]> git.ipfire.org Git - thirdparty/linux.git/blob
207393a
[thirdparty/linux.git] /
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 {}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 enable_unrestricted_guest, bool, S_IRUGO);
95
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104
105 module_param(enable_apicv, bool, S_IRUGO);
106
107 /*
108 * If nested=1, nested virtualization is supported, i.e., guests may use
109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110 * use VMX instructions.
111 */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120
121 #define MSR_BITMAP_MODE_X2APIC 1
122 #define MSR_BITMAP_MODE_X2APIC_APICV 2
123
124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
125
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON \
139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
140 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
141
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151 RTIT_STATUS_BYTECNT))
152
153 /*
154 * List of MSRs that can be directly passed to the guest.
155 * In addition to these x2apic and PT MSRs are handled specially.
156 */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158 MSR_IA32_SPEC_CTRL,
159 MSR_IA32_PRED_CMD,
160 MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162 MSR_FS_BASE,
163 MSR_GS_BASE,
164 MSR_KERNEL_GS_BASE,
165 #endif
166 MSR_IA32_SYSENTER_CS,
167 MSR_IA32_SYSENTER_ESP,
168 MSR_IA32_SYSENTER_EIP,
169 MSR_CORE_C1_RES,
170 MSR_CORE_C3_RESIDENCY,
171 MSR_CORE_C6_RESIDENCY,
172 MSR_CORE_C7_RESIDENCY,
173 };
174
175 /*
176 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
177 * ple_gap: upper bound on the amount of time between two successive
178 * executions of PAUSE in a loop. Also indicate if ple enabled.
179 * According to test, this time is usually smaller than 128 cycles.
180 * ple_window: upper bound on the amount of time a guest is allowed to execute
181 * in a PAUSE loop. Tests indicate that most spinlocks are held for
182 * less than 2^12 cycles
183 * Time is measured based on a counter that runs at the same rate as the TSC,
184 * refer SDM volume 3b section 21.6.13 & 22.1.3.
185 */
186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
187 module_param(ple_gap, uint, 0444);
188
189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
190 module_param(ple_window, uint, 0444);
191
192 /* Default doubles per-vcpu window every exit. */
193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
194 module_param(ple_window_grow, uint, 0444);
195
196 /* Default resets per-vcpu window every exit to ple_window. */
197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
198 module_param(ple_window_shrink, uint, 0444);
199
200 /* Default is to compute the maximum so we can never overflow. */
201 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
202 module_param(ple_window_max, uint, 0444);
203
204 /* Default is SYSTEM mode, 1 for host-guest mode */
205 int __read_mostly pt_mode = PT_MODE_SYSTEM;
206 module_param(pt_mode, int, S_IRUGO);
207
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
210 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
211
212 /* Storage for pre module init parameter parsing */
213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
214
215 static const struct {
216 const char *option;
217 bool for_parse;
218 } vmentry_l1d_param[] = {
219 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
220 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
221 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
222 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
223 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
224 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
225 };
226
227 #define L1D_CACHE_ORDER 4
228 static void *vmx_l1d_flush_pages;
229
230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
231 {
232 struct page *page;
233 unsigned int i;
234
235 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
236 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
237 return 0;
238 }
239
240 if (!enable_ept) {
241 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
242 return 0;
243 }
244
245 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
246 u64 msr;
247
248 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
249 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
250 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
251 return 0;
252 }
253 }
254
255 /* If set to auto use the default l1tf mitigation method */
256 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
257 switch (l1tf_mitigation) {
258 case L1TF_MITIGATION_OFF:
259 l1tf = VMENTER_L1D_FLUSH_NEVER;
260 break;
261 case L1TF_MITIGATION_FLUSH_NOWARN:
262 case L1TF_MITIGATION_FLUSH:
263 case L1TF_MITIGATION_FLUSH_NOSMT:
264 l1tf = VMENTER_L1D_FLUSH_COND;
265 break;
266 case L1TF_MITIGATION_FULL:
267 case L1TF_MITIGATION_FULL_FORCE:
268 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269 break;
270 }
271 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
272 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273 }
274
275 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
276 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
277 /*
278 * This allocation for vmx_l1d_flush_pages is not tied to a VM
279 * lifetime and so should not be charged to a memcg.
280 */
281 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
282 if (!page)
283 return -ENOMEM;
284 vmx_l1d_flush_pages = page_address(page);
285
286 /*
287 * Initialize each page with a different pattern in
288 * order to protect against KSM in the nested
289 * virtualization case.
290 */
291 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
292 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
293 PAGE_SIZE);
294 }
295 }
296
297 l1tf_vmx_mitigation = l1tf;
298
299 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
300 static_branch_enable(&vmx_l1d_should_flush);
301 else
302 static_branch_disable(&vmx_l1d_should_flush);
303
304 if (l1tf == VMENTER_L1D_FLUSH_COND)
305 static_branch_enable(&vmx_l1d_flush_cond);
306 else
307 static_branch_disable(&vmx_l1d_flush_cond);
308 return 0;
309 }
310
311 static int vmentry_l1d_flush_parse(const char *s)
312 {
313 unsigned int i;
314
315 if (s) {
316 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
317 if (vmentry_l1d_param[i].for_parse &&
318 sysfs_streq(s, vmentry_l1d_param[i].option))
319 return i;
320 }
321 }
322 return -EINVAL;
323 }
324
325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
326 {
327 int l1tf, ret;
328
329 l1tf = vmentry_l1d_flush_parse(s);
330 if (l1tf < 0)
331 return l1tf;
332
333 if (!boot_cpu_has(X86_BUG_L1TF))
334 return 0;
335
336 /*
337 * Has vmx_init() run already? If not then this is the pre init
338 * parameter parsing. In that case just store the value and let
339 * vmx_init() do the proper setup after enable_ept has been
340 * established.
341 */
342 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
343 vmentry_l1d_flush_param = l1tf;
344 return 0;
345 }
346
347 mutex_lock(&vmx_l1d_flush_mutex);
348 ret = vmx_setup_l1d_flush(l1tf);
349 mutex_unlock(&vmx_l1d_flush_mutex);
350 return ret;
351 }
352
353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
354 {
355 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
356 return sprintf(s, "???\n");
357
358 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
359 }
360
361 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
362 .set = vmentry_l1d_flush_set,
363 .get = vmentry_l1d_flush_get,
364 };
365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
366
367 static u32 vmx_segment_access_rights(struct kvm_segment *var);
368
369 void vmx_vmexit(void);
370
371 #define vmx_insn_failed(fmt...) \
372 do { \
373 WARN_ONCE(1, fmt); \
374 pr_warn_ratelimited(fmt); \
375 } while (0)
376
377 asmlinkage void vmread_error(unsigned long field, bool fault)
378 {
379 if (fault)
380 kvm_spurious_fault();
381 else
382 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
383 }
384
385 noinline void vmwrite_error(unsigned long field, unsigned long value)
386 {
387 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
388 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
389 }
390
391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
392 {
393 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
394 }
395
396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
397 {
398 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
399 }
400
401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
402 {
403 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
404 ext, vpid, gva);
405 }
406
407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
408 {
409 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
410 ext, eptp, gpa);
411 }
412
413 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
414 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
415 /*
416 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
417 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
418 */
419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
420
421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
422 static DEFINE_SPINLOCK(vmx_vpid_lock);
423
424 struct vmcs_config vmcs_config;
425 struct vmx_capability vmx_capability;
426
427 #define VMX_SEGMENT_FIELD(seg) \
428 [VCPU_SREG_##seg] = { \
429 .selector = GUEST_##seg##_SELECTOR, \
430 .base = GUEST_##seg##_BASE, \
431 .limit = GUEST_##seg##_LIMIT, \
432 .ar_bytes = GUEST_##seg##_AR_BYTES, \
433 }
434
435 static const struct kvm_vmx_segment_field {
436 unsigned selector;
437 unsigned base;
438 unsigned limit;
439 unsigned ar_bytes;
440 } kvm_vmx_segment_fields[] = {
441 VMX_SEGMENT_FIELD(CS),
442 VMX_SEGMENT_FIELD(DS),
443 VMX_SEGMENT_FIELD(ES),
444 VMX_SEGMENT_FIELD(FS),
445 VMX_SEGMENT_FIELD(GS),
446 VMX_SEGMENT_FIELD(SS),
447 VMX_SEGMENT_FIELD(TR),
448 VMX_SEGMENT_FIELD(LDTR),
449 };
450
451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
452 {
453 vmx->segment_cache.bitmask = 0;
454 }
455
456 static unsigned long host_idt_base;
457
458 #if IS_ENABLED(CONFIG_HYPERV)
459 static bool __read_mostly enlightened_vmcs = true;
460 module_param(enlightened_vmcs, bool, 0444);
461
462 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
463 {
464 struct hv_enlightened_vmcs *evmcs;
465 struct hv_partition_assist_pg **p_hv_pa_pg =
466 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
467 /*
468 * Synthetic VM-Exit is not enabled in current code and so All
469 * evmcs in singe VM shares same assist page.
470 */
471 if (!*p_hv_pa_pg)
472 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
473
474 if (!*p_hv_pa_pg)
475 return -ENOMEM;
476
477 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
478
479 evmcs->partition_assist_page =
480 __pa(*p_hv_pa_pg);
481 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
482 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
483
484 return 0;
485 }
486
487 #endif /* IS_ENABLED(CONFIG_HYPERV) */
488
489 /*
490 * Comment's format: document - errata name - stepping - processor name.
491 * Refer from
492 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
493 */
494 static u32 vmx_preemption_cpu_tfms[] = {
495 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
496 0x000206E6,
497 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
498 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
499 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
500 0x00020652,
501 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020655,
503 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
504 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
505 /*
506 * 320767.pdf - AAP86 - B1 -
507 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
508 */
509 0x000106E5,
510 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
511 0x000106A0,
512 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
513 0x000106A1,
514 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
515 0x000106A4,
516 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
517 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
518 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
519 0x000106A5,
520 /* Xeon E3-1220 V2 */
521 0x000306A8,
522 };
523
524 static inline bool cpu_has_broken_vmx_preemption_timer(void)
525 {
526 u32 eax = cpuid_eax(0x00000001), i;
527
528 /* Clear the reserved bits */
529 eax &= ~(0x3U << 14 | 0xfU << 28);
530 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
531 if (eax == vmx_preemption_cpu_tfms[i])
532 return true;
533
534 return false;
535 }
536
537 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
538 {
539 return flexpriority_enabled && lapic_in_kernel(vcpu);
540 }
541
542 static inline bool report_flexpriority(void)
543 {
544 return flexpriority_enabled;
545 }
546
547 static int possible_passthrough_msr_slot(u32 msr)
548 {
549 u32 i;
550
551 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
552 if (vmx_possible_passthrough_msrs[i] == msr)
553 return i;
554
555 return -ENOENT;
556 }
557
558 static bool is_valid_passthrough_msr(u32 msr)
559 {
560 bool r;
561
562 switch (msr) {
563 case 0x800 ... 0x8ff:
564 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
565 return true;
566 case MSR_IA32_RTIT_STATUS:
567 case MSR_IA32_RTIT_OUTPUT_BASE:
568 case MSR_IA32_RTIT_OUTPUT_MASK:
569 case MSR_IA32_RTIT_CR3_MATCH:
570 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
571 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
572 case MSR_LBR_SELECT:
573 case MSR_LBR_TOS:
574 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
575 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
576 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
577 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
578 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
579 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
580 return true;
581 }
582
583 r = possible_passthrough_msr_slot(msr) != -ENOENT;
584
585 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
586
587 return r;
588 }
589
590 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
591 {
592 int i;
593
594 i = kvm_find_user_return_msr(msr);
595 if (i >= 0)
596 return &vmx->guest_uret_msrs[i];
597 return NULL;
598 }
599
600 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
601 struct vmx_uret_msr *msr, u64 data)
602 {
603 unsigned int slot = msr - vmx->guest_uret_msrs;
604 int ret = 0;
605
606 u64 old_msr_data = msr->data;
607 msr->data = data;
608 if (msr->load_into_hardware) {
609 preempt_disable();
610 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
611 preempt_enable();
612 if (ret)
613 msr->data = old_msr_data;
614 }
615 return ret;
616 }
617
618 #ifdef CONFIG_KEXEC_CORE
619 static void crash_vmclear_local_loaded_vmcss(void)
620 {
621 int cpu = raw_smp_processor_id();
622 struct loaded_vmcs *v;
623
624 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
625 loaded_vmcss_on_cpu_link)
626 vmcs_clear(v->vmcs);
627 }
628 #endif /* CONFIG_KEXEC_CORE */
629
630 static void __loaded_vmcs_clear(void *arg)
631 {
632 struct loaded_vmcs *loaded_vmcs = arg;
633 int cpu = raw_smp_processor_id();
634
635 if (loaded_vmcs->cpu != cpu)
636 return; /* vcpu migration can race with cpu offline */
637 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
638 per_cpu(current_vmcs, cpu) = NULL;
639
640 vmcs_clear(loaded_vmcs->vmcs);
641 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
642 vmcs_clear(loaded_vmcs->shadow_vmcs);
643
644 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
645
646 /*
647 * Ensure all writes to loaded_vmcs, including deleting it from its
648 * current percpu list, complete before setting loaded_vmcs->vcpu to
649 * -1, otherwise a different cpu can see vcpu == -1 first and add
650 * loaded_vmcs to its percpu list before it's deleted from this cpu's
651 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
652 */
653 smp_wmb();
654
655 loaded_vmcs->cpu = -1;
656 loaded_vmcs->launched = 0;
657 }
658
659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
660 {
661 int cpu = loaded_vmcs->cpu;
662
663 if (cpu != -1)
664 smp_call_function_single(cpu,
665 __loaded_vmcs_clear, loaded_vmcs, 1);
666 }
667
668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
669 unsigned field)
670 {
671 bool ret;
672 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
673
674 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
675 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
676 vmx->segment_cache.bitmask = 0;
677 }
678 ret = vmx->segment_cache.bitmask & mask;
679 vmx->segment_cache.bitmask |= mask;
680 return ret;
681 }
682
683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
684 {
685 u16 *p = &vmx->segment_cache.seg[seg].selector;
686
687 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
688 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
689 return *p;
690 }
691
692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
693 {
694 ulong *p = &vmx->segment_cache.seg[seg].base;
695
696 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
697 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
698 return *p;
699 }
700
701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
702 {
703 u32 *p = &vmx->segment_cache.seg[seg].limit;
704
705 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
706 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
707 return *p;
708 }
709
710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
711 {
712 u32 *p = &vmx->segment_cache.seg[seg].ar;
713
714 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
715 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
716 return *p;
717 }
718
719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
720 {
721 u32 eb;
722
723 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
724 (1u << DB_VECTOR) | (1u << AC_VECTOR);
725 /*
726 * Guest access to VMware backdoor ports could legitimately
727 * trigger #GP because of TSS I/O permission bitmap.
728 * We intercept those #GP and allow access to them anyway
729 * as VMware does.
730 */
731 if (enable_vmware_backdoor)
732 eb |= (1u << GP_VECTOR);
733 if ((vcpu->guest_debug &
734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
735 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
736 eb |= 1u << BP_VECTOR;
737 if (to_vmx(vcpu)->rmode.vm86_active)
738 eb = ~0;
739 if (!vmx_need_pf_intercept(vcpu))
740 eb &= ~(1u << PF_VECTOR);
741
742 /* When we are running a nested L2 guest and L1 specified for it a
743 * certain exception bitmap, we must trap the same exceptions and pass
744 * them to L1. When running L2, we will only handle the exceptions
745 * specified above if L1 did not want them.
746 */
747 if (is_guest_mode(vcpu))
748 eb |= get_vmcs12(vcpu)->exception_bitmap;
749 else {
750 int mask = 0, match = 0;
751
752 if (enable_ept && (eb & (1u << PF_VECTOR))) {
753 /*
754 * If EPT is enabled, #PF is currently only intercepted
755 * if MAXPHYADDR is smaller on the guest than on the
756 * host. In that case we only care about present,
757 * non-reserved faults. For vmcs02, however, PFEC_MASK
758 * and PFEC_MATCH are set in prepare_vmcs02_rare.
759 */
760 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
761 match = PFERR_PRESENT_MASK;
762 }
763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
764 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
765 }
766
767 vmcs_write32(EXCEPTION_BITMAP, eb);
768 }
769
770 /*
771 * Check if MSR is intercepted for currently loaded MSR bitmap.
772 */
773 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
774 {
775 unsigned long *msr_bitmap;
776 int f = sizeof(unsigned long);
777
778 if (!cpu_has_vmx_msr_bitmap())
779 return true;
780
781 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
782
783 if (msr <= 0x1fff) {
784 return !!test_bit(msr, msr_bitmap + 0x800 / f);
785 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
786 msr &= 0x1fff;
787 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
788 }
789
790 return true;
791 }
792
793 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
794 unsigned long entry, unsigned long exit)
795 {
796 vm_entry_controls_clearbit(vmx, entry);
797 vm_exit_controls_clearbit(vmx, exit);
798 }
799
800 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
801 {
802 unsigned int i;
803
804 for (i = 0; i < m->nr; ++i) {
805 if (m->val[i].index == msr)
806 return i;
807 }
808 return -ENOENT;
809 }
810
811 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
812 {
813 int i;
814 struct msr_autoload *m = &vmx->msr_autoload;
815
816 switch (msr) {
817 case MSR_EFER:
818 if (cpu_has_load_ia32_efer()) {
819 clear_atomic_switch_msr_special(vmx,
820 VM_ENTRY_LOAD_IA32_EFER,
821 VM_EXIT_LOAD_IA32_EFER);
822 return;
823 }
824 break;
825 case MSR_CORE_PERF_GLOBAL_CTRL:
826 if (cpu_has_load_perf_global_ctrl()) {
827 clear_atomic_switch_msr_special(vmx,
828 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
829 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
830 return;
831 }
832 break;
833 }
834 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
835 if (i < 0)
836 goto skip_guest;
837 --m->guest.nr;
838 m->guest.val[i] = m->guest.val[m->guest.nr];
839 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
840
841 skip_guest:
842 i = vmx_find_loadstore_msr_slot(&m->host, msr);
843 if (i < 0)
844 return;
845
846 --m->host.nr;
847 m->host.val[i] = m->host.val[m->host.nr];
848 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
849 }
850
851 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
852 unsigned long entry, unsigned long exit,
853 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
854 u64 guest_val, u64 host_val)
855 {
856 vmcs_write64(guest_val_vmcs, guest_val);
857 if (host_val_vmcs != HOST_IA32_EFER)
858 vmcs_write64(host_val_vmcs, host_val);
859 vm_entry_controls_setbit(vmx, entry);
860 vm_exit_controls_setbit(vmx, exit);
861 }
862
863 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
864 u64 guest_val, u64 host_val, bool entry_only)
865 {
866 int i, j = 0;
867 struct msr_autoload *m = &vmx->msr_autoload;
868
869 switch (msr) {
870 case MSR_EFER:
871 if (cpu_has_load_ia32_efer()) {
872 add_atomic_switch_msr_special(vmx,
873 VM_ENTRY_LOAD_IA32_EFER,
874 VM_EXIT_LOAD_IA32_EFER,
875 GUEST_IA32_EFER,
876 HOST_IA32_EFER,
877 guest_val, host_val);
878 return;
879 }
880 break;
881 case MSR_CORE_PERF_GLOBAL_CTRL:
882 if (cpu_has_load_perf_global_ctrl()) {
883 add_atomic_switch_msr_special(vmx,
884 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
885 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
886 GUEST_IA32_PERF_GLOBAL_CTRL,
887 HOST_IA32_PERF_GLOBAL_CTRL,
888 guest_val, host_val);
889 return;
890 }
891 break;
892 case MSR_IA32_PEBS_ENABLE:
893 /* PEBS needs a quiescent period after being disabled (to write
894 * a record). Disabling PEBS through VMX MSR swapping doesn't
895 * provide that period, so a CPU could write host's record into
896 * guest's memory.
897 */
898 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
899 }
900
901 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
902 if (!entry_only)
903 j = vmx_find_loadstore_msr_slot(&m->host, msr);
904
905 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
906 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
907 printk_once(KERN_WARNING "Not enough msr switch entries. "
908 "Can't add msr %x\n", msr);
909 return;
910 }
911 if (i < 0) {
912 i = m->guest.nr++;
913 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914 }
915 m->guest.val[i].index = msr;
916 m->guest.val[i].value = guest_val;
917
918 if (entry_only)
919 return;
920
921 if (j < 0) {
922 j = m->host.nr++;
923 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
924 }
925 m->host.val[j].index = msr;
926 m->host.val[j].value = host_val;
927 }
928
929 static bool update_transition_efer(struct vcpu_vmx *vmx)
930 {
931 u64 guest_efer = vmx->vcpu.arch.efer;
932 u64 ignore_bits = 0;
933 int i;
934
935 /* Shadow paging assumes NX to be available. */
936 if (!enable_ept)
937 guest_efer |= EFER_NX;
938
939 /*
940 * LMA and LME handled by hardware; SCE meaningless outside long mode.
941 */
942 ignore_bits |= EFER_SCE;
943 #ifdef CONFIG_X86_64
944 ignore_bits |= EFER_LMA | EFER_LME;
945 /* SCE is meaningful only in long mode on Intel */
946 if (guest_efer & EFER_LMA)
947 ignore_bits &= ~(u64)EFER_SCE;
948 #endif
949
950 /*
951 * On EPT, we can't emulate NX, so we must switch EFER atomically.
952 * On CPUs that support "load IA32_EFER", always switch EFER
953 * atomically, since it's faster than switching it manually.
954 */
955 if (cpu_has_load_ia32_efer() ||
956 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
957 if (!(guest_efer & EFER_LMA))
958 guest_efer &= ~EFER_LME;
959 if (guest_efer != host_efer)
960 add_atomic_switch_msr(vmx, MSR_EFER,
961 guest_efer, host_efer, false);
962 else
963 clear_atomic_switch_msr(vmx, MSR_EFER);
964 return false;
965 }
966
967 i = kvm_find_user_return_msr(MSR_EFER);
968 if (i < 0)
969 return false;
970
971 clear_atomic_switch_msr(vmx, MSR_EFER);
972
973 guest_efer &= ~ignore_bits;
974 guest_efer |= host_efer & ignore_bits;
975
976 vmx->guest_uret_msrs[i].data = guest_efer;
977 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
978
979 return true;
980 }
981
982 #ifdef CONFIG_X86_32
983 /*
984 * On 32-bit kernels, VM exits still load the FS and GS bases from the
985 * VMCS rather than the segment table. KVM uses this helper to figure
986 * out the current bases to poke them into the VMCS before entry.
987 */
988 static unsigned long segment_base(u16 selector)
989 {
990 struct desc_struct *table;
991 unsigned long v;
992
993 if (!(selector & ~SEGMENT_RPL_MASK))
994 return 0;
995
996 table = get_current_gdt_ro();
997
998 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
999 u16 ldt_selector = kvm_read_ldt();
1000
1001 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1002 return 0;
1003
1004 table = (struct desc_struct *)segment_base(ldt_selector);
1005 }
1006 v = get_desc_base(&table[selector >> 3]);
1007 return v;
1008 }
1009 #endif
1010
1011 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1012 {
1013 return vmx_pt_mode_is_host_guest() &&
1014 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1015 }
1016
1017 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1018 {
1019 /* The base must be 128-byte aligned and a legal physical address. */
1020 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1021 }
1022
1023 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1024 {
1025 u32 i;
1026
1027 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1028 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1029 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1030 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1031 for (i = 0; i < addr_range; i++) {
1032 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1033 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1034 }
1035 }
1036
1037 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1038 {
1039 u32 i;
1040
1041 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1042 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1043 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1044 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1045 for (i = 0; i < addr_range; i++) {
1046 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1047 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1048 }
1049 }
1050
1051 static void pt_guest_enter(struct vcpu_vmx *vmx)
1052 {
1053 if (vmx_pt_mode_is_system())
1054 return;
1055
1056 /*
1057 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1058 * Save host state before VM entry.
