]> git.ipfire.org Git - thirdparty/dhcpcd.git/commitdiff
Import rbtree.c v1.2 and rbtree.h v1.14 from NetBSD vendor/RBTREE
authorRoy Marples <roy@marples.name>
Thu, 30 Oct 2025 11:22:30 +0000 (11:22 +0000)
committerRoy Marples <roy@marples.name>
Thu, 30 Oct 2025 11:22:30 +0000 (11:22 +0000)
vendor/rbtree.c [new file with mode: 0644]
vendor/rbtree.h [new file with mode: 0644]

diff --git a/vendor/rbtree.c b/vendor/rbtree.c
new file mode 100644 (file)
index 0000000..b54f288
--- /dev/null
@@ -0,0 +1,1356 @@
+/*     $NetBSD: rbtree.c,v 1.2 2025/10/29 08:08:44 roy Exp $   */
+
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Matt Thomas <matt@3am-software.com>.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#if defined(HAVE_NBTOOL_CONFIG_H) && HAVE_NBTOOL_CONFIG_H
+#include "nbtool_config.h"
+#endif
+
+#if !defined(_KERNEL) && !defined(_STANDALONE)
+#include <sys/types.h>
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+#ifndef __predict_false
+#define __predict_false(exp)   (exp)
+#endif
+#ifdef RBDEBUG
+#include <assert.h>
+#define        KASSERT(s)      assert(s)
+#else
+#define        KASSERT(s)      do { } while (/*CONSTCOND*/ 0)
+#ifdef __unused
+#define        __rbt_unused    __unused
+#endif
+#endif
+#ifdef __RCSID
+__RCSID("$NetBSD: rbtree.c,v 1.2 2025/10/29 08:08:44 roy Exp $");
+#endif
+#else
+#include <lib/libkern/libkern.h>
+__KERNEL_RCSID(0, "$NetBSD: rbtree.c,v 1.2 2025/10/29 08:08:44 roy Exp $");
+#ifndef DIAGNOSTIC
+#define        __rbt_unused    __unused
+#endif
+#endif
+
+#ifndef __rbt_unused
+#define        __rbt_unused
+#endif
+
+#ifdef _LIBC
+__weak_alias(rb_tree_init, _rb_tree_init)
+__weak_alias(rb_tree_find_node, _rb_tree_find_node)
+__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
+__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
+__weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
+__weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
+__weak_alias(rb_tree_iterate, _rb_tree_iterate)
+#ifdef RBDEBUG
+__weak_alias(rb_tree_check, _rb_tree_check)
+__weak_alias(rb_tree_depths, _rb_tree_depths)
+#endif
+
+#include "namespace.h"
+#endif
+
+#ifdef RBLOCAL
+#include "rbtree.h"
+#else
+#include <sys/rbtree.h>
+#endif
+
+static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
+static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
+       unsigned int);
+#ifdef RBDEBUG
+static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
+       const struct rb_node *, const unsigned int);
+static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
+       const struct rb_node *, bool);
+#else
+#define        rb_tree_check_node(a, b, c, d)  true
+#endif
+
+#define        RB_NODETOITEM(rbto, rbn)        \
+    ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
+#define        RB_ITEMTONODE(rbto, rbn)        \
+    ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
+
+#define        RB_SENTINEL_NODE        NULL
+
+void
+rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
+{
+
+       rbt->rbt_ops = ops;
+       rbt->rbt_root = RB_SENTINEL_NODE;
+       RB_TAILQ_INIT(&rbt->rbt_nodes);
+#ifndef RBSMALL
+       rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;   /* minimum node */
+       rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;  /* maximum node */
+#endif
+#ifdef RBSTATS
+       rbt->rbt_count = 0;
+       rbt->rbt_insertions = 0;
+       rbt->rbt_removals = 0;
+       rbt->rbt_insertion_rebalance_calls = 0;
+       rbt->rbt_insertion_rebalance_passes = 0;
+       rbt->rbt_removal_rebalance_calls = 0;
+       rbt->rbt_removal_rebalance_passes = 0;
+#endif
+}
+
+void *
+rb_tree_find_node(struct rb_tree *rbt, const void *key)
+{
+       const rb_tree_ops_t *rbto = rbt->rbt_ops;
+       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
+       struct rb_node *parent = rbt->rbt_root;
+
+       while (!RB_SENTINEL_P(parent)) {
+               void *pobj = RB_NODETOITEM(rbto, parent);
+               const signed int diff = (*compare_key)(rbto->rbto_context,
+                   pobj, key);
+               if (diff == 0)
+                       return pobj;
+               parent = parent->rb_nodes[diff < 0];
+       }
+
+       return NULL;
+}
+
+void *
+rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
+{
+       const rb_tree_ops_t *rbto = rbt->rbt_ops;
+       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
+       struct rb_node *parent = rbt->rbt_root, *last = NULL;
+
+       while (!RB_SENTINEL_P(parent)) {
+               void *pobj = RB_NODETOITEM(rbto, parent);
+               const signed int diff = (*compare_key)(rbto->rbto_context,
+                   pobj, key);
+               if (diff == 0)
+                       return pobj;
+               if (diff > 0)
+                       last = parent;
+               parent = parent->rb_nodes[diff < 0];
+       }
+
+       return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
+}
+
+void *
+rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
+{
+       const rb_tree_ops_t *rbto = rbt->rbt_ops;
+       rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
+       struct rb_node *parent = rbt->rbt_root, *last = NULL;
+
+       while (!RB_SENTINEL_P(parent)) {
+               void *pobj = RB_NODETOITEM(rbto, parent);
+               const signed int diff = (*compare_key)(rbto->rbto_context,
+                   pobj, key);
+               if (diff == 0)
+                       return pobj;
+               if (diff < 0)
+                       last = parent;
+               parent = parent->rb_nodes[diff < 0];
+       }
+
+       return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
+}
+
+void *
+rb_tree_insert_node(struct rb_tree *rbt, void *object)
+{
+       const rb_tree_ops_t *rbto = rbt->rbt_ops;
+       rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
+       struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
+       unsigned int position;
+       bool rebalance;
+
+       RBSTAT_INC(rbt->rbt_insertions);
+
+       tmp = rbt->rbt_root;
+       /*
+        * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
+        * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
+        * avoid a lot of tests for root and know that even at root,
+        * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
+        * update rbt->rbt_root.
+        */
+       parent = (struct rb_node *)(void *)&rbt->rbt_root;
+       position = RB_DIR_LEFT;
+
+       /*
+        * Find out where to place this new leaf.
