);
+                        assert(a->after->new_padding != UINT64_MAX);
+
+                        start = a->after->offset + a->after->new_size + a->after->new_padding;
+                } else
+                        start = context->start;
+
+                start = round_up_size(start, 4096);
+                left = a->size;
+
+                LIST_FOREACH(partitions, p, context->partitions) {
+                        if (p->allocated_to_area != a)
+                                continue;
+
+                        p->offset = start;
+                        p->partno = partno++;
+
+                        assert(left >= p->new_size);
+                        start += p->new_size;
+                        left -= p->new_size;
+
+                        assert(left >= p->new_padding);
+                        start += p->new_padding;
+                        left -= p->new_padding;
+                }
+        }
+}
+
+typedef struct GptPartitionType {
+        sd_id128_t uuid;
+        const char *name;
+} GptPartitionType;
+
+static const GptPartitionType gpt_partition_type_table[] = {
+        { GPT_ROOT_X86,              "root-x86"              },
+        { GPT_ROOT_X86_VERITY,       "root-x86-verity"       },
+        { GPT_ROOT_X86_64,           "root-x86-64"           },
+        { GPT_ROOT_X86_64_VERITY,    "root-x86-64-verity"    },
+        { GPT_ROOT_ARM,              "root-arm"              },
+        { GPT_ROOT_ARM_VERITY,       "root-arm-verity"       },
+        { GPT_ROOT_ARM_64,           "root-arm64"            },
+        { GPT_ROOT_ARM_64_VERITY,    "root-arm64-verity"     },
+        { GPT_ROOT_IA64,             "root-ia64"             },
+        { GPT_ROOT_IA64_VERITY,      "root-ia64-verity"      },
+#ifdef GPT_ROOT_NATIVE
+        { GPT_ROOT_NATIVE,           "root"                  },
+        { GPT_ROOT_NATIVE_VERITY,    "root-verity"           },
+#endif
+#ifdef GPT_ROOT_SECONDARY
+        { GPT_ROOT_SECONDARY,        "root-secondary"        },
+        { GPT_ROOT_SECONDARY_VERITY, "root-secondary-verity" },
+#endif
+        { GPT_ESP,                   "esp"                   },
+        { GPT_XBOOTLDR,              "xbootldr"              },
+        { GPT_SWAP,                  "swap"                  },
+        { GPT_HOME,                  "home"                  },
+        { GPT_SRV,                   "srv"                   },
+        { GPT_VAR,                   "var"                   },
+        { GPT_TMP,                   "tmp"                   },
+        { GPT_LINUX_GENERIC,         "linux-generic",        },
+};
+
+static const char *gpt_partition_type_uuid_to_string(sd_id128_t id) {
+        for (size_t i = 0; i < ELEMENTSOF(gpt_partition_type_table); i++)
+                if (sd_id128_equal(id, gpt_partition_type_table[i].uuid))
+                        return gpt_partition_type_table[i].name;
+
+        return NULL;
+}
+
+static const char *gpt_partition_type_uuid_to_string_harder(
+                sd_id128_t id,
+                char buffer[static ID128_UUID_STRING_MAX]) {
+
+        const char *s;
+
+        assert(buffer);
+
+        s = gpt_partition_type_uuid_to_string(id);
+        if (s)
+                return s;
+
+        return id128_to_uuid_string(id, buffer);
+}
+
+static int gpt_partition_type_uuid_from_string(const char *s, sd_id128_t *ret) {
+        assert(s);
+        assert(ret);
+
+        for (size_t i = 0; i < ELEMENTSOF(gpt_partition_type_table); i++)
+                if (streq(s, gpt_partition_type_table[i].name)) {
+                        *ret = gpt_partition_type_table[i].uuid;
+                        return 0;
+                }
+
+        return sd_id128_from_string(s, ret);
+}
+
+static int config_parse_type(
+                const char *unit,
+                const char *filename,
+                unsigned line,
+                const char *section,
+                unsigned section_line,
+                const char *lvalue,
+                int ltype,
+                const char *rvalue,
+                void *data,
+                void *userdata) {
+
+        sd_id128_t *type_uuid = data;
+        int r;
+
+        assert(rvalue);
+        assert(type_uuid);
+
+        r = gpt_partition_type_uuid_from_string(rvalue, type_uuid);
+        if (r < 0)
+                return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue);
+
+        return 0;
+}
+
+static int config_parse_label(
+                const char *unit,
+                const char *filename,
+                unsigned line,
+                const char *section,
+                unsigned section_line,
+                const char *lvalue,
+                int ltype,
+                const char *rvalue,
+                void *data,
+                void *userdata) {
+
+        _cleanup_free_ char16_t *recoded = NULL;
+        char **label = data;
+        int r;
+
+        assert(rvalue);
+        assert(label);
+
+        if (!utf8_is_valid(rvalue)) {
+                log_syntax(unit, LOG_WARNING, filename, line, 0,
+                           "Partition label not valid UTF-8, ignoring: %s", rvalue);
+                return 0;
+        }
+
+        recoded = utf8_to_utf16(rvalue, strlen(rvalue));
+        if (!recoded)
+                return log_oom();
+
+        if (char16_strlen(recoded) > 36) {
+                log_syntax(unit, LOG_WARNING, filename, line, 0,
+                           "Partition label too long for GPT table, ignoring: %s", rvalue);
+                return 0;
+        }
+
+        r = free_and_strdup(label, rvalue);
+        if (r < 0)
+                return log_oom();
+
+        return 0;
+}
+
+static int config_parse_weight(
+                const char *unit,
+                const char *filename,
+                unsigned line,
+                const char *section,
+                unsigned section_line,
+                const char *lvalue,
+                int ltype,
+                const char *rvalue,
+                void *data,
+                void *userdata) {
+
+        uint32_t *priority = data, v;
+        int r;
+
+        assert(rvalue);
+        assert(priority);
+
+        r = safe_atou32(rvalue, &v);
+        if (r < 0) {
+                log_syntax(unit, LOG_WARNING, filename, line, r,
+                           "Failed to parse weight value, ignoring: %s", rvalue);
+                return 0;
+        }
+
+        if (v > 1000U*1000U) {
+                log_syntax(unit, LOG_WARNING, filename, line, r,
+                           "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v);
+                return 0;
+        }
+
+        *priority = v;
+        return 0;
+}
+
+static int config_parse_size4096(
+                const char *unit,
+                const char *filename,
+                unsigned line,
+                const char *section,
+                unsigned section_line,
+                const char *lvalue,
+                int ltype,
+                const char *rvalue,
+                void *data,
+                void *userdata) {
+
+        uint64_t *sz = data, parsed;
+        int r;
+
+        assert(rvalue);
+        assert(data);
+
+        r = parse_size(rvalue, 1024, &parsed);
+        if (r < 0)
+                return log_syntax(unit, LOG_WARNING, filename, line, r,
+                                  "Failed to parse size value: %s", rvalue);
+
+        if (ltype > 0)
+                *sz = round_up_size(parsed, 4096);
+        else if (ltype < 0)
+                *sz = round_down_size(parsed, 4096);
+        else
+                *sz = parsed;
+
+        if (*sz != parsed)
+                log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " â†’ %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz);
+
+        return 0;
+}
+
+static int partition_read_definition(Partition *p, const char *path) {
+
+        ConfigTableItem table[] = {
+                { "Partition", "Type",            config_parse_type,     0,  &p->type_uuid      },
+                { "Partition", "Label",           config_parse_label,    0,  &p->new_label      },
+                { "Partition", "Priority",        config_parse_int32,    0,  &p->priority       },
+                { "Partition", "Weight",          config_parse_weight,   0,  &p->weight         },
+                { "Partition", "PaddingWeight",   config_parse_weight,   0,  &p->padding_weight },
+                { "Partition", "SizeMinBytes",    config_parse_size4096, 1,  &p->size_min       },
+                { "Partition", "SizeMaxBytes",    config_parse_size4096, -1, &p->size_max       },
+                { "Partition", "PaddingMinBytes", config_parse_size4096, 1,  &p->padding_min    },
+                { "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max    },
+                { "Partition", "FactoryReset",    config_parse_bool,     0,  &p->factory_reset  },
+                {}
+        };
+        int r;
+
+        r = config_parse(NULL, path, NULL, "Partition\0", config_item_table_lookup, table, CONFIG_PARSE_WARN, p);
+        if (r < 0)
+                return r;
+
+        if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max)
+                return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+                                  "SizeMinBytes= larger than SizeMaxBytes=, refusing.");
+
+        if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max)
+                return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+                                  "PaddingMinBytes= larger than PaddingMaxBytes=, refusing.");
+
+        if (sd_id128_is_null(p->type_uuid))
+                return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+                                  "Type= not defined, refusing.");
+
+        return 0;
+}
+
+static int context_read_definitions(
+                Context *context,
+                const char *directory,
+                const char *root) {
+
+        _cleanup_strv_free_ char **files = NULL;
+        Partition *last = NULL;
+        char **f;
+        int r;
+
+        assert(context);
+
+        if (directory)
+                r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory));