1059 */
1060 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1061 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1062 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1063 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1064 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1065 }
1066 }
1067
1068 static void pt_guest_exit(struct vcpu_vmx *vmx)
1069 {
1070 if (vmx_pt_mode_is_system())
1071 return;
1072
1073 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1074 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1075 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1076 }
1077
1078 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1079 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080 }
1081
1082 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1083 unsigned long fs_base, unsigned long gs_base)
1084 {
1085 if (unlikely(fs_sel != host->fs_sel)) {
1086 if (!(fs_sel & 7))
1087 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1088 else
1089 vmcs_write16(HOST_FS_SELECTOR, 0);
1090 host->fs_sel = fs_sel;
1091 }
1092 if (unlikely(gs_sel != host->gs_sel)) {
1093 if (!(gs_sel & 7))
1094 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1095 else
1096 vmcs_write16(HOST_GS_SELECTOR, 0);
1097 host->gs_sel = gs_sel;
1098 }
1099 if (unlikely(fs_base != host->fs_base)) {
1100 vmcs_writel(HOST_FS_BASE, fs_base);
1101 host->fs_base = fs_base;
1102 }
1103 if (unlikely(gs_base != host->gs_base)) {
1104 vmcs_writel(HOST_GS_BASE, gs_base);
1105 host->gs_base = gs_base;
1106 }
1107 }
1108
1109 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1110 {
1111 struct vcpu_vmx *vmx = to_vmx(vcpu);
1112 struct vmcs_host_state *host_state;
1113 #ifdef CONFIG_X86_64
1114 int cpu = raw_smp_processor_id();
1115 #endif
1116 unsigned long fs_base, gs_base;
1117 u16 fs_sel, gs_sel;
1118 int i;
1119
1120 vmx->req_immediate_exit = false;
1121
1122 /*
1123 * Note that guest MSRs to be saved/restored can also be changed
1124 * when guest state is loaded. This happens when guest transitions
1125 * to/from long-mode by setting MSR_EFER.LMA.
1126 */
1127 if (!vmx->guest_uret_msrs_loaded) {
1128 vmx->guest_uret_msrs_loaded = true;
1129 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1130 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1131 continue;
1132
1133 kvm_set_user_return_msr(i,
1134 vmx->guest_uret_msrs[i].data,
1135 vmx->guest_uret_msrs[i].mask);
1136 }
1137 }
1138
1139 if (vmx->nested.need_vmcs12_to_shadow_sync)
1140 nested_sync_vmcs12_to_shadow(vcpu);
1141
1142 if (vmx->guest_state_loaded)
1143 return;
1144
1145 host_state = &vmx->loaded_vmcs->host_state;
1146
1147 /*
1148 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1149 * allow segment selectors with cpl > 0 or ti == 1.
1150 */
1151 host_state->ldt_sel = kvm_read_ldt();
1152
1153 #ifdef CONFIG_X86_64
1154 savesegment(ds, host_state->ds_sel);
1155 savesegment(es, host_state->es_sel);
1156
1157 gs_base = cpu_kernelmode_gs_base(cpu);
1158 if (likely(is_64bit_mm(current->mm))) {
1159 current_save_fsgs();
1160 fs_sel = current->thread.fsindex;
1161 gs_sel = current->thread.gsindex;
1162 fs_base = current->thread.fsbase;
1163 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1164 } else {
1165 savesegment(fs, fs_sel);
1166 savesegment(gs, gs_sel);
1167 fs_base = read_msr(MSR_FS_BASE);
1168 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1169 }
1170
1171 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172 #else
1173 savesegment(fs, fs_sel);
1174 savesegment(gs, gs_sel);
1175 fs_base = segment_base(fs_sel);
1176 gs_base = segment_base(gs_sel);
1177 #endif
1178
1179 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1180 vmx->guest_state_loaded = true;
1181 }
1182
1183 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1184 {
1185 struct vmcs_host_state *host_state;
1186
1187 if (!vmx->guest_state_loaded)
1188 return;
1189
1190 host_state = &vmx->loaded_vmcs->host_state;
1191
1192 ++vmx->vcpu.stat.host_state_reload;
1193
1194 #ifdef CONFIG_X86_64
1195 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1196 #endif
1197 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1198 kvm_load_ldt(host_state->ldt_sel);
1199 #ifdef CONFIG_X86_64
1200 load_gs_index(host_state->gs_sel);
1201 #else
1202 loadsegment(gs, host_state->gs_sel);
1203 #endif
1204 }
1205 if (host_state->fs_sel & 7)
1206 loadsegment(fs, host_state->fs_sel);
1207 #ifdef CONFIG_X86_64
1208 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1209 loadsegment(ds, host_state->ds_sel);
1210 loadsegment(es, host_state->es_sel);
1211 }
1212 #endif
1213 invalidate_tss_limit();
1214 #ifdef CONFIG_X86_64
1215 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1216 #endif
1217 load_fixmap_gdt(raw_smp_processor_id());
1218 vmx->guest_state_loaded = false;
1219 vmx->guest_uret_msrs_loaded = false;
1220 }
1221
1222 #ifdef CONFIG_X86_64
1223 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1224 {
1225 preempt_disable();
1226 if (vmx->guest_state_loaded)
1227 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1228 preempt_enable();
1229 return vmx->msr_guest_kernel_gs_base;
1230 }
1231
1232 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1233 {
1234 preempt_disable();
1235 if (vmx->guest_state_loaded)
1236 wrmsrl(MSR_KERNEL_GS_BASE, data);
1237 preempt_enable();
1238 vmx->msr_guest_kernel_gs_base = data;
1239 }
1240 #endif
1241
1242 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1243 struct loaded_vmcs *buddy)
1244 {
1245 struct vcpu_vmx *vmx = to_vmx(vcpu);
1246 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1247 struct vmcs *prev;
1248
1249 if (!already_loaded) {
1250 loaded_vmcs_clear(vmx->loaded_vmcs);
1251 local_irq_disable();
1252
1253 /*
1254 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1255 * this cpu's percpu list, otherwise it may not yet be deleted
1256 * from its previous cpu's percpu list. Pairs with the
1257 * smb_wmb() in __loaded_vmcs_clear().
1258 */
1259 smp_rmb();
1260
1261 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1262 &per_cpu(loaded_vmcss_on_cpu, cpu));
1263 local_irq_enable();
1264 }
1265
1266 prev = per_cpu(current_vmcs, cpu);
1267 if (prev != vmx->loaded_vmcs->vmcs) {
1268 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1269 vmcs_load(vmx->loaded_vmcs->vmcs);
1270
1271 /*
1272 * No indirect branch prediction barrier needed when switching
1273 * the active VMCS within a guest, e.g. on nested VM-Enter.
1274 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1275 */
1276 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1277 indirect_branch_prediction_barrier();
1278 }
1279
1280 if (!already_loaded) {
1281 void *gdt = get_current_gdt_ro();
1282 unsigned long sysenter_esp;
1283
1284 /*
1285 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1286 * TLB entries from its previous association with the vCPU.
1287 */
1288 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1289
1290 /*
1291 * Linux uses per-cpu TSS and GDT, so set these when switching
1292 * processors. See 22.2.4.
1293 */
1294 vmcs_writel(HOST_TR_BASE,
1295 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1296 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1297
1298 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1299 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1300
1301 vmx->loaded_vmcs->cpu = cpu;
1302 }
1303 }
1304
1305 /*
1306 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1307 * vcpu mutex is already taken.
1308 */
1309 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311 struct vcpu_vmx *vmx = to_vmx(vcpu);
1312
1313 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1314
1315 vmx_vcpu_pi_load(vcpu, cpu);
1316
1317 vmx->host_debugctlmsr = get_debugctlmsr();
1318 }
1319
1320 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1321 {
1322 vmx_vcpu_pi_put(vcpu);
1323
1324 vmx_prepare_switch_to_host(to_vmx(vcpu));
1325 }
1326
1327 static bool emulation_required(struct kvm_vcpu *vcpu)
1328 {
1329 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1330 }
1331
1332 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1333 {
1334 struct vcpu_vmx *vmx = to_vmx(vcpu);
1335 unsigned long rflags, save_rflags;
1336
1337 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1338 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1339 rflags = vmcs_readl(GUEST_RFLAGS);
1340 if (vmx->rmode.vm86_active) {
1341 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1342 save_rflags = vmx->rmode.save_rflags;
1343 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1344 }
1345 vmx->rflags = rflags;
1346 }
1347 return vmx->rflags;
1348 }
1349
1350 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1351 {
1352 struct vcpu_vmx *vmx = to_vmx(vcpu);
1353 unsigned long old_rflags;
1354
1355 if (is_unrestricted_guest(vcpu)) {
1356 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1357 vmx->rflags = rflags;
1358 vmcs_writel(GUEST_RFLAGS, rflags);
1359 return;
1360 }
1361
1362 old_rflags = vmx_get_rflags(vcpu);
1363 vmx->rflags = rflags;
1364 if (vmx->rmode.vm86_active) {
1365 vmx->rmode.save_rflags = rflags;
1366 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1367 }
1368 vmcs_writel(GUEST_RFLAGS, rflags);
1369
1370 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1371 vmx->emulation_required = emulation_required(vcpu);
1372 }
1373
1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1375 {
1376 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1377 int ret = 0;
1378
1379 if (interruptibility & GUEST_INTR_STATE_STI)
1380 ret |= KVM_X86_SHADOW_INT_STI;
1381 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1382 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1383
1384 return ret;
1385 }
1386
1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1388 {
1389 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1390 u32 interruptibility = interruptibility_old;
1391
1392 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1393
1394 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1395 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1396 else if (mask & KVM_X86_SHADOW_INT_STI)
1397 interruptibility |= GUEST_INTR_STATE_STI;
1398
1399 if ((interruptibility != interruptibility_old))
1400 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1401 }
1402
1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1404 {
1405 struct vcpu_vmx *vmx = to_vmx(vcpu);
1406 unsigned long value;
1407
1408 /*
1409 * Any MSR write that attempts to change bits marked reserved will
1410 * case a #GP fault.
1411 */
1412 if (data & vmx->pt_desc.ctl_bitmask)
1413 return 1;
1414
1415 /*
1416 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1417 * result in a #GP unless the same write also clears TraceEn.
1418 */
1419 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1420 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1421 return 1;
1422
1423 /*
1424 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1425 * and FabricEn would cause #GP, if
1426 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1427 */
1428 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1429 !(data & RTIT_CTL_FABRIC_EN) &&
1430 !intel_pt_validate_cap(vmx->pt_desc.caps,
1431 PT_CAP_single_range_output))
1432 return 1;
1433
1434 /*
1435 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1436 * utilize encodings marked reserved will cause a #GP fault.
1437 */
1438 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1439 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1440 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1441 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1442 return 1;
1443 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1444 PT_CAP_cycle_thresholds);
1445 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1446 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1447 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1448 return 1;
1449 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1450 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1451 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1452 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1453 return 1;
1454
1455 /*
1456 * If ADDRx_CFG is reserved or the encodings is >2 will
1457 * cause a #GP fault.
1458 */
1459 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1460 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1461 return 1;
1462 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1463 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1464 return 1;
1465 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1466 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1467 return 1;
1468 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1469 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1470 return 1;
1471
1472 return 0;
1473 }
1474
1475 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1476 {
1477 /*
1478 * Emulation of instructions in SGX enclaves is impossible as RIP does
1479 * not point tthe failing instruction, and even if it did, the code
1480 * stream is inaccessible. Inject #UD instead of exiting to userspace
1481 * so that guest userspace can't DoS the guest simply by triggering
1482 * emulation (enclaves are CPL3 only).
1483 */
1484 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1485 kvm_queue_exception(vcpu, UD_VECTOR);
1486 return false;
1487 }
1488 return true;
1489 }
1490
1491 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1492 {
1493 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1494 unsigned long rip, orig_rip;
1495 u32 instr_len;
1496
1497 /*
1498 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1499 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1500 * set when EPT misconfig occurs. In practice, real hardware updates
1501 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1502 * (namely Hyper-V) don't set it due to it being undefined behavior,
1503 * i.e. we end up advancing IP with some random value.
1504 */
1505 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1506 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1507 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1508
1509 /*
1510 * Emulating an enclave's instructions isn't supported as KVM
1511 * cannot access the enclave's memory or its true RIP, e.g. the
1512 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1513 * the RIP that actually triggered the VM-Exit. But, because
1514 * most instructions that cause VM-Exit will #UD in an enclave,
1515 * most instruction-based VM-Exits simply do not occur.
1516 *
1517 * There are a few exceptions, notably the debug instructions
1518 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1519 * and generate #DB/#BP as expected, which KVM might intercept.
1520 * But again, the CPU does the dirty work and saves an instr
1521 * length of zero so VMMs don't shoot themselves in the foot.
1522 * WARN if KVM tries to skip a non-zero length instruction on
1523 * a VM-Exit from an enclave.
1524 */
1525 if (!instr_len)
1526 goto rip_updated;
1527
1528 WARN(exit_reason.enclave_mode,
1529 "KVM: skipping instruction after SGX enclave VM-Exit");
1530
1531 orig_rip = kvm_rip_read(vcpu);
1532 rip = orig_rip + instr_len;
1533 #ifdef CONFIG_X86_64
1534 /*
1535 * We need to mask out the high 32 bits of RIP if not in 64-bit
1536 * mode, but just finding out that we are in 64-bit mode is
1537 * quite expensive. Only do it if there was a carry.
1538 */
1539 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1540 rip = (u32)rip;
1541 #endif
1542 kvm_rip_write(vcpu, rip);
1543 } else {
1544 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1545 return 0;
1546 }
1547
1548 rip_updated:
1549 /* skipping an emulated instruction also counts */
1550 vmx_set_interrupt_shadow(vcpu, 0);
1551
1552 return 1;
1553 }
1554
1555 /*
1556 * Recognizes a pending MTF VM-exit and records the nested state for later
1557 * delivery.
1558 */
1559 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1560 {
1561 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1562 struct vcpu_vmx *vmx = to_vmx(vcpu);
1563
1564 if (!is_guest_mode(vcpu))
1565 return;
1566
1567 /*
1568 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1569 * T-bit traps. As instruction emulation is completed (i.e. at the
1570 * instruction boundary), any #DB exception pending delivery must be a
1571 * debug-trap. Record the pending MTF state to be delivered in
1572 * vmx_check_nested_events().
1573 */
1574 if (nested_cpu_has_mtf(vmcs12) &&
1575 (!vcpu->arch.exception.pending ||
1576 vcpu->arch.exception.nr == DB_VECTOR))
1577 vmx->nested.mtf_pending = true;
1578 else
1579 vmx->nested.mtf_pending = false;
1580 }
1581
1582 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1583 {
1584 vmx_update_emulated_instruction(vcpu);
1585 return skip_emulated_instruction(vcpu);
1586 }
1587
1588 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1589 {
1590 /*
1591 * Ensure that we clear the HLT state in the VMCS. We don't need to
1592 * explicitly skip the instruction because if the HLT state is set,
1593 * then the instruction is already executing and RIP has already been
1594 * advanced.
1595 */
1596 if (kvm_hlt_in_guest(vcpu->kvm) &&
1597 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1598 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1599 }
1600
1601 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1602 {
1603 struct vcpu_vmx *vmx = to_vmx(vcpu);
1604 unsigned nr = vcpu->arch.exception.nr;
1605 bool has_error_code = vcpu->arch.exception.has_error_code;
1606 u32 error_code = vcpu->arch.exception.error_code;
1607 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1608
1609 kvm_deliver_exception_payload(vcpu);
1610
1611 if (has_error_code) {
1612 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1613 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1614 }
1615
1616 if (vmx->rmode.vm86_active) {
1617 int inc_eip = 0;
1618 if (kvm_exception_is_soft(nr))
1619 inc_eip = vcpu->arch.event_exit_inst_len;
1620 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1621 return;
1622 }
1623
1624 WARN_ON_ONCE(vmx->emulation_required);
1625
1626 if (kvm_exception_is_soft(nr)) {
1627 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1628 vmx->vcpu.arch.event_exit_inst_len);
1629 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1630 } else
1631 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1632
1633 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1634
1635 vmx_clear_hlt(vcpu);
1636 }
1637
1638 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1639 bool load_into_hardware)
1640 {
1641 struct vmx_uret_msr *uret_msr;
1642
1643 uret_msr = vmx_find_uret_msr(vmx, msr);
1644 if (!uret_msr)
1645 return;
1646
1647 uret_msr->load_into_hardware = load_into_hardware;
1648 }
1649
1650 /*
1651 * Set up the vmcs to automatically save and restore system
1652 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1653 * mode, as fiddling with msrs is very expensive.
1654 */
1655 static void setup_msrs(struct vcpu_vmx *vmx)
1656 {
1657 #ifdef CONFIG_X86_64
1658 bool load_syscall_msrs;
1659
1660 /*
1661 * The SYSCALL MSRs are only needed on long mode guests, and only
1662 * when EFER.SCE is set.
1663 */
1664 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1665 (vmx->vcpu.arch.efer & EFER_SCE);
1666
1667 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1668 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1669 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1670 #endif
1671 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1672
1673 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1674 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1675 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1676
1677 /*
1678 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1679 * kernel and old userspace. If those guests run on a tsx=off host, do
1680 * allow guests to use TSX_CTRL, but don't change the value in hardware
1681 * so that TSX remains always disabled.
1682 */
1683 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1684
1685 if (cpu_has_vmx_msr_bitmap())
1686 vmx_update_msr_bitmap(&vmx->vcpu);
1687
1688 /*
1689 * The set of MSRs to load may have changed, reload MSRs before the
1690 * next VM-Enter.
1691 */
1692 vmx->guest_uret_msrs_loaded = false;
1693 }
1694
1695 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1696 {
1697 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1698
1699 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1700 return vmcs12->tsc_offset;
1701
1702 return 0;
1703 }
1704
1705 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1706 {
1707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708
1709 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1710 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1711 return vmcs12->tsc_multiplier;
1712
1713 return kvm_default_tsc_scaling_ratio;
1714 }
1715
1716 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1717 {
1718 vmcs_write64(TSC_OFFSET, offset);
1719 }
1720
1721 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1722 {
1723 vmcs_write64(TSC_MULTIPLIER, multiplier);
1724 }
1725
1726 /*
1727 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1728 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1729 * all guests if the "nested" module option is off, and can also be disabled
1730 * for a single guest by disabling its VMX cpuid bit.
1731 */
1732 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1733 {
1734 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1735 }
1736
1737 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1738 uint64_t val)
1739 {
1740 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1741
1742 return !(val & ~valid_bits);
1743 }
1744
1745 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1746 {
1747 switch (msr->index) {
1748 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1749 if (!nested)
1750 return 1;
1751 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1752 case MSR_IA32_PERF_CAPABILITIES:
1753 msr->data = vmx_get_perf_capabilities();
1754 return 0;
1755 default:
1756 return KVM_MSR_RET_INVALID;
1757 }
1758 }
1759
1760 /*
1761 * Reads an msr value (of 'msr_index') into 'pdata'.
1762 * Returns 0 on success, non-0 otherwise.
1763 * Assumes vcpu_load() was already called.
1764 */
1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767 struct vcpu_vmx *vmx = to_vmx(vcpu);
1768 struct vmx_uret_msr *msr;
1769 u32 index;
1770
1771 switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773 case MSR_FS_BASE:
1774 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775 break;
1776 case MSR_GS_BASE:
1777 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778 break;
1779 case MSR_KERNEL_GS_BASE:
1780 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781 break;
1782 #endif
1783 case MSR_EFER:
1784 return kvm_get_msr_common(vcpu, msr_info);
1785 case MSR_IA32_TSX_CTRL:
1786 if (!msr_info->host_initiated &&
1787 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1788 return 1;
1789 goto find_uret_msr;
1790 case MSR_IA32_UMWAIT_CONTROL:
1791 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1792 return 1;
1793
1794 msr_info->data = vmx->msr_ia32_umwait_control;
1795 break;
1796 case MSR_IA32_SPEC_CTRL:
1797 if (!msr_info->host_initiated &&
1798 !guest_has_spec_ctrl_msr(vcpu))
1799 return 1;
1800
1801 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1802 break;
1803 case MSR_IA32_SYSENTER_CS:
1804 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1805 break;
1806 case MSR_IA32_SYSENTER_EIP:
1807 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1808 break;
1809 case MSR_IA32_SYSENTER_ESP:
1810 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1811 break;
1812 case MSR_IA32_BNDCFGS:
1813 if (!kvm_mpx_supported() ||
1814 (!msr_info->host_initiated &&
1815 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1816 return 1;
1817 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1818 break;
1819 case MSR_IA32_MCG_EXT_CTL:
1820 if (!msr_info->host_initiated &&
1821 !(vmx->msr_ia32_feature_control &
1822 FEAT_CTL_LMCE_ENABLED))
1823 return 1;
1824 msr_info->data = vcpu->arch.mcg_ext_ctl;
1825 break;
1826 case MSR_IA32_FEAT_CTL:
1827 msr_info->data = vmx->msr_ia32_feature_control;
1828 break;
1829 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1830 if (!msr_info->host_initiated &&
1831 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1832 return 1;
1833 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1834 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1835 break;
1836 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1837 if (!nested_vmx_allowed(vcpu))
1838 return 1;
1839 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1840 &msr_info->data))
1841 return 1;
1842 /*
1843 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1844 * Hyper-V versions are still trying to use corresponding
1845 * features when they are exposed. Filter out the essential
1846 * minimum.
1847 */
1848 if (!msr_info->host_initiated &&
1849 vmx->nested.enlightened_vmcs_enabled)
1850 nested_evmcs_filter_control_msr(msr_info->index,
1851 &msr_info->data);
1852 break;
1853 case MSR_IA32_RTIT_CTL:
1854 if (!vmx_pt_mode_is_host_guest())
1855 return 1;
1856 msr_info->data = vmx->pt_desc.guest.ctl;
1857 break;
1858 case MSR_IA32_RTIT_STATUS:
1859 if (!vmx_pt_mode_is_host_guest())
1860 return 1;
1861 msr_info->data = vmx->pt_desc.guest.status;
1862 break;
1863 case MSR_IA32_RTIT_CR3_MATCH:
1864 if (!vmx_pt_mode_is_host_guest() ||
1865 !intel_pt_validate_cap(vmx->pt_desc.caps,
1866 PT_CAP_cr3_filtering))
1867 return 1;
1868 msr_info->data = vmx->pt_desc.guest.cr3_match;
1869 break;
1870 case MSR_IA32_RTIT_OUTPUT_BASE:
1871 if (!vmx_pt_mode_is_host_guest() ||
1872 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1873 PT_CAP_topa_output) &&
1874 !intel_pt_validate_cap(vmx->pt_desc.caps,
1875 PT_CAP_single_range_output)))
1876 return 1;
1877 msr_info->data = vmx->pt_desc.guest.output_base;
1878 break;
1879 case MSR_IA32_RTIT_OUTPUT_MASK:
1880 if (!vmx_pt_mode_is_host_guest() ||
1881 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1882 PT_CAP_topa_output) &&
1883 !intel_pt_validate_cap(vmx->pt_desc.caps,
1884 PT_CAP_single_range_output)))
1885 return 1;
1886 msr_info->data = vmx->pt_desc.guest.output_mask;
1887 break;
1888 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1889 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1890 if (!vmx_pt_mode_is_host_guest() ||
1891 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1892 PT_CAP_num_address_ranges)))
1893 return 1;
1894 if (index % 2)
1895 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1896 else
1897 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1898 break;
1899 case MSR_IA32_DEBUGCTLMSR:
1900 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1901 break;
1902 default:
1903 find_uret_msr:
1904 msr = vmx_find_uret_msr(vmx, msr_info->index);
1905 if (msr) {
1906 msr_info->data = msr->data;
1907 break;
1908 }
1909 return kvm_get_msr_common(vcpu, msr_info);
1910 }
1911
1912 return 0;
1913 }
1914
1915 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1916 u64 data)
1917 {
1918 #ifdef CONFIG_X86_64
1919 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1920 return (u32)data;
1921 #endif
1922 return (unsigned long)data;
1923 }
1924
1925 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1926 {
1927 u64 debugctl = vmx_supported_debugctl();
1928
1929 if (!intel_pmu_lbr_is_enabled(vcpu))
1930 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1931
1932 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1933 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1934
1935 return debugctl;
1936 }
1937
1938 /*
1939 * Writes msr value into the appropriate "register".