+        */
+       while (!RB_SENTINEL_P(tmp)) {
+               void *tobj = RB_NODETOITEM(rbto, tmp);
+               const signed int diff = (*compare_nodes)(rbto->rbto_context,
+                   tobj, object);
+               if (__predict_false(diff == 0)) {
+                       /*
+                        * Node already exists; return it.
+                        */
+                       return tobj;
+               }
+               parent = tmp;
+               position = (diff < 0);
+               tmp = parent->rb_nodes[position];
+       }
+
+#ifdef RBDEBUG
+       {
+               struct rb_node *prev = NULL, *next = NULL;
+
+               if (position == RB_DIR_RIGHT)
+                       prev = parent;
+               else if (tmp != rbt->rbt_root)
+                       next = parent;
+
+               /*
+                * Verify our sequential position
+                */
+               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
+               KASSERT(next == NULL || !RB_SENTINEL_P(next));
+               if (prev != NULL && next == NULL)
+                       next = TAILQ_NEXT(prev, rb_link);
+               if (prev == NULL && next != NULL)
+                       prev = TAILQ_PREV(next, rb_node_qh, rb_link);
+               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
+               KASSERT(next == NULL || !RB_SENTINEL_P(next));
+               KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
+                   RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
+               KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
+                   RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
+       }
+#endif
+
+       /*
+        * Initialize the node and insert as a leaf into the tree.
+        */
+       RB_SET_FATHER(self, parent);
+       RB_SET_POSITION(self, position);
+       if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
+               RB_MARK_BLACK(self);            /* root is always black */
+#ifndef RBSMALL
+               rbt->rbt_minmax[RB_DIR_LEFT] = self;
+               rbt->rbt_minmax[RB_DIR_RIGHT] = self;
+#endif
+               rebalance = false;
+       } else {
+               KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
+#ifndef RBSMALL
+               /*
+                * Keep track of the minimum and maximum nodes.  If our
+                * parent is a minmax node and we on their min/max side,
+                * we must be the new min/max node.
+                */
+               if (parent == rbt->rbt_minmax[position])
+                       rbt->rbt_minmax[position] = self;
+#endif /* !RBSMALL */
+               /*
+                * All new nodes are colored red.  We only need to rebalance
+                * if our parent is also red.
+                */
+               RB_MARK_RED(self);
+               rebalance = RB_RED_P(parent);
+       }
+       KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
+       self->rb_left = parent->rb_nodes[position];
+       self->rb_right = parent->rb_nodes[position];
+       parent->rb_nodes[position] = self;
+       KASSERT(RB_CHILDLESS_P(self));
+
+       /*
+        * Insert the new node into a sorted list for easy sequential access
+        */
+       RBSTAT_INC(rbt->rbt_count);
+#ifdef RBDEBUG
+       if (RB_ROOT_P(rbt, self)) {
+               RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
+       } else if (position == RB_DIR_LEFT) {
+               KASSERT((*compare_nodes)(rbto->rbto_context,
+                   RB_NODETOITEM(rbto, self),
+                   RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
+               RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
+       } else {
+               KASSERT((*compare_nodes)(rbto->rbto_context,
+                   RB_NODETOITEM(rbto, RB_FATHER(self)),
+                   RB_NODETOITEM(rbto, self)) < 0);
+               RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
+                   self, rb_link);
+       }
+#endif
+       KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
+
+       /*
+        * Rebalance tree after insertion
+        */
+       if (rebalance) {
+               rb_tree_insert_rebalance(rbt, self);
+               KASSERT(rb_tree_check_node(rbt, self, NULL, true));
+       }
+
+       /* Successfully inserted, return our node pointer. */
+       return object;
+}
+
+/*
+ * Swap the location and colors of 'self' and its child @ which.  The child
+ * can not be a sentinel node.  This is our rotation function.  However,
+ * since it preserves coloring, it great simplifies both insertion and
+ * removal since rotation almost always involves the exchanging of colors
+ * as a separate step.
+ */
+static void
+rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt,
+       struct rb_node *old_father, const unsigned int which)
+{
+       const unsigned int other = which ^ RB_DIR_OTHER;
+       struct rb_node * const grandpa = RB_FATHER(old_father);
+       struct rb_node * const old_child = old_father->rb_nodes[which];
+       struct rb_node * const new_father = old_child;
+       struct rb_node * const new_child = old_father;
+
+       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
+
+       KASSERT(!RB_SENTINEL_P(old_child));
+       KASSERT(RB_FATHER(old_child) == old_father);
+
+       KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
+       KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
+       KASSERT(RB_ROOT_P(rbt, old_father) ||
+           rb_tree_check_node(rbt, grandpa, NULL, false));
+
+       /*
+        * Exchange descendant linkages.
+        */
+       grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
+       new_child->rb_nodes[which] = old_child->rb_nodes[other];
+       new_father->rb_nodes[other] = new_child;
+
+       /*
+        * Update ancestor linkages
+        */
+       RB_SET_FATHER(new_father, grandpa);
+       RB_SET_FATHER(new_child, new_father);
+
+       /*
+        * Exchange properties between new_father and new_child.  The only
+        * change is that new_child's position is now on the other side.
+        */
+#if 0
+       {
+               struct rb_node tmp;
+               tmp.rb_info = 0;
+               RB_COPY_PROPERTIES(&tmp, old_child);
+               RB_COPY_PROPERTIES(new_father, old_father);
+               RB_COPY_PROPERTIES(new_child, &tmp);
+       }
+#else
+       RB_SWAP_PROPERTIES(new_father, new_child);
+#endif
+       RB_SET_POSITION(new_child, other);
+
+       /*
+        * Make sure to reparent the new child to ourself.
+        */
+       if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
+               RB_SET_FATHER(new_child->rb_nodes[which], new_child);
+               RB_SET_POSITION(new_child->rb_nodes[which], which);
+       }
+
+       KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
+       KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
+       KASSERT(RB_ROOT_P(rbt, new_father) ||
+           rb_tree_check_node(rbt, grandpa, NULL, false));
+}
+
+static void
+rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
+{
+       struct rb_node * father = RB_FATHER(self);
+       struct rb_node * grandpa = RB_FATHER(father);
+       struct rb_node * uncle;
+       unsigned int which;
+       unsigned int other;
+
+       KASSERT(!RB_ROOT_P(rbt, self));
+       KASSERT(RB_RED_P(self));
+       KASSERT(RB_RED_P(father));
+       RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
+
+       for (;;) {
+               KASSERT(!RB_SENTINEL_P(self));
+
+               KASSERT(RB_RED_P(self));
+               KASSERT(RB_RED_P(father));
+               /*
+                * We are red and our parent is red, therefore we must have a
+                * grandfather and he must be black.