+        else
+                r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d"));
+        if (r < 0)
+                return log_error_errno(r, "Failed to enumerate *.conf files: %m");
+
+        STRV_FOREACH(f, files) {
+                _cleanup_(partition_freep) Partition *p = NULL;
+
+                p = partition_new();
+                if (!p)
+                        return log_oom();
+
+                p->definition_path = strdup(*f);
+                if (!p->definition_path)
+                        return log_oom();
+
+                r = partition_read_definition(p, *f);
+                if (r < 0)
+                        return r;
+
+                LIST_INSERT_AFTER(partitions, context->partitions, last, p);
+                last = TAKE_PTR(p);
+                context->n_partitions++;
+        }
+
+        return 0;
+}
+
+DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_context*, fdisk_unref_context);
+DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_partition*, fdisk_unref_partition);
+DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_parttype*, fdisk_unref_parttype);
+DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_table*, fdisk_unref_table);
+
+static int determine_current_padding(
+                struct fdisk_context *c,
+                struct fdisk_table *t,
+                struct fdisk_partition *p,
+                uint64_t *ret) {
+
+        size_t n_partitions;
+        uint64_t offset, next = UINT64_MAX;
+
+        assert(c);
+        assert(t);
+        assert(p);
+
+        if (!fdisk_partition_has_end(p))
+                return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!");
+
+        offset = fdisk_partition_get_end(p);
+        assert(offset < UINT64_MAX / 512);
+        offset *= 512;
+
+        n_partitions = fdisk_table_get_nents(t);
+        for (size_t i = 0; i < n_partitions; i++)  {
+                struct fdisk_partition *q;
+                uint64_t start;
+
+                q = fdisk_table_get_partition(t, i);
+                if (!q)
+                        return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
+
+                if (fdisk_partition_is_used(q) <= 0)
+                        continue;
+
+                if (!fdisk_partition_has_start(q))
+                        continue;
+
+                start = fdisk_partition_get_start(q);
+                assert(start < UINT64_MAX / 512);
+                start *= 512;
+
+                if (start >= offset && (next == UINT64_MAX || next > start))
+                        next = start;
+        }
+
+        if (next == UINT64_MAX) {
+                /* No later partition? In that case check the end of the usable area */
+                next = fdisk_get_last_lba(c);
+                assert(next < UINT64_MAX);
+                next++; /* The last LBA is one sector before the end */
+
+                assert(next < UINT64_MAX / 512);
+                next *= 512;
+
+                if (offset > next)
+                        return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
+        }
+
+        assert(next >= offset);
+        offset = round_up_size(offset, 4096);
+        next = round_down_size(next, 4096);
+
+        if (next >= offset) /* Check again, rounding might have fucked things up */
+                *ret = next - offset;
+        else
+                *ret = 0;
+
+        return 0;
+}
+
+static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) {
+        _cleanup_free_ char *ids = NULL;
+        int r;
+
+        if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING)
+                return -EINVAL;
+
+        ids = new(char, ID128_UUID_STRING_MAX);
+        if (!ids)
+                return -ENOMEM;
+
+        r = fdisk_ask_string_set_result(ask, id128_to_uuid_string(*(sd_id128_t*) data, ids));
+        if (r < 0)
+                return r;
+
+        TAKE_PTR(ids);
+        return 0;
+}
+
+static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) {
+        int r;
+
+        r = fdisk_set_ask(c, fdisk_ask_cb, &id);
+        if (r < 0)
+                return r;
+
+        r = fdisk_set_disklabel_id(c);
+        if (r < 0)
+                return r;
+
+        return fdisk_set_ask(c, NULL, NULL);
+}
+
+#define DISK_UUID_TOKEN "disk-uuid"
+
+static int disk_acquire_uuid(Context *context, sd_id128_t *ret) {
+        union {
+                unsigned char md[SHA256_DIGEST_LENGTH];
+                sd_id128_t id;
+        } result;
+
+        assert(context);
+        assert(ret);
+
+        /* Calculate the HMAC-SHA256 of the string "disk-uuid", keyed off the machine ID. We use the machine
+         * ID as key (and not as cleartext!) since it's the machine ID we don't want to leak. */
+
+        if (!HMAC(EVP_sha256(),
+                  &context->seed, sizeof(context->seed),
+                  (const unsigned char*) DISK_UUID_TOKEN, strlen(DISK_UUID_TOKEN),
+                  result.md, NULL))
+                return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "HMAC-SHA256 calculation failed.");
+
+        /* Take the first half, mark it as v4 UUID */
+        assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
+        *ret = id128_make_v4_uuid(result.id);
+        return 0;
+}
+
+static int context_load_partition_table(Context *context, const char *node) {
+        _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
+        _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL;
+        uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors;
+        _cleanup_free_ char *disk_uuid_string = NULL;
+        bool from_scratch = false;
+        sd_id128_t disk_uuid;
+        size_t n_partitions;
+        int r;
+
+        assert(context);
+        assert(node);
+
+        c = fdisk_new_context();
+        if (!c)
+                return log_oom();
+
+        r = fdisk_assign_device(c, node, arg_dry_run);
+        if (r < 0)
+                return log_error_errno(r, "Failed to open device: %m");
+
+        /* Tell udev not to interfere while we are processing the device */
+        if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0)
+                return log_error_errno(errno, "Failed to lock block device: %m");
+
+        switch (arg_empty) {
+
+        case EMPTY_REFUSE:
+                /* Refuse empty disks, insist on an existing GPT partition table */
+                if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
+                        return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node);
+
+                break;
+
+        case EMPTY_REQUIRE:
+                /* Require an empty disk, refuse any existing partition table */
+                r = fdisk_has_label(c);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
+                if (r > 0)
+                        return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node);
+
+                from_scratch = true;
+                break;
+
+        case EMPTY_ALLOW:
+                /* Allow both an empty disk and an existing partition table, but only GPT */
+                r = fdisk_has_label(c);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
+                if (r > 0) {
+                        if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
+                                return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node);
+                } else
+                        from_scratch = true;
+
+                break;
+
+        case EMPTY_FORCE:
+                /* Always reinitiaize the disk, don't consider what there was on the disk before */
+                from_scratch = true;
+                break;
+        }
+
+        if (from_scratch) {
+                r = fdisk_enable_wipe(c, true);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to enable wiping of disk signature: %m");
+
+                r = fdisk_create_disklabel(c, "gpt");
+                if (r < 0)
+                        return log_error_errno(r, "Failed to create GPT disk label: %m");
+
+                r = disk_acquire_uuid(context, &disk_uuid);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
+
+                r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to set GPT disk label: %m");
+
+                goto add_initial_free_area;
+        }
+
+        r = fdisk_get_disklabel_id(c, &disk_uuid_string);
+        if (r < 0)
+                return log_error_errno(r, "Failed to get current GPT disk label UUID: %m");
+
+        r = sd_id128_from_string(disk_uuid_string, &disk_uuid);
+        if (r < 0)
+                return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m");
+
+        if (sd_id128_is_null(disk_uuid)) {
+                r = disk_acquire_uuid(context, &disk_uuid);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
+
+                r = fdisk_set_disklabel_id(c);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to set GPT disk label: %m");
+        }
+
+        r = fdisk_get_partitions(c, &t);
+        if (r < 0)
+                return log_error_errno(r, "Failed to acquire partition table: %m");
+
+        n_partitions = fdisk_table_get_nents(t);
+        for (size_t i = 0; i < n_partitions; i++)  {
+                _cleanup_free_ char *label_copy = NULL;
+                Partition *pp, *last = NULL;
+                struct fdisk_partition *p;
+                struct fdisk_parttype *pt;
+                const char *pts, *ids, *label;
+                uint64_t sz, start;
+                bool found = false;
+                sd_id128_t ptid, id;
+                size_t partno;
+
+                p = fdisk_table_get_partition(t, i);
+                if (!p)
+                        return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
+
+                if (fdisk_partition_is_used(p) <= 0)
+                        continue;
+
+                if (fdisk_partition_has_start(p) <= 0 ||
+                    fdisk_partition_has_size(p) <= 0 ||
+                    fdisk_partition_has_partno(p) <= 0)
+                        return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number.");
+
+                pt = fdisk_partition_get_type(p);
+                if (!pt)