1940 * Returns 0 on success, non-0 otherwise.
1941 * Assumes vcpu_load() was already called.
1942 */
1943 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1944 {
1945 struct vcpu_vmx *vmx = to_vmx(vcpu);
1946 struct vmx_uret_msr *msr;
1947 int ret = 0;
1948 u32 msr_index = msr_info->index;
1949 u64 data = msr_info->data;
1950 u32 index;
1951
1952 switch (msr_index) {
1953 case MSR_EFER:
1954 ret = kvm_set_msr_common(vcpu, msr_info);
1955 break;
1956 #ifdef CONFIG_X86_64
1957 case MSR_FS_BASE:
1958 vmx_segment_cache_clear(vmx);
1959 vmcs_writel(GUEST_FS_BASE, data);
1960 break;
1961 case MSR_GS_BASE:
1962 vmx_segment_cache_clear(vmx);
1963 vmcs_writel(GUEST_GS_BASE, data);
1964 break;
1965 case MSR_KERNEL_GS_BASE:
1966 vmx_write_guest_kernel_gs_base(vmx, data);
1967 break;
1968 #endif
1969 case MSR_IA32_SYSENTER_CS:
1970 if (is_guest_mode(vcpu))
1971 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1972 vmcs_write32(GUEST_SYSENTER_CS, data);
1973 break;
1974 case MSR_IA32_SYSENTER_EIP:
1975 if (is_guest_mode(vcpu)) {
1976 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1977 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1978 }
1979 vmcs_writel(GUEST_SYSENTER_EIP, data);
1980 break;
1981 case MSR_IA32_SYSENTER_ESP:
1982 if (is_guest_mode(vcpu)) {
1983 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1984 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1985 }
1986 vmcs_writel(GUEST_SYSENTER_ESP, data);
1987 break;
1988 case MSR_IA32_DEBUGCTLMSR: {
1989 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1990 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1991 if (report_ignored_msrs)
1992 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1993 __func__, data);
1994 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1995 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1996 }
1997
1998 if (invalid)
1999 return 1;
2000
2001 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2002 VM_EXIT_SAVE_DEBUG_CONTROLS)
2003 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2004
2005 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2006 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2007 (data & DEBUGCTLMSR_LBR))
2008 intel_pmu_create_guest_lbr_event(vcpu);
2009 return 0;
2010 }
2011 case MSR_IA32_BNDCFGS:
2012 if (!kvm_mpx_supported() ||
2013 (!msr_info->host_initiated &&
2014 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2015 return 1;
2016 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2017 (data & MSR_IA32_BNDCFGS_RSVD))
2018 return 1;
2019 vmcs_write64(GUEST_BNDCFGS, data);
2020 break;
2021 case MSR_IA32_UMWAIT_CONTROL:
2022 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2023 return 1;
2024
2025 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2026 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2027 return 1;
2028
2029 vmx->msr_ia32_umwait_control = data;
2030 break;
2031 case MSR_IA32_SPEC_CTRL:
2032 if (!msr_info->host_initiated &&
2033 !guest_has_spec_ctrl_msr(vcpu))
2034 return 1;
2035
2036 if (kvm_spec_ctrl_test_value(data))
2037 return 1;
2038
2039 vmx->spec_ctrl = data;
2040 if (!data)
2041 break;
2042
2043 /*
2044 * For non-nested:
2045 * When it's written (to non-zero) for the first time, pass
2046 * it through.
2047 *
2048 * For nested:
2049 * The handling of the MSR bitmap for L2 guests is done in
2050 * nested_vmx_prepare_msr_bitmap. We should not touch the
2051 * vmcs02.msr_bitmap here since it gets completely overwritten
2052 * in the merging. We update the vmcs01 here for L1 as well
2053 * since it will end up touching the MSR anyway now.
2054 */
2055 vmx_disable_intercept_for_msr(vcpu,
2056 MSR_IA32_SPEC_CTRL,
2057 MSR_TYPE_RW);
2058 break;
2059 case MSR_IA32_TSX_CTRL:
2060 if (!msr_info->host_initiated &&
2061 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2062 return 1;
2063 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2064 return 1;
2065 goto find_uret_msr;
2066 case MSR_IA32_PRED_CMD:
2067 if (!msr_info->host_initiated &&
2068 !guest_has_pred_cmd_msr(vcpu))
2069 return 1;
2070
2071 if (data & ~PRED_CMD_IBPB)
2072 return 1;
2073 if (!boot_cpu_has(X86_FEATURE_IBPB))
2074 return 1;
2075 if (!data)
2076 break;
2077
2078 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2079
2080 /*
2081 * For non-nested:
2082 * When it's written (to non-zero) for the first time, pass
2083 * it through.
2084 *
2085 * For nested:
2086 * The handling of the MSR bitmap for L2 guests is done in
2087 * nested_vmx_prepare_msr_bitmap. We should not touch the
2088 * vmcs02.msr_bitmap here since it gets completely overwritten
2089 * in the merging.
2090 */
2091 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2092 break;
2093 case MSR_IA32_CR_PAT:
2094 if (!kvm_pat_valid(data))
2095 return 1;
2096
2097 if (is_guest_mode(vcpu) &&
2098 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2099 get_vmcs12(vcpu)->guest_ia32_pat = data;
2100
2101 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2102 vmcs_write64(GUEST_IA32_PAT, data);
2103 vcpu->arch.pat = data;
2104 break;
2105 }
2106 ret = kvm_set_msr_common(vcpu, msr_info);
2107 break;
2108 case MSR_IA32_TSC_ADJUST:
2109 ret = kvm_set_msr_common(vcpu, msr_info);
2110 break;
2111 case MSR_IA32_MCG_EXT_CTL:
2112 if ((!msr_info->host_initiated &&
2113 !(to_vmx(vcpu)->msr_ia32_feature_control &
2114 FEAT_CTL_LMCE_ENABLED)) ||
2115 (data & ~MCG_EXT_CTL_LMCE_EN))
2116 return 1;
2117 vcpu->arch.mcg_ext_ctl = data;
2118 break;
2119 case MSR_IA32_FEAT_CTL:
2120 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2121 (to_vmx(vcpu)->msr_ia32_feature_control &
2122 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2123 return 1;
2124 vmx->msr_ia32_feature_control = data;
2125 if (msr_info->host_initiated && data == 0)
2126 vmx_leave_nested(vcpu);
2127
2128 /* SGX may be enabled/disabled by guest's firmware */
2129 vmx_write_encls_bitmap(vcpu, NULL);
2130 break;
2131 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2132 /*
2133 * On real hardware, the LE hash MSRs are writable before
2134 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2135 * at which point SGX related bits in IA32_FEATURE_CONTROL
2136 * become writable.
2137 *
2138 * KVM does not emulate SGX activation for simplicity, so
2139 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2140 * is unlocked. This is technically not architectural
2141 * behavior, but it's close enough.
2142 */
2143 if (!msr_info->host_initiated &&
2144 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2145 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2146 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2147 return 1;
2148 vmx->msr_ia32_sgxlepubkeyhash
2149 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2150 break;
2151 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2152 if (!msr_info->host_initiated)
2153 return 1; /* they are read-only */
2154 if (!nested_vmx_allowed(vcpu))
2155 return 1;
2156 return vmx_set_vmx_msr(vcpu, msr_index, data);
2157 case MSR_IA32_RTIT_CTL:
2158 if (!vmx_pt_mode_is_host_guest() ||
2159 vmx_rtit_ctl_check(vcpu, data) ||
2160 vmx->nested.vmxon)
2161 return 1;
2162 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2163 vmx->pt_desc.guest.ctl = data;
2164 pt_update_intercept_for_msr(vcpu);
2165 break;
2166 case MSR_IA32_RTIT_STATUS:
2167 if (!pt_can_write_msr(vmx))
2168 return 1;
2169 if (data & MSR_IA32_RTIT_STATUS_MASK)
2170 return 1;
2171 vmx->pt_desc.guest.status = data;
2172 break;
2173 case MSR_IA32_RTIT_CR3_MATCH:
2174 if (!pt_can_write_msr(vmx))
2175 return 1;
2176 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2177 PT_CAP_cr3_filtering))
2178 return 1;
2179 vmx->pt_desc.guest.cr3_match = data;
2180 break;
2181 case MSR_IA32_RTIT_OUTPUT_BASE:
2182 if (!pt_can_write_msr(vmx))
2183 return 1;
2184 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2185 PT_CAP_topa_output) &&
2186 !intel_pt_validate_cap(vmx->pt_desc.caps,
2187 PT_CAP_single_range_output))
2188 return 1;
2189 if (!pt_output_base_valid(vcpu, data))
2190 return 1;
2191 vmx->pt_desc.guest.output_base = data;
2192 break;
2193 case MSR_IA32_RTIT_OUTPUT_MASK:
2194 if (!pt_can_write_msr(vmx))
2195 return 1;
2196 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2197 PT_CAP_topa_output) &&
2198 !intel_pt_validate_cap(vmx->pt_desc.caps,
2199 PT_CAP_single_range_output))
2200 return 1;
2201 vmx->pt_desc.guest.output_mask = data;
2202 break;
2203 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2204 if (!pt_can_write_msr(vmx))
2205 return 1;
2206 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2207 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2208 PT_CAP_num_address_ranges))
2209 return 1;
2210 if (is_noncanonical_address(data, vcpu))
2211 return 1;
2212 if (index % 2)
2213 vmx->pt_desc.guest.addr_b[index / 2] = data;
2214 else
2215 vmx->pt_desc.guest.addr_a[index / 2] = data;
2216 break;
2217 case MSR_IA32_PERF_CAPABILITIES:
2218 if (data && !vcpu_to_pmu(vcpu)->version)
2219 return 1;
2220 if (data & PMU_CAP_LBR_FMT) {
2221 if ((data & PMU_CAP_LBR_FMT) !=
2222 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2223 return 1;
2224 if (!intel_pmu_lbr_is_compatible(vcpu))
2225 return 1;
2226 }
2227 ret = kvm_set_msr_common(vcpu, msr_info);
2228 break;
2229
2230 default:
2231 find_uret_msr:
2232 msr = vmx_find_uret_msr(vmx, msr_index);
2233 if (msr)
2234 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2235 else
2236 ret = kvm_set_msr_common(vcpu, msr_info);
2237 }
2238
2239 return ret;
2240 }
2241
2242 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2243 {
2244 unsigned long guest_owned_bits;
2245
2246 kvm_register_mark_available(vcpu, reg);
2247
2248 switch (reg) {
2249 case VCPU_REGS_RSP:
2250 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2251 break;
2252 case VCPU_REGS_RIP:
2253 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2254 break;
2255 case VCPU_EXREG_PDPTR:
2256 if (enable_ept)
2257 ept_save_pdptrs(vcpu);
2258 break;
2259 case VCPU_EXREG_CR0:
2260 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2261
2262 vcpu->arch.cr0 &= ~guest_owned_bits;
2263 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2264 break;
2265 case VCPU_EXREG_CR3:
2266 if (is_unrestricted_guest(vcpu) ||
2267 (enable_ept && is_paging(vcpu)))
2268 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2269 break;
2270 case VCPU_EXREG_CR4:
2271 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2272
2273 vcpu->arch.cr4 &= ~guest_owned_bits;
2274 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2275 break;
2276 default:
2277 KVM_BUG_ON(1, vcpu->kvm);
2278 break;
2279 }
2280 }
2281
2282 static __init int cpu_has_kvm_support(void)
2283 {
2284 return cpu_has_vmx();
2285 }
2286
2287 static __init int vmx_disabled_by_bios(void)
2288 {
2289 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2290 !boot_cpu_has(X86_FEATURE_VMX);
2291 }
2292
2293 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2294 {
2295 u64 msr;
2296
2297 cr4_set_bits(X86_CR4_VMXE);
2298
2299 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2300 _ASM_EXTABLE(1b, %l[fault])
2301 : : [vmxon_pointer] "m"(vmxon_pointer)
2302 : : fault);
2303 return 0;
2304
2305 fault:
2306 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2307 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2308 cr4_clear_bits(X86_CR4_VMXE);
2309
2310 return -EFAULT;
2311 }
2312
2313 static int hardware_enable(void)
2314 {
2315 int cpu = raw_smp_processor_id();
2316 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2317 int r;
2318
2319 if (cr4_read_shadow() & X86_CR4_VMXE)
2320 return -EBUSY;
2321
2322 /*
2323 * This can happen if we hot-added a CPU but failed to allocate
2324 * VP assist page for it.
2325 */
2326 if (static_branch_unlikely(&enable_evmcs) &&
2327 !hv_get_vp_assist_page(cpu))
2328 return -EFAULT;
2329
2330 intel_pt_handle_vmx(1);
2331
2332 r = kvm_cpu_vmxon(phys_addr);
2333 if (r) {
2334 intel_pt_handle_vmx(0);
2335 return r;
2336 }
2337
2338 if (enable_ept)
2339 ept_sync_global();
2340
2341 return 0;
2342 }
2343
2344 static void vmclear_local_loaded_vmcss(void)
2345 {
2346 int cpu = raw_smp_processor_id();
2347 struct loaded_vmcs *v, *n;
2348
2349 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2350 loaded_vmcss_on_cpu_link)
2351 __loaded_vmcs_clear(v);
2352 }
2353
2354 static void hardware_disable(void)
2355 {
2356 vmclear_local_loaded_vmcss();
2357
2358 if (cpu_vmxoff())
2359 kvm_spurious_fault();
2360
2361 intel_pt_handle_vmx(0);
2362 }
2363
2364 /*
2365 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2366 * directly instead of going through cpu_has(), to ensure KVM is trapping
2367 * ENCLS whenever it's supported in hardware. It does not matter whether
2368 * the host OS supports or has enabled SGX.
2369 */
2370 static bool cpu_has_sgx(void)
2371 {
2372 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2373 }
2374
2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2376 u32 msr, u32 *result)
2377 {
2378 u32 vmx_msr_low, vmx_msr_high;
2379 u32 ctl = ctl_min | ctl_opt;
2380
2381 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2382
2383 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2384 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2385
2386 /* Ensure minimum (required) set of control bits are supported. */
2387 if (ctl_min & ~ctl)
2388 return -EIO;
2389
2390 *result = ctl;
2391 return 0;
2392 }
2393
2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2395 struct vmx_capability *vmx_cap)
2396 {
2397 u32 vmx_msr_low, vmx_msr_high;
2398 u32 min, opt, min2, opt2;
2399 u32 _pin_based_exec_control = 0;
2400 u32 _cpu_based_exec_control = 0;
2401 u32 _cpu_based_2nd_exec_control = 0;
2402 u32 _vmexit_control = 0;
2403 u32 _vmentry_control = 0;
2404
2405 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2406 min = CPU_BASED_HLT_EXITING |
2407 #ifdef CONFIG_X86_64
2408 CPU_BASED_CR8_LOAD_EXITING |
2409 CPU_BASED_CR8_STORE_EXITING |
2410 #endif
2411 CPU_BASED_CR3_LOAD_EXITING |
2412 CPU_BASED_CR3_STORE_EXITING |
2413 CPU_BASED_UNCOND_IO_EXITING |
2414 CPU_BASED_MOV_DR_EXITING |
2415 CPU_BASED_USE_TSC_OFFSETTING |
2416 CPU_BASED_MWAIT_EXITING |
2417 CPU_BASED_MONITOR_EXITING |
2418 CPU_BASED_INVLPG_EXITING |
2419 CPU_BASED_RDPMC_EXITING;
2420
2421 opt = CPU_BASED_TPR_SHADOW |
2422 CPU_BASED_USE_MSR_BITMAPS |
2423 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2424 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2425 &_cpu_based_exec_control) < 0)
2426 return -EIO;
2427 #ifdef CONFIG_X86_64
2428 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2429 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2430 ~CPU_BASED_CR8_STORE_EXITING;
2431 #endif
2432 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2433 min2 = 0;
2434 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2435 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2436 SECONDARY_EXEC_WBINVD_EXITING |
2437 SECONDARY_EXEC_ENABLE_VPID |
2438 SECONDARY_EXEC_ENABLE_EPT |
2439 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2440 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2441 SECONDARY_EXEC_DESC |
2442 SECONDARY_EXEC_ENABLE_RDTSCP |
2443 SECONDARY_EXEC_ENABLE_INVPCID |
2444 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2445 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2446 SECONDARY_EXEC_SHADOW_VMCS |
2447 SECONDARY_EXEC_XSAVES |
2448 SECONDARY_EXEC_RDSEED_EXITING |
2449 SECONDARY_EXEC_RDRAND_EXITING |
2450 SECONDARY_EXEC_ENABLE_PML |
2451 SECONDARY_EXEC_TSC_SCALING |
2452 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2453 SECONDARY_EXEC_PT_USE_GPA |
2454 SECONDARY_EXEC_PT_CONCEAL_VMX |
2455 SECONDARY_EXEC_ENABLE_VMFUNC |
2456 SECONDARY_EXEC_BUS_LOCK_DETECTION;
2457 if (cpu_has_sgx())
2458 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2459 if (adjust_vmx_controls(min2, opt2,
2460 MSR_IA32_VMX_PROCBASED_CTLS2,
2461 &_cpu_based_2nd_exec_control) < 0)
2462 return -EIO;
2463 }
2464 #ifndef CONFIG_X86_64
2465 if (!(_cpu_based_2nd_exec_control &
2466 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2467 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2468 #endif
2469
2470 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2471 _cpu_based_2nd_exec_control &= ~(
2472 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2473 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2475
2476 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2477 &vmx_cap->ept, &vmx_cap->vpid);
2478
2479 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2480 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2481 enabled */
2482 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2483 CPU_BASED_CR3_STORE_EXITING |
2484 CPU_BASED_INVLPG_EXITING);
2485 } else if (vmx_cap->ept) {
2486 vmx_cap->ept = 0;
2487 pr_warn_once("EPT CAP should not exist if not support "
2488 "1-setting enable EPT VM-execution control\n");
2489 }
2490 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2491 vmx_cap->vpid) {
2492 vmx_cap->vpid = 0;
2493 pr_warn_once("VPID CAP should not exist if not support "
2494 "1-setting enable VPID VM-execution control\n");
2495 }
2496
2497 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2498 #ifdef CONFIG_X86_64
2499 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2500 #endif
2501 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2502 VM_EXIT_LOAD_IA32_PAT |
2503 VM_EXIT_LOAD_IA32_EFER |
2504 VM_EXIT_CLEAR_BNDCFGS |
2505 VM_EXIT_PT_CONCEAL_PIP |
2506 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2507 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2508 &_vmexit_control) < 0)
2509 return -EIO;
2510
2511 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2512 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2513 PIN_BASED_VMX_PREEMPTION_TIMER;
2514 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2515 &_pin_based_exec_control) < 0)
2516 return -EIO;
2517
2518 if (cpu_has_broken_vmx_preemption_timer())
2519 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2520 if (!(_cpu_based_2nd_exec_control &
2521 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2522 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2523
2524 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2525 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2526 VM_ENTRY_LOAD_IA32_PAT |
2527 VM_ENTRY_LOAD_IA32_EFER |
2528 VM_ENTRY_LOAD_BNDCFGS |
2529 VM_ENTRY_PT_CONCEAL_PIP |
2530 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2531 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2532 &_vmentry_control) < 0)
2533 return -EIO;
2534
2535 /*
2536 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2537 * can't be used due to an errata where VM Exit may incorrectly clear
2538 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2539 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2540 */
2541 if (boot_cpu_data.x86 == 0x6) {
2542 switch (boot_cpu_data.x86_model) {
2543 case 26: /* AAK155 */
2544 case 30: /* AAP115 */
2545 case 37: /* AAT100 */
2546 case 44: /* BC86,AAY89,BD102 */
2547 case 46: /* BA97 */
2548 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2549 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2550 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2551 "does not work properly. Using workaround\n");
2552 break;
2553 default:
2554 break;
2555 }
2556 }
2557
2558
2559 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2560
2561 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2562 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2563 return -EIO;
2564
2565 #ifdef CONFIG_X86_64
2566 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2567 if (vmx_msr_high & (1u<<16))
2568 return -EIO;
2569 #endif
2570
2571 /* Require Write-Back (WB) memory type for VMCS accesses. */
2572 if (((vmx_msr_high >> 18) & 15) != 6)
2573 return -EIO;
2574
2575 vmcs_conf->size = vmx_msr_high & 0x1fff;
2576 vmcs_conf->order = get_order(vmcs_conf->size);
2577 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2578
2579 vmcs_conf->revision_id = vmx_msr_low;
2580
2581 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2582 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2583 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2584 vmcs_conf->vmexit_ctrl = _vmexit_control;
2585 vmcs_conf->vmentry_ctrl = _vmentry_control;
2586
2587 #if IS_ENABLED(CONFIG_HYPERV)
2588 if (enlightened_vmcs)
2589 evmcs_sanitize_exec_ctrls(vmcs_conf);
2590 #endif
2591
2592 return 0;
2593 }
2594
2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2596 {
2597 int node = cpu_to_node(cpu);
2598 struct page *pages;
2599 struct vmcs *vmcs;
2600
2601 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2602 if (!pages)
2603 return NULL;
2604 vmcs = page_address(pages);
2605 memset(vmcs, 0, vmcs_config.size);
2606
2607 /* KVM supports Enlightened VMCS v1 only */
2608 if (static_branch_unlikely(&enable_evmcs))
2609 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2610 else
2611 vmcs->hdr.revision_id = vmcs_config.revision_id;
2612
2613 if (shadow)
2614 vmcs->hdr.shadow_vmcs = 1;
2615 return vmcs;
2616 }
2617
2618 void free_vmcs(struct vmcs *vmcs)
2619 {
2620 free_pages((unsigned long)vmcs, vmcs_config.order);
2621 }
2622
2623 /*
2624 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2625 */
2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2627 {
2628 if (!loaded_vmcs->vmcs)
2629 return;
2630 loaded_vmcs_clear(loaded_vmcs);
2631 free_vmcs(loaded_vmcs->vmcs);
2632 loaded_vmcs->vmcs = NULL;
2633 if (loaded_vmcs->msr_bitmap)
2634 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2635 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2636 }
2637
2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2639 {
2640 loaded_vmcs->vmcs = alloc_vmcs(false);
2641 if (!loaded_vmcs->vmcs)
2642 return -ENOMEM;
2643
2644 vmcs_clear(loaded_vmcs->vmcs);
2645
2646 loaded_vmcs->shadow_vmcs = NULL;
2647 loaded_vmcs->hv_timer_soft_disabled = false;
2648 loaded_vmcs->cpu = -1;
2649 loaded_vmcs->launched = 0;
2650
2651 if (cpu_has_vmx_msr_bitmap()) {
2652 loaded_vmcs->msr_bitmap = (unsigned long *)
2653 __get_free_page(GFP_KERNEL_ACCOUNT);
2654 if (!loaded_vmcs->msr_bitmap)
2655 goto out_vmcs;
2656 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2657
2658 if (IS_ENABLED(CONFIG_HYPERV) &&
2659 static_branch_unlikely(&enable_evmcs) &&
2660 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2661 struct hv_enlightened_vmcs *evmcs =
2662 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2663
2664 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2665 }
2666 }
2667
2668 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2669 memset(&loaded_vmcs->controls_shadow, 0,
2670 sizeof(struct vmcs_controls_shadow));
2671
2672 return 0;
2673
2674 out_vmcs:
2675 free_loaded_vmcs(loaded_vmcs);
2676 return -ENOMEM;
2677 }
2678
2679 static void free_kvm_area(void)
2680 {
2681 int cpu;
2682
2683 for_each_possible_cpu(cpu) {
2684 free_vmcs(per_cpu(vmxarea, cpu));
2685 per_cpu(vmxarea, cpu) = NULL;
2686 }
2687 }
2688
2689 static __init int alloc_kvm_area(void)
2690 {
2691 int cpu;
2692
2693 for_each_possible_cpu(cpu) {
2694 struct vmcs *vmcs;
2695
2696 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2697 if (!vmcs) {
2698 free_kvm_area();
2699 return -ENOMEM;
2700 }
2701
2702 /*
2703 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2704 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2705 * revision_id reported by MSR_IA32_VMX_BASIC.