+                */
+               grandpa = RB_FATHER(father);
+               KASSERT(RB_BLACK_P(grandpa));
+               KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
+               which = (father == grandpa->rb_right);
+               other = which ^ RB_DIR_OTHER;
+               uncle = grandpa->rb_nodes[other];
+
+               if (RB_BLACK_P(uncle))
+                       break;
+
+               RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
+               /*
+                * Case 1: our uncle is red
+                *   Simply invert the colors of our parent and
+                *   uncle and make our grandparent red.  And
+                *   then solve the problem up at his level.
+                */
+               RB_MARK_BLACK(uncle);
+               RB_MARK_BLACK(father);
+               if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
+                       /*
+                        * If our grandpa is root, don't bother
+                        * setting him to red, just return.
+                        */
+                       KASSERT(RB_BLACK_P(grandpa));
+                       return;
+               }
+               RB_MARK_RED(grandpa);
+               self = grandpa;
+               father = RB_FATHER(self);
+               KASSERT(RB_RED_P(self));
+               if (RB_BLACK_P(father)) {
+                       /*
+                        * If our greatgrandpa is black, we're done.
+                        */
+                       KASSERT(RB_BLACK_P(rbt->rbt_root));
+                       return;
+               }
+       }
+
+       KASSERT(!RB_ROOT_P(rbt, self));
+       KASSERT(RB_RED_P(self));
+       KASSERT(RB_RED_P(father));
+       KASSERT(RB_BLACK_P(uncle));
+       KASSERT(RB_BLACK_P(grandpa));
+       /*
+        * Case 2&3: our uncle is black.
+        */
+       if (self == father->rb_nodes[other]) {
+               /*
+                * Case 2: we are on the same side as our uncle
+                *   Swap ourselves with our parent so this case
+                *   becomes case 3.  Basically our parent becomes our
+                *   child.
+                */
+               rb_tree_reparent_nodes(rbt, father, other);
+               KASSERT(RB_FATHER(father) == self);
+               KASSERT(self->rb_nodes[which] == father);
+               KASSERT(RB_FATHER(self) == grandpa);
+               self = father;
+               father = RB_FATHER(self);
+       }
+       KASSERT(RB_RED_P(self) && RB_RED_P(father));
+       KASSERT(grandpa->rb_nodes[which] == father);
+       /*
+        * Case 3: we are opposite a child of a black uncle.
+        *   Swap our parent and grandparent.  Since our grandfather
+        *   is black, our father will become black and our new sibling
+        *   (former grandparent) will become red.
+        */
+       rb_tree_reparent_nodes(rbt, grandpa, which);
+       KASSERT(RB_FATHER(self) == father);
+       KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
+       KASSERT(RB_RED_P(self));
+       KASSERT(RB_BLACK_P(father));
+       KASSERT(RB_RED_P(grandpa));
+
+       /*
+        * Final step: Set the root to black.
+        */
+       RB_MARK_BLACK(rbt->rbt_root);
+}
+
+static void
+rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
+{
+       const unsigned int which = RB_POSITION(self);
+       struct rb_node *father = RB_FATHER(self);
+#ifndef RBSMALL
+       const bool was_root = RB_ROOT_P(rbt, self);
+#endif
+
+       KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
+       KASSERT(!rebalance || RB_BLACK_P(self));
+       KASSERT(RB_CHILDLESS_P(self));
+       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
+
+       /*
+        * Since we are childless, we know that self->rb_left is pointing
+        * to the sentinel node.
+        */
+       father->rb_nodes[which] = self->rb_left;
+
+       /*
+        * Remove ourselves from the node list, decrement the count,
+        * and update min/max.
+        */
+       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
+       RBSTAT_DEC(rbt->rbt_count);
+#ifndef RBSMALL
+       if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
+               rbt->rbt_minmax[RB_POSITION(self)] = father;
+               /*
+                * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
+                * updated automatically, but we also need to update 
+                * rbt->rbt_minmax[RB_DIR_RIGHT];
+                */
+               if (__predict_false(was_root)) {
+                       rbt->rbt_minmax[RB_DIR_RIGHT] = father;
+               }
+       }
+       RB_SET_FATHER(self, NULL);
+#endif
+
+       /*
+        * Rebalance if requested.
+        */
+       if (rebalance)
+               rb_tree_removal_rebalance(rbt, father, which);
+       KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
+}
+
+/*
+ * When deleting an interior node
+ */
+static void
+rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
+       struct rb_node *standin)
+{
+       const unsigned int standin_which = RB_POSITION(standin);
+       unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
+       struct rb_node *standin_son;
+       struct rb_node *standin_father = RB_FATHER(standin);
+       bool rebalance = RB_BLACK_P(standin);
+
+       if (standin_father == self) {
+               /*
+                * As a child of self, any childen would be opposite of
+                * our parent.
+                */
+               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
+               standin_son = standin->rb_nodes[standin_which];
+       } else {
+               /*
+                * Since we aren't a child of self, any childen would be
+                * on the same side as our parent.
+                */
+               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
+               standin_son = standin->rb_nodes[standin_other];
+       }
+
+       /*
+        * the node we are removing must have two children.
+        */
+       KASSERT(RB_TWOCHILDREN_P(self));
+       /*
+        * If standin has a child, it must be red.
+        */
+       KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
+
+       /*
+        * Verify things are sane.
+        */
+       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
+       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
+
+       if (__predict_false(RB_RED_P(standin_son))) {
+               /*
+                * We know we have a red child so if we flip it to black
+                * we don't have to rebalance.
+                */
+               KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
+               RB_MARK_BLACK(standin_son);
+               rebalance = false;
+
+               if (standin_father == self) {
+                       KASSERT(RB_POSITION(standin_son) == standin_which);
+               } else {
+                       KASSERT(RB_POSITION(standin_son) == standin_other);
+                       /*
+                        * Change the son's parentage to point to his grandpa.
+                        */
+                       RB_SET_FATHER(standin_son, standin_father);
+                       RB_SET_POSITION(standin_son, standin_which);
+               }
+       }
+
+       if (standin_father == self) {
+               /*
+                * If we are about to delete the standin's father, then when
+                * we call rebalance, we need to use ourselves as our father.
+                * Otherwise remember our original father.  Also, sincef we are
+                * our standin's father we only need to reparent the standin's
+                * brother.
+                *
+                * |    R      -->     S    |
+                * |  Q   S    -->   Q   T  |
+                * |        t  -->          |
+                */
+               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
+               KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
+               KASSERT(self->rb_nodes[standin_which] == standin);
+               /*
+                * Have our son/standin adopt his brother as his new son.
