Copies sids changes from ac.
/* we need the max pat id */
if (pid > ctx->max_pat_id)
ctx->max_pat_id = pid;
+
+ p->sids_size = 1;
+ p->sids = SCMalloc(p->sids_size * sizeof(uint32_t));
+ BUG_ON(p->sids == NULL);
+ p->sids[0] = sid;
+ } else {
+ /* TODO figure out how we can be called multiple times for the same CTX with the same sid */
+
+ int found = 0;
+ uint32_t x = 0;
+ for (x = 0; x < p->sids_size; x++) {
+ if (p->sids[x] == sid) {
+ found = 1;
+ break;
+ }
+ }
+ if (!found) {
+ uint32_t *sids = SCRealloc(p->sids, (sizeof(uint32_t) * (p->sids_size + 1)));
+ BUG_ON(sids == NULL);
+ p->sids = sids;
+ p->sids[p->sids_size] = sid;
+ p->sids_size++;
+ }
}
return 0;
ctx->parray[i]->original_pat, ctx->parray[i]->len);
ctx->pid_pat_list[ctx->parray[i]->id].patlen = ctx->parray[i]->len;
}
+
+ /* ACPatternList now owns this memory */
+ ctx->pid_pat_list[ctx->parray[i]->id].sids_size = ctx->parray[i]->sids_size;
+ ctx->pid_pat_list[ctx->parray[i]->id].sids = ctx->parray[i]->sids;
}
/* prepare the state table required by AC */
for (i = 0; i < (ctx->max_pat_id + 1); i++) {
if (ctx->pid_pat_list[i].cs != NULL)
SCFree(ctx->pid_pat_list[i].cs);
+ if (ctx->pid_pat_list[i].sids != NULL)
+ SCFree(ctx->pid_pat_list[i].sids);
}
SCFree(ctx->pid_pat_list);
}
/* \todo Change it for stateful MPM. Supply the state using mpm_thread_ctx */
SCACBSPatternList *pid_pat_list = ctx->pid_pat_list;
+ uint8_t bitarray[pmq->pattern_id_bitarray_size];
+ memset(bitarray, 0, pmq->pattern_id_bitarray_size);
+
if (ctx->state_count < 32767) {
register SC_AC_BS_STATE_TYPE_U16 state = 0;
uint16_t no_of_entries;
/* inside loop */
continue;
}
- if (pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
+ if (bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
;
} else {
+ bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k] & 0x0000FFFF;
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
} else {
- if (pmq->pattern_id_bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
+ if (bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
;
} else {
+ bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k];
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
}
/* inside loop */
continue;
}
- if (pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
+ if (bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
;
} else {
+ bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k] & 0x0000FFFF;
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
} else {
- if (pmq->pattern_id_bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
+ if (bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
;
} else {
+ bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k];
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
}
/* pattern id */
uint32_t id;
+ /* sid(s) for this pattern */
+ uint32_t sids_size;
+ uint32_t *sids;
+
struct SCACBSPattern_ *next;
} SCACBSPattern;
typedef struct SCACBSPatternList_ {
uint8_t *cs;
uint16_t patlen;
+
+ /* sid(s) for this pattern */
+ uint32_t sids_size;
+ uint32_t *sids;
} SCACBSPatternList;
typedef struct SCACBSOutputTable_ {
/* we need the max pat id */
if (pid > ctx->max_pat_id)
ctx->max_pat_id = pid;
+
+ p->sids_size = 1;
+ p->sids = SCMalloc(p->sids_size * sizeof(uint32_t));
+ BUG_ON(p->sids == NULL);
+ p->sids[0] = sid;
+ } else {
+ /* TODO figure out how we can be called multiple times for the same CTX with the same sid */
+
+ int found = 0;
+ uint32_t x = 0;
+ for (x = 0; x < p->sids_size; x++) {
+ if (p->sids[x] == sid) {
+ found = 1;
+ break;
+ }
+ }
+ if (!found) {
+ uint32_t *sids = SCRealloc(p->sids, (sizeof(uint32_t) * (p->sids_size + 1)));
+ BUG_ON(sids == NULL);
+ p->sids = sids;
+ p->sids[p->sids_size] = sid;
+ p->sids_size++;
+ }
}
return 0;
ctx->parray[i]->original_pat, ctx->parray[i]->len);
ctx->pid_pat_list[ctx->parray[i]->id].patlen = ctx->parray[i]->len;
}
+
+ /* ACPatternList now owns this memory */
+ ctx->pid_pat_list[ctx->parray[i]->id].sids_size = ctx->parray[i]->sids_size;
+ ctx->pid_pat_list[ctx->parray[i]->id].sids = ctx->parray[i]->sids;
}
/* prepare the state table required by AC */
for (i = 0; i < (ctx->max_pat_id + 1); i++) {
if (ctx->pid_pat_list[i].cs != NULL)
SCFree(ctx->pid_pat_list[i].cs);
+ if (ctx->pid_pat_list[i].sids != NULL)
+ SCFree(ctx->pid_pat_list[i].sids);
}
SCFree(ctx->pid_pat_list);
}
SCACGfbsPatternList *pid_pat_list = ctx->pid_pat_list;
+ uint8_t bitarray[pmq->pattern_id_bitarray_size];
+ memset(bitarray, 0, pmq->pattern_id_bitarray_size);
+
/* really hate the extra cmp here, but can't help it */
if (ctx->state_count < 32767) {
/* \todo Change it for stateful MPM. Supply the state using mpm_thread_ctx */
continue;
}
- if (pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
+ if (bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
;
} else {
+ bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = (pids[k] & 0x0000FFFF);
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
} else {
- if (pmq->pattern_id_bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
+ if (bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
;
} else {
+ bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k];
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
}
continue;
}
- if (pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
+ if (bitarray[(pids[k] & 0x0000FFFF) / 8] & (1 << ((pids[k] & 0x0000FFFF) % 8))) {
;
} else {
+ bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_bitarray[(pids[k] & 0x0000FFFF) / 8] |= (1 << ((pids[k] & 0x0000FFFF) % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = (pids[k] & 0x0000FFFF);
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
} else {
- if (pmq->pattern_id_bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
+ if (bitarray[pids[k] / 8] & (1 << (pids[k] % 8))) {
;
} else {
+ bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_bitarray[pids[k] / 8] |= (1 << (pids[k] % 8));
pmq->pattern_id_array[pmq->pattern_id_array_cnt++] = pids[k];
+
+ uint32_t x;
+ for (x = 0; x < pid_pat_list[pids[k] & 0x0000FFFF].sids_size; x++) {
+ pmq->rule_id_array[pmq->rule_id_array_cnt++] = pid_pat_list[pids[k] & 0x0000FFFF].sids[x];
+ }
}
matches++;
}
/* pattern id */
uint32_t id;
+ /* sid(s) for this pattern */
+ uint32_t sids_size;
+ uint32_t *sids;
+
struct SCACGfbsPattern_ *next;
} SCACGfbsPattern;
typedef struct SCACGfbsPatternList_ {
uint8_t *cs;
uint16_t patlen;
+
+ /* sid(s) for this pattern */
+ uint32_t sids_size;
+ uint32_t *sids;
} SCACGfbsPatternList;
typedef struct SCACGfbsOutputTable_ {