2706 *
2707 * However, even though not explicitly documented by
2708 * TLFS, VMXArea passed as VMXON argument should
2709 * still be marked with revision_id reported by
2710 * physical CPU.
2711 */
2712 if (static_branch_unlikely(&enable_evmcs))
2713 vmcs->hdr.revision_id = vmcs_config.revision_id;
2714
2715 per_cpu(vmxarea, cpu) = vmcs;
2716 }
2717 return 0;
2718 }
2719
2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2721 struct kvm_segment *save)
2722 {
2723 if (!emulate_invalid_guest_state) {
2724 /*
2725 * CS and SS RPL should be equal during guest entry according
2726 * to VMX spec, but in reality it is not always so. Since vcpu
2727 * is in the middle of the transition from real mode to
2728 * protected mode it is safe to assume that RPL 0 is a good
2729 * default value.
2730 */
2731 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2732 save->selector &= ~SEGMENT_RPL_MASK;
2733 save->dpl = save->selector & SEGMENT_RPL_MASK;
2734 save->s = 1;
2735 }
2736 vmx_set_segment(vcpu, save, seg);
2737 }
2738
2739 static void enter_pmode(struct kvm_vcpu *vcpu)
2740 {
2741 unsigned long flags;
2742 struct vcpu_vmx *vmx = to_vmx(vcpu);
2743
2744 /*
2745 * Update real mode segment cache. It may be not up-to-date if segment
2746 * register was written while vcpu was in a guest mode.
2747 */
2748 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2749 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2754
2755 vmx->rmode.vm86_active = 0;
2756
2757 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2758
2759 flags = vmcs_readl(GUEST_RFLAGS);
2760 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2761 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2762 vmcs_writel(GUEST_RFLAGS, flags);
2763
2764 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2765 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2766
2767 vmx_update_exception_bitmap(vcpu);
2768
2769 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2770 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2771 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2772 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2773 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2774 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2775 }
2776
2777 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2778 {
2779 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2780 struct kvm_segment var = *save;
2781
2782 var.dpl = 0x3;
2783 if (seg == VCPU_SREG_CS)
2784 var.type = 0x3;
2785
2786 if (!emulate_invalid_guest_state) {
2787 var.selector = var.base >> 4;
2788 var.base = var.base & 0xffff0;
2789 var.limit = 0xffff;
2790 var.g = 0;
2791 var.db = 0;
2792 var.present = 1;
2793 var.s = 1;
2794 var.l = 0;
2795 var.unusable = 0;
2796 var.type = 0x3;
2797 var.avl = 0;
2798 if (save->base & 0xf)
2799 printk_once(KERN_WARNING "kvm: segment base is not "
2800 "paragraph aligned when entering "
2801 "protected mode (seg=%d)", seg);
2802 }
2803
2804 vmcs_write16(sf->selector, var.selector);
2805 vmcs_writel(sf->base, var.base);
2806 vmcs_write32(sf->limit, var.limit);
2807 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2808 }
2809
2810 static void enter_rmode(struct kvm_vcpu *vcpu)
2811 {
2812 unsigned long flags;
2813 struct vcpu_vmx *vmx = to_vmx(vcpu);
2814 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2815
2816 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2823
2824 vmx->rmode.vm86_active = 1;
2825
2826 /*
2827 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2828 * vcpu. Warn the user that an update is overdue.
2829 */
2830 if (!kvm_vmx->tss_addr)
2831 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2832 "called before entering vcpu\n");
2833
2834 vmx_segment_cache_clear(vmx);
2835
2836 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2837 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2838 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2839
2840 flags = vmcs_readl(GUEST_RFLAGS);
2841 vmx->rmode.save_rflags = flags;
2842
2843 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2844
2845 vmcs_writel(GUEST_RFLAGS, flags);
2846 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2847 vmx_update_exception_bitmap(vcpu);
2848
2849 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2850 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2851 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2852 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2853 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2854 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2855 }
2856
2857 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2858 {
2859 struct vcpu_vmx *vmx = to_vmx(vcpu);
2860 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2861
2862 /* Nothing to do if hardware doesn't support EFER. */
2863 if (!msr)
2864 return 0;
2865
2866 vcpu->arch.efer = efer;
2867 if (efer & EFER_LMA) {
2868 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2869 msr->data = efer;
2870 } else {
2871 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2872
2873 msr->data = efer & ~EFER_LME;
2874 }
2875 setup_msrs(vmx);
2876 return 0;
2877 }
2878
2879 #ifdef CONFIG_X86_64
2880
2881 static void enter_lmode(struct kvm_vcpu *vcpu)
2882 {
2883 u32 guest_tr_ar;
2884
2885 vmx_segment_cache_clear(to_vmx(vcpu));
2886
2887 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2888 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2889 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2890 __func__);
2891 vmcs_write32(GUEST_TR_AR_BYTES,
2892 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2893 | VMX_AR_TYPE_BUSY_64_TSS);
2894 }
2895 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2896 }
2897
2898 static void exit_lmode(struct kvm_vcpu *vcpu)
2899 {
2900 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2901 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2902 }
2903
2904 #endif
2905
2906 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2907 {
2908 struct vcpu_vmx *vmx = to_vmx(vcpu);
2909
2910 /*
2911 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2912 * the CPU is not required to invalidate guest-physical mappings on
2913 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2914 * associated with the root EPT structure and not any particular VPID
2915 * (INVVPID also isn't required to invalidate guest-physical mappings).
2916 */
2917 if (enable_ept) {
2918 ept_sync_global();
2919 } else if (enable_vpid) {
2920 if (cpu_has_vmx_invvpid_global()) {
2921 vpid_sync_vcpu_global();
2922 } else {
2923 vpid_sync_vcpu_single(vmx->vpid);
2924 vpid_sync_vcpu_single(vmx->nested.vpid02);
2925 }
2926 }
2927 }
2928
2929 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2930 {
2931 struct kvm_mmu *mmu = vcpu->arch.mmu;
2932 u64 root_hpa = mmu->root_hpa;
2933
2934 /* No flush required if the current context is invalid. */
2935 if (!VALID_PAGE(root_hpa))
2936 return;
2937
2938 if (enable_ept)
2939 ept_sync_context(construct_eptp(vcpu, root_hpa,
2940 mmu->shadow_root_level));
2941 else if (!is_guest_mode(vcpu))
2942 vpid_sync_context(to_vmx(vcpu)->vpid);
2943 else
2944 vpid_sync_context(nested_get_vpid02(vcpu));
2945 }
2946
2947 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2948 {
2949 /*
2950 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2951 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2952 */
2953 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2954 }
2955
2956 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2957 {
2958 /*
2959 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2960 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit
2961 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2962 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2963 * i.e. no explicit INVVPID is necessary.
2964 */
2965 vpid_sync_context(to_vmx(vcpu)->vpid);
2966 }
2967
2968 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2969 {
2970 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2971
2972 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2973 return;
2974
2975 if (is_pae_paging(vcpu)) {
2976 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2977 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2978 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2979 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2980 }
2981 }
2982
2983 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2984 {
2985 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2986
2987 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2988 return;
2989
2990 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2991 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2992 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2993 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2994
2995 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2996 }
2997
2998 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2999 unsigned long cr0,
3000 struct kvm_vcpu *vcpu)
3001 {
3002 struct vcpu_vmx *vmx = to_vmx(vcpu);
3003
3004 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3005 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3006 if (!(cr0 & X86_CR0_PG)) {
3007 /* From paging/starting to nonpaging */
3008 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3009 CPU_BASED_CR3_STORE_EXITING);
3010 vcpu->arch.cr0 = cr0;
3011 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3012 } else if (!is_paging(vcpu)) {
3013 /* From nonpaging to paging */
3014 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3015 CPU_BASED_CR3_STORE_EXITING);
3016 vcpu->arch.cr0 = cr0;
3017 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3018 }
3019
3020 if (!(cr0 & X86_CR0_WP))
3021 *hw_cr0 &= ~X86_CR0_WP;
3022 }
3023
3024 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3025 {
3026 struct vcpu_vmx *vmx = to_vmx(vcpu);
3027 unsigned long hw_cr0;
3028
3029 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3030 if (is_unrestricted_guest(vcpu))
3031 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3032 else {
3033 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3034
3035 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3036 enter_pmode(vcpu);
3037
3038 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3039 enter_rmode(vcpu);
3040 }
3041
3042 #ifdef CONFIG_X86_64
3043 if (vcpu->arch.efer & EFER_LME) {
3044 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3045 enter_lmode(vcpu);
3046 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3047 exit_lmode(vcpu);
3048 }
3049 #endif
3050
3051 if (enable_ept && !is_unrestricted_guest(vcpu))
3052 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3053
3054 vmcs_writel(CR0_READ_SHADOW, cr0);
3055 vmcs_writel(GUEST_CR0, hw_cr0);
3056 vcpu->arch.cr0 = cr0;
3057 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3058
3059 /* depends on vcpu->arch.cr0 to be set to a new value */
3060 vmx->emulation_required = emulation_required(vcpu);
3061 }
3062
3063 static int vmx_get_max_tdp_level(void)
3064 {
3065 if (cpu_has_vmx_ept_5levels())
3066 return 5;
3067 return 4;
3068 }
3069
3070 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3071 {
3072 u64 eptp = VMX_EPTP_MT_WB;
3073
3074 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3075
3076 if (enable_ept_ad_bits &&
3077 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3078 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3079 eptp |= root_hpa;
3080
3081 return eptp;
3082 }
3083
3084 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3085 int root_level)
3086 {
3087 struct kvm *kvm = vcpu->kvm;
3088 bool update_guest_cr3 = true;
3089 unsigned long guest_cr3;
3090 u64 eptp;
3091
3092 if (enable_ept) {
3093 eptp = construct_eptp(vcpu, root_hpa, root_level);
3094 vmcs_write64(EPT_POINTER, eptp);
3095
3096 hv_track_root_tdp(vcpu, root_hpa);
3097
3098 if (!enable_unrestricted_guest && !is_paging(vcpu))
3099 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3100 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3101 guest_cr3 = vcpu->arch.cr3;
3102 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3103 update_guest_cr3 = false;
3104 vmx_ept_load_pdptrs(vcpu);
3105 } else {
3106 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3107 }
3108
3109 if (update_guest_cr3)
3110 vmcs_writel(GUEST_CR3, guest_cr3);
3111 }
3112
3113 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3114 {
3115 /*
3116 * We operate under the default treatment of SMM, so VMX cannot be
3117 * enabled under SMM. Note, whether or not VMXE is allowed at all is
3118 * handled by kvm_is_valid_cr4().
3119 */
3120 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3121 return false;
3122
3123 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3124 return false;
3125
3126 return true;
3127 }
3128
3129 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3130 {
3131 unsigned long old_cr4 = vcpu->arch.cr4;
3132 struct vcpu_vmx *vmx = to_vmx(vcpu);
3133 /*
3134 * Pass through host's Machine Check Enable value to hw_cr4, which
3135 * is in force while we are in guest mode. Do not let guests control
3136 * this bit, even if host CR4.MCE == 0.
3137 */
3138 unsigned long hw_cr4;
3139
3140 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3141 if (is_unrestricted_guest(vcpu))
3142 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3143 else if (vmx->rmode.vm86_active)
3144 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3145 else
3146 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3147
3148 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3149 if (cr4 & X86_CR4_UMIP) {
3150 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3151 hw_cr4 &= ~X86_CR4_UMIP;
3152 } else if (!is_guest_mode(vcpu) ||
3153 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3154 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3155 }
3156 }
3157
3158 vcpu->arch.cr4 = cr4;
3159 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3160
3161 if (!is_unrestricted_guest(vcpu)) {
3162 if (enable_ept) {
3163 if (!is_paging(vcpu)) {
3164 hw_cr4 &= ~X86_CR4_PAE;
3165 hw_cr4 |= X86_CR4_PSE;
3166 } else if (!(cr4 & X86_CR4_PAE)) {
3167 hw_cr4 &= ~X86_CR4_PAE;
3168 }
3169 }
3170
3171 /*
3172 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3173 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3174 * to be manually disabled when guest switches to non-paging
3175 * mode.
3176 *
3177 * If !enable_unrestricted_guest, the CPU is always running
3178 * with CR0.PG=1 and CR4 needs to be modified.
3179 * If enable_unrestricted_guest, the CPU automatically
3180 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3181 */
3182 if (!is_paging(vcpu))
3183 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3184 }
3185
3186 vmcs_writel(CR4_READ_SHADOW, cr4);
3187 vmcs_writel(GUEST_CR4, hw_cr4);
3188
3189 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3190 kvm_update_cpuid_runtime(vcpu);
3191 }
3192
3193 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3194 {
3195 struct vcpu_vmx *vmx = to_vmx(vcpu);
3196 u32 ar;
3197
3198 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3199 *var = vmx->rmode.segs[seg];
3200 if (seg == VCPU_SREG_TR
3201 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3202 return;
3203 var->base = vmx_read_guest_seg_base(vmx, seg);
3204 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3205 return;
3206 }
3207 var->base = vmx_read_guest_seg_base(vmx, seg);
3208 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3209 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3210 ar = vmx_read_guest_seg_ar(vmx, seg);
3211 var->unusable = (ar >> 16) & 1;
3212 var->type = ar & 15;
3213 var->s = (ar >> 4) & 1;
3214 var->dpl = (ar >> 5) & 3;
3215 /*
3216 * Some userspaces do not preserve unusable property. Since usable
3217 * segment has to be present according to VMX spec we can use present
3218 * property to amend userspace bug by making unusable segment always
3219 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3220 * segment as unusable.
3221 */
3222 var->present = !var->unusable;
3223 var->avl = (ar >> 12) & 1;
3224 var->l = (ar >> 13) & 1;
3225 var->db = (ar >> 14) & 1;
3226 var->g = (ar >> 15) & 1;
3227 }
3228
3229 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3230 {
3231 struct kvm_segment s;
3232
3233 if (to_vmx(vcpu)->rmode.vm86_active) {
3234 vmx_get_segment(vcpu, &s, seg);
3235 return s.base;
3236 }
3237 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3238 }
3239
3240 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3241 {
3242 struct vcpu_vmx *vmx = to_vmx(vcpu);
3243
3244 if (unlikely(vmx->rmode.vm86_active))
3245 return 0;
3246 else {
3247 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3248 return VMX_AR_DPL(ar);
3249 }
3250 }
3251
3252 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3253 {
3254 u32 ar;
3255
3256 if (var->unusable || !var->present)
3257 ar = 1 << 16;
3258 else {
3259 ar = var->type & 15;
3260 ar |= (var->s & 1) << 4;
3261 ar |= (var->dpl & 3) << 5;
3262 ar |= (var->present & 1) << 7;
3263 ar |= (var->avl & 1) << 12;
3264 ar |= (var->l & 1) << 13;
3265 ar |= (var->db & 1) << 14;
3266 ar |= (var->g & 1) << 15;
3267 }
3268
3269 return ar;
3270 }
3271
3272 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3273 {
3274 struct vcpu_vmx *vmx = to_vmx(vcpu);
3275 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3276
3277 vmx_segment_cache_clear(vmx);
3278
3279 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3280 vmx->rmode.segs[seg] = *var;
3281 if (seg == VCPU_SREG_TR)
3282 vmcs_write16(sf->selector, var->selector);
3283 else if (var->s)
3284 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3285 goto out;
3286 }
3287
3288 vmcs_writel(sf->base, var->base);
3289 vmcs_write32(sf->limit, var->limit);
3290 vmcs_write16(sf->selector, var->selector);
3291
3292 /*
3293 * Fix the "Accessed" bit in AR field of segment registers for older
3294 * qemu binaries.
3295 * IA32 arch specifies that at the time of processor reset the
3296 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3297 * is setting it to 0 in the userland code. This causes invalid guest
3298 * state vmexit when "unrestricted guest" mode is turned on.
3299 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3300 * tree. Newer qemu binaries with that qemu fix would not need this
3301 * kvm hack.
3302 */
3303 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3304 var->type |= 0x1; /* Accessed */
3305
3306 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3307
3308 out:
3309 vmx->emulation_required = emulation_required(vcpu);
3310 }
3311
3312 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3313 {
3314 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3315
3316 *db = (ar >> 14) & 1;
3317 *l = (ar >> 13) & 1;
3318 }
3319
3320 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3321 {
3322 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3323 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3324 }
3325
3326 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3327 {
3328 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3329 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3330 }
3331
3332 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3333 {
3334 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3335 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3336 }
3337
3338 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3339 {
3340 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3341 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3342 }
3343
3344 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3345 {
3346 struct kvm_segment var;
3347 u32 ar;
3348
3349 vmx_get_segment(vcpu, &var, seg);
3350 var.dpl = 0x3;
3351 if (seg == VCPU_SREG_CS)
3352 var.type = 0x3;
3353 ar = vmx_segment_access_rights(&var);
3354
3355 if (var.base != (var.selector << 4))
3356 return false;
3357 if (var.limit != 0xffff)
3358 return false;
3359 if (ar != 0xf3)
3360 return false;
3361
3362 return true;
3363 }
3364
3365 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3366 {
3367 struct kvm_segment cs;
3368 unsigned int cs_rpl;
3369
3370 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3371 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3372
3373 if (cs.unusable)
3374 return false;
3375 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3376 return false;
3377 if (!cs.s)
3378 return false;
3379 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3380 if (cs.dpl > cs_rpl)
3381 return false;
3382 } else {
3383 if (cs.dpl != cs_rpl)
3384 return false;
3385 }
3386 if (!cs.present)
3387 return false;
3388
3389 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3390 return true;
3391 }
3392
3393 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3394 {
3395 struct kvm_segment ss;
3396 unsigned int ss_rpl;
3397
3398 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3399 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3400
3401 if (ss.unusable)
3402 return true;
3403 if (ss.type != 3 && ss.type != 7)
3404 return false;
3405 if (!ss.s)
3406 return false;
3407 if (ss.dpl != ss_rpl) /* DPL != RPL */
3408 return false;
3409 if (!ss.present)
3410 return false;
3411
3412 return true;
3413 }
3414
3415 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3416 {
3417 struct kvm_segment var;
3418 unsigned int rpl;
3419
3420 vmx_get_segment(vcpu, &var, seg);
3421 rpl = var.selector & SEGMENT_RPL_MASK;
3422
3423 if (var.unusable)
3424 return true;
3425 if (!var.s)
3426 return false;
3427 if (!var.present)
3428 return false;
3429 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3430 if (var.dpl < rpl) /* DPL < RPL */
3431 return false;
3432 }
3433
3434 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3435 * rights flags
3436 */
3437 return true;
3438 }
3439
3440 static bool tr_valid(struct kvm_vcpu *vcpu)
3441 {
3442 struct kvm_segment tr;
3443
3444 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3445
3446 if (tr.unusable)
3447 return false;
3448 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3449 return false;
3450 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3451 return false;
3452 if (!tr.present)
3453 return false;
3454
3455 return true;
3456 }
3457
3458 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3459 {
3460 struct kvm_segment ldtr;
3461
3462 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3463
3464 if (ldtr.unusable)
3465 return true;
3466 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3467 return false;
3468 if (ldtr.type != 2)
3469 return false;
3470 if (!ldtr.present)
3471 return false;
3472
3473 return true;
3474 }
3475
3476 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3477 {
3478 struct kvm_segment cs, ss;
3479
3480 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3481 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3482
3483 return ((cs.selector & SEGMENT_RPL_MASK) ==
3484 (ss.selector & SEGMENT_RPL_MASK));
3485 }
3486
3487 /*
3488 * Check if guest state is valid. Returns true if valid, false if
3489 * not.
3490 * We assume that registers are always usable
3491 */
3492 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3493 {
3494 /* real mode guest state checks */
3495 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3496 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3497 return false;
3498 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3499 return false;
3500 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3501 return false;
3502 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3503 return false;
3504 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3505 return false;
3506 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3507 return false;
3508 } else {
3509 /* protected mode guest state checks */
3510 if (!cs_ss_rpl_check(vcpu))
3511 return false;
3512 if (!code_segment_valid(vcpu))
3513 return false;
3514 if (!stack_segment_valid(vcpu))
3515 return false;
3516 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3517 return false;
3518 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3519 return false;
3520 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3521 return false;
3522 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3523 return false;
3524 if (!tr_valid(vcpu))
3525 return false;
3526 if (!ldtr_valid(vcpu))
3527 return false;
3528 }
3529 /* TODO:
3530 * - Add checks on RIP
3531 * - Add checks on RFLAGS
3532 */
3533
3534 return true;
3535 }
3536
3537 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3538 {
3539 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3540 u16 data;
3541 int i;
3542
3543 for (i = 0; i < 3; i++) {
3544 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3545 return -EFAULT;
3546 }
3547
3548 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3549 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3550 return -EFAULT;
3551
3552 data = ~0;
3553 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3554 return -EFAULT;
3555
3556 return 0;
3557 }
3558
3559 static int init_rmode_identity_map(struct kvm *kvm)
3560 {
3561 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3562 int i, r = 0;
3563 void __user *uaddr;
3564 u32 tmp;
3565
3566 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3567 mutex_lock(&kvm->slots_lock);
3568
3569 if (likely(kvm_vmx->ept_identity_pagetable_done))
3570 goto out;
3571
3572 if (!kvm_vmx->ept_identity_map_addr)
3573 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3574
3575 uaddr = __x86_set_memory_region(kvm,
3576 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3577 kvm_vmx->ept_identity_map_addr,
3578 PAGE_SIZE);
3579 if (IS_ERR(uaddr)) {
3580 r = PTR_ERR(uaddr);
3581 goto out;
3582 }
3583
3584 /* Set up identity-mapping pagetable for EPT in real mode */
3585 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3586 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3587 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3588 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3589 r = -EFAULT;
3590 goto out;
3591 }
3592 }
3593 kvm_vmx->ept_identity_pagetable_done = true;
3594
3595 out:
3596 mutex_unlock(&kvm->slots_lock);
3597 return r;
3598 }
3599
3600 static void seg_setup(int seg)
3601 {
3602 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3603 unsigned int ar;
3604
3605 vmcs_write16(sf->selector, 0);
3606 vmcs_writel(sf->base, 0);
3607 vmcs_write32(sf->limit, 0xffff);
3608 ar = 0x93;
3609 if (seg == VCPU_SREG_CS)
3610 ar |= 0x08; /* code segment */
3611
3612 vmcs_write32(sf->ar_bytes, ar);
3613 }
3614
3615 static int alloc_apic_access_page(struct kvm *kvm)
3616 {
3617 struct page *page;
3618 void __user *hva;
3619 int ret = 0;
3620
3621 mutex_lock(&kvm->slots_lock);
3622 if (kvm->arch.apic_access_memslot_enabled)
3623 goto out;
3624 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3625 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3626 if (IS_ERR(hva)) {
3627 ret = PTR_ERR(hva);
3628 goto out;
3629 }
3630
3631 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3632 if (is_error_page(page)) {
3633 ret = -EFAULT;
3634 goto out;
3635 }
3636
3637 /*
3638 * Do not pin the page in memory, so that memory hot-unplug
3639 * is able to migrate it.