+                */
+               standin_father = standin;
+       } else {
+               /*
+                * |    R          -->    S       .  |
+                * |   / \  |   T  -->   / \  |  /   |
+                * |  ..... | S    -->  ..... | T    |
+                *
+                * Sever standin's connection to his father.
+                */
+               standin_father->rb_nodes[standin_which] = standin_son;
+               /*
+                * Adopt the far son.
+                */
+               standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
+               RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
+               KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
+               /*
+                * Use standin_other because we need to preserve standin_which
+                * for the removal_rebalance.
+                */
+               standin_other = standin_which;
+       }
+
+       /*
+        * Move the only remaining son to our standin.  If our standin is our
+        * son, this will be the only son needed to be moved.
+        */
+       KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
+       standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
+       RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
+
+       /*
+        * Now copy the result of self to standin and then replace
+        * self with standin in the tree.
+        */
+       RB_COPY_PROPERTIES(standin, self);
+       RB_SET_FATHER(standin, RB_FATHER(self));
+       RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
+
+       /*
+        * Remove ourselves from the node list, decrement the count,
+        * and update min/max.
+        */
+       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
+       RBSTAT_DEC(rbt->rbt_count);
+#ifndef RBSMALL
+       if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
+               rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
+       RB_SET_FATHER(self, NULL);
+#endif
+
+       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
+       KASSERT(RB_FATHER_SENTINEL_P(standin)
+               || rb_tree_check_node(rbt, standin_father, NULL, false));
+       KASSERT(RB_LEFT_SENTINEL_P(standin)
+               || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
+       KASSERT(RB_RIGHT_SENTINEL_P(standin)
+               || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
+
+       if (!rebalance)
+               return;
+
+       rb_tree_removal_rebalance(rbt, standin_father, standin_which);
+       KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
+}
+
+/*
+ * We could do this by doing
+ *     rb_tree_node_swap(rbt, self, which);
+ *     rb_tree_prune_node(rbt, self, false);
+ *
+ * But it's more efficient to just evalate and recolor the child.
+ */
+static void
+rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
+       unsigned int which)
+{
+       struct rb_node *father = RB_FATHER(self);
+       struct rb_node *son = self->rb_nodes[which];
+#ifndef RBSMALL
+       const bool was_root = RB_ROOT_P(rbt, self);
+#endif
+
+       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
+       KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
+       KASSERT(!RB_TWOCHILDREN_P(son));
+       KASSERT(RB_CHILDLESS_P(son));
+       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
+       KASSERT(rb_tree_check_node(rbt, son, NULL, false));
+
+       /*
+        * Remove ourselves from the tree and give our former child our
+        * properties (position, color, root).
+        */
+       RB_COPY_PROPERTIES(son, self);
+       father->rb_nodes[RB_POSITION(son)] = son;
+       RB_SET_FATHER(son, father);
+
+       /*
+        * Remove ourselves from the node list, decrement the count,
+        * and update minmax.
+        */
+       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
+       RBSTAT_DEC(rbt->rbt_count);
+#ifndef RBSMALL
+       if (__predict_false(was_root)) {
+               KASSERT(rbt->rbt_minmax[which] == son);
+               rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
+       } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
+               rbt->rbt_minmax[RB_POSITION(self)] = son;
+       }
+       RB_SET_FATHER(self, NULL);
+#endif
+
+       KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
+       KASSERT(rb_tree_check_node(rbt, son, NULL, true));
+}
+
+void
+rb_tree_remove_node(struct rb_tree *rbt, void *object)
+{
+       const rb_tree_ops_t *rbto = rbt->rbt_ops;
+       struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
+       unsigned int which;
+
+       KASSERT(!RB_SENTINEL_P(self));
+       RBSTAT_INC(rbt->rbt_removals);
+
+       /*
+        * In the following diagrams, we (the node to be removed) are S.  Red
+        * nodes are lowercase.  T could be either red or black.
+        *
+        * Remember the major axiom of the red-black tree: the number of
+        * black nodes from the root to each leaf is constant across all
+        * leaves, only the number of red nodes varies.
+        *
+        * Thus removing a red leaf doesn't require any other changes to a
+        * red-black tree.  So if we must remove a node, attempt to rearrange
+        * the tree so we can remove a red node.
+        *
+        * The simpliest case is a childless red node or a childless root node:
+        *
+        * |    T  -->    T  |    or    |  R  -->  *  |
+        * |  s    -->  *    |
+        */
+       if (RB_CHILDLESS_P(self)) {
+               const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
+               rb_tree_prune_node(rbt, self, rebalance);
+               return;
+       }
+       KASSERT(!RB_CHILDLESS_P(self));
+       if (!RB_TWOCHILDREN_P(self)) {
+               /*
+                * The next simpliest case is the node we are deleting is
+                * black and has one red child.
+                *
+                * |      T  -->      T  -->      T  |
+                * |    S    -->  R      -->  R      |
+                * |  r      -->    s    -->    *    |
+                */
+               which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
+               KASSERT(RB_BLACK_P(self));
+               KASSERT(RB_RED_P(self->rb_nodes[which]));
+               KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
+               rb_tree_prune_blackred_branch(rbt, self, which);
+               return;
+       }
+       KASSERT(RB_TWOCHILDREN_P(self));
+
+       /*
+        * We invert these because we prefer to remove from the inside of
+        * the tree.
+        */
+       which = RB_POSITION(self) ^ RB_DIR_OTHER;
+
+       /*
+        * Let's find the node closes to us opposite of our parent
+        * Now swap it with ourself, "prune" it, and rebalance, if needed.
+        */
+       standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
+       rb_tree_swap_prune_and_rebalance(rbt, self, standin);
+}
+
+static void
+rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
+       unsigned int which)
+{
+       KASSERT(!RB_SENTINEL_P(parent));
+       KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
+       KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
+       RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
+
+       while (RB_BLACK_P(parent->rb_nodes[which])) {
+               unsigned int other = which ^ RB_DIR_OTHER;
+               struct rb_node *brother = parent->rb_nodes[other];
+
+               RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
+
+               KASSERT(!RB_SENTINEL_P(brother));
+               /*
+                * For cases 1, 2a, and 2b, our brother's children must
+                * be black and our father must be black
+                */
+               if (RB_BLACK_P(parent)
+                   && RB_BLACK_P(brother->rb_left)
+                   && RB_BLACK_P(brother->rb_right)) {
+                       if (RB_RED_P(brother)) {
+                               /*
+                                * Case 1: Our brother is red, swap its
+                                * position (and colors) with our parent. 
+                                * This should now be case 2b (unless C or E
+                                * has a red child which is case 3; thus no
+                                * explicit branch to case 2b).
