def geometric_mean(data):
"""Convert data to floats and compute the geometric mean.
- Raises a StatisticsError if the input dataset is empty,
- if it contains a zero, or if it contains a negative value.
+ Raises a StatisticsError if the input dataset is empty
+ or if it contains a negative value.
+
+ Returns zero if the product of inputs is zero.
No special efforts are made to achieve exact results.
(However, this may change in the future.)
>>> round(geometric_mean([54, 24, 36]), 9)
36.0
"""
- try:
- return exp(fmean(map(log, data)))
- except ValueError:
- raise StatisticsError('geometric mean requires a non-empty dataset '
- 'containing positive numbers') from None
+ n = 0
+ found_zero = False
+ def count_positive(iterable):
+ nonlocal n, found_zero
+ for n, x in enumerate(iterable, start=1):
+ if x > 0.0 or math.isnan(x):
+ yield x
+ elif x == 0.0:
+ found_zero = True
+ else:
+ raise StatisticsError('No negative inputs allowed', x)
+ total = fsum(map(log, count_positive(data)))
+ if not n:
+ raise StatisticsError('Must have a non-empty dataset')
+ if math.isnan(total):
+ return math.nan
+ if found_zero:
+ return math.nan if total == math.inf else 0.0
+ return exp(total / n)
def harmonic_mean(data, weights=None):
StatisticsError = statistics.StatisticsError
with self.assertRaises(StatisticsError):
geometric_mean([]) # empty input
- with self.assertRaises(StatisticsError):
- geometric_mean([3.5, 0.0, 5.25]) # zero input
with self.assertRaises(StatisticsError):
geometric_mean([3.5, -4.0, 5.25]) # negative input
+ with self.assertRaises(StatisticsError):
+ geometric_mean([0.0, -4.0, 5.25]) # negative input with zero
+ with self.assertRaises(StatisticsError):
+ geometric_mean([3.5, -math.inf, 5.25]) # negative infinity
with self.assertRaises(StatisticsError):
geometric_mean(iter([])) # empty iterator
with self.assertRaises(TypeError):
with self.assertRaises(ValueError):
geometric_mean([Inf, -Inf])
+ # Cases with zero
+ self.assertEqual(geometric_mean([3, 0.0, 5]), 0.0) # Any zero gives a zero
+ self.assertEqual(geometric_mean([3, -0.0, 5]), 0.0) # Negative zero allowed
+ self.assertTrue(math.isnan(geometric_mean([0, NaN]))) # NaN beats zero
+ self.assertTrue(math.isnan(geometric_mean([0, Inf]))) # Because 0.0 * Inf -> NaN
+
def test_mixed_int_and_float(self):
# Regression test for b.p.o. issue #28327
geometric_mean = statistics.geometric_mean