3640 */
3641 put_page(page);
3642 kvm->arch.apic_access_memslot_enabled = true;
3643 out:
3644 mutex_unlock(&kvm->slots_lock);
3645 return ret;
3646 }
3647
3648 int allocate_vpid(void)
3649 {
3650 int vpid;
3651
3652 if (!enable_vpid)
3653 return 0;
3654 spin_lock(&vmx_vpid_lock);
3655 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3656 if (vpid < VMX_NR_VPIDS)
3657 __set_bit(vpid, vmx_vpid_bitmap);
3658 else
3659 vpid = 0;
3660 spin_unlock(&vmx_vpid_lock);
3661 return vpid;
3662 }
3663
3664 void free_vpid(int vpid)
3665 {
3666 if (!enable_vpid || vpid == 0)
3667 return;
3668 spin_lock(&vmx_vpid_lock);
3669 __clear_bit(vpid, vmx_vpid_bitmap);
3670 spin_unlock(&vmx_vpid_lock);
3671 }
3672
3673 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3674 {
3675 int f = sizeof(unsigned long);
3676
3677 if (msr <= 0x1fff)
3678 __clear_bit(msr, msr_bitmap + 0x000 / f);
3679 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3680 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3681 }
3682
3683 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3684 {
3685 int f = sizeof(unsigned long);
3686
3687 if (msr <= 0x1fff)
3688 __clear_bit(msr, msr_bitmap + 0x800 / f);
3689 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3690 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3691 }
3692
3693 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3694 {
3695 int f = sizeof(unsigned long);
3696
3697 if (msr <= 0x1fff)
3698 __set_bit(msr, msr_bitmap + 0x000 / f);
3699 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3700 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3701 }
3702
3703 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3704 {
3705 int f = sizeof(unsigned long);
3706
3707 if (msr <= 0x1fff)
3708 __set_bit(msr, msr_bitmap + 0x800 / f);
3709 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3710 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3711 }
3712
3713 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3714 {
3715 struct vcpu_vmx *vmx = to_vmx(vcpu);
3716 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3717
3718 if (!cpu_has_vmx_msr_bitmap())
3719 return;
3720
3721 if (static_branch_unlikely(&enable_evmcs))
3722 evmcs_touch_msr_bitmap();
3723
3724 /*
3725 * Mark the desired intercept state in shadow bitmap, this is needed
3726 * for resync when the MSR filters change.
3727 */
3728 if (is_valid_passthrough_msr(msr)) {
3729 int idx = possible_passthrough_msr_slot(msr);
3730
3731 if (idx != -ENOENT) {
3732 if (type & MSR_TYPE_R)
3733 clear_bit(idx, vmx->shadow_msr_intercept.read);
3734 if (type & MSR_TYPE_W)
3735 clear_bit(idx, vmx->shadow_msr_intercept.write);
3736 }
3737 }
3738
3739 if ((type & MSR_TYPE_R) &&
3740 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3741 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3742 type &= ~MSR_TYPE_R;
3743 }
3744
3745 if ((type & MSR_TYPE_W) &&
3746 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3747 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3748 type &= ~MSR_TYPE_W;
3749 }
3750
3751 if (type & MSR_TYPE_R)
3752 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3753
3754 if (type & MSR_TYPE_W)
3755 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3756 }
3757
3758 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3759 {
3760 struct vcpu_vmx *vmx = to_vmx(vcpu);
3761 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3762
3763 if (!cpu_has_vmx_msr_bitmap())
3764 return;
3765
3766 if (static_branch_unlikely(&enable_evmcs))
3767 evmcs_touch_msr_bitmap();
3768
3769 /*
3770 * Mark the desired intercept state in shadow bitmap, this is needed
3771 * for resync when the MSR filter changes.
3772 */
3773 if (is_valid_passthrough_msr(msr)) {
3774 int idx = possible_passthrough_msr_slot(msr);
3775
3776 if (idx != -ENOENT) {
3777 if (type & MSR_TYPE_R)
3778 set_bit(idx, vmx->shadow_msr_intercept.read);
3779 if (type & MSR_TYPE_W)
3780 set_bit(idx, vmx->shadow_msr_intercept.write);
3781 }
3782 }
3783
3784 if (type & MSR_TYPE_R)
3785 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3786
3787 if (type & MSR_TYPE_W)
3788 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3789 }
3790
3791 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3792 {
3793 u8 mode = 0;
3794
3795 if (cpu_has_secondary_exec_ctrls() &&
3796 (secondary_exec_controls_get(to_vmx(vcpu)) &
3797 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3798 mode |= MSR_BITMAP_MODE_X2APIC;
3799 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3800 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3801 }
3802
3803 return mode;
3804 }
3805
3806 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3807 {
3808 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3809 unsigned long read_intercept;
3810 int msr;
3811
3812 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3813
3814 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3815 unsigned int read_idx = msr / BITS_PER_LONG;
3816 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3817
3818 msr_bitmap[read_idx] = read_intercept;
3819 msr_bitmap[write_idx] = ~0ul;
3820 }
3821 }
3822
3823 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3824 {
3825 if (!cpu_has_vmx_msr_bitmap())
3826 return;
3827
3828 vmx_reset_x2apic_msrs(vcpu, mode);
3829
3830 /*
3831 * TPR reads and writes can be virtualized even if virtual interrupt
3832 * delivery is not in use.
3833 */
3834 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3835 !(mode & MSR_BITMAP_MODE_X2APIC));
3836
3837 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3838 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3839 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3840 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3841 }
3842 }
3843
3844 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3845 {
3846 struct vcpu_vmx *vmx = to_vmx(vcpu);
3847 u8 mode = vmx_msr_bitmap_mode(vcpu);
3848 u8 changed = mode ^ vmx->msr_bitmap_mode;
3849
3850 if (!changed)
3851 return;
3852
3853 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3854 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3855
3856 vmx->msr_bitmap_mode = mode;
3857 }
3858
3859 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3860 {
3861 struct vcpu_vmx *vmx = to_vmx(vcpu);
3862 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3863 u32 i;
3864
3865 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3866 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3867 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3868 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3869 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3870 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3871 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3872 }
3873 }
3874
3875 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3876 {
3877 struct vcpu_vmx *vmx = to_vmx(vcpu);
3878 void *vapic_page;
3879 u32 vppr;
3880 int rvi;
3881
3882 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3883 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3884 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3885 return false;
3886
3887 rvi = vmx_get_rvi();
3888
3889 vapic_page = vmx->nested.virtual_apic_map.hva;
3890 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3891
3892 return ((rvi & 0xf0) > (vppr & 0xf0));
3893 }
3894
3895 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3896 {
3897 struct vcpu_vmx *vmx = to_vmx(vcpu);
3898 u32 i;
3899
3900 /*
3901 * Set intercept permissions for all potentially passed through MSRs
3902 * again. They will automatically get filtered through the MSR filter,
3903 * so we are back in sync after this.
3904 */
3905 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3906 u32 msr = vmx_possible_passthrough_msrs[i];
3907 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3908 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3909
3910 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3911 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3912 }
3913
3914 pt_update_intercept_for_msr(vcpu);
3915 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3916 }
3917
3918 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3919 bool nested)
3920 {
3921 #ifdef CONFIG_SMP
3922 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3923
3924 if (vcpu->mode == IN_GUEST_MODE) {
3925 /*
3926 * The vector of interrupt to be delivered to vcpu had
3927 * been set in PIR before this function.
3928 *
3929 * Following cases will be reached in this block, and
3930 * we always send a notification event in all cases as
3931 * explained below.
3932 *
3933 * Case 1: vcpu keeps in non-root mode. Sending a
3934 * notification event posts the interrupt to vcpu.
3935 *
3936 * Case 2: vcpu exits to root mode and is still
3937 * runnable. PIR will be synced to vIRR before the
3938 * next vcpu entry. Sending a notification event in
3939 * this case has no effect, as vcpu is not in root
3940 * mode.
3941 *
3942 * Case 3: vcpu exits to root mode and is blocked.
3943 * vcpu_block() has already synced PIR to vIRR and
3944 * never blocks vcpu if vIRR is not cleared. Therefore,
3945 * a blocked vcpu here does not wait for any requested
3946 * interrupts in PIR, and sending a notification event
3947 * which has no effect is safe here.
3948 */
3949
3950 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3951 return true;
3952 }
3953 #endif
3954 return false;
3955 }
3956
3957 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3958 int vector)
3959 {
3960 struct vcpu_vmx *vmx = to_vmx(vcpu);
3961
3962 if (is_guest_mode(vcpu) &&
3963 vector == vmx->nested.posted_intr_nv) {
3964 /*
3965 * If a posted intr is not recognized by hardware,
3966 * we will accomplish it in the next vmentry.
3967 */
3968 vmx->nested.pi_pending = true;
3969 kvm_make_request(KVM_REQ_EVENT, vcpu);
3970 /* the PIR and ON have been set by L1. */
3971 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3972 kvm_vcpu_kick(vcpu);
3973 return 0;
3974 }
3975 return -1;
3976 }
3977 /*
3978 * Send interrupt to vcpu via posted interrupt way.
3979 * 1. If target vcpu is running(non-root mode), send posted interrupt
3980 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3981 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3982 * interrupt from PIR in next vmentry.
3983 */
3984 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3985 {
3986 struct vcpu_vmx *vmx = to_vmx(vcpu);
3987 int r;
3988
3989 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3990 if (!r)
3991 return 0;
3992
3993 if (!vcpu->arch.apicv_active)
3994 return -1;
3995
3996 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3997 return 0;
3998
3999 /* If a previous notification has sent the IPI, nothing to do. */
4000 if (pi_test_and_set_on(&vmx->pi_desc))
4001 return 0;
4002
4003 if (vcpu != kvm_get_running_vcpu() &&
4004 !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4005 kvm_vcpu_kick(vcpu);
4006
4007 return 0;
4008 }
4009
4010 /*
4011 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4012 * will not change in the lifetime of the guest.
4013 * Note that host-state that does change is set elsewhere. E.g., host-state
4014 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4015 */
4016 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4017 {
4018 u32 low32, high32;
4019 unsigned long tmpl;
4020 unsigned long cr0, cr3, cr4;
4021
4022 cr0 = read_cr0();
4023 WARN_ON(cr0 & X86_CR0_TS);
4024 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4025
4026 /*
4027 * Save the most likely value for this task's CR3 in the VMCS.
4028 * We can't use __get_current_cr3_fast() because we're not atomic.
4029 */
4030 cr3 = __read_cr3();
4031 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4032 vmx->loaded_vmcs->host_state.cr3 = cr3;
4033
4034 /* Save the most likely value for this task's CR4 in the VMCS. */
4035 cr4 = cr4_read_shadow();
4036 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4037 vmx->loaded_vmcs->host_state.cr4 = cr4;
4038
4039 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4040 #ifdef CONFIG_X86_64
4041 /*
4042 * Load null selectors, so we can avoid reloading them in
4043 * vmx_prepare_switch_to_host(), in case userspace uses
4044 * the null selectors too (the expected case).
4045 */
4046 vmcs_write16(HOST_DS_SELECTOR, 0);
4047 vmcs_write16(HOST_ES_SELECTOR, 0);
4048 #else
4049 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4050 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4051 #endif
4052 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4053 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4054
4055 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4056
4057 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4058
4059 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4060 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4061 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4062 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4063
4064 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4065 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4066 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4067 }
4068
4069 if (cpu_has_load_ia32_efer())
4070 vmcs_write64(HOST_IA32_EFER, host_efer);
4071 }
4072
4073 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4074 {
4075 struct kvm_vcpu *vcpu = &vmx->vcpu;
4076
4077 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4078 ~vcpu->arch.cr4_guest_rsvd_bits;
4079 if (!enable_ept)
4080 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4081 if (is_guest_mode(&vmx->vcpu))
4082 vcpu->arch.cr4_guest_owned_bits &=
4083 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4084 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4085 }
4086
4087 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4088 {
4089 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4090
4091 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4092 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4093
4094 if (!enable_vnmi)
4095 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4096
4097 if (!enable_preemption_timer)
4098 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4099
4100 return pin_based_exec_ctrl;
4101 }
4102
4103 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4104 {
4105 struct vcpu_vmx *vmx = to_vmx(vcpu);
4106
4107 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4108 if (cpu_has_secondary_exec_ctrls()) {
4109 if (kvm_vcpu_apicv_active(vcpu))
4110 secondary_exec_controls_setbit(vmx,
4111 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4112 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4113 else
4114 secondary_exec_controls_clearbit(vmx,
4115 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4116 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4117 }
4118
4119 if (cpu_has_vmx_msr_bitmap())
4120 vmx_update_msr_bitmap(vcpu);
4121 }
4122
4123 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4124 {
4125 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4126
4127 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4128 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4129
4130 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4131 exec_control &= ~CPU_BASED_TPR_SHADOW;
4132 #ifdef CONFIG_X86_64
4133 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4134 CPU_BASED_CR8_LOAD_EXITING;
4135 #endif
4136 }
4137 if (!enable_ept)
4138 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4139 CPU_BASED_CR3_LOAD_EXITING |
4140 CPU_BASED_INVLPG_EXITING;
4141 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4142 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4143 CPU_BASED_MONITOR_EXITING);
4144 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4145 exec_control &= ~CPU_BASED_HLT_EXITING;
4146 return exec_control;
4147 }
4148
4149 /*
4150 * Adjust a single secondary execution control bit to intercept/allow an
4151 * instruction in the guest. This is usually done based on whether or not a
4152 * feature has been exposed to the guest in order to correctly emulate faults.
4153 */
4154 static inline void
4155 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4156 u32 control, bool enabled, bool exiting)
4157 {
4158 /*
4159 * If the control is for an opt-in feature, clear the control if the
4160 * feature is not exposed to the guest, i.e. not enabled. If the
4161 * control is opt-out, i.e. an exiting control, clear the control if
4162 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4163 * disabled for the associated instruction. Note, the caller is
4164 * responsible presetting exec_control to set all supported bits.
4165 */
4166 if (enabled == exiting)
4167 *exec_control &= ~control;
4168
4169 /*
4170 * Update the nested MSR settings so that a nested VMM can/can't set
4171 * controls for features that are/aren't exposed to the guest.
4172 */
4173 if (nested) {
4174 if (enabled)
4175 vmx->nested.msrs.secondary_ctls_high |= control;
4176 else
4177 vmx->nested.msrs.secondary_ctls_high &= ~control;
4178 }
4179 }
4180
4181 /*
4182 * Wrapper macro for the common case of adjusting a secondary execution control
4183 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4184 * verifies that the control is actually supported by KVM and hardware.
4185 */
4186 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4187 ({ \
4188 bool __enabled; \
4189 \
4190 if (cpu_has_vmx_##name()) { \
4191 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4192 X86_FEATURE_##feat_name); \
4193 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4194 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4195 } \
4196 })
4197
4198 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4199 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4200 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4201
4202 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4203 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4204
4205 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4206 {
4207 struct kvm_vcpu *vcpu = &vmx->vcpu;
4208
4209 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4210
4211 if (vmx_pt_mode_is_system())
4212 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4213 if (!cpu_need_virtualize_apic_accesses(vcpu))
4214 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4215 if (vmx->vpid == 0)
4216 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4217 if (!enable_ept) {
4218 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4219 enable_unrestricted_guest = 0;
4220 }
4221 if (!enable_unrestricted_guest)
4222 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4223 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4224 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4225 if (!kvm_vcpu_apicv_active(vcpu))
4226 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4227 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4228 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4229
4230 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4231 * in vmx_set_cr4. */
4232 exec_control &= ~SECONDARY_EXEC_DESC;
4233
4234 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4235 (handle_vmptrld).
4236 We can NOT enable shadow_vmcs here because we don't have yet
4237 a current VMCS12
4238 */
4239 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4240
4241 /*
4242 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4243 * it needs to be set here when dirty logging is already active, e.g.
4244 * if this vCPU was created after dirty logging was enabled.
4245 */
4246 if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4247 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4248
4249 if (cpu_has_vmx_xsaves()) {
4250 /* Exposing XSAVES only when XSAVE is exposed */
4251 bool xsaves_enabled =
4252 boot_cpu_has(X86_FEATURE_XSAVE) &&
4253 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4254 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4255
4256 vcpu->arch.xsaves_enabled = xsaves_enabled;
4257
4258 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4259 SECONDARY_EXEC_XSAVES,
4260 xsaves_enabled, false);
4261 }
4262
4263 /*
4264 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4265 * feature is exposed to the guest. This creates a virtualization hole
4266 * if both are supported in hardware but only one is exposed to the
4267 * guest, but letting the guest execute RDTSCP or RDPID when either one
4268 * is advertised is preferable to emulating the advertised instruction
4269 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4270 */
4271 if (cpu_has_vmx_rdtscp()) {
4272 bool rdpid_or_rdtscp_enabled =
4273 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4274 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4275
4276 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4277 SECONDARY_EXEC_ENABLE_RDTSCP,
4278 rdpid_or_rdtscp_enabled, false);
4279 }
4280 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4281
4282 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4283 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4284
4285 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4286 ENABLE_USR_WAIT_PAUSE, false);
4287
4288 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4289 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4290
4291 vmx->secondary_exec_control = exec_control;
4292 }
4293
4294 #define VMX_XSS_EXIT_BITMAP 0
4295
4296 /*
4297 * Noting that the initialization of Guest-state Area of VMCS is in
4298 * vmx_vcpu_reset().
4299 */
4300 static void init_vmcs(struct vcpu_vmx *vmx)
4301 {
4302 if (nested)
4303 nested_vmx_set_vmcs_shadowing_bitmap();
4304
4305 if (cpu_has_vmx_msr_bitmap())
4306 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4307
4308 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4309
4310 /* Control */
4311 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4312
4313 exec_controls_set(vmx, vmx_exec_control(vmx));
4314
4315 if (cpu_has_secondary_exec_ctrls()) {
4316 vmx_compute_secondary_exec_control(vmx);
4317 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4318 }
4319
4320 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4321 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4322 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4323 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4324 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4325
4326 vmcs_write16(GUEST_INTR_STATUS, 0);
4327
4328 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4329 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4330 }
4331
4332 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4333 vmcs_write32(PLE_GAP, ple_gap);
4334 vmx->ple_window = ple_window;
4335 vmx->ple_window_dirty = true;
4336 }
4337
4338 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4339 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4340 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4341
4342 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4343 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4344 vmx_set_constant_host_state(vmx);
4345 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4346 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4347
4348 if (cpu_has_vmx_vmfunc())
4349 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4350
4351 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4352 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4353 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4354 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4355 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4356
4357 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4358 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4359
4360 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4361
4362 /* 22.2.1, 20.8.1 */
4363 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4364
4365 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4366 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4367
4368 set_cr4_guest_host_mask(vmx);
4369
4370 if (vmx->vpid != 0)
4371 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4372
4373 if (cpu_has_vmx_xsaves())
4374 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4375
4376 if (enable_pml) {
4377 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4378 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4379 }
4380
4381 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4382
4383 if (vmx_pt_mode_is_host_guest()) {
4384 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4385 /* Bit[6~0] are forced to 1, writes are ignored. */
4386 vmx->pt_desc.guest.output_mask = 0x7F;
4387 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4388 }
4389 }
4390
4391 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4392 {
4393 struct vcpu_vmx *vmx = to_vmx(vcpu);
4394 struct msr_data apic_base_msr;
4395 u32 eax, dummy;
4396 u64 cr0;
4397
4398 vmx->rmode.vm86_active = 0;
4399 vmx->spec_ctrl = 0;
4400
4401 vmx->msr_ia32_umwait_control = 0;
4402
4403 eax = 1;
4404 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
4405 eax = get_rdx_init_val();
4406 kvm_rdx_write(vcpu, eax);
4407
4408 vmx->hv_deadline_tsc = -1;
4409 kvm_set_cr8(vcpu, 0);
4410
4411 if (!init_event) {
4412 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4413 MSR_IA32_APICBASE_ENABLE;
4414 if (kvm_vcpu_is_reset_bsp(vcpu))
4415 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4416 apic_base_msr.host_initiated = true;
4417 kvm_set_apic_base(vcpu, &apic_base_msr);
4418 }
4419
4420 vmx_segment_cache_clear(vmx);
4421
4422 seg_setup(VCPU_SREG_CS);
4423 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4424 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4425
4426 seg_setup(VCPU_SREG_DS);
4427 seg_setup(VCPU_SREG_ES);
4428 seg_setup(VCPU_SREG_FS);
4429 seg_setup(VCPU_SREG_GS);
4430 seg_setup(VCPU_SREG_SS);
4431
4432 vmcs_write16(GUEST_TR_SELECTOR, 0);
4433 vmcs_writel(GUEST_TR_BASE, 0);
4434 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4435 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4436
4437 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4438 vmcs_writel(GUEST_LDTR_BASE, 0);
4439 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4440 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4441
4442 if (!init_event) {
4443 vmcs_write32(GUEST_SYSENTER_CS, 0);
4444 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4445 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4446 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4447 }
4448
4449 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4450 kvm_rip_write(vcpu, 0xfff0);
4451
4452 vmcs_writel(GUEST_GDTR_BASE, 0);
4453 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4454
4455 vmcs_writel(GUEST_IDTR_BASE, 0);
4456 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4457
4458 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4459 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4460 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4461 if (kvm_mpx_supported())
4462 vmcs_write64(GUEST_BNDCFGS, 0);
4463
4464 setup_msrs(vmx);
4465
4466 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4467
4468 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4469 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4470 if (cpu_need_tpr_shadow(vcpu))
4471 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4472 __pa(vcpu->arch.apic->regs));
4473 vmcs_write32(TPR_THRESHOLD, 0);
4474 }
4475
4476 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4477
4478 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4479 vmx->vcpu.arch.cr0 = cr0;
4480 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4481 vmx_set_cr4(vcpu, 0);
4482 vmx_set_efer(vcpu, 0);
4483
4484 vmx_update_exception_bitmap(vcpu);
4485
4486 vpid_sync_context(vmx->vpid);
4487 if (init_event)
4488 vmx_clear_hlt(vcpu);
4489 }
4490
4491 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4492 {
4493 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4494 }
4495
4496 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4497 {
4498 if (!enable_vnmi ||
4499 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4500 vmx_enable_irq_window(vcpu);
4501 return;
4502 }
4503
4504 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4505 }
4506
4507 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4508 {
4509 struct vcpu_vmx *vmx = to_vmx(vcpu);
4510 uint32_t intr;
4511 int irq = vcpu->arch.interrupt.nr;
4512
4513 trace_kvm_inj_virq(irq);
4514
4515 ++vcpu->stat.irq_injections;
4516 if (vmx->rmode.vm86_active) {
4517 int inc_eip = 0;
4518 if (vcpu->arch.interrupt.soft)
4519 inc_eip = vcpu->arch.event_exit_inst_len;
4520 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4521 return;
4522 }
4523 intr = irq | INTR_INFO_VALID_MASK;
4524 if (vcpu->arch.interrupt.soft) {
4525 intr |= INTR_TYPE_SOFT_INTR;
4526 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4527 vmx->vcpu.arch.event_exit_inst_len);
4528 } else
4529 intr |= INTR_TYPE_EXT_INTR;
4530 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4531
4532 vmx_clear_hlt(vcpu);
4533 }
4534
4535 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4536 {
4537 struct vcpu_vmx *vmx = to_vmx(vcpu);
4538
4539 if (!enable_vnmi) {
4540 /*
4541 * Tracking the NMI-blocked state in software is built upon
4542 * finding the next open IRQ window. This, in turn, depends on
4543 * well-behaving guests: They have to keep IRQs disabled at
4544 * least as long as the NMI handler runs. Otherwise we may
4545 * cause NMI nesting, maybe breaking the guest. But as this is
4546 * highly unlikely, we can live with the residual risk.