+                                *
+                                *    B         ->        D
+                                *  A     d     ->    b     E
+                                *      C   E   ->  A   C
+                                */
+                               KASSERT(RB_BLACK_P(parent));
+                               rb_tree_reparent_nodes(rbt, parent, other);
+                               brother = parent->rb_nodes[other];
+                               KASSERT(!RB_SENTINEL_P(brother));
+                               KASSERT(RB_RED_P(parent));
+                               KASSERT(RB_BLACK_P(brother));
+                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
+                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
+                       } else {
+                               /*
+                                * Both our parent and brother are black.
+                                * Change our brother to red, advance up rank
+                                * and go through the loop again.
+                                *
+                                *    B         ->   *B
+                                * *A     D     ->  A     d
+                                *      C   E   ->      C   E
+                                */
+                               RB_MARK_RED(brother);
+                               KASSERT(RB_BLACK_P(brother->rb_left));
+                               KASSERT(RB_BLACK_P(brother->rb_right));
+                               if (RB_ROOT_P(rbt, parent))
+                                       return; /* root == parent == black */
+                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
+                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
+                               which = RB_POSITION(parent);
+                               parent = RB_FATHER(parent);
+                               continue;
+                       }
+               }
+               /*
+                * Avoid an else here so that case 2a above can hit either
+                * case 2b, 3, or 4.
+                */
+               if (RB_RED_P(parent)
+                   && RB_BLACK_P(brother)
+                   && RB_BLACK_P(brother->rb_left)
+                   && RB_BLACK_P(brother->rb_right)) {
+                       KASSERT(RB_RED_P(parent));
+                       KASSERT(RB_BLACK_P(brother));
+                       KASSERT(RB_BLACK_P(brother->rb_left));
+                       KASSERT(RB_BLACK_P(brother->rb_right));
+                       /*
+                        * We are black, our father is red, our brother and
+                        * both nephews are black.  Simply invert/exchange the
+                        * colors of our father and brother (to black and red
+                        * respectively).
+                        *
+                        *      |    f        -->    F        |
+                        *      |  *     B    -->  *     b    |
+                        *      |      N   N  -->      N   N  |
+                        */
+                       RB_MARK_BLACK(parent);
+                       RB_MARK_RED(brother);
+                       KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
+                       break;          /* We're done! */
+               } else {
+                       /*
+                        * Our brother must be black and have at least one
+                        * red child (it may have two).
+                        */
+                       KASSERT(RB_BLACK_P(brother));
+                       KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
+                               RB_RED_P(brother->rb_nodes[other]));
+                       if (RB_BLACK_P(brother->rb_nodes[other])) {
+                               /*
+                                * Case 3: our brother is black, our near
+                                * nephew is red, and our far nephew is black.
+                                * Swap our brother with our near nephew.  
+                                * This result in a tree that matches case 4.
+                                * (Our father could be red or black).
+                                *
+                                *      |    F      -->    F      |
+                                *      |  x     B  -->  x   B    |
+                                *      |      n    -->        n  |
+                                */
+                               KASSERT(RB_RED_P(brother->rb_nodes[which]));
+                               rb_tree_reparent_nodes(rbt, brother, which);
+                               KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
+                               brother = parent->rb_nodes[other];
+                               KASSERT(RB_RED_P(brother->rb_nodes[other]));
+                       }
+                       /*
+                        * Case 4: our brother is black and our far nephew
+                        * is red.  Swap our father and brother locations and
+                        * change our far nephew to black.  (these can be
+                        * done in either order so we change the color first).
+                        * The result is a valid red-black tree and is a
+                        * terminal case.  (again we don't care about the
+                        * father's color)
+                        *
+                        * If the father is red, we will get a red-black-black
+                        * tree:
+                        *      |  f      ->  f      -->    b    |
+                        *      |    B    ->    B    -->  F   N  |
+                        *      |      n  ->      N  -->         |
+                        *
+                        * If the father is black, we will get an all black
+                        * tree:
+                        *      |  F      ->  F      -->    B    |
+                        *      |    B    ->    B    -->  F   N  |
+                        *      |      n  ->      N  -->         |
+                        *
+                        * If we had two red nephews, then after the swap,
+                        * our former father would have a red grandson. 
+                        */
+                       KASSERT(RB_BLACK_P(brother));
+                       KASSERT(RB_RED_P(brother->rb_nodes[other]));
+                       RB_MARK_BLACK(brother->rb_nodes[other]);
+                       rb_tree_reparent_nodes(rbt, parent, other);
+                       break;          /* We're done! */
+               }
+       }
+       KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
+}
+
+void *
+rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
+{
+       const rb_tree_ops_t *rbto = rbt->rbt_ops;
+       const unsigned int other = direction ^ RB_DIR_OTHER;
+       struct rb_node *self;
+
+       KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
+
+       if (object == NULL) {
+#ifndef RBSMALL
+               if (RB_SENTINEL_P(rbt->rbt_root))
+                       return NULL;
+               return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
+#else
+               self = rbt->rbt_root;
+               if (RB_SENTINEL_P(self))
+                       return NULL;
+               while (!RB_SENTINEL_P(self->rb_nodes[direction]))
+                       self = self->rb_nodes[direction];
+               return RB_NODETOITEM(rbto, self);
+#endif /* !RBSMALL */
+       }
+       self = RB_ITEMTONODE(rbto, object);
+       KASSERT(!RB_SENTINEL_P(self));
+       /*
+        * We can't go any further in this direction.  We proceed up in the
+        * opposite direction until our parent is in direction we want to go.
+        */
+       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
+               while (!RB_ROOT_P(rbt, self)) {
+                       if (other == RB_POSITION(self))
+                               return RB_NODETOITEM(rbto, RB_FATHER(self));
+                       self = RB_FATHER(self);
+               }
+               return NULL;
+       }
+
+       /*
+        * Advance down one in current direction and go down as far as possible
+        * in the opposite direction.
+        */
+       self = self->rb_nodes[direction];
+       KASSERT(!RB_SENTINEL_P(self));
+       while (!RB_SENTINEL_P(self->rb_nodes[other]))
+               self = self->rb_nodes[other];
+       return RB_NODETOITEM(rbto, self);
+}
+
+#ifdef RBDEBUG
+static const struct rb_node *
+rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
+       const unsigned int direction)
+{
+       const unsigned int other = direction ^ RB_DIR_OTHER;
+       KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
+
+       if (self == NULL) {
+#ifndef RBSMALL
+               if (RB_SENTINEL_P(rbt->rbt_root))
+                       return NULL;
+               return rbt->rbt_minmax[direction];
+#else
+               self = rbt->rbt_root;
+               if (RB_SENTINEL_P(self))
+                       return NULL;
+               while (!RB_SENTINEL_P(self->rb_nodes[direction]))
+                       self = self->rb_nodes[direction];
+               return self;
+#endif /* !RBSMALL */
+       }
+       KASSERT(!RB_SENTINEL_P(self));
+       /*
+        * We can't go any further in this direction.  We proceed up in the
+        * opposite direction until our parent is in direction we want to go.
+        */
+       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
+               while (!RB_ROOT_P(rbt, self)) {
+                       if (other == RB_POSITION(self))
+                               return RB_FATHER(self);
+                       self = RB_FATHER(self);
+               }
+               return NULL;
+       }
+
+       /*
+        * Advance down one in current direction and go down as far as possible
+        * in the opposite direction.
+        */
+       self = self->rb_nodes[direction];
+       KASSERT(!RB_SENTINEL_P(self));
+       while (!RB_SENTINEL_P(self->rb_nodes[other]))
+               self = self->rb_nodes[other];
+       return self;
+}
+
+static unsigned int
+rb_tree_count_black(const struct rb_node *self)
+{
+       unsigned int left, right;
+
+       if (RB_SENTINEL_P(self))
+               return 0;
+
+       left = rb_tree_count_black(self->rb_left);
+       right = rb_tree_count_black(self->rb_right);
+
+       KASSERT(left == right);
+
+       return left + RB_BLACK_P(self);
+}
+
+static bool
+rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
+       const struct rb_node *prev, bool red_check)
+{
+       const rb_tree_ops_t *rbto = rbt->rbt_ops;
+       rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
+
+       KASSERT(!RB_SENTINEL_P(self));
+       KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
+           RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
+
+       /*
+        * Verify our relationship to our parent.
+        */
+       if (RB_ROOT_P(rbt, self)) {
+               KASSERT(self == rbt->rbt_root);
+               KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
+               KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
+               KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
+       } else {
+               int diff = (*compare_nodes)(rbto->rbto_context,
+                   RB_NODETOITEM(rbto, self),
+                   RB_NODETOITEM(rbto, RB_FATHER(self)));
+
+               KASSERT(self != rbt->rbt_root);
+               KASSERT(!RB_FATHER_SENTINEL_P(self));
+               if (RB_POSITION(self) == RB_DIR_LEFT) {
+                       KASSERT(diff < 0);
+                       KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
+               } else {
+                       KASSERT(diff > 0);
+                       KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
+               }
+       }
+
+       /*
+        * Verify our position in the linked list against the tree itself.
+        */
+       {
+               const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
+               const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
+               KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
+               KASSERT(next0 == TAILQ_NEXT(self, rb_link));
+#ifndef RBSMALL
+               KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
+               KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
+#endif
+       }
+
+       /*
+        * The root must be black.
+        * There can never be two adjacent red nodes. 
+        */
+       if (red_check) {
+               KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
+               (void) rb_tree_count_black(self);
+               if (RB_RED_P(self)) {
+                       const struct rb_node *brother;
+                       KASSERT(!RB_ROOT_P(rbt, self));
+                       brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
+                       KASSERT(RB_BLACK_P(RB_FATHER(self)));
+                       /* 
+                        * I'm red and have no children, then I must either
+                        * have no brother or my brother also be red and
+                        * also have no children.  (black count == 0)
+                        */
+                       KASSERT(!RB_CHILDLESS_P(self)
+                               || RB_SENTINEL_P(brother)
+                               || RB_RED_P(brother)
+                               || RB_CHILDLESS_P(brother));
+                       /*
+                        * If I'm not childless, I must have two children
+                        * and they must be both be black.
+                        */
+                       KASSERT(RB_CHILDLESS_P(self)
+                               || (RB_TWOCHILDREN_P(self)
+                                   && RB_BLACK_P(self->rb_left)
+                                   && RB_BLACK_P(self->rb_right)));
+                       /*
+                        * If I'm not childless, thus I have black children,
+                        * then my brother must either be black or have two
+                        * black children.
+                        */
+                       KASSERT(RB_CHILDLESS_P(self)
+                               || RB_BLACK_P(brother)
+                               || (RB_TWOCHILDREN_P(brother)
+                                   && RB_BLACK_P(brother->rb_left)
+                                   && RB_BLACK_P(brother->rb_right)));
+               } else {
+                       /*
+                        * If I'm black and have one child, that child must
+                        * be red and childless.
+                        */
+                       KASSERT(RB_CHILDLESS_P(self)
+                               || RB_TWOCHILDREN_P(self)
+                               || (!RB_LEFT_SENTINEL_P(self)
+                                   && RB_RIGHT_SENTINEL_P(self)
+                                   && RB_RED_P(self->rb_left)
+                                   && RB_CHILDLESS_P(self->rb_left))
+                               || (!RB_RIGHT_SENTINEL_P(self)
+                                   && RB_LEFT_SENTINEL_P(self)
+                                   && RB_RED_P(self->rb_right)
+                                   && RB_CHILDLESS_P(self->rb_right)));
+
+                       /*
+                        * If I'm a childless black node and my parent is
+                        * black, my 2nd closet relative away from my parent
+                        * is either red or has a red parent or red children.
+                        */
+                       if (!RB_ROOT_P(rbt, self)
+                           && RB_CHILDLESS_P(self)
+                           && RB_BLACK_P(RB_FATHER(self))) {
+                               const unsigned int which = RB_POSITION(self);
+                               const unsigned int other = which ^ RB_DIR_OTHER;
+                               const struct rb_node *relative0, *relative;
+
+                               relative0 = rb_tree_iterate_const(rbt,
+                                   self, other);
+                               KASSERT(relative0 != NULL);
+                               relative = rb_tree_iterate_const(rbt,
+                                   relative0, other);
+                               KASSERT(relative != NULL);
+                               KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
+#if 0
+                               KASSERT(RB_RED_P(relative)
+                                       || RB_RED_P(relative->rb_left)
+                                       || RB_RED_P(relative->rb_right)
+                                       || RB_RED_P(RB_FATHER(relative)));
+#endif
+                       }
+               }
+               /*
+                * A grandparent's children must be real nodes and not
+                * sentinels.  First check out grandparent.
+                */
+               KASSERT(RB_ROOT_P(rbt, self)
+                       || RB_ROOT_P(rbt, RB_FATHER(self))
+                       || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
+               /*
+                * If we are have grandchildren on our left, then
+                * we must have a child on our right.
+                */
+               KASSERT(RB_LEFT_SENTINEL_P(self)
+                       || RB_CHILDLESS_P(self->rb_left)
+                       || !RB_RIGHT_SENTINEL_P(self));
+               /*
+                * If we are have grandchildren on our right, then
+                * we must have a child on our left.
+                */
+               KASSERT(RB_RIGHT_SENTINEL_P(self)
+                       || RB_CHILDLESS_P(self->rb_right)
+                       || !RB_LEFT_SENTINEL_P(self));
+
+               /*
+                * If we have a child on the left and it doesn't have two
+                * children make sure we don't have great-great-grandchildren on
+                * the right.
+                */
+               KASSERT(RB_TWOCHILDREN_P(self->rb_left)
+                       || RB_CHILDLESS_P(self->rb_right)
+                       || RB_CHILDLESS_P(self->rb_right->rb_left)
+                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
+                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
+                       || RB_CHILDLESS_P(self->rb_right->rb_right)
+                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
+                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
+
+               /*
+                * If we have a child on the right and it doesn't have two
+                * children make sure we don't have great-great-grandchildren on
+                * the left.
+                */
+               KASSERT(RB_TWOCHILDREN_P(self->rb_right)
+                       || RB_CHILDLESS_P(self->rb_left)
+                       || RB_CHILDLESS_P(self->rb_left->rb_left)
+                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
+                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
+                       || RB_CHILDLESS_P(self->rb_left->rb_right)
+                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
+                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
+
+               /*
+                * If we are fully interior node, then our predecessors and
+                * successors must have no children in our direction.
+                */
+               if (RB_TWOCHILDREN_P(self)) {
+                       const struct rb_node *prev0;
+                       const struct rb_node *next0;
+
+                       prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
+                       KASSERT(prev0 != NULL);
+                       KASSERT(RB_RIGHT_SENTINEL_P(prev0));
+
+                       next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
+                       KASSERT(next0 != NULL);
+                       KASSERT(RB_LEFT_SENTINEL_P(next0));
+               }
+       }
+
+       return true;
+}
+
+void
+rb_tree_check(const struct rb_tree *rbt, bool red_check)
+{
+       const struct rb_node *self;
+       const struct rb_node *prev;
+#ifdef RBSTATS
+       unsigned int count = 0;
+#endif
+
+       KASSERT(rbt->rbt_root != NULL);
+       KASSERT(RB_LEFT_P(rbt->rbt_root));
+
+#if defined(RBSTATS) && !defined(RBSMALL)
+       KASSERT(rbt->rbt_count > 1
+           || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
+#endif
+
+       prev = NULL;
+       TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
+               rb_tree_check_node(rbt, self, prev, false);
+#ifdef RBSTATS
+               count++;
+#endif
+       }
+#ifdef RBSTATS
+       KASSERT(rbt->rbt_count == count);
+#endif
+       if (red_check) {
+               KASSERT(RB_BLACK_P(rbt->rbt_root));
+               KASSERT(RB_SENTINEL_P(rbt->rbt_root)
+                       || rb_tree_count_black(rbt->rbt_root));
+
+               /*
+                * The root must be black.
+                * There can never be two adjacent red nodes. 
+                */
+               TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
+                       rb_tree_check_node(rbt, self, NULL, true);
+               }
+       }
+}
+#endif /* RBDEBUG */
+
+#ifdef RBSTATS
+static void
+rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
+       size_t *depths, size_t depth)
+{
+       if (RB_SENTINEL_P(self))
+               return;
+
+       if (RB_TWOCHILDREN_P(self)) {
+               rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
+               rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
+               return;
+       }
+       depths[depth]++;
+       if (!RB_LEFT_SENTINEL_P(self)) {
+               rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
+       }
+       if (!RB_RIGHT_SENTINEL_P(self)) {
+               rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
+       }
+}
+
+void
+rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
+{
+       rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
+}
+#endif /* RBSTATS */
diff --git a/vendor/rbtree.h b/vendor/rbtree.h
new file mode 100644 (file)
index 0000000..0cc976e
--- /dev/null
@@ -0,0 +1,223 @@
+/*     $NetBSD: rbtree.h,v 1.14 2025/10/29 08:08:44 roy Exp $  */
+
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Matt Thomas <matt@3am-software.com>.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _SYS_RBTREE_H_
+#define        _SYS_RBTREE_H_
+
+#if !defined(_KERNEL) && !defined(_STANDALONE)
+#include <stddef.h>
+#include <stdint.h>
+#else
+#include <sys/types.h>
+#endif
+
+#ifdef RBDEBUG
+#include <sys/queue.h>
+#if !defined(_KERNEL) && !defined(_STANDALONE)
+#include <stdbool.h>
+#endif
+#endif
+
+#ifdef __BEGIN_DECLS
+__BEGIN_DECLS
+#endif
+
+typedef struct rb_node {
+       struct rb_node *rb_nodes[2];
+#define        RB_DIR_LEFT             0
+#define        RB_DIR_RIGHT            1
+#define        RB_DIR_OTHER            1
+#define        rb_left                 rb_nodes[RB_DIR_LEFT]
+#define        rb_right                rb_nodes[RB_DIR_RIGHT]
+
+       /*
+        * rb_info contains the two flags and the parent back pointer.
+        * We put the two flags in the low two bits since we know that
+        * rb_node will have an alignment of 4 or 8 bytes.