+                        return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m");
+
+                pts = fdisk_parttype_get_string(pt);
+                if (!pts)
+                        return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m");
+
+                r = sd_id128_from_string(pts, &ptid);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts);
+
+                ids = fdisk_partition_get_uuid(p);
+                if (!ids)
+                        return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID.");
+
+                r = sd_id128_from_string(ids, &id);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids);
+
+                label = fdisk_partition_get_name(p);
+                if (!isempty(label)) {
+                        label_copy = strdup(label);
+                        if (!label_copy)
+                                return log_oom();
+                }
+
+                sz = fdisk_partition_get_size(p);
+                assert_se(sz <= UINT64_MAX/512);
+                sz *= 512;
+
+                start = fdisk_partition_get_start(p);
+                assert_se(start <= UINT64_MAX/512);
+                start *= 512;
+
+                partno = fdisk_partition_get_partno(p);
+
+                if (left_boundary == UINT64_MAX || left_boundary > start)
+                        left_boundary = start;
+
+                /* Assign this existing partition to the first partition of the right type that doesn't have
+                 * an existing one assigned yet. */
+                LIST_FOREACH(partitions, pp, context->partitions) {
+                        last = pp;
+
+                        if (!sd_id128_equal(pp->type_uuid, ptid))
+                                continue;
+
+                        if (!pp->current_partition) {
+                                pp->current_uuid = id;
+                                pp->current_size = sz;
+                                pp->offset = start;
+                                pp->partno = partno;
+                                pp->current_label = TAKE_PTR(label_copy);
+
+                                pp->current_partition = p;
+                                fdisk_ref_partition(p);
+
+                                r = determine_current_padding(c, t, p, &pp->current_padding);
+                                if (r < 0)
+                                        return r;
+
+                                if (pp->current_padding > 0) {
+                                        r = context_add_free_area(context, pp->current_padding, pp);
+                                        if (r < 0)
+                                                return r;
+                                }
+
+                                found = true;
+                                break;
+                        }
+                }
+
+                /* If we have no matching definition, create a new one. */
+                if (!found) {
+                        _cleanup_(partition_freep) Partition *np = NULL;
+
+                        np = partition_new();
+                        if (!np)
+                                return log_oom();
+
+                        np->current_uuid = id;
+                        np->type_uuid = ptid;
+                        np->current_size = sz;
+                        np->offset = start;
+                        np->partno = partno;
+                        np->current_label = TAKE_PTR(label_copy);
+
+                        np->current_partition = p;
+                        fdisk_ref_partition(p);
+
+                        r = determine_current_padding(c, t, p, &np->current_padding);
+                        if (r < 0)
+                                return r;
+
+                        if (np->current_padding > 0) {
+                                r = context_add_free_area(context, np->current_padding, np);
+                                if (r < 0)
+                                        return r;
+                        }
+
+                        LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np));
+                        context->n_partitions++;
+                }
+        }
+
+add_initial_free_area:
+        nsectors = fdisk_get_nsectors(c);
+        assert(nsectors <= UINT64_MAX/512);
+        nsectors *= 512;
+
+        first_lba = fdisk_get_first_lba(c);
+        assert(first_lba <= UINT64_MAX/512);
+        first_lba *= 512;
+
+        last_lba = fdisk_get_last_lba(c);
+        assert(last_lba < UINT64_MAX);
+        last_lba++;
+        assert(last_lba <= UINT64_MAX/512);
+        last_lba *= 512;
+
+        assert(last_lba >= first_lba);
+
+        if (left_boundary == UINT64_MAX) {
+                /* No partitions at all? Then the whole disk is up for grabs. */
+
+                first_lba = round_up_size(first_lba, 4096);
+                last_lba = round_down_size(last_lba, 4096);
+
+                if (last_lba > first_lba) {
+                        r = context_add_free_area(context, last_lba - first_lba, NULL);
+                        if (r < 0)
+                                return r;
+                }
+        } else {
+                /* Add space left of first partition */
+                assert(left_boundary >= first_lba);
+
+                first_lba = round_up_size(first_lba, 4096);
+                left_boundary = round_down_size(left_boundary, 4096);
+                last_lba = round_down_size(last_lba, 4096);
+
+                if (left_boundary > first_lba) {
+                        r = context_add_free_area(context, left_boundary - first_lba, NULL);
+                        if (r < 0)
+                                return r;
+                }
+        }
+
+        context->start = first_lba;
+        context->end = last_lba;
+        context->total = nsectors;
+        context->fdisk_context = TAKE_PTR(c);
+
+        return from_scratch;
+}
+
+static void context_unload_partition_table(Context *context) {
+        Partition *p, *next;
+
+        assert(context);
+
+        LIST_FOREACH_SAFE(partitions, p, next, context->partitions) {
+
+                /* Entirely remove partitions that have no configuration */
+                if (PARTITION_IS_FOREIGN(p)) {
+                        partition_unlink_and_free(context, p);
+                        continue;
+                }
+
+                /* Otherwise drop all data we read off the block device and everything we might have
+                 * calculated based on it */
+
+                p->dropped = false;
+                p->current_size = UINT64_MAX;
+                p->new_size = UINT64_MAX;
+                p->current_padding = UINT64_MAX;
+                p->new_padding = UINT64_MAX;
+                p->partno = UINT64_MAX;
+                p->offset = UINT64_MAX;
+
+                if (p->current_partition) {
+                        fdisk_unref_partition(p->current_partition);
+                        p->current_partition = NULL;
+                }
+
+                if (p->new_partition) {
+                        fdisk_unref_partition(p->new_partition);
+                        p->new_partition = NULL;
+                }
+
+                p->padding_area = NULL;
+                p->allocated_to_area = NULL;
+
+                p->current_uuid = p->new_uuid = SD_ID128_NULL;
+        }
+
+        context->start = UINT64_MAX;
+        context->end = UINT64_MAX;
+        context->total = UINT64_MAX;
+
+        if (context->fdisk_context) {
+                fdisk_unref_context(context->fdisk_context);
+                context->fdisk_context = NULL;
+        }
+
+        context_free_free_areas(context);
+}
+
+static int format_size_change(uint64_t from, uint64_t to, char **ret) {
+        char format_buffer1[FORMAT_BYTES_MAX], format_buffer2[FORMAT_BYTES_MAX], *buf;
+
+        if (from != UINT64_MAX)
+                format_bytes(format_buffer1, sizeof(format_buffer1), from);
+        if (to != UINT64_MAX)
+                format_bytes(format_buffer2, sizeof(format_buffer2), to);
+
+        if (from != UINT64_MAX) {
+                if (from == to || to == UINT64_MAX)
+                        buf = strdup(format_buffer1);
+                else
+                        buf = strjoin(format_buffer1, " ", special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
+        } else if (to != UINT64_MAX)
+                buf = strjoin(special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
+        else {
+                *ret = NULL;
+                return 0;
+        }
+
+        if (!buf)
+                return log_oom();
+
+        *ret = TAKE_PTR(buf);
+        return 1;
+}
+
+static const char *partition_label(const Partition *p) {
+        assert(p);
+
+        if (p->new_label)
+                return p->new_label;
+
+        if (p->current_label)
+                return p->current_label;
+
+        return gpt_partition_type_uuid_to_string(p->type_uuid);
+}
+
+static int context_dump_partitions(Context *context, const char *node) {
+        _cleanup_(table_unrefp) Table *t = NULL;
+        uint64_t sum_padding = 0, sum_size = 0;
+        Partition *p;
+        int r;
+
+        t = table_new("type", "label", "uuid", "file", "node", "offset", "raw size", "size", "raw padding", "padding");
+        if (!t)
+                return log_oom();
+
+        if (!DEBUG_LOGGING)
+                (void) table_set_display(t, 0, 1, 2, 3, 4, 7, 9, (size_t) -1);
+
+        (void) table_set_align_percent(t, table_get_cell(t, 0, 4), 100);
+        (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100);
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL;
+                char uuid_buffer[ID128_UUID_STRING_MAX];
+                const char *label;
+
+                if (p->dropped)
+                        continue;
+
+                label = partition_label(p);
+                partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL;
+
+                r = format_size_change(p->current_size, p->new_size, &size_change);
+                if (r < 0)
+                        return r;
+
+                r = format_size_change(p->current_padding, p->new_padding, &padding_change);
+                if (r < 0)
+                        return r;
+
+                if (p->new_size != UINT64_MAX)
+                        sum_size += p->new_size;
+                if (p->new_padding != UINT64_MAX)
+                        sum_padding += p->new_padding;
+
+                r = table_add_many(
+                                t,
+                                TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer),
+                                TABLE_STRING, label ?: "-", TABLE_SET_COLOR, label ? NULL : ansi_grey(),
+                                TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid,
+                                TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(),
+                                TABLE_STRING, partname ?: "no", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(),
+                                TABLE_UINT64, p->offset,
+                                TABLE_UINT64, p->new_size,
+                                TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL,
+                                TABLE_UINT64, p->new_padding,
+                                TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to add row to table: %m");
+        }
+
+        if (sum_padding > 0 || sum_size > 0) {
+                char s[FORMAT_BYTES_MAX];
+                const char *a, *b;
+
+                a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_size));
+                b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_padding));
+
+                r = table_add_many(
+                                t,
+                                TABLE_EMPTY,
+                                TABLE_EMPTY,
+                                TABLE_EMPTY,
+                                TABLE_EMPTY,
+                                TABLE_EMPTY,
+                                TABLE_EMPTY,
+                                TABLE_EMPTY,
+                                TABLE_STRING, a,
+                                TABLE_EMPTY,
+                                TABLE_STRING, b);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to add row to table: %m");
+        }
+
+        r = table_print(t, stdout);
+        if (r < 0)
+                return log_error_errno(r, "Failed to dump table: %m");
+
+        return 0;
+}
+
+static void context_bar_char_process_partition(
+                Context *context,
+                Partition *bar[],
+                size_t n,
+                Partition *p,
+                size_t *ret_start) {
+
+        uint64_t from, to, total;
+        size_t x, y;
+
+        assert(context);
+        assert(bar);
+        assert(n > 0);
+        assert(p);
+
+        if (p->dropped)
+                return;
+
+        assert(p->offset != UINT64_MAX);
+        assert(p->new_size != UINT64_MAX);
+
+        from = p->offset;
+        to = from + p->new_size;
+
+        assert(context->end >= context->start);
+        total = context->end - context->start;
+
+        assert(from >= context->start);
+        assert(from <= context->end);
+        x = (from - context->start) * n / total;
+
+        assert(to >= context->start);
+        assert(to <= context->end);
+        y = (to - context->start) * n / total;
+
+        assert(x <= y);
+        assert(y <= n);
+
+        for (size_t i = x; i < y; i++)
+                bar[i] = p;
+
+        *ret_start = x;
+}
+
+static int partition_hint(const Partition *p, const char *node, char **ret) {
+        _cleanup_free_ char *buf = NULL;
+        char ids[ID128_UUID_STRING_MAX];
+        const char *label;
+        sd_id128_t id;
+
+        /* Tries really hard to find a suitable description for this partition */
+
+        if (p->definition_path) {
+                buf = strdup(basename(p->definition_path));
+                goto done;
+        }
+
+        label = partition_label(p);
+        if (!isempty(label)) {
+                buf = strdup(label);
+                goto done;
+        }
+
+        if (p->partno != UINT64_MAX) {
+                buf = fdisk_partname(node, p->partno+1);
+                goto done;
+        }
+
+        if (!sd_id128_is_null(p->new_uuid))
+                id = p->new_uuid;
+        else if (!sd_id128_is_null(p->current_uuid))
+                id = p->current_uuid;
+        else
+                id = p->type_uuid;
+
+        buf = strdup(id128_to_uuid_string(id, ids));
+
+done:
+        if (!buf)
+                return -ENOMEM;
+
+        *ret = TAKE_PTR(buf);
+        return 0;
+}
+
+static int context_dump_partition_bar(Context *context, const char *node) {
+        _cleanup_free_ Partition **bar = NULL;
+        _cleanup_free_ size_t *start_array = NULL;
+        Partition *p, *last = NULL;
+        bool z = false;
+        size_t c, j = 0;
+
+        assert((c = columns()) >= 2);
+        c -= 2; /* We do not use the leftmost and rightmost character cell */
+
+        bar = new0(Partition*, c);
+        if (!bar)
+                return log_oom();
+
+        start_array = new(size_t, context->n_partitions);
+        if (!start_array)
+                return log_oom();
+
+        LIST_FOREACH(partitions, p, context->partitions)
+                context_bar_char_process_partition(context, bar, c, p, start_array + j++);
+
+        putc(' ', stdout);
+
+        for (size_t i = 0; i < c; i++) {
+                if (bar[i]) {
+                        if (last != bar[i])
+                                z = !z;
+
+                        fputs(z ? ansi_green() : ansi_yellow(), stdout);
+                        fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout);
+                } else {
+                        fputs(ansi_normal(), stdout);
+                        fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout);
+                }
+
+                last = bar[i];
+        }
+
+        fputs(ansi_normal(), stdout);
+        putc('\n', stdout);
+
+        for (size_t i = 0; i < context->n_partitions; i++) {
+                _cleanup_free_ char **line = NULL;
+
+                line = new0(char*, c);
+                if (!line)
+                        return log_oom();
+
+                j = 0;
+                LIST_FOREACH(partitions, p, context->partitions) {
+                        _cleanup_free_ char *d = NULL;
+                        j++;
+
+                        if (i < context->n_partitions - j) {
+
+                                if (line[start_array[j-1]]) {
+                                        const char *e;
+
+                                        /* Upgrade final corner to the right with a branch to the right */
+                                        e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT));
+                                        if (e) {
+                                                d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e);
+                                                if (!d)
+                                                        return log_oom();
+                                        }
+                                }
+
+                                if (!d) {
+                                        d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL));
+                                        if (!d)
+                                                return log_oom();
+                                }
+
+                        } else if (i == context->n_partitions - j) {
+                                _cleanup_free_ char *hint = NULL;
+
+                                (void) partition_hint(p, node, &hint);
+
+                                if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)))
+                                        d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint));
+                                else
+                                        d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint));
+
+                                if (!d)
+                                        return log_oom();
+                        }
+
+                        if (d)
+                                free_and_replace(line[start_array[j-1]], d);
+                }
+
+                putc(' ', stdout);
+
+                j = 0;
+                while (j < c) {
+                        if (line[j]) {
+                                fputs(line[j], stdout);
+                                j += utf8_console_width(line[j]);
+                        } else {
+                                putc(' ', stdout);
+                                j++;
+                        }
+                }
+
+                putc('\n', stdout);
+
+                for (j = 0; j < c; j++)
+                        free(line[j]);
+        }
+
+        return 0;
+}
+
+static bool context_changed(const Context *context) {
+        Partition *p;
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                if (p->dropped)
+                        continue;
+
+                if (p->allocated_to_area)
+                        return true;
+
+                if (p->new_size != p->current_size)
+                        return true;
+        }
+
+        return false;
+}
+
+static int context_wipe_partition(Context *context, Partition *p) {
+        _cleanup_(blkid_free_probep) blkid_probe probe = NULL;
+        int r;
+
+        assert(context);
+        assert(p);
+        assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */
+
+        probe = blkid_new_probe();
+        if (!probe)
+                return log_oom();
+
+        assert(p->offset != UINT64_MAX);
+        assert(p->new_size != UINT64_MAX);
+
+        errno = 0;
+        r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), p->offset, p->new_size);
+        if (r < 0)
+                return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for partition %" PRIu64 ".", p->partno);
+
+        errno = 0;
+        if (blkid_probe_enable_superblocks(probe, true) < 0 ||
+            blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 ||
+            blkid_probe_enable_partitions(probe, true) < 0 ||
+            blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0)