4547 */
4548 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4549 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4550 }
4551
4552 ++vcpu->stat.nmi_injections;
4553 vmx->loaded_vmcs->nmi_known_unmasked = false;
4554
4555 if (vmx->rmode.vm86_active) {
4556 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4557 return;
4558 }
4559
4560 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4561 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4562
4563 vmx_clear_hlt(vcpu);
4564 }
4565
4566 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4567 {
4568 struct vcpu_vmx *vmx = to_vmx(vcpu);
4569 bool masked;
4570
4571 if (!enable_vnmi)
4572 return vmx->loaded_vmcs->soft_vnmi_blocked;
4573 if (vmx->loaded_vmcs->nmi_known_unmasked)
4574 return false;
4575 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4576 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4577 return masked;
4578 }
4579
4580 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4581 {
4582 struct vcpu_vmx *vmx = to_vmx(vcpu);
4583
4584 if (!enable_vnmi) {
4585 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4586 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4587 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4588 }
4589 } else {
4590 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4591 if (masked)
4592 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4593 GUEST_INTR_STATE_NMI);
4594 else
4595 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4596 GUEST_INTR_STATE_NMI);
4597 }
4598 }
4599
4600 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4601 {
4602 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4603 return false;
4604
4605 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4606 return true;
4607
4608 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4609 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4610 GUEST_INTR_STATE_NMI));
4611 }
4612
4613 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4614 {
4615 if (to_vmx(vcpu)->nested.nested_run_pending)
4616 return -EBUSY;
4617
4618 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4619 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4620 return -EBUSY;
4621
4622 return !vmx_nmi_blocked(vcpu);
4623 }
4624
4625 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4626 {
4627 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4628 return false;
4629
4630 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4631 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4632 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4633 }
4634
4635 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4636 {
4637 if (to_vmx(vcpu)->nested.nested_run_pending)
4638 return -EBUSY;
4639
4640 /*
4641 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4642 * e.g. if the IRQ arrived asynchronously after checking nested events.
4643 */
4644 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4645 return -EBUSY;
4646
4647 return !vmx_interrupt_blocked(vcpu);
4648 }
4649
4650 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4651 {
4652 void __user *ret;
4653
4654 if (enable_unrestricted_guest)
4655 return 0;
4656
4657 mutex_lock(&kvm->slots_lock);
4658 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4659 PAGE_SIZE * 3);
4660 mutex_unlock(&kvm->slots_lock);
4661
4662 if (IS_ERR(ret))
4663 return PTR_ERR(ret);
4664
4665 to_kvm_vmx(kvm)->tss_addr = addr;
4666
4667 return init_rmode_tss(kvm, ret);
4668 }
4669
4670 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4671 {
4672 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4673 return 0;
4674 }
4675
4676 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4677 {
4678 switch (vec) {
4679 case BP_VECTOR:
4680 /*
4681 * Update instruction length as we may reinject the exception
4682 * from user space while in guest debugging mode.
4683 */
4684 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4685 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4686 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4687 return false;
4688 fallthrough;
4689 case DB_VECTOR:
4690 return !(vcpu->guest_debug &
4691 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4692 case DE_VECTOR:
4693 case OF_VECTOR:
4694 case BR_VECTOR:
4695 case UD_VECTOR:
4696 case DF_VECTOR:
4697 case SS_VECTOR:
4698 case GP_VECTOR:
4699 case MF_VECTOR:
4700 return true;
4701 }
4702 return false;
4703 }
4704
4705 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4706 int vec, u32 err_code)
4707 {
4708 /*
4709 * Instruction with address size override prefix opcode 0x67
4710 * Cause the #SS fault with 0 error code in VM86 mode.
4711 */
4712 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4713 if (kvm_emulate_instruction(vcpu, 0)) {
4714 if (vcpu->arch.halt_request) {
4715 vcpu->arch.halt_request = 0;
4716 return kvm_vcpu_halt(vcpu);
4717 }
4718 return 1;
4719 }
4720 return 0;
4721 }
4722
4723 /*
4724 * Forward all other exceptions that are valid in real mode.
4725 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4726 * the required debugging infrastructure rework.
4727 */
4728 kvm_queue_exception(vcpu, vec);
4729 return 1;
4730 }
4731
4732 static int handle_machine_check(struct kvm_vcpu *vcpu)
4733 {
4734 /* handled by vmx_vcpu_run() */
4735 return 1;
4736 }
4737
4738 /*
4739 * If the host has split lock detection disabled, then #AC is
4740 * unconditionally injected into the guest, which is the pre split lock
4741 * detection behaviour.
4742 *
4743 * If the host has split lock detection enabled then #AC is
4744 * only injected into the guest when:
4745 * - Guest CPL == 3 (user mode)
4746 * - Guest has #AC detection enabled in CR0
4747 * - Guest EFLAGS has AC bit set
4748 */
4749 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4750 {
4751 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4752 return true;
4753
4754 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4755 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4756 }
4757
4758 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4759 {
4760 struct vcpu_vmx *vmx = to_vmx(vcpu);
4761 struct kvm_run *kvm_run = vcpu->run;
4762 u32 intr_info, ex_no, error_code;
4763 unsigned long cr2, dr6;
4764 u32 vect_info;
4765
4766 vect_info = vmx->idt_vectoring_info;
4767 intr_info = vmx_get_intr_info(vcpu);
4768
4769 if (is_machine_check(intr_info) || is_nmi(intr_info))
4770 return 1; /* handled by handle_exception_nmi_irqoff() */
4771
4772 if (is_invalid_opcode(intr_info))
4773 return handle_ud(vcpu);
4774
4775 error_code = 0;
4776 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4777 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4778
4779 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4780 WARN_ON_ONCE(!enable_vmware_backdoor);
4781
4782 /*
4783 * VMware backdoor emulation on #GP interception only handles
4784 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4785 * error code on #GP.
4786 */
4787 if (error_code) {
4788 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4789 return 1;
4790 }
4791 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4792 }
4793
4794 /*
4795 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4796 * MMIO, it is better to report an internal error.
4797 * See the comments in vmx_handle_exit.
4798 */
4799 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4800 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4801 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4802 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4803 vcpu->run->internal.ndata = 4;
4804 vcpu->run->internal.data[0] = vect_info;
4805 vcpu->run->internal.data[1] = intr_info;
4806 vcpu->run->internal.data[2] = error_code;
4807 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4808 return 0;
4809 }
4810
4811 if (is_page_fault(intr_info)) {
4812 cr2 = vmx_get_exit_qual(vcpu);
4813 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4814 /*
4815 * EPT will cause page fault only if we need to
4816 * detect illegal GPAs.
4817 */
4818 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4819 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4820 return 1;
4821 } else
4822 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4823 }
4824
4825 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4826
4827 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4828 return handle_rmode_exception(vcpu, ex_no, error_code);
4829
4830 switch (ex_no) {
4831 case DB_VECTOR:
4832 dr6 = vmx_get_exit_qual(vcpu);
4833 if (!(vcpu->guest_debug &
4834 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4835 if (is_icebp(intr_info))
4836 WARN_ON(!skip_emulated_instruction(vcpu));
4837
4838 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4839 return 1;
4840 }
4841 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4842 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4843 fallthrough;
4844 case BP_VECTOR:
4845 /*
4846 * Update instruction length as we may reinject #BP from
4847 * user space while in guest debugging mode. Reading it for
4848 * #DB as well causes no harm, it is not used in that case.
4849 */
4850 vmx->vcpu.arch.event_exit_inst_len =
4851 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4852 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4853 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4854 kvm_run->debug.arch.exception = ex_no;
4855 break;
4856 case AC_VECTOR:
4857 if (vmx_guest_inject_ac(vcpu)) {
4858 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4859 return 1;
4860 }
4861
4862 /*
4863 * Handle split lock. Depending on detection mode this will
4864 * either warn and disable split lock detection for this
4865 * task or force SIGBUS on it.
4866 */
4867 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4868 return 1;
4869 fallthrough;
4870 default:
4871 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4872 kvm_run->ex.exception = ex_no;
4873 kvm_run->ex.error_code = error_code;
4874 break;
4875 }
4876 return 0;
4877 }
4878
4879 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4880 {
4881 ++vcpu->stat.irq_exits;
4882 return 1;
4883 }
4884
4885 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4886 {
4887 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4888 vcpu->mmio_needed = 0;
4889 return 0;
4890 }
4891
4892 static int handle_io(struct kvm_vcpu *vcpu)
4893 {
4894 unsigned long exit_qualification;
4895 int size, in, string;
4896 unsigned port;
4897
4898 exit_qualification = vmx_get_exit_qual(vcpu);
4899 string = (exit_qualification & 16) != 0;
4900
4901 ++vcpu->stat.io_exits;
4902
4903 if (string)
4904 return kvm_emulate_instruction(vcpu, 0);
4905
4906 port = exit_qualification >> 16;
4907 size = (exit_qualification & 7) + 1;
4908 in = (exit_qualification & 8) != 0;
4909
4910 return kvm_fast_pio(vcpu, size, port, in);
4911 }
4912
4913 static void
4914 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4915 {
4916 /*
4917 * Patch in the VMCALL instruction:
4918 */
4919 hypercall[0] = 0x0f;
4920 hypercall[1] = 0x01;
4921 hypercall[2] = 0xc1;
4922 }
4923
4924 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4925 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4926 {
4927 if (is_guest_mode(vcpu)) {
4928 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4929 unsigned long orig_val = val;
4930
4931 /*
4932 * We get here when L2 changed cr0 in a way that did not change
4933 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4934 * but did change L0 shadowed bits. So we first calculate the
4935 * effective cr0 value that L1 would like to write into the
4936 * hardware. It consists of the L2-owned bits from the new
4937 * value combined with the L1-owned bits from L1's guest_cr0.
4938 */
4939 val = (val & ~vmcs12->cr0_guest_host_mask) |
4940 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4941
4942 if (!nested_guest_cr0_valid(vcpu, val))
4943 return 1;
4944
4945 if (kvm_set_cr0(vcpu, val))
4946 return 1;
4947 vmcs_writel(CR0_READ_SHADOW, orig_val);
4948 return 0;
4949 } else {
4950 if (to_vmx(vcpu)->nested.vmxon &&
4951 !nested_host_cr0_valid(vcpu, val))
4952 return 1;
4953
4954 return kvm_set_cr0(vcpu, val);
4955 }
4956 }
4957
4958 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4959 {
4960 if (is_guest_mode(vcpu)) {
4961 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4962 unsigned long orig_val = val;
4963
4964 /* analogously to handle_set_cr0 */
4965 val = (val & ~vmcs12->cr4_guest_host_mask) |
4966 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4967 if (kvm_set_cr4(vcpu, val))
4968 return 1;
4969 vmcs_writel(CR4_READ_SHADOW, orig_val);
4970 return 0;
4971 } else
4972 return kvm_set_cr4(vcpu, val);
4973 }
4974
4975 static int handle_desc(struct kvm_vcpu *vcpu)
4976 {
4977 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4978 return kvm_emulate_instruction(vcpu, 0);
4979 }
4980
4981 static int handle_cr(struct kvm_vcpu *vcpu)
4982 {
4983 unsigned long exit_qualification, val;
4984 int cr;
4985 int reg;
4986 int err;
4987 int ret;
4988
4989 exit_qualification = vmx_get_exit_qual(vcpu);
4990 cr = exit_qualification & 15;
4991 reg = (exit_qualification >> 8) & 15;
4992 switch ((exit_qualification >> 4) & 3) {
4993 case 0: /* mov to cr */
4994 val = kvm_register_read(vcpu, reg);
4995 trace_kvm_cr_write(cr, val);
4996 switch (cr) {
4997 case 0:
4998 err = handle_set_cr0(vcpu, val);
4999 return kvm_complete_insn_gp(vcpu, err);
5000 case 3:
5001 WARN_ON_ONCE(enable_unrestricted_guest);
5002
5003 err = kvm_set_cr3(vcpu, val);
5004 return kvm_complete_insn_gp(vcpu, err);
5005 case 4:
5006 err = handle_set_cr4(vcpu, val);
5007 return kvm_complete_insn_gp(vcpu, err);
5008 case 8: {
5009 u8 cr8_prev = kvm_get_cr8(vcpu);
5010 u8 cr8 = (u8)val;
5011 err = kvm_set_cr8(vcpu, cr8);
5012 ret = kvm_complete_insn_gp(vcpu, err);
5013 if (lapic_in_kernel(vcpu))
5014 return ret;
5015 if (cr8_prev <= cr8)
5016 return ret;
5017 /*
5018 * TODO: we might be squashing a
5019 * KVM_GUESTDBG_SINGLESTEP-triggered
5020 * KVM_EXIT_DEBUG here.
5021 */
5022 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5023 return 0;
5024 }
5025 }
5026 break;
5027 case 2: /* clts */
5028 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5029 return -EIO;
5030 case 1: /*mov from cr*/
5031 switch (cr) {
5032 case 3:
5033 WARN_ON_ONCE(enable_unrestricted_guest);
5034
5035 val = kvm_read_cr3(vcpu);
5036 kvm_register_write(vcpu, reg, val);
5037 trace_kvm_cr_read(cr, val);
5038 return kvm_skip_emulated_instruction(vcpu);
5039 case 8:
5040 val = kvm_get_cr8(vcpu);
5041 kvm_register_write(vcpu, reg, val);
5042 trace_kvm_cr_read(cr, val);
5043 return kvm_skip_emulated_instruction(vcpu);
5044 }
5045 break;
5046 case 3: /* lmsw */
5047 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5048 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5049 kvm_lmsw(vcpu, val);
5050
5051 return kvm_skip_emulated_instruction(vcpu);
5052 default:
5053 break;
5054 }
5055 vcpu->run->exit_reason = 0;
5056 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5057 (int)(exit_qualification >> 4) & 3, cr);
5058 return 0;
5059 }
5060
5061 static int handle_dr(struct kvm_vcpu *vcpu)
5062 {
5063 unsigned long exit_qualification;
5064 int dr, dr7, reg;
5065 int err = 1;
5066
5067 exit_qualification = vmx_get_exit_qual(vcpu);
5068 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5069
5070 /* First, if DR does not exist, trigger UD */
5071 if (!kvm_require_dr(vcpu, dr))
5072 return 1;
5073
5074 if (kvm_x86_ops.get_cpl(vcpu) > 0)
5075 goto out;
5076
5077 dr7 = vmcs_readl(GUEST_DR7);
5078 if (dr7 & DR7_GD) {
5079 /*
5080 * As the vm-exit takes precedence over the debug trap, we
5081 * need to emulate the latter, either for the host or the
5082 * guest debugging itself.
5083 */
5084 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5085 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5086 vcpu->run->debug.arch.dr7 = dr7;
5087 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5088 vcpu->run->debug.arch.exception = DB_VECTOR;
5089 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5090 return 0;
5091 } else {
5092 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5093 return 1;
5094 }
5095 }
5096
5097 if (vcpu->guest_debug == 0) {
5098 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5099
5100 /*
5101 * No more DR vmexits; force a reload of the debug registers
5102 * and reenter on this instruction. The next vmexit will
5103 * retrieve the full state of the debug registers.
5104 */
5105 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5106 return 1;
5107 }
5108
5109 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5110 if (exit_qualification & TYPE_MOV_FROM_DR) {
5111 unsigned long val;
5112
5113 kvm_get_dr(vcpu, dr, &val);
5114 kvm_register_write(vcpu, reg, val);
5115 err = 0;
5116 } else {
5117 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5118 }
5119
5120 out:
5121 return kvm_complete_insn_gp(vcpu, err);
5122 }
5123
5124 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5125 {
5126 get_debugreg(vcpu->arch.db[0], 0);
5127 get_debugreg(vcpu->arch.db[1], 1);
5128 get_debugreg(vcpu->arch.db[2], 2);
5129 get_debugreg(vcpu->arch.db[3], 3);
5130 get_debugreg(vcpu->arch.dr6, 6);
5131 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5132
5133 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5134 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5135 }
5136
5137 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5138 {
5139 vmcs_writel(GUEST_DR7, val);
5140 }
5141
5142 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5143 {
5144 kvm_apic_update_ppr(vcpu);
5145 return 1;
5146 }
5147
5148 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5149 {
5150 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5151
5152 kvm_make_request(KVM_REQ_EVENT, vcpu);
5153
5154 ++vcpu->stat.irq_window_exits;
5155 return 1;
5156 }
5157
5158 static int handle_invlpg(struct kvm_vcpu *vcpu)
5159 {
5160 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5161
5162 kvm_mmu_invlpg(vcpu, exit_qualification);
5163 return kvm_skip_emulated_instruction(vcpu);
5164 }
5165
5166 static int handle_apic_access(struct kvm_vcpu *vcpu)
5167 {
5168 if (likely(fasteoi)) {
5169 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5170 int access_type, offset;
5171
5172 access_type = exit_qualification & APIC_ACCESS_TYPE;
5173 offset = exit_qualification & APIC_ACCESS_OFFSET;
5174 /*
5175 * Sane guest uses MOV to write EOI, with written value
5176 * not cared. So make a short-circuit here by avoiding
5177 * heavy instruction emulation.
5178 */
5179 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5180 (offset == APIC_EOI)) {
5181 kvm_lapic_set_eoi(vcpu);
5182 return kvm_skip_emulated_instruction(vcpu);
5183 }
5184 }
5185 return kvm_emulate_instruction(vcpu, 0);
5186 }
5187
5188 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5189 {
5190 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5191 int vector = exit_qualification & 0xff;
5192
5193 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5194 kvm_apic_set_eoi_accelerated(vcpu, vector);
5195 return 1;
5196 }
5197
5198 static int handle_apic_write(struct kvm_vcpu *vcpu)
5199 {
5200 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5201 u32 offset = exit_qualification & 0xfff;
5202
5203 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5204 kvm_apic_write_nodecode(vcpu, offset);
5205 return 1;
5206 }
5207
5208 static int handle_task_switch(struct kvm_vcpu *vcpu)
5209 {
5210 struct vcpu_vmx *vmx = to_vmx(vcpu);
5211 unsigned long exit_qualification;
5212 bool has_error_code = false;
5213 u32 error_code = 0;
5214 u16 tss_selector;
5215 int reason, type, idt_v, idt_index;
5216
5217 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5218 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5219 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5220
5221 exit_qualification = vmx_get_exit_qual(vcpu);
5222
5223 reason = (u32)exit_qualification >> 30;
5224 if (reason == TASK_SWITCH_GATE && idt_v) {
5225 switch (type) {
5226 case INTR_TYPE_NMI_INTR:
5227 vcpu->arch.nmi_injected = false;
5228 vmx_set_nmi_mask(vcpu, true);
5229 break;
5230 case INTR_TYPE_EXT_INTR:
5231 case INTR_TYPE_SOFT_INTR:
5232 kvm_clear_interrupt_queue(vcpu);
5233 break;
5234 case INTR_TYPE_HARD_EXCEPTION:
5235 if (vmx->idt_vectoring_info &
5236 VECTORING_INFO_DELIVER_CODE_MASK) {
5237 has_error_code = true;
5238 error_code =
5239 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5240 }
5241 fallthrough;
5242 case INTR_TYPE_SOFT_EXCEPTION:
5243 kvm_clear_exception_queue(vcpu);
5244 break;
5245 default:
5246 break;
5247 }
5248 }
5249 tss_selector = exit_qualification;
5250
5251 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5252 type != INTR_TYPE_EXT_INTR &&
5253 type != INTR_TYPE_NMI_INTR))
5254 WARN_ON(!skip_emulated_instruction(vcpu));
5255
5256 /*
5257 * TODO: What about debug traps on tss switch?
5258 * Are we supposed to inject them and update dr6?
5259 */
5260 return kvm_task_switch(vcpu, tss_selector,
5261 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5262 reason, has_error_code, error_code);
5263 }
5264
5265 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5266 {
5267 unsigned long exit_qualification;
5268 gpa_t gpa;
5269 u64 error_code;
5270
5271 exit_qualification = vmx_get_exit_qual(vcpu);
5272
5273 /*
5274 * EPT violation happened while executing iret from NMI,
5275 * "blocked by NMI" bit has to be set before next VM entry.
5276 * There are errata that may cause this bit to not be set:
5277 * AAK134, BY25.
5278 */
5279 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5280 enable_vnmi &&
5281 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5282 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5283
5284 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5285 trace_kvm_page_fault(gpa, exit_qualification);
5286
5287 /* Is it a read fault? */
5288 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5289 ? PFERR_USER_MASK : 0;
5290 /* Is it a write fault? */
5291 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5292 ? PFERR_WRITE_MASK : 0;
5293 /* Is it a fetch fault? */
5294 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5295 ? PFERR_FETCH_MASK : 0;
5296 /* ept page table entry is present? */
5297 error_code |= (exit_qualification &
5298 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5299 EPT_VIOLATION_EXECUTABLE))
5300 ? PFERR_PRESENT_MASK : 0;
5301
5302 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5303 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5304
5305 vcpu->arch.exit_qualification = exit_qualification;
5306
5307 /*
5308 * Check that the GPA doesn't exceed physical memory limits, as that is
5309 * a guest page fault. We have to emulate the instruction here, because
5310 * if the illegal address is that of a paging structure, then
5311 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5312 * would also use advanced VM-exit information for EPT violations to
5313 * reconstruct the page fault error code.
5314 */
5315 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5316 return kvm_emulate_instruction(vcpu, 0);
5317
5318 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5319 }
5320
5321 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5322 {
5323 gpa_t gpa;
5324
5325 if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5326 return 1;
5327
5328 /*
5329 * A nested guest cannot optimize MMIO vmexits, because we have an
5330 * nGPA here instead of the required GPA.
5331 */
5332 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5333 if (!is_guest_mode(vcpu) &&
5334 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5335 trace_kvm_fast_mmio(gpa);
5336 return kvm_skip_emulated_instruction(vcpu);
5337 }
5338
5339 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5340 }
5341
5342 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5343 {
5344 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5345 return -EIO;
5346
5347 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5348 ++vcpu->stat.nmi_window_exits;
5349 kvm_make_request(KVM_REQ_EVENT, vcpu);
5350
5351 return 1;
5352 }
5353
5354 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5355 {
5356 struct vcpu_vmx *vmx = to_vmx(vcpu);
5357 bool intr_window_requested;
5358 unsigned count = 130;
5359
5360 intr_window_requested = exec_controls_get(vmx) &
5361 CPU_BASED_INTR_WINDOW_EXITING;
5362
5363 while (vmx->emulation_required && count-- != 0) {
5364 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5365 return handle_interrupt_window(&vmx->vcpu);
5366
5367 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5368 return 1;
5369
5370 if (!kvm_emulate_instruction(vcpu, 0))
5371 return 0;
5372
5373 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5374 vcpu->arch.exception.pending) {
5375 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5376 vcpu->run->internal.suberror =
5377 KVM_INTERNAL_ERROR_EMULATION;
5378 vcpu->run->internal.ndata = 0;
5379 return 0;
5380 }
5381
5382 if (vcpu->arch.halt_request) {
5383 vcpu->arch.halt_request = 0;
5384 return kvm_vcpu_halt(vcpu);
5385 }
5386
5387 /*
5388 * Note, return 1 and not 0, vcpu_run() will invoke
5389 * xfer_to_guest_mode() which will create a proper return
5390 * code.
5391 */
5392 if (__xfer_to_guest_mode_work_pending())
5393 return 1;
5394 }
5395
5396 return 1;
5397 }
5398
5399 static void grow_ple_window(struct kvm_vcpu *vcpu)
5400 {
5401 struct vcpu_vmx *vmx = to_vmx(vcpu);
5402 unsigned int old = vmx->ple_window;
5403
5404 vmx->ple_window = __grow_ple_window(old, ple_window,
5405 ple_window_grow,
5406 ple_window_max);
5407
5408 if (vmx->ple_window != old) {
5409 vmx->ple_window_dirty = true;
5410 trace_kvm_ple_window_update(vcpu->vcpu_id,
5411 vmx->ple_window, old);
5412 }
5413 }
5414
5415 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5416 {
5417 struct vcpu_vmx *vmx = to_vmx(vcpu);
5418 unsigned int old = vmx->ple_window;
5419
5420 vmx->ple_window = __shrink_ple_window(old, ple_window,
5421 ple_window_shrink,
5422 ple_window);
5423
5424 if (vmx->ple_window != old) {
5425 vmx->ple_window_dirty = true;
5426 trace_kvm_ple_window_update(vcpu->vcpu_id,
5427 vmx->ple_window, old);
5428 }
5429 }
5430
5431 /*
5432 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5433 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5434 */
5435 static int handle_pause(struct kvm_vcpu *vcpu)
5436 {
5437 if (!kvm_pause_in_guest(vcpu->kvm))
5438 grow_ple_window(vcpu);
5439
5440 /*
5441 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5442 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5443 * never set PAUSE_EXITING and just set PLE if supported,
5444 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5445 */
5446 kvm_vcpu_on_spin(vcpu, true);
5447 return kvm_skip_emulated_instruction(vcpu);
5448 }
5449
5450 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5451 {
5452 return 1;
5453 }
5454
5455 static int handle_invpcid(struct kvm_vcpu *vcpu)
5456 {
5457 u32 vmx_instruction_info;
5458 unsigned long type;
5459 gva_t gva;
5460 struct {
5461 u64 pcid;
5462 u64 gla;
5463 } operand;
5464
5465 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5466 kvm_queue_exception(vcpu, UD_VECTOR);
5467 return 1;
5468 }
5469
5470 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5471 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5472
5473 if (type > 3) {
5474 kvm_inject_gp(vcpu, 0);
5475 return 1;
5476 }
5477
5478 /* According to the Intel instruction reference, the memory operand
5479 * is read even if it isn't needed (e.g., for type==all)
5480 */
5481 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5482 vmx_instruction_info, false,
5483 sizeof(operand), &gva))
5484 return 1;
5485
5486 return kvm_handle_invpcid(vcpu, type, gva);
5487 }
5488
5489 static int handle_pml_full(struct kvm_vcpu *vcpu)
5490 {
5491 unsigned long exit_qualification;
5492
5493 trace_kvm_pml_full(vcpu->vcpu_id);
5494
5495 exit_qualification = vmx_get_exit_qual(vcpu);
5496
5497 /*
5498 * PML buffer FULL happened while executing iret from NMI,
5499 * "blocked by NMI" bit has to be set before next VM entry.
5500 */
5501 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5502 enable_vnmi &&
5503 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5504 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5505 GUEST_INTR_STATE_NMI);
5506
5507 /*
5508 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5509 * here.., and there's no userspace involvement needed for PML.
5510 */
5511 return 1;
5512 }
5513
5514 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5515 {
5516 struct vcpu_vmx *vmx = to_vmx(vcpu);
5517
5518 if (!vmx->req_immediate_exit &&
5519 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5520 kvm_lapic_expired_hv_timer(vcpu);
5521 return EXIT_FASTPATH_REENTER_GUEST;
5522 }
5523
5524 return EXIT_FASTPATH_NONE;
5525 }
5526
5527 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5528 {
5529 handle_fastpath_preemption_timer(vcpu);
5530 return 1;
5531 }
5532
5533 /*
5534 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5535 * are overwritten by nested_vmx_setup() when nested=1.
5536 */
5537 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5538 {
5539 kvm_queue_exception(vcpu, UD_VECTOR);
5540 return 1;
5541 }
5542
5543 #ifndef CONFIG_X86_SGX_KVM
5544 static int handle_encls(struct kvm_vcpu *vcpu)
5545 {
5546 /*
5547 * SGX virtualization is disabled. There is no software enable bit for
5548 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5549 * the guest from executing ENCLS (when SGX is supported by hardware).
5550 */
5551 kvm_queue_exception(vcpu, UD_VECTOR);
5552 return 1;
5553 }
5554 #endif /* CONFIG_X86_SGX_KVM */
5555
5556 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5557 {
5558 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5559 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5560 return 0;
5561 }
5562
5563 /*
5564 * The exit handlers return 1 if the exit was handled fully and guest execution
5565 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5566 * to be done to userspace and return 0.
5567 */
5568 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5569 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5570 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5571 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5572 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5573 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5574 [EXIT_REASON_CR_ACCESS] = handle_cr,
5575 [EXIT_REASON_DR_ACCESS] = handle_dr,
5576 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5577 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5578 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5579 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5580 [EXIT_REASON_HLT] = kvm_emulate_halt,
5581 [EXIT_REASON_INVD] = kvm_emulate_invd,
5582 [EXIT_REASON_INVLPG] = handle_invlpg,
5583 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
5584 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
5585 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5586 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5587 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5588 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5589 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5590 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5591 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5592 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5593 [EXIT_REASON_VMON] = handle_vmx_instruction,
5594 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5595 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5596 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5597 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5598 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
5599 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
5600 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5601 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5602 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5603 [EXIT_REASON_LDTR_TR] = handle_desc,
5604 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5605 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5606 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5607 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
5608 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5609 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
5610 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5611 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5612 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
5613 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
5614 [EXIT_REASON_PML_FULL] = handle_pml_full,
5615 [EXIT_REASON_INVPCID] = handle_invpcid,
5616 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5617 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5618 [EXIT_REASON_ENCLS] = handle_encls,
5619 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
5620 };
5621
5622 static const int kvm_vmx_max_exit_handlers =
5623 ARRAY_SIZE(kvm_vmx_exit_handlers);
5624
5625 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5626 u32 *intr_info, u32 *error_code)
5627 {
5628 struct vcpu_vmx *vmx = to_vmx(vcpu);
5629
5630 *info1 = vmx_get_exit_qual(vcpu);
5631 if (!(vmx->exit_reason.failed_vmentry)) {
5632 *info2 = vmx->idt_vectoring_info;
5633 *intr_info = vmx_get_intr_info(vcpu);
5634 if (is_exception_with_error_code(*intr_info))
5635 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5636 else
5637 *error_code = 0;
5638 } else {
5639 *info2 = 0;
5640 *intr_info = 0;
5641 *error_code = 0;
5642 }
5643 }
5644
5645 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5646 {
5647 if (vmx->pml_pg) {
5648 __free_page(vmx->pml_pg);
5649 vmx->pml_pg = NULL;
5650 }
5651 }
5652
5653 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5654 {
5655 struct vcpu_vmx *vmx = to_vmx(vcpu);
5656 u64 *pml_buf;
5657 u16 pml_idx;
5658
5659 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5660
5661 /* Do nothing if PML buffer is empty */
5662 if (pml_idx == (PML_ENTITY_NUM - 1))
5663 return;
5664
5665 /* PML index always points to next available PML buffer entity */
5666 if (pml_idx >= PML_ENTITY_NUM)
5667 pml_idx = 0;
5668 else
5669 pml_idx++;
5670
5671 pml_buf = page_address(vmx->pml_pg);
5672 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5673 u64 gpa;
5674
5675 gpa = pml_buf[pml_idx];
5676 WARN_ON(gpa & (PAGE_SIZE - 1));
5677 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5678 }
5679
5680 /* reset PML index */
5681 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5682 }
5683
5684 static void vmx_dump_sel(char *name, uint32_t sel)
5685 {
5686 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5687 name, vmcs_read16(sel),
5688 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5689 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5690 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5691 }
5692
5693 static void vmx_dump_dtsel(char *name, uint32_t limit)
5694 {
5695 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5696 name, vmcs_read32(limit),
5697 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5698 }
5699
5700 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5701 {
5702 unsigned int i;
5703 struct vmx_msr_entry *e;
5704
5705 pr_err("MSR %s:\n", name);
5706 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5707 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5708 }
5709
5710 void dump_vmcs(struct kvm_vcpu *vcpu)
5711 {
5712 struct vcpu_vmx *vmx = to_vmx(vcpu);
5713 u32 vmentry_ctl, vmexit_ctl;
5714 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5715 unsigned long cr4;
5716 int efer_slot;
5717
5718 if (!dump_invalid_vmcs) {
5719 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5720 return;
5721 }
5722
5723 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5724 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5725 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5726 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5727 cr4 = vmcs_readl(GUEST_CR4);
5728 secondary_exec_control = 0;
5729 if (cpu_has_secondary_exec_ctrls())
5730 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5731
5732 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5733 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5734 pr_err("*** Guest State ***\n");
5735 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5736 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5737 vmcs_readl(CR0_GUEST_HOST_MASK));
5738 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5739 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5740 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5741 if (cpu_has_vmx_ept()) {
5742 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5743 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5744 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5745 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5746 }
5747 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5748 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5749 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5750 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5751 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5752 vmcs_readl(GUEST_SYSENTER_ESP),
5753 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5754 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5755 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5756 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5757 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5758 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5759 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5760 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5761 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5762 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5763 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5764 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5765 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5766 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5767 else if (efer_slot >= 0)
5768 pr_err("EFER= 0x%016llx (autoload)\n",
5769 vmx->msr_autoload.guest.val[efer_slot].value);
5770 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5771 pr_err("EFER= 0x%016llx (effective)\n",
5772 vcpu->arch.efer | (EFER_LMA | EFER_LME));
5773 else
5774 pr_err("EFER= 0x%016llx (effective)\n",
5775 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5776 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5777 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5778 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5779 vmcs_read64(GUEST_IA32_DEBUGCTL),
5780 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5781 if (cpu_has_load_perf_global_ctrl() &&
5782 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5783 pr_err("PerfGlobCtl = 0x%016llx\n",
5784 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5785 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5786 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5787 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5788 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5789 vmcs_read32(GUEST_ACTIVITY_STATE));
5790 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5791 pr_err("InterruptStatus = %04x\n",
5792 vmcs_read16(GUEST_INTR_STATUS));
5793 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5794 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5795 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5796 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5797
5798 pr_err("*** Host State ***\n");
5799 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5800 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5801 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5802 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5803 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5804 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5805 vmcs_read16(HOST_TR_SELECTOR));
5806 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5807 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5808 vmcs_readl(HOST_TR_BASE));
5809 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5810 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5811 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5812 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5813 vmcs_readl(HOST_CR4));
5814 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5815 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5816 vmcs_read32(HOST_IA32_SYSENTER_CS),
5817 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5818 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5819 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5820 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5821 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5822 if (cpu_has_load_perf_global_ctrl() &&
5823 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5824 pr_err("PerfGlobCtl = 0x%016llx\n",
5825 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5826 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5827 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5828
5829 pr_err("*** Control State ***\n");
5830 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5831 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5832 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5833 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5834 vmcs_read32(EXCEPTION_BITMAP),
5835 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5836 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5837 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5838 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5839 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5840 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5841 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5842 vmcs_read32(VM_EXIT_INTR_INFO),
5843 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5844 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5845 pr_err(" reason=%08x qualification=%016lx\n",
5846 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5847 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5848 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5849 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5850 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5851 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5852 pr_err("TSC Multiplier = 0x%016llx\n",
5853 vmcs_read64(TSC_MULTIPLIER));
5854 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5855 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5856 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5857 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5858 }
5859 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5860 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5861 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5862 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5863 }
5864 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5865 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5866 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5867 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5868 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5869 pr_err("PLE Gap=%08x Window=%08x\n",
5870 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5871 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5872 pr_err("Virtual processor ID = 0x%04x\n",
5873 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5874 }
5875
5876 /*
5877 * The guest has exited. See if we can fix it or if we need userspace
5878 * assistance.
5879 */
5880 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5881 {
5882 struct vcpu_vmx *vmx = to_vmx(vcpu);
5883 union vmx_exit_reason exit_reason = vmx->exit_reason;
5884 u32 vectoring_info = vmx->idt_vectoring_info;
5885 u16 exit_handler_index;
5886
5887 /*
5888 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5889 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5890 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5891 * mode as if vcpus is in root mode, the PML buffer must has been
5892 * flushed already. Note, PML is never enabled in hardware while
5893 * running L2.
5894 */
5895 if (enable_pml && !is_guest_mode(vcpu))
5896 vmx_flush_pml_buffer(vcpu);
5897
5898 /*
5899 * We should never reach this point with a pending nested VM-Enter, and
5900 * more specifically emulation of L2 due to invalid guest state (see
5901 * below) should never happen as that means we incorrectly allowed a
5902 * nested VM-Enter with an invalid vmcs12.
5903 */
5904 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5905 return -EIO;
5906
5907 /* If guest state is invalid, start emulating */
5908 if (vmx->emulation_required)
5909 return handle_invalid_guest_state(vcpu);
5910
5911 if (is_guest_mode(vcpu)) {
5912 /*
5913 * PML is never enabled when running L2, bail immediately if a
5914 * PML full exit occurs as something is horribly wrong.
5915 */
5916 if (exit_reason.basic == EXIT_REASON_PML_FULL)
5917 goto unexpected_vmexit;
5918
5919 /*
5920 * The host physical addresses of some pages of guest memory
5921 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5922 * Page). The CPU may write to these pages via their host
5923 * physical address while L2 is running, bypassing any
5924 * address-translation-based dirty tracking (e.g. EPT write
5925 * protection).
5926 *
5927 * Mark them dirty on every exit from L2 to prevent them from
5928 * getting out of sync with dirty tracking.
5929 */
5930 nested_mark_vmcs12_pages_dirty(vcpu);
5931
5932 if (nested_vmx_reflect_vmexit(vcpu))
5933 return 1;
5934 }
5935
5936 if (exit_reason.failed_vmentry) {
5937 dump_vmcs(vcpu);
5938 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5939 vcpu->run->fail_entry.hardware_entry_failure_reason
5940 = exit_reason.full;
5941 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5942 return 0;
5943 }
5944
5945 if (unlikely(vmx->fail)) {
5946 dump_vmcs(vcpu);
5947 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5948 vcpu->run->fail_entry.hardware_entry_failure_reason
5949 = vmcs_read32(VM_INSTRUCTION_ERROR);
5950 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5951 return 0;
5952 }
5953
5954 /*
5955 * Note:
5956 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5957 * delivery event since it indicates guest is accessing MMIO.
5958 * The vm-exit can be triggered again after return to guest that
5959 * will cause infinite loop.
5960 */
5961 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5962 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5963 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5964 exit_reason.basic != EXIT_REASON_PML_FULL &&
5965 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5966 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5967 int ndata = 3;
5968
5969 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5970 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5971 vcpu->run->internal.data[0] = vectoring_info;
5972 vcpu->run->internal.data[1] = exit_reason.full;
5973 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5974 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5975 vcpu->run->internal.data[ndata++] =
5976 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5977 }
5978 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5979 vcpu->run->internal.ndata = ndata;
5980 return 0;
5981 }
5982
5983 if (unlikely(!enable_vnmi &&
5984 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5985 if (!vmx_interrupt_blocked(vcpu)) {
5986 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5987 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5988 vcpu->arch.nmi_pending) {
5989 /*
5990 * This CPU don't support us in finding the end of an
5991 * NMI-blocked window if the guest runs with IRQs
5992 * disabled. So we pull the trigger after 1 s of
5993 * futile waiting, but inform the user about this.
5994 */
5995 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5996 "state on VCPU %d after 1 s timeout\n",
5997 __func__, vcpu->vcpu_id);
5998 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5999 }
6000 }
6001
6002 if (exit_fastpath != EXIT_FASTPATH_NONE)
6003 return 1;
6004
6005 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6006 goto unexpected_vmexit;
6007 #ifdef CONFIG_RETPOLINE
6008 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6009 return kvm_emulate_wrmsr(vcpu);
6010 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6011 return handle_preemption_timer(vcpu);
6012 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6013 return handle_interrupt_window(vcpu);
6014 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6015 return handle_external_interrupt(vcpu);
6016 else if (exit_reason.basic == EXIT_REASON_HLT)
6017 return kvm_emulate_halt(vcpu);
6018 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6019 return handle_ept_misconfig(vcpu);
6020 #endif
6021
6022 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6023 kvm_vmx_max_exit_handlers);
6024 if (!kvm_vmx_exit_handlers[exit_handler_index])
6025 goto unexpected_vmexit;
6026
6027 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6028
6029 unexpected_vmexit:
6030 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6031 exit_reason.full);
6032 dump_vmcs(vcpu);
6033 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6034 vcpu->run->internal.suberror =
6035 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6036 vcpu->run->internal.ndata = 2;
6037 vcpu->run->internal.data[0] = exit_reason.full;
6038 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6039 return 0;
6040 }
6041
6042 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6043 {
6044 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6045
6046 /*
6047 * Even when current exit reason is handled by KVM internally, we
6048 * still need to exit to user space when bus lock detected to inform
6049 * that there is a bus lock in guest.
6050 */
6051 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6052 if (ret > 0)
6053 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6054
6055 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6056 return 0;
6057 }
6058 return ret;
6059 }
6060
6061 /*
6062 * Software based L1D cache flush which is used when microcode providing
6063 * the cache control MSR is not loaded.
6064 *
6065 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6066 * flush it is required to read in 64 KiB because the replacement algorithm
6067 * is not exactly LRU. This could be sized at runtime via topology
6068 * information but as all relevant affected CPUs have 32KiB L1D cache size
6069 * there is no point in doing so.
6070 */
6071 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6072 {
6073 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6074
6075 /*
6076 * This code is only executed when the the flush mode is 'cond' or
6077 * 'always'
6078 */
6079 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6080 bool flush_l1d;
6081
6082 /*
6083 * Clear the per-vcpu flush bit, it gets set again
6084 * either from vcpu_run() or from one of the unsafe
6085 * VMEXIT handlers.
6086 */
6087 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6088 vcpu->arch.l1tf_flush_l1d = false;
6089
6090 /*
6091 * Clear the per-cpu flush bit, it gets set again from
6092 * the interrupt handlers.
6093 */
6094 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6095 kvm_clear_cpu_l1tf_flush_l1d();
6096
6097 if (!flush_l1d)
6098 return;
6099 }
6100
6101 vcpu->stat.l1d_flush++;
6102
6103 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6104 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6105 return;
6106 }
6107
6108 asm volatile(
6109 /* First ensure the pages are in the TLB */
6110 "xorl %%eax, %%eax\n"
6111 ".Lpopulate_tlb:\n\t"
6112 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6113 "addl $4096, %%eax\n\t"
6114 "cmpl %%eax, %[size]\n\t"
6115 "jne .Lpopulate_tlb\n\t"
6116 "xorl %%eax, %%eax\n\t"
6117 "cpuid\n\t"
6118 /* Now fill the cache */
6119 "xorl %%eax, %%eax\n"
6120 ".Lfill_cache:\n"
6121 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6122 "addl $64, %%eax\n\t"
6123 "cmpl %%eax, %[size]\n\t"
6124 "jne .Lfill_cache\n\t"
6125 "lfence\n"
6126 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6127 [size] "r" (size)
6128 : "eax", "ebx", "ecx", "edx");
6129 }
6130
6131 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6132 {
6133 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6134 int tpr_threshold;
6135
6136 if (is_guest_mode(vcpu) &&
6137 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6138 return;
6139
6140 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6141 if (is_guest_mode(vcpu))
6142 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6143 else
6144 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6145 }
6146
6147 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6148 {
6149 struct vcpu_vmx *vmx = to_vmx(vcpu);
6150 u32 sec_exec_control;
6151
6152 if (!lapic_in_kernel(vcpu))
6153 return;
6154
6155 if (!flexpriority_enabled &&
6156 !cpu_has_vmx_virtualize_x2apic_mode())
6157 return;
6158
6159 /* Postpone execution until vmcs01 is the current VMCS. */
6160 if (is_guest_mode(vcpu)) {
6161 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6162 return;
6163 }
6164
6165 sec_exec_control = secondary_exec_controls_get(vmx);
6166 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6167 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6168
6169 switch (kvm_get_apic_mode(vcpu)) {
6170 case LAPIC_MODE_INVALID:
6171 WARN_ONCE(true, "Invalid local APIC state");
6172 break;
6173 case LAPIC_MODE_DISABLED:
6174 break;
6175 case LAPIC_MODE_XAPIC:
6176 if (flexpriority_enabled) {
6177 sec_exec_control |=
6178 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6179 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6180
6181 /*
6182 * Flush the TLB, reloading the APIC access page will
6183 * only do so if its physical address has changed, but
6184 * the guest may have inserted a non-APIC mapping into
6185 * the TLB while the APIC access page was disabled.
6186 */
6187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6188 }
6189 break;
6190 case LAPIC_MODE_X2APIC:
6191 if (cpu_has_vmx_virtualize_x2apic_mode())
6192 sec_exec_control |=
6193 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6194 break;
6195 }
6196 secondary_exec_controls_set(vmx, sec_exec_control);
6197
6198 vmx_update_msr_bitmap(vcpu);
6199 }
6200
6201 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6202 {
6203 struct page *page;
6204
6205 /* Defer reload until vmcs01 is the current VMCS. */
6206 if (is_guest_mode(vcpu)) {
6207 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6208 return;
6209 }
6210
6211 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6212 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6213 return;
6214
6215 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6216 if (is_error_page(page))
6217 return;
6218
6219 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6220 vmx_flush_tlb_current(vcpu);
6221
6222 /*
6223 * Do not pin apic access page in memory, the MMU notifier
6224 * will call us again if it is migrated or swapped out.
6225 */
6226 put_page(page);
6227 }
6228
6229 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6230 {
6231 u16 status;
6232 u8 old;
6233
6234 if (max_isr == -1)
6235 max_isr = 0;
6236
6237 status = vmcs_read16(GUEST_INTR_STATUS);
6238 old = status >> 8;
6239 if (max_isr != old) {
6240 status &= 0xff;
6241 status |= max_isr << 8;
6242 vmcs_write16(GUEST_INTR_STATUS, status);
6243 }
6244 }
6245
6246 static void vmx_set_rvi(int vector)
6247 {
6248 u16 status;
6249 u8 old;
6250
6251 if (vector == -1)
6252 vector = 0;
6253
6254 status = vmcs_read16(GUEST_INTR_STATUS);
6255 old = (u8)status & 0xff;
6256 if ((u8)vector != old) {
6257 status &= ~0xff;
6258 status |= (u8)vector;
6259 vmcs_write16(GUEST_INTR_STATUS, status);
6260 }
6261 }
6262
6263 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6264 {
6265 /*
6266 * When running L2, updating RVI is only relevant when
6267 * vmcs12 virtual-interrupt-delivery enabled.
6268 * However, it can be enabled only when L1 also
6269 * intercepts external-interrupts and in that case
6270 * we should not update vmcs02 RVI but instead intercept
6271 * interrupt. Therefore, do nothing when running L2.
6272 */
6273 if (!is_guest_mode(vcpu))
6274 vmx_set_rvi(max_irr);
6275 }
6276
6277 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6278 {
6279 struct vcpu_vmx *vmx = to_vmx(vcpu);
6280 int max_irr;
6281 bool max_irr_updated;
6282
6283 if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6284 return -EIO;
6285
6286 if (pi_test_on(&vmx->pi_desc)) {
6287 pi_clear_on(&vmx->pi_desc);
6288 /*
6289 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6290 * But on x86 this is just a compiler barrier anyway.
6291 */
6292 smp_mb__after_atomic();
6293 max_irr_updated =
6294 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6295
6296 /*
6297 * If we are running L2 and L1 has a new pending interrupt
6298 * which can be injected, we should re-evaluate
6299 * what should be done with this new L1 interrupt.
6300 * If L1 intercepts external-interrupts, we should
6301 * exit from L2 to L1. Otherwise, interrupt should be
6302 * delivered directly to L2.
6303 */
6304 if (is_guest_mode(vcpu) && max_irr_updated) {
6305 if (nested_exit_on_intr(vcpu))
6306 kvm_vcpu_exiting_guest_mode(vcpu);
6307 else
6308 kvm_make_request(KVM_REQ_EVENT, vcpu);
6309 }
6310 } else {
6311 max_irr = kvm_lapic_find_highest_irr(vcpu);
6312 }
6313 vmx_hwapic_irr_update(vcpu, max_irr);
6314 return max_irr;
6315 }
6316
6317 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6318 {
6319 if (!kvm_vcpu_apicv_active(vcpu))
6320 return;
6321
6322 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6323 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6324 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6325 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6326 }
6327
6328 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6329 {
6330 struct vcpu_vmx *vmx = to_vmx(vcpu);
6331
6332 pi_clear_on(&vmx->pi_desc);
6333 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6334 }
6335
6336 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6337
6338 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6339 unsigned long entry)
6340 {
6341 kvm_before_interrupt(vcpu);
6342 vmx_do_interrupt_nmi_irqoff(entry);
6343 kvm_after_interrupt(vcpu);
6344 }
6345
6346 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6347 {
6348 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6349 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6350
6351 /* if exit due to PF check for async PF */
6352 if (is_page_fault(intr_info))
6353 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6354 /* Handle machine checks before interrupts are enabled */
6355 else if (is_machine_check(intr_info))
6356 kvm_machine_check();
6357 /* We need to handle NMIs before interrupts are enabled */
6358 else if (is_nmi(intr_info))
6359 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6360 }
6361
6362 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6363 {
6364 u32 intr_info = vmx_get_intr_info(vcpu);
6365 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6366 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6367
6368 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6369 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6370 return;
6371
6372 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6373 }
6374
6375 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6376 {
6377 struct vcpu_vmx *vmx = to_vmx(vcpu);
6378
6379 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6380 handle_external_interrupt_irqoff(vcpu);
6381 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6382 handle_exception_nmi_irqoff(vmx);
6383 }
6384
6385 /*
6386 * The kvm parameter can be NULL (module initialization, or invocation before
6387 * VM creation). Be sure to check the kvm parameter before using it.
6388 */
6389 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6390 {
6391 switch (index) {
6392 case MSR_IA32_SMBASE:
6393 /*
6394 * We cannot do SMM unless we can run the guest in big
6395 * real mode.
6396 */
6397 return enable_unrestricted_guest || emulate_invalid_guest_state;
6398 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6399 return nested;
6400 case MSR_AMD64_VIRT_SPEC_CTRL:
6401 /* This is AMD only. */
6402 return false;
6403 default:
6404 return true;
6405 }
6406 }
6407
6408 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6409 {
6410 u32 exit_intr_info;
6411 bool unblock_nmi;
6412 u8 vector;
6413 bool idtv_info_valid;
6414
6415 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6416
6417 if (enable_vnmi) {
6418 if (vmx->loaded_vmcs->nmi_known_unmasked)
6419 return;
6420
6421 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6422 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6423 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6424 /*
6425 * SDM 3: 27.7.1.2 (September 2008)
6426 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6427 * a guest IRET fault.
6428 * SDM 3: 23.2.2 (September 2008)
6429 * Bit 12 is undefined in any of the following cases:
6430 * If the VM exit sets the valid bit in the IDT-vectoring
6431 * information field.
6432 * If the VM exit is due to a double fault.
6433 */
6434 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6435 vector != DF_VECTOR && !idtv_info_valid)
6436 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6437 GUEST_INTR_STATE_NMI);
6438 else
6439 vmx->loaded_vmcs->nmi_known_unmasked =
6440 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6441 & GUEST_INTR_STATE_NMI);
6442 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6443 vmx->loaded_vmcs->vnmi_blocked_time +=
6444 ktime_to_ns(ktime_sub(ktime_get(),
6445 vmx->loaded_vmcs->entry_time));
6446 }
6447
6448 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6449 u32 idt_vectoring_info,
6450 int instr_len_field,
6451 int error_code_field)
6452 {
6453 u8 vector;
6454 int type;
6455 bool idtv_info_valid;
6456
6457 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6458
6459 vcpu->arch.nmi_injected = false;
6460 kvm_clear_exception_queue(vcpu);
6461 kvm_clear_interrupt_queue(vcpu);
6462
6463 if (!idtv_info_valid)
6464 return;
6465
6466 kvm_make_request(KVM_REQ_EVENT, vcpu);
6467
6468 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6469 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6470
6471 switch (type) {
6472 case INTR_TYPE_NMI_INTR:
6473 vcpu->arch.nmi_injected = true;
6474 /*
6475 * SDM 3: 27.7.1.2 (September 2008)
6476 * Clear bit "block by NMI" before VM entry if a NMI
6477 * delivery faulted.
6478 */
6479 vmx_set_nmi_mask(vcpu, false);
6480 break;
6481 case INTR_TYPE_SOFT_EXCEPTION:
6482 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6483 fallthrough;
6484 case INTR_TYPE_HARD_EXCEPTION:
6485 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6486 u32 err = vmcs_read32(error_code_field);
6487 kvm_requeue_exception_e(vcpu, vector, err);
6488 } else
6489 kvm_requeue_exception(vcpu, vector);
6490 break;
6491 case INTR_TYPE_SOFT_INTR:
6492 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6493 fallthrough;
6494 case INTR_TYPE_EXT_INTR:
6495 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6496 break;
6497 default:
6498 break;
6499 }
6500 }
6501
6502 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6503 {
6504 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6505 VM_EXIT_INSTRUCTION_LEN,
6506 IDT_VECTORING_ERROR_CODE);
6507 }
6508
6509 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6510 {
6511 __vmx_complete_interrupts(vcpu,
6512 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6513 VM_ENTRY_INSTRUCTION_LEN,
6514 VM_ENTRY_EXCEPTION_ERROR_CODE);
6515
6516 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6517 }
6518
6519 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6520 {
6521 int i, nr_msrs;
6522 struct perf_guest_switch_msr *msrs;
6523
6524 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6525 msrs = perf_guest_get_msrs(&nr_msrs);
6526 if (!msrs)
6527 return;
6528
6529 for (i = 0; i < nr_msrs; i++)
6530 if (msrs[i].host == msrs[i].guest)
6531 clear_atomic_switch_msr(vmx, msrs[i].msr);
6532 else
6533 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6534 msrs[i].host, false);
6535 }
6536
6537 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6538 {
6539 struct vcpu_vmx *vmx = to_vmx(vcpu);
6540 u64 tscl;
6541 u32 delta_tsc;
6542
6543 if (vmx->req_immediate_exit) {
6544 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6545 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6546 } else if (vmx->hv_deadline_tsc != -1) {
6547 tscl = rdtsc();
6548 if (vmx->hv_deadline_tsc > tscl)
6549 /* set_hv_timer ensures the delta fits in 32-bits */
6550 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6551 cpu_preemption_timer_multi);
6552 else
6553 delta_tsc = 0;
6554
6555 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6556 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6557 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6558 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6559 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6560 }
6561 }
6562
6563 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6564 {
6565 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6566 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6567 vmcs_writel(HOST_RSP, host_rsp);
6568 }
6569 }
6570
6571 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6572 {
6573 switch (to_vmx(vcpu)->exit_reason.basic) {
6574 case EXIT_REASON_MSR_WRITE:
6575 return handle_fastpath_set_msr_irqoff(vcpu);
6576 case EXIT_REASON_PREEMPTION_TIMER:
6577 return handle_fastpath_preemption_timer(vcpu);
6578 default:
6579 return EXIT_FASTPATH_NONE;
6580 }
6581 }
6582
6583 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6584 struct vcpu_vmx *vmx)
6585 {
6586 kvm_guest_enter_irqoff();
6587
6588 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6589 if (static_branch_unlikely(&vmx_l1d_should_flush))
6590 vmx_l1d_flush(vcpu);
6591 else if (static_branch_unlikely(&mds_user_clear))
6592 mds_clear_cpu_buffers();
6593
6594 if (vcpu->arch.cr2 != native_read_cr2())
6595 native_write_cr2(vcpu->arch.cr2);
6596
6597 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6598 vmx->loaded_vmcs->launched);
6599
6600 vcpu->arch.cr2 = native_read_cr2();
6601
6602 kvm_guest_exit_irqoff();
6603 }
6604
6605 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6606 {
6607 struct vcpu_vmx *vmx = to_vmx(vcpu);
6608 unsigned long cr3, cr4;
6609
6610 /* Record the guest's net vcpu time for enforced NMI injections. */
6611 if (unlikely(!enable_vnmi &&
6612 vmx->loaded_vmcs->soft_vnmi_blocked))
6613 vmx->loaded_vmcs->entry_time = ktime_get();
6614
6615 /* Don't enter VMX if guest state is invalid, let the exit handler
6616 start emulation until we arrive back to a valid state */
6617 if (vmx->emulation_required)
6618 return EXIT_FASTPATH_NONE;
6619
6620 trace_kvm_entry(vcpu);
6621
6622 if (vmx->ple_window_dirty) {
6623 vmx->ple_window_dirty = false;
6624 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6625 }
6626
6627 /*
6628 * We did this in prepare_switch_to_guest, because it needs to
6629 * be within srcu_read_lock.
6630 */
6631 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6632
6633 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6634 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6635 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6636 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6637
6638 cr3 = __get_current_cr3_fast();
6639 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6640 vmcs_writel(HOST_CR3, cr3);
6641 vmx->loaded_vmcs->host_state.cr3 = cr3;
6642 }
6643
6644 cr4 = cr4_read_shadow();
6645 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6646 vmcs_writel(HOST_CR4, cr4);
6647 vmx->loaded_vmcs->host_state.cr4 = cr4;
6648 }
6649
6650 /* When single-stepping over STI and MOV SS, we must clear the
6651 * corresponding interruptibility bits in the guest state. Otherwise
6652 * vmentry fails as it then expects bit 14 (BS) in pending debug
6653 * exceptions being set, but that's not correct for the guest debugging
6654 * case. */
6655 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6656 vmx_set_interrupt_shadow(vcpu, 0);
6657
6658 kvm_load_guest_xsave_state(vcpu);
6659
6660 pt_guest_enter(vmx);
6661
6662 atomic_switch_perf_msrs(vmx);
6663 if (intel_pmu_lbr_is_enabled(vcpu))
6664 vmx_passthrough_lbr_msrs(vcpu);
6665
6666 if (enable_preemption_timer)
6667 vmx_update_hv_timer(vcpu);
6668
6669 kvm_wait_lapic_expire(vcpu);
6670
6671 /*
6672 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6673 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6674 * is no need to worry about the conditional branch over the wrmsr
6675 * being speculatively taken.
6676 */
6677 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6678
6679 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6680 vmx_vcpu_enter_exit(vcpu, vmx);
6681
6682 /*
6683 * We do not use IBRS in the kernel. If this vCPU has used the
6684 * SPEC_CTRL MSR it may have left it on; save the value and
6685 * turn it off. This is much more efficient than blindly adding
6686 * it to the atomic save/restore list. Especially as the former
6687 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6688 *
6689 * For non-nested case:
6690 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6691 * save it.
6692 *
6693 * For nested case:
6694 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6695 * save it.
6696 */
6697 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6698 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6699
6700 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6701
6702 /* All fields are clean at this point */
6703 if (static_branch_unlikely(&enable_evmcs)) {
6704 current_evmcs->hv_clean_fields |=
6705 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6706
6707 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6708 }
6709
6710 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6711 if (vmx->host_debugctlmsr)
6712 update_debugctlmsr(vmx->host_debugctlmsr);
6713
6714 #ifndef CONFIG_X86_64
6715 /*
6716 * The sysexit path does not restore ds/es, so we must set them to
6717 * a reasonable value ourselves.
6718 *
6719 * We can't defer this to vmx_prepare_switch_to_host() since that
6720 * function may be executed in interrupt context, which saves and
6721 * restore segments around it, nullifying its effect.
6722 */
6723 loadsegment(ds, __USER_DS);
6724 loadsegment(es, __USER_DS);
6725 #endif
6726
6727 vmx_register_cache_reset(vcpu);
6728
6729 pt_guest_exit(vmx);
6730
6731 kvm_load_host_xsave_state(vcpu);
6732
6733 if (is_guest_mode(vcpu)) {
6734 /*
6735 * Track VMLAUNCH/VMRESUME that have made past guest state
6736 * checking.
6737 */
6738 if (vmx->nested.nested_run_pending &&
6739 !vmx->exit_reason.failed_vmentry)
6740 ++vcpu->stat.nested_run;
6741
6742 vmx->nested.nested_run_pending = 0;
6743 }
6744
6745 vmx->idt_vectoring_info = 0;
6746
6747 if (unlikely(vmx->fail)) {
6748 vmx->exit_reason.full = 0xdead;
6749 return EXIT_FASTPATH_NONE;
6750 }
6751
6752 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6753 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6754 kvm_machine_check();
6755
6756 if (likely(!vmx->exit_reason.failed_vmentry))
6757 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6758
6759 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6760
6761 if (unlikely(vmx->exit_reason.failed_vmentry))
6762 return EXIT_FASTPATH_NONE;
6763
6764 vmx->loaded_vmcs->launched = 1;
6765
6766 vmx_recover_nmi_blocking(vmx);
6767 vmx_complete_interrupts(vmx);
6768
6769 if (is_guest_mode(vcpu))
6770 return EXIT_FASTPATH_NONE;
6771
6772 return vmx_exit_handlers_fastpath(vcpu);
6773 }
6774
6775 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6776 {
6777 struct vcpu_vmx *vmx = to_vmx(vcpu);
6778
6779 if (enable_pml)
6780 vmx_destroy_pml_buffer(vmx);
6781 free_vpid(vmx->vpid);
6782 nested_vmx_free_vcpu(vcpu);
6783 free_loaded_vmcs(vmx->loaded_vmcs);
6784 }
6785
6786 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6787 {
6788 struct vmx_uret_msr *tsx_ctrl;
6789 struct vcpu_vmx *vmx;
6790 int i, cpu, err;
6791
6792 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6793 vmx = to_vmx(vcpu);
6794
6795 err = -ENOMEM;
6796
6797 vmx->vpid = allocate_vpid();
6798
6799 /*
6800 * If PML is turned on, failure on enabling PML just results in failure
6801 * of creating the vcpu, therefore we can simplify PML logic (by
6802 * avoiding dealing with cases, such as enabling PML partially on vcpus
6803 * for the guest), etc.
6804 */
6805 if (enable_pml) {
6806 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6807 if (!vmx->pml_pg)
6808 goto free_vpid;
6809 }
6810
6811 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6812 vmx->guest_uret_msrs[i].data = 0;
6813 vmx->guest_uret_msrs[i].mask = -1ull;
6814 }
6815 if (boot_cpu_has(X86_FEATURE_RTM)) {
6816 /*
6817 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6818 * Keep the host value unchanged to avoid changing CPUID bits
6819 * under the host kernel's feet.
6820 */
6821 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6822 if (tsx_ctrl)
6823 vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6824 }
6825
6826 err = alloc_loaded_vmcs(&vmx->vmcs01);
6827 if (err < 0)
6828 goto free_pml;
6829
6830 /* The MSR bitmap starts with all ones */
6831 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6832 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6833
6834 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6835 #ifdef CONFIG_X86_64
6836 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6837 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6838 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6839 #endif
6840 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6841 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6842 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6843 if (kvm_cstate_in_guest(vcpu->kvm)) {
6844 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6845 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6846 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6847 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6848 }
6849 vmx->msr_bitmap_mode = 0;
6850
6851 vmx->loaded_vmcs = &vmx->vmcs01;
6852 cpu = get_cpu();
6853 vmx_vcpu_load(vcpu, cpu);
6854 vcpu->cpu = cpu;
6855 init_vmcs(vmx);
6856 vmx_vcpu_put(vcpu);
6857 put_cpu();
6858 if (cpu_need_virtualize_apic_accesses(vcpu)) {
6859 err = alloc_apic_access_page(vcpu->kvm);
6860 if (err)
6861 goto free_vmcs;
6862 }
6863
6864 if (enable_ept && !enable_unrestricted_guest) {
6865 err = init_rmode_identity_map(vcpu->kvm);
6866 if (err)
6867 goto free_vmcs;
6868 }
6869
6870 if (nested)
6871 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6872 else
6873 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6874
6875 vcpu_setup_sgx_lepubkeyhash(vcpu);
6876
6877 vmx->nested.posted_intr_nv = -1;
6878 vmx->nested.current_vmptr = -1ull;
6879 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
6880
6881 vcpu->arch.microcode_version = 0x100000000ULL;
6882 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6883
6884 /*
6885 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6886 * or POSTED_INTR_WAKEUP_VECTOR.
6887 */
6888 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6889 vmx->pi_desc.sn = 1;
6890
6891 return 0;
6892
6893 free_vmcs:
6894 free_loaded_vmcs(vmx->loaded_vmcs);
6895 free_pml:
6896 vmx_destroy_pml_buffer(vmx);
6897 free_vpid:
6898 free_vpid(vmx->vpid);
6899 return err;
6900 }
6901
6902 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6903 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6904
6905 static int vmx_vm_init(struct kvm *kvm)
6906 {
6907 if (!ple_gap)
6908 kvm->arch.pause_in_guest = true;
6909
6910 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6911 switch (l1tf_mitigation) {
6912 case L1TF_MITIGATION_OFF:
6913 case L1TF_MITIGATION_FLUSH_NOWARN:
6914 /* 'I explicitly don't care' is set */
6915 break;
6916 case L1TF_MITIGATION_FLUSH:
6917 case L1TF_MITIGATION_FLUSH_NOSMT:
6918 case L1TF_MITIGATION_FULL:
6919 /*
6920 * Warn upon starting the first VM in a potentially
6921 * insecure environment.
6922 */
6923 if (sched_smt_active())
6924 pr_warn_once(L1TF_MSG_SMT);
6925 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6926 pr_warn_once(L1TF_MSG_L1D);
6927 break;
6928 case L1TF_MITIGATION_FULL_FORCE:
6929 /* Flush is enforced */
6930 break;
6931 }
6932 }
6933 return 0;
6934 }
6935
6936 static int __init vmx_check_processor_compat(void)
6937 {
6938 struct vmcs_config vmcs_conf;
6939 struct vmx_capability vmx_cap;
6940
6941 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6942 !this_cpu_has(X86_FEATURE_VMX)) {
6943 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6944 return -EIO;
6945 }
6946
6947 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6948 return -EIO;
6949 if (nested)
6950 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6951 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6952 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6953 smp_processor_id());
6954 return -EIO;
6955 }
6956 return 0;
6957 }
6958
6959 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6960 {
6961 u8 cache;
6962 u64 ipat = 0;
6963
6964 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6965 * memory aliases with conflicting memory types and sometimes MCEs.
6966 * We have to be careful as to what are honored and when.
6967 *
6968 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
6969 * UC. The effective memory type is UC or WC depending on guest PAT.
6970 * This was historically the source of MCEs and we want to be
6971 * conservative.
6972 *
6973 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6974 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
6975 * EPT memory type is set to WB. The effective memory type is forced
6976 * WB.
6977 *
6978 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
6979 * EPT memory type is used to emulate guest CD/MTRR.
6980 */
6981
6982 if (is_mmio) {
6983 cache = MTRR_TYPE_UNCACHABLE;
6984 goto exit;
6985 }
6986
6987 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6988 ipat = VMX_EPT_IPAT_BIT;
6989 cache = MTRR_TYPE_WRBACK;
6990 goto exit;
6991 }
6992
6993 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6994 ipat = VMX_EPT_IPAT_BIT;
6995 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6996 cache = MTRR_TYPE_WRBACK;
6997 else
6998 cache = MTRR_TYPE_UNCACHABLE;
6999 goto exit;
7000 }
7001
7002 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7003
7004 exit:
7005 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7006 }
7007
7008 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7009 {
7010 /*
7011 * These bits in the secondary execution controls field
7012 * are dynamic, the others are mostly based on the hypervisor
7013 * architecture and the guest's CPUID. Do not touch the
7014 * dynamic bits.
7015 */
7016 u32 mask =
7017 SECONDARY_EXEC_SHADOW_VMCS |
7018 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7019 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7020 SECONDARY_EXEC_DESC;
7021
7022 u32 new_ctl = vmx->secondary_exec_control;
7023 u32 cur_ctl = secondary_exec_controls_get(vmx);
7024
7025 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7026 }
7027
7028 /*
7029 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7030 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7031 */
7032 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7033 {
7034 struct vcpu_vmx *vmx = to_vmx(vcpu);
7035 struct kvm_cpuid_entry2 *entry;
7036
7037 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7038 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7039
7040 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7041 if (entry && (entry->_reg & (_cpuid_mask))) \
7042 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7043 } while (0)
7044
7045 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7046 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7047 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7048 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7049 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7050 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7051 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7052 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7053 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7054 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7055 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7056 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7057 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7058 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7059 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7060
7061 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7062 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7063 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7064 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7065 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7066 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7067 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7068
7069 #undef cr4_fixed1_update
7070 }
7071
7072 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7073 {
7074 struct vcpu_vmx *vmx = to_vmx(vcpu);
7075
7076 if (kvm_mpx_supported()) {
7077 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7078
7079 if (mpx_enabled) {
7080 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7081 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7082 } else {
7083 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7084 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7085 }
7086 }
7087 }
7088
7089 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7090 {
7091 struct vcpu_vmx *vmx = to_vmx(vcpu);
7092 struct kvm_cpuid_entry2 *best = NULL;
7093 int i;
7094
7095 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7096 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7097 if (!best)
7098 return;
7099 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7100 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7101 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7102 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7103 }
7104
7105 /* Get the number of configurable Address Ranges for filtering */
7106 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7107 PT_CAP_num_address_ranges);
7108
7109 /* Initialize and clear the no dependency bits */
7110 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7111 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7112
7113 /*
7114 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7115 * will inject an #GP
7116 */
7117 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7118 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7119
7120 /*
7121 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7122 * PSBFreq can be set
7123 */
7124 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7125 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7126 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7127
7128 /*
7129 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7130 * MTCFreq can be set
7131 */
7132 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7133 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7134 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7135
7136 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7137 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7138 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7139 RTIT_CTL_PTW_EN);
7140
7141 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7142 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7143 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7144
7145 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7146 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7147 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7148
7149 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7150 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7151 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7152
7153 /* unmask address range configure area */
7154 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7155 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7156 }
7157
7158 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7159 {
7160 struct vcpu_vmx *vmx = to_vmx(vcpu);
7161
7162 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7163 vcpu->arch.xsaves_enabled = false;
7164
7165 if (cpu_has_secondary_exec_ctrls()) {
7166 vmx_compute_secondary_exec_control(vmx);
7167 vmcs_set_secondary_exec_control(vmx);
7168 }
7169
7170 if (nested_vmx_allowed(vcpu))
7171 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7172 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7173 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7174 else
7175 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7176 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7177 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7178
7179 if (nested_vmx_allowed(vcpu)) {
7180 nested_vmx_cr_fixed1_bits_update(vcpu);
7181 nested_vmx_entry_exit_ctls_update(vcpu);
7182 }
7183
7184 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7185 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7186 update_intel_pt_cfg(vcpu);
7187
7188 if (boot_cpu_has(X86_FEATURE_RTM)) {
7189 struct vmx_uret_msr *msr;
7190 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7191 if (msr) {
7192 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7193 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7194 }
7195 }
7196
7197 set_cr4_guest_host_mask(vmx);
7198
7199 vmx_write_encls_bitmap(vcpu, NULL);
7200 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7201 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7202 else
7203 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7204
7205 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7206 vmx->msr_ia32_feature_control_valid_bits |=
7207 FEAT_CTL_SGX_LC_ENABLED;
7208 else
7209 vmx->msr_ia32_feature_control_valid_bits &=
7210 ~FEAT_CTL_SGX_LC_ENABLED;
7211
7212 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7213 vmx_update_exception_bitmap(vcpu);
7214 }
7215
7216 static __init void vmx_set_cpu_caps(void)
7217 {
7218 kvm_set_cpu_caps();
7219
7220 /* CPUID 0x1 */
7221 if (nested)
7222 kvm_cpu_cap_set(X86_FEATURE_VMX);
7223
7224 /* CPUID 0x7 */
7225 if (kvm_mