if n < 1:
raise ValueError('n must be at least one')
it = iter(iterable)
- while (batch := tuple(islice(it, n))):
+ while batch := tuple(islice(it, n)):
yield batch
def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
(x - 5) (x + 4) (x - 3) expands to: x³ -4x² -17x + 60
"""
# polynomial_from_roots([5, -4, 3]) --> [1, -4, -17, 60]
- roots = list(map(operator.neg, roots))
- return [
- sum(map(math.prod, combinations(roots, k)))
- for k in range(len(roots) + 1)
- ]
+ expansion = [1]
+ for r in roots:
+ expansion = convolve(expansion, (1, -r))
+ return list(expansion)
+
+ def polynomial_eval(coefficients, x):
+ """Evaluate a polynomial at a specific value.
+
+ Computes with better numeric stability than Horner's method.
+ """
+ # Evaluate x³ -4x² -17x + 60 at x = 2.5
+ # polynomial_eval([1, -4, -17, 60], x=2.5) --> 8.125
+ n = len(coefficients)
+ if n == 0:
+ return x * 0 # coerce zero to the type of x
+ powers = map(pow, repeat(x), reversed(range(n)))
+ return sumprod(coefficients, powers)
def iter_index(iterable, value, start=0):
"Return indices where a value occurs in a sequence or iterable."