+        */
+       uintptr_t rb_info;
+#define        RB_FLAG_POSITION        (uintptr_t)0x2
+#define        RB_FLAG_RED             (uintptr_t)0x1
+#define        RB_FLAG_MASK            (RB_FLAG_POSITION|RB_FLAG_RED)
+#define        RB_FATHER(rb) \
+    ((struct rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
+#define        RB_SET_FATHER(rb, father) \
+    ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
+
+#define        RB_SENTINEL_P(rb)       ((rb) == NULL)
+#define        RB_LEFT_SENTINEL_P(rb)  RB_SENTINEL_P((rb)->rb_left)
+#define        RB_RIGHT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_right)
+#define        RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
+#define        RB_CHILDLESS_P(rb) \
+    (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
+#define        RB_TWOCHILDREN_P(rb) \
+    (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
+
+#define        RB_POSITION(rb) \
+    (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
+#define        RB_RIGHT_P(rb)          (RB_POSITION(rb) == RB_DIR_RIGHT)
+#define        RB_LEFT_P(rb)           (RB_POSITION(rb) == RB_DIR_LEFT)
+#define        RB_RED_P(rb)            (!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
+#define        RB_BLACK_P(rb)          (RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
+#define        RB_MARK_RED(rb)         ((void)((rb)->rb_info |= RB_FLAG_RED))
+#define        RB_MARK_BLACK(rb)       ((void)((rb)->rb_info &= ~RB_FLAG_RED))
+#define        RB_INVERT_COLOR(rb)     ((void)((rb)->rb_info ^= RB_FLAG_RED))
+#define        RB_ROOT_P(rbt, rb)      ((rbt)->rbt_root == (rb))
+#define        RB_SET_POSITION(rb, position) \
+    ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
+    ((rb)->rb_info &= ~RB_FLAG_POSITION)))
+#define        RB_ZERO_PROPERTIES(rb)  ((void)((rb)->rb_info &= ~RB_FLAG_MASK))
+#define        RB_COPY_PROPERTIES(dst, src) \
+    ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
+#define RB_SWAP_PROPERTIES(a, b) do { \
+    uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
+    (a)->rb_info ^= xorinfo; \
+    (b)->rb_info ^= xorinfo; \
+  } while (0)
+#ifdef RBDEBUG
+       TAILQ_ENTRY(rb_node) rb_link;
+#endif
+} rb_node_t;
+
+#define RB_TREE_MIN(T) rb_tree_iterate((T), NULL, RB_DIR_LEFT)
+#define RB_TREE_MAX(T) rb_tree_iterate((T), NULL, RB_DIR_RIGHT)
+#define RB_TREE_NEXT(T, N) rb_tree_iterate((T), (N), RB_DIR_RIGHT)
+#define RB_TREE_PREV(T, N) rb_tree_iterate((T), (N), RB_DIR_LEFT)
+#define RB_TREE_FOREACH(N, T) \
+    for ((N) = RB_TREE_MIN(T); (N); (N) = RB_TREE_NEXT((T), (N)))
+#define RB_TREE_FOREACH_REVERSE(N, T) \
+    for ((N) = RB_TREE_MAX(T); (N); (N) = RB_TREE_PREV((T), (N)))
+#define RB_TREE_FOREACH_SAFE(N, T, S) \
+    for ((N) = RB_TREE_MIN(T); \
+        (N) && ((S) = RB_TREE_NEXT((T), (N)), 1); \
+        (N) = (S))
+#define RB_TREE_FOREACH_REVERSE_SAFE(N, T, S) \
+    for ((N) = RB_TREE_MAX(T); \
+        (N) && ((S) = RB_TREE_PREV((T), (N)), 1); \
+        (N) = (S))
+
+#ifdef RBDEBUG
+TAILQ_HEAD(rb_node_qh, rb_node);
+
+#define        RB_TAILQ_REMOVE(a, b, c)                TAILQ_REMOVE(a, b, c)
+#define        RB_TAILQ_INIT(a)                        TAILQ_INIT(a)
+#define        RB_TAILQ_INSERT_HEAD(a, b, c)           TAILQ_INSERT_HEAD(a, b, c)
+#define        RB_TAILQ_INSERT_BEFORE(a, b, c)         TAILQ_INSERT_BEFORE(a, b, c)
+#define        RB_TAILQ_INSERT_AFTER(a, b, c, d)       TAILQ_INSERT_AFTER(a, b, c, d)
+
+#define        RBDEBUG_TREE_INITIALIZER(t)                                           \
+       .rbt_nodes = TAILQ_HEAD_INITIALIZER((t).rbt_nodes),
+#else
+#define        RB_TAILQ_REMOVE(a, b, c)                do { } while (0)
+#define        RB_TAILQ_INIT(a)                        do { } while (0)
+#define        RB_TAILQ_INSERT_HEAD(a, b, c)           do { } while (0)
+#define        RB_TAILQ_INSERT_BEFORE(a, b, c)         do { } while (0)
+#define        RB_TAILQ_INSERT_AFTER(a, b, c, d)       do { } while (0)
+
+#define        RBDEBUG_TREE_INITIALIZER(t)             /* nothing */
+#endif /* RBDEBUG */
+
+/*
+ * rbto_compare_nodes_fn:
+ *     return a positive value if the first node > the second node.
+ *     return a negative value if the first node < the second node.
+ *     return 0 if they are considered same.
+ *
+ * rbto_compare_key_fn:
+ *     return a positive value if the node > the key.
+ *     return a negative value if the node < the key.
+ *     return 0 if they are considered same.
+ */
+
+typedef signed int (*rbto_compare_nodes_fn)(void *, const void *, const void *);
+typedef signed int (*rbto_compare_key_fn)(void *, const void *, const void *);
+
+typedef struct {
+       rbto_compare_nodes_fn rbto_compare_nodes;
+       rbto_compare_key_fn rbto_compare_key;
+       size_t rbto_node_offset;
+       void *rbto_context;
+} rb_tree_ops_t;
+
+typedef struct rb_tree {
+       struct rb_node *rbt_root;
+       const rb_tree_ops_t *rbt_ops;
+       struct rb_node *rbt_minmax[2];
+#ifdef RBDEBUG
+       struct rb_node_qh rbt_nodes;
+#endif
+#ifdef RBSTATS
+       unsigned int rbt_count;
+       unsigned int rbt_insertions;
+       unsigned int rbt_removals;
+       unsigned int rbt_insertion_rebalance_calls;
+       unsigned int rbt_insertion_rebalance_passes;
+       unsigned int rbt_removal_rebalance_calls;
+       unsigned int rbt_removal_rebalance_passes;
+#endif
+} rb_tree_t;
+
+#ifdef RBSTATS
+#define        RBSTAT_INC(v)   ((void)((v)++))
+#define        RBSTAT_DEC(v)   ((void)((v)--))
+#else
+#define        RBSTAT_INC(v)   do { } while (0)
+#define        RBSTAT_DEC(v)   do { } while (0)
+#endif
+
+#define        RB_TREE_INIT_TYPECHECK(t)                                             \
+       0*sizeof(&(t) - (struct rb_tree *)0)
+
+#define        RB_TREE_INITIALIZER(t, ops)                                           \
+{                                                                            \
+       .rbt_ops = (ops) + RB_TREE_INIT_TYPECHECK(t),                         \
+       RBDEBUG_TREE_INITIALIZER(t)                                           \
+}
+
+void   rb_tree_init(rb_tree_t *, const rb_tree_ops_t *);
+void * rb_tree_insert_node(rb_tree_t *, void *);
+void * rb_tree_find_node(rb_tree_t *, const void *);
+void * rb_tree_find_node_geq(rb_tree_t *, const void *);
+void * rb_tree_find_node_leq(rb_tree_t *, const void *);
+void   rb_tree_remove_node(rb_tree_t *, void *);
+void * rb_tree_iterate(rb_tree_t *, void *, const unsigned int);
+#ifdef RBDEBUG
+void   rb_tree_check(const rb_tree_t *, bool);
+#endif
+#ifdef RBSTATS
+void   rb_tree_depths(const rb_tree_t *, size_t *);
+#endif
+
+#ifdef __END_DECLS
+__END_DECLS
+#endif
+
+#endif /* _SYS_RBTREE_H_*/