+                return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing for partition %" PRIu64 ".", p->partno);
+
+        for (;;) {
+                errno = 0;
+                r = blkid_do_probe(probe);
+                if (r < 0)
+                        return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems.");
+                if (r > 0)
+                        break;
+
+                errno = 0;
+                if (blkid_do_wipe(probe, false) < 0)
+                        return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature.");
+        }
+
+        log_info("Successfully wiped file system signatures from partition %" PRIu64 ".", p->partno);
+        return 0;
+}
+
+static int context_discard_range(Context *context, uint64_t offset, uint64_t size) {
+        struct stat st;
+        int fd;
+
+        assert(context);
+        assert(offset != UINT64_MAX);
+        assert(size != UINT64_MAX);
+
+        if (size <= 0)
+                return 0;
+
+        fd = fdisk_get_devfd(context->fdisk_context);
+        assert(fd >= 0);
+
+        if (fstat(fd, &st) < 0)
+                return -errno;
+
+        if (S_ISREG(st.st_mode)) {
+                if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) {
+                        if (ERRNO_IS_NOT_SUPPORTED(errno))
+                                return -EOPNOTSUPP;
+
+                        return -errno;
+                }
+
+                return 1;
+        }
+
+        if (S_ISBLK(st.st_mode)) {
+                uint64_t range[2], end;
+
+                range[0] = round_up_size(offset, 512);
+
+                end = offset + size;
+                if (end <= range[0])
+                        return 0;
+
+                range[1] = round_down_size(end - range[0], 512);
+                if (range[1] <= 0)
+                        return 0;
+
+                if (ioctl(fd, BLKDISCARD, range) < 0) {
+                        if (ERRNO_IS_NOT_SUPPORTED(errno))
+                                return -EOPNOTSUPP;
+
+                        return -errno;
+                }
+
+                return 1;
+        }
+
+        return -EOPNOTSUPP;
+}
+
+static int context_discard_partition(Context *context, Partition *p) {
+        int r;
+
+        assert(context);
+        assert(p);
+
+        assert(p->offset != UINT64_MAX);
+        assert(p->new_size != UINT64_MAX);
+        assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */
+
+        if (!arg_discard)
+                return 0;
+
+        r = context_discard_range(context, p->offset, p->new_size);
+        if (r == -EOPNOTSUPP) {
+                log_info("Storage does not support discarding, not discarding data in new partition %" PRIu64 ".", p->partno);
+                return 0;
+        }
+        if (r == 0) {
+                log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno);
+                return 0;
+        }
+        if (r < 0)
+                return log_error_errno(r, "Failed to discard data for new partition %" PRIu64 ".", p->partno);
+
+        log_info("Successfully discarded data from partition %" PRIu64 ".", p->partno);
+        return 1;
+}
+
+static int context_discard_gap_after(Context *context, Partition *p) {
+        uint64_t gap, next = UINT64_MAX;
+        Partition *q;
+        int r;
+
+        assert(context);
+        assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX));
+
+        if (p)
+                gap = p->offset + p->new_size;
+        else
+                gap = context->start;
+
+        LIST_FOREACH(partitions, q, context->partitions) {
+                if (q->dropped)
+                        continue;
+
+                assert(q->offset != UINT64_MAX);
+                assert(q->new_size != UINT64_MAX);
+
+                if (q->offset < gap)
+                        continue;
+
+                if (next == UINT64_MAX || q->offset < next)
+                        next = q->offset;
+        }
+
+        if (next == UINT64_MAX) {
+                next = context->end;
+                if (gap > next)
+                        return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
+        }
+
+        assert(next >= gap);
+        r = context_discard_range(context, gap, next - gap);
+        if (r == -EOPNOTSUPP) {
+                if (p)
+                        log_info("Storage does not support discarding, not discarding gap after partition %" PRIu64 ".", p->partno);
+                else
+                        log_info("Storage does not support discarding, not discarding gap at beginning of disk.");
+                return 0;
+        }
+        if (r == 0)  /* Too short */
+                return 0;
+        if (r < 0) {
+                if (p)
+                        return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno);
+                else
+                        return log_error_errno(r, "Failed to discard gap at beginning of disk.");
+        }
+
+        if (p)
+                log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno);
+        else
+                log_info("Successfully discarded gap at beginning of disk.");
+
+        return 0;
+}
+
+static int context_wipe_and_discard(Context *context, bool from_scratch) {
+        Partition *p;
+        int r;
+
+        assert(context);
+
+        /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if
+         * we were supposed to start from scratch anyway, as in that case we just discard the whole block
+         * device in one go early on. */
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+
+                if (!p->allocated_to_area)
+                        continue;
+
+                if (!from_scratch) {
+                        r = context_discard_partition(context, p);
+                        if (r < 0)
+                                return r;
+                }
+
+                r = context_wipe_partition(context, p);
+                if (r < 0)
+                        return r;
+
+                if (!from_scratch) {
+                        r = context_discard_gap_after(context, p);
+                        if (r < 0)
+                                return r;
+                }
+        }
+
+        if (!from_scratch) {
+                r = context_discard_gap_after(context, NULL);
+                if (r < 0)
+                        return r;
+        }
+
+        return 0;
+}
+
+static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) {
+        struct {
+                sd_id128_t type_uuid;
+                uint64_t counter;
+        } _packed_  plaintext = {};
+        union {
+                unsigned char md[SHA256_DIGEST_LENGTH];
+                sd_id128_t id;
+        } result;
+
+        uint64_t k = 0;
+        Partition *q;
+        int r;
+
+        assert(context);
+        assert(p);
+        assert(ret);
+
+        /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility,
+         * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely:
+         * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the
+         * installation we are processing, but if random behaviour is desired can be random, too. We use the
+         * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak)
+         * and the partition type as plaintext. The partition type is suffixed with a counter (only for the
+         * second and later partition of the same type) if we have more than one partition of the same
+         * time. Or in other words:
+         *
+         * With:
+         *     SEED := /etc/machine-id
+         *
+         * If first partition instance of type TYPE_UUID:
+         *     PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID)
+         *
+         * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number:
+         *     PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE)
+         */
+
+        LIST_FOREACH(partitions, q, context->partitions) {
+                if (p == q)
+                        break;
+
+                if (!sd_id128_equal(p->type_uuid, q->type_uuid))
+                        continue;
+
+                k++;
+        }
+
+        plaintext.type_uuid = p->type_uuid;
+        plaintext.counter = htole64(k);
+
+        if (!HMAC(EVP_sha256(),
+                  &context->seed, sizeof(context->seed),
+                  (const unsigned char*) &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext),
+                  result.md, NULL))
+                return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "SHA256 calculation failed.");
+
+        /* Take the first half, mark it as v4 UUID */
+        assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
+        result.id = id128_make_v4_uuid(result.id);
+
+        /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */
+        LIST_FOREACH(partitions, q, context->partitions) {
+                if (p == q)
+                        continue;
+
+                if (sd_id128_equal(q->current_uuid, result.id) ||
+                    sd_id128_equal(q->new_uuid, result.id)) {
+                        log_warning("Partition UUID calculated from seed for partition %" PRIu64 " exists already, reverting to randomized UUID.", p->partno);
+
+                        r = sd_id128_randomize(&result.id);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to generate randomized UUID: %m");
+
+                        break;
+                }
+        }
+
+        *ret = result.id;
+        return 0;
+}
+
+static int partition_acquire_label(Context *context, Partition *p, char **ret) {
+        _cleanup_free_ char *label = NULL;
+        const char *prefix;
+        unsigned k = 1;
+
+        assert(context);
+        assert(p);
+        assert(ret);
+
+        prefix = gpt_partition_type_uuid_to_string(p->type_uuid);
+        if (!prefix)
+                prefix = "linux";
+
+        for (;;) {
+                const char *ll = label ?: prefix;
+                bool retry = false;
+                Partition *q;
+
+                LIST_FOREACH(partitions, q, context->partitions) {
+                        if (p == q)
+                                break;
+
+                        if (streq_ptr(ll, q->current_label) ||
+                            streq_ptr(ll, q->new_label)) {
+                                retry = true;
+                                break;
+                        }
+                }
+
+                if (!retry)
+                        break;
+
+                label = mfree(label);
+
+
+                if (asprintf(&label, "%s-%u", prefix, ++k) < 0)
+                        return log_oom();
+        }
+
+        if (!label) {
+                label = strdup(prefix);
+                if (!label)
+                        return log_oom();
+        }
+
+        *ret = TAKE_PTR(label);
+        return 0;
+}
+
+static int context_acquire_partition_uuids_and_labels(Context *context) {
+        Partition *p;
+        int r;
+
+        assert(context);
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                assert(sd_id128_is_null(p->new_uuid));
+                assert(!p->new_label);
+
+                /* Never touch foreign partitions */
+                if (PARTITION_IS_FOREIGN(p)) {
+                        p->new_uuid = p->current_uuid;
+
+                        if (p->current_label) {
+                                p->new_label = strdup(p->current_label);
+                                if (!p->new_label)
+                                        return log_oom();
+                        }
+
+                        continue;
+                }
+
+                if (!sd_id128_is_null(p->current_uuid))
+                        p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */
+                else {
+                        r = partition_acquire_uuid(context, p, &p->new_uuid);
+                        if (r < 0)
+                                return r;
+                }
+
+                if (!isempty(p->current_label)) {
+                        p->new_label = strdup(p->current_label); /* never change initialized labels */
+                        if (!p->new_label)
+                                return log_oom();
+                } else {
+                        r = partition_acquire_label(context, p, &p->new_label);
+                        if (r < 0)
+                                return r;
+                }
+        }
+
+        return 0;
+}
+
+static int device_kernel_partitions_supported(int fd) {
+        struct loop_info64 info;
+        struct stat st;
+
+        assert(fd >= 0);
+
+        if (fstat(fd, &st) < 0)
+                return log_error_errno(fd, "Failed to fstat() image file: %m");
+        if (!S_ISBLK(st.st_mode))
+                return false;
+
+        if (ioctl(fd, LOOP_GET_STATUS64, &info) < 0) {
+
+                if (ERRNO_IS_NOT_SUPPORTED(errno) || errno == EINVAL)
+                        return true; /* not a loopback device, let's assume partition are supported */
+
+                return log_error_errno(fd, "Failed to issue LOOP_GET_STATUS64 on block device: %m");
+        }
+
+#if HAVE_VALGRIND_MEMCHECK_H
+        /* Valgrind currently doesn't know LOOP_GET_STATUS64. Remove this once it does */
+        VALGRIND_MAKE_MEM_DEFINED(&info, sizeof(info));
+#endif
+
+        return FLAGS_SET(info.lo_flags, LO_FLAGS_PARTSCAN);
+}
+
+static int context_write_partition_table(
+                Context *context,
+                const char *node,
+                bool from_scratch) {
+
+        _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL;
+        int capable, r;
+        Partition *p;
+
+        assert(context);
+
+        if (arg_pretty > 0 ||
+            (arg_pretty < 0 && isatty(STDOUT_FILENO) > 0)) {
+
+                if (context->n_partitions == 0)
+                        puts("Empty partition table.");
+                else
+                        (void) context_dump_partitions(context, node);
+
+                putc('\n', stdout);
+
+                (void) context_dump_partition_bar(context, node);
+                putc('\n', stdout);
+                fflush(stdout);
+        }
+
+        if (!from_scratch && !context_changed(context)) {
+                log_info("No changes.");
+                return 0;
+        }
+
+        if (arg_dry_run) {
+                log_notice("Refusing to repartition, please re-run with --dry-run=no.");
+                return 0;
+        }
+
+        log_info("Applying changes.");
+
+        if (from_scratch) {
+                r = context_discard_range(context, 0, context->total);
+                if (r == -EOPNOTSUPP)
+                        log_info("Storage does not support discarding, not discarding entire block device data.");
+                else if (r < 0)
+                        return log_error_errno(r, "Failed to discard entire block device: %m");
+                else if (r > 0)
+                        log_info("Discarded entire block device.");
+        }
+
+        r = fdisk_get_partitions(context->fdisk_context, &original_table);
+        if (r < 0)
+                return log_error_errno(r, "Failed to acquire partition table: %m");
+
+        /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the
+         * gaps between partitions, just to be sure. */
+        r = context_wipe_and_discard(context, from_scratch);
+        if (r < 0)
+                return r;
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+                if (p->dropped)
+                        continue;
+
+                assert(p->new_size != UINT64_MAX);
+                assert(p->offset != UINT64_MAX);
+                assert(p->partno != UINT64_MAX);
+
+                if (PARTITION_EXISTS(p)) {
+                        bool changed = false;
+
+                        assert(p->current_partition);
+
+                        if (p->new_size != p->current_size) {
+                                assert(p->new_size >= p->current_size);
+                                assert(p->new_size % 512 == 0);
+
+                                r = fdisk_partition_size_explicit(p->current_partition, true);
+                                if (r < 0)
+                                        return log_error_errno(r, "Failed to enable explicit sizing: %m");
+
+                                r = fdisk_partition_set_size(p->current_partition, p->new_size / 512);
+                                if (r < 0)
+                                        return log_error_errno(r, "Failed to grow partition: %m");
+
+                                log_info("Growing existing partition %" PRIu64 ".", p->partno);
+                                changed = true;
+                        }
+
+                        if (!sd_id128_equal(p->new_uuid, p->current_uuid)) {
+                                char buf[ID128_UUID_STRING_MAX];
+
+                                assert(!sd_id128_is_null(p->new_uuid));
+
+                                r = fdisk_partition_set_uuid(p->current_partition, id128_to_uuid_string(p->new_uuid, buf));
+                                if (r < 0)
+                                        return log_error_errno(r, "Failed to set partition UUID: %m");
+
+                                log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno);
+                                changed = true;
+                        }
+
+                        if (!streq_ptr(p->new_label, p->current_label)) {
+                                assert(!isempty(p->new_label));
+
+                                r = fdisk_partition_set_name(p->current_partition, p->new_label);
+                                if (r < 0)
+                                        return log_error_errno(r, "Failed to set partition label: %m");
+
+                                log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno);
+                                changed = true;
+                        }
+
+                        if (changed) {
+                                assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */
+
+                                r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition);
+                                if (r < 0)
+                                        return log_error_errno(r, "Failed to update partition: %m");
+                        }
+                } else {
+                        _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL;
+                        _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL;
+                        char ids[ID128_UUID_STRING_MAX];
+
+                        assert(!p->new_partition);
+                        assert(p->offset % 512 == 0);
+                        assert(p->new_size % 512 == 0);
+                        assert(!sd_id128_is_null(p->new_uuid));
+                        assert(!isempty(p->new_label));
+
+                        t = fdisk_new_parttype();
+                        if (!t)
+                                return log_oom();
+
+                        r = fdisk_parttype_set_typestr(t, id128_to_uuid_string(p->type_uuid, ids));
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to initialize partition type: %m");
+
+                        q = fdisk_new_partition();
+                        if (!q)
+                                return log_oom();
+
+                        r = fdisk_partition_set_type(q, t);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to set partition type: %m");
+
+                        r = fdisk_partition_size_explicit(q, true);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to enable explicit sizing: %m");
+
+                        r = fdisk_partition_set_start(q, p->offset / 512);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to position partition: %m");
+
+                        r = fdisk_partition_set_size(q, p->new_size / 512);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to grow partition: %m");
+
+                        r = fdisk_partition_set_partno(q, p->partno);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to set partition number: %m");
+
+                        r = fdisk_partition_set_uuid(q, id128_to_uuid_string(p->new_uuid, ids));
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to set partition UUID: %m");
+
+                        r = fdisk_partition_set_name(q, p->new_label);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to set partition label: %m");
+
+                        log_info("Creating new partition %" PRIu64 ".", p->partno);
+
+                        r = fdisk_add_partition(context->fdisk_context, q, NULL);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to add partition: %m");
+
+                        assert(!p->new_partition);
+                        p->new_partition = TAKE_PTR(q);
+                }
+        }
+
+        log_info("Writing new partition table.");
+
+        r = fdisk_write_disklabel(context->fdisk_context);
+        if (r < 0)
+                return log_error_errno(r, "Failed to write partition table: %m");
+
+        capable = device_kernel_partitions_supported(fdisk_get_devfd(context->fdisk_context));
+        if (capable < 0)
+                return capable;
+        if (capable > 0) {
+                log_info("Telling kernel to reread partition table.");
+
+                if (from_scratch)
+                        r = fdisk_reread_partition_table(context->fdisk_context);
+                else
+                        r = fdisk_reread_changes(context->fdisk_context, original_table);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to reread partition table: %m");
+        } else
+                log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices.");
+
+        log_info("All done.");
+
+        return 0;
+}
+
+static int context_read_seed(Context *context, const char *root) {
+        int r;
+
+        assert(context);
+
+        if (!sd_id128_is_null(context->seed))
+                return 0;
+
+        if (!arg_randomize) {
+                _cleanup_close_ int fd = -1;
+
+                fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL);
+                if (fd == -ENOENT)
+                        log_info("No machine ID set, using randomized partition UUIDs.");
+                else if (fd < 0)
+                        return log_error_errno(fd, "Failed to determine machine ID of image: %m");
+                else {
+                        r = id128_read_fd(fd, ID128_PLAIN, &context->seed);
+                        if (r == -ENOMEDIUM)
+                                log_info("No machine ID set, using randomized partition UUIDs.");
+                        else if (r < 0)
+                                return log_error_errno(r, "Failed to parse machine ID of image: %m");
+
+                        return 0;
+                }
+        }
+
+        r = sd_id128_randomize(&context->seed);
+        if (r < 0)
+                return log_error_errno(r, "Failed to generate randomized seed: %m");
+
+        return 0;
+}
+
+static int context_factory_reset(Context *context, bool from_scratch) {
+        Partition *p;
+        size_t n = 0;
+        int r;
+
+        assert(context);
+
+        if (arg_factory_reset <= 0)
+                return 0;
+
+        if (from_scratch) /* Nothing to reset if we start from scratch */
+                return 0;
+
+        if (arg_dry_run) {
+                log_notice("Refusing to factory reset, please re-run with --dry-run=no.");
+                return 0;
+        }
+
+        log_info("Applying factory reset.");
+
+        LIST_FOREACH(partitions, p, context->partitions) {
+
+                if (!p->factory_reset || !PARTITION_EXISTS(p))
+                        continue;
+
+                assert(p->partno != UINT64_MAX);
+
+                log_info("Removing partition %" PRIu64 " for factory reset.", p->partno);
+
+                r = fdisk_delete_partition(context->fdisk_context, p->partno);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno);
+
+                n++;
+        }
+
+        if (n == 0) {
+                log_info("Factory reset requested, but no partitions to delete found.");
+                return 0;
+        }
+
+        r = fdisk_write_disklabel(context->fdisk_context);
+        if (r < 0)
+                return log_error_errno(r, "Failed to write disk label: %m");
+
+        log_info("Successfully deleted %zu partitions.", n);
+        return 1;
+}
+
+static int context_can_factory_reset(Context *context) {
+        Partition *p;
+
+        assert(context);
+
+        LIST_FOREACH(partitions, p, context->partitions)
+                if (p->factory_reset && PARTITION_EXISTS(p))
+                        return true;
+
+        return false;
+}
+
+static int help(void) {
+        _cleanup_free_ char *link = NULL;
+        int r;
+
+        r = terminal_urlify_man("systemd-repart", "1", &link);
+        if (r < 0)
+                return log_oom();
+
+        printf("%s [OPTIONS...] [DEVICE]\n"
+               "\n%sGrow and add partitions to partition table.%s\n\n"
+               "  -h --help               Show this help\n"
+               "     --version            Show package version\n"
+               "     --dry-run=BOOL       Whether to run dry-run operation\n"
+               "     --empty=MODE         One of refuse, allow, require, force; controls how to\n"
+               "                          handle empty disks lacking partition table\n"
+               "     --discard=BOOL       Whether to discard backing blocks for new partitions\n"
+               "     --pretty=BOOL        Whether to show pretty summary before executing operation\n"
+               "     --factory-reset=BOOL Whether to remove data partitions before recreating\n"
+               "                          them\n"
+               "     --can-factory-reset  Test whether factory reset is defined\n"
+               "     --root=PATH          Operate relative to root path\n"
+               "     --definitions=DIR    Find partitions in specified directory\n"
+               "     --seed=UUID          128bit seed UUID to derive all UUIDs from\n"
+               "\nSee the %s for details.\n"
+               , program_invocation_short_name
+               , ansi_highlight(), ansi_normal()
+               , link
+        );
+
+        return 0;
+}
+
+static int parse_argv(int argc, char *argv[]) {
+
+        enum {
+                ARG_VERSION = 0x100,
+                ARG_DRY_RUN,
+                ARG_EMPTY,
+                ARG_DISCARD,
+                ARG_FACTORY_RESET,
+                ARG_CAN_FACTORY_RESET,
+                ARG_ROOT,
+                ARG_SEED,
+                ARG_PRETTY,
+                ARG_DEFINITIONS,
+        };
+
+        static const struct option options[] = {
+                { "help",              no_argument,       NULL, 'h'                   },
+                { "version",           no_argument,       NULL, ARG_VERSION           },
+                { "dry-run",           required_argument, NULL, ARG_DRY_RUN           },
+                { "empty",             required_argument, NULL, ARG_EMPTY             },
+                { "discard",           required_argument, NULL, ARG_DISCARD           },
+                { "factory-reset",     required_argument, NULL, ARG_FACTORY_RESET     },
+                { "can-factory-reset", no_argument,       NULL, ARG_CAN_FACTORY_RESET },
+                { "root",              required_argument, NULL, ARG_ROOT              },
+                { "seed",              required_argument, NULL, ARG_SEED              },
+                { "pretty",            required_argument, NULL, ARG_PRETTY            },
+                { "definitions",       required_argument, NULL, ARG_DEFINITIONS       },
+                {}
+        };
+
+        int c, r;
+
+        assert(argc >= 0);
+        assert(argv);
+
+        while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0)
+
+                switch (c) {
+
+                case 'h':
+                        return help();
+
+                case ARG_VERSION:
+                        return version();
+
+                case ARG_DRY_RUN:
+                        r = parse_boolean(optarg);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to parse --dry-run= parameter: %s", optarg);
+
+                        arg_dry_run = r;
+                        break;
+
+                case ARG_EMPTY:
+                        if (isempty(optarg) || streq(optarg, "refuse"))
+                                arg_empty = EMPTY_REFUSE;
+                        else if (streq(optarg, "allow"))
+                                arg_empty = EMPTY_ALLOW;
+                        else if (streq(optarg, "require"))
+                                arg_empty = EMPTY_REQUIRE;
+                        else if (streq(optarg, "force"))
+                                arg_empty = EMPTY_FORCE;
+                        else
+                                return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+                                                       "Failed to parse --empty= parameter: %s", optarg);
+                        break;
+
+                case ARG_DISCARD:
+                        r = parse_boolean(optarg);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to parse --discard= parameter: %s", optarg);
+
+                        arg_discard = r;
+                        break;
+
+                case ARG_FACTORY_RESET:
+                        r = parse_boolean(optarg);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to parse --factory-reset= parameter: %s", optarg);
+
+                        arg_factory_reset = r;
+                        break;
+
+                case ARG_CAN_FACTORY_RESET:
+                        arg_can_factory_reset = true;
+                        break;
+
+                case ARG_ROOT:
+                        r = parse_path_argument_and_warn(optarg, false, &arg_root);
+                        if (r < 0)
+                                return r;
+                        break;
+
+                case ARG_SEED:
+                        if (isempty(optarg)) {
+                                arg_seed = SD_ID128_NULL;
+                                arg_randomize = false;
+                        } else if (streq(optarg, "random"))
+                                arg_randomize = true;
+                        else {
+                                r = sd_id128_from_string(optarg, &arg_seed);
+                                if (r < 0)
+                                        return log_error_errno(r, "Failed to parse seed: %s", optarg);
+
+                                arg_randomize = false;
+                        }
+
+                        break;
+
+                case ARG_PRETTY:
+                        r = parse_boolean(optarg);
+                        if (r < 0)
+                                return log_error_errno(r, "Failed to parse --pretty= parameter: %s", optarg);
+
+                        arg_pretty = r;
+                        break;
+
+                case ARG_DEFINITIONS:
+                        r = parse_path_argument_and_warn(optarg, false, &arg_definitions);
+                        if (r < 0)
+                                return r;
+                        break;
+
+                case '?':
+                        return -EINVAL;
+
+                default:
+                        assert_not_reached("Unhandled option");
+                }
+
+        if (argc - optind > 1)
+                return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+                                       "Expected at most one argument, the path to the block device.");
+
+        if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE))
+                return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+                                       "Combination of --factory-reset=yes and --empty=force/--empty=require is invalid.");
+
+        if (arg_can_factory_reset)
+                arg_dry_run = true;
+
+        arg_node = argc > optind ? argv[optind] : NULL;
+        return 1;
+}
+
+static int parse_proc_cmdline_factory_reset(void) {
+        bool b;
+        int r;
+
+        if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
+                return 0;
+
+        if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */
+                return 0;
+
+        r = proc_cmdline_get_bool("systemd.factory_reset", &b);
+        if (r < 0)
+                return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m");
+        if (r > 0) {
+                arg_factory_reset = b;
+
+                if (b)
+                        log_notice("Honouring factory reset requested via kernel command line.");
+        }
+
+        return 0;
+}
+
+static int parse_efi_variable_factory_reset(void) {
+        _cleanup_free_ char *value = NULL;
+        int r;
+
+        if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
+                return 0;
+
+        if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */
+                return 0;
+
+        r = efi_get_variable_string(EFI_VENDOR_SYSTEMD, "FactoryReset", &value);
+        if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
+                return 0;
+        if (r < 0)
+                return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m");
+
+        r = parse_boolean(value);
+        if (r < 0)
+                return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m");
+
+        arg_factory_reset = r;
+        if (r)
+                log_notice("Honouring factory reset requested via EFI variable FactoryReset: %m");
+
+        return 0;
+}
+
+static int remove_efi_variable_factory_reset(void) {
+        int r;
+
+        r = efi_set_variable(EFI_VENDOR_SYSTEMD, "FactoryReset", NULL, 0);
+        if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
+                return 0;
+        if (r < 0)
+                return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m");
+
+        log_info("Successfully unset EFI variable FactoryReset.");
+        return 0;
+}
+
+static int acquire_root_devno(const char *p, int mode, char **ret) {
+        _cleanup_close_ int fd = -1;
+        struct stat st;
+        dev_t devno;
+        int r;
+
+        fd = open(p, mode);
+        if (fd < 0)
+                return -errno;
+
+        if (fstat(fd, &st) < 0)
+                return -errno;
+
+        if (S_ISREG(st.st_mode)) {
+                char *s;
+
+                s = strdup(p);
+                if (!s)
+                        return log_oom();
+
+                *ret = s;
+                return 0;
+        }
+
+        if (S_ISBLK(st.st_mode))
+                devno = st.st_rdev;
+        else if (S_ISDIR(st.st_mode)) {
+
+                devno = st.st_dev;
+
+                if (major(st.st_dev) == 0) {
+                        r = btrfs_get_block_device_fd(fd, &devno);
+                        if (r == -ENOTTY) /* not btrfs */
+                                return -ENODEV;
+                        if (r < 0)
+                                return r;
+                }
+
+        } else
+                return -ENOTBLK;
+
+        /* From dm-crypt to backing partition */
+        r = block_get_originating(devno, &devno);
+        if (r < 0)
+                log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p);
+
+        /* From partition to whole disk containing it */
+        r = block_get_whole_disk(devno, &devno);
+        if (r < 0)
+                log_debug_errno(r, "Failed to find whole disk block device for '%s', ingoring: %m", p);
+
+        return device_path_make_canonical(S_IFBLK, devno, ret);
+}
+
+static int find_root(char **ret) {
+        const char *t;
+        int r;
+
+        if (arg_node) {
+                r = acquire_root_devno(arg_node, O_RDONLY|O_CLOEXEC, ret);
+                if (r < 0)
+                        return log_error_errno(r, "Failed to determine backing device of %s: %m", arg_node);
+
+                return 0;
+        }
+
+        /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The
+         * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device
+         * (think: volatile setups) */
+
+        FOREACH_STRING(t, "/", "/usr") {
+                _cleanup_free_ char *j = NULL;
+                const char *p;
+
+                if (in_initrd()) {
+                        j = path_join("/sysroot", t);
+                        if (!j)
+                                return log_oom();
+
+                        p = j;
+                } else
+                        p = t;
+
+                r = acquire_root_devno(p, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret);
+                if (r < 0) {
+                        if (r != -ENODEV)
+                                return log_error_errno(r, "Failed to determine backing device of %s: %m", p);
+                } else
+                        return 0;
+        }
+
+        return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device.");
+}
+
+static int run(int argc, char *argv[]) {
+        _cleanup_(context_freep) Context* context = NULL;
+        _cleanup_free_ char *node = NULL;
+        bool from_scratch;
+        int r;
+
+        log_show_color(true);
+        log_parse_environment();
+        log_open();
+
+        if (in_initrd()) {
+                /* Default to operation on /sysroot when invoked in the initrd! */
+                arg_root = strdup("/sysroot");
+                if (!arg_root)
+                        return log_oom();
+        }
+
+        r = parse_argv(argc, argv);
+        if (r <= 0)
+                return r;
+
+        r = parse_proc_cmdline_factory_reset();
+        if (r < 0)
+                return r;
+
+        r = parse_efi_variable_factory_reset();
+        if (r < 0)
+                return r;
+
+        r = find_root(&node);
+        if (r < 0)
+                return r;
+
+        context = context_new(arg_seed);
+        if (!context)
+                return log_oom();
+
+        r = context_read_definitions(context, arg_definitions, arg_root);
+        if (r < 0)
+                return r;
+
+        r = context_load_partition_table(context, node);
+        if (r == -EHWPOISON)
+                return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't
+                            * really an error when called at boot. */
+        if (r < 0)
+                return r;
+        from_scratch = r > 0; /* Starting from scratch */
+
+        if (arg_can_factory_reset) {
+                r = context_can_factory_reset(context);
+                if (r < 0)
+                        return r;
+                if (r == 0)
+                        return EXIT_FAILURE;
+
+                return 0;
+        }
+
+        r = context_factory_reset(context, from_scratch);
+        if (r < 0)
+                return r;
+        if (r > 0) {
+                /* We actually did a factory reset! */
+                r = remove_efi_variable_factory_reset();
+                if (r < 0)
+                        return r;
+
+                /* Reload the reduced partition table */
+                context_unload_partition_table(context);
+                r = context_load_partition_table(context, node);
+                if (r < 0)
+                        return r;
+        }
+
+#if 0
+        (void) context_dump_partitions(context, node);
+        putchar('\n');
+#endif
+
+        r = context_read_seed(context, arg_root);
+        if (r < 0)
+                return r;
+
+        /* First try to fit new partitions in, dropping by priority until it fits */
+        for (;;) {
+                if (context_allocate_partitions(context))
+                        break; /* Success! */
+
+                if (!context_drop_one_priority(context))
+                        return log_error_errno(SYNTHETIC_ERRNO(ENOSPC),
+                                               "Can't fit requested partitions into free space, refusing.");
+        }
+
+        /* Now assign free space according to the weight logic */
+        r = context_grow_partitions(context);
+        if (r < 0)
+                return r;
+
+        /* Now calculate where each partition gets placed */
+        context_place_partitions(context);
+
+        /* Make sure each partition has a unique UUID and unique label */
+        r = context_acquire_partition_uuids_and_labels(context);
+        if (r < 0)
+                return r;
+
+        r = context_write_partition_table(context, node, from_scratch);
+        if (r < 0)
+                return r;
+
+        return 0;
+}
+
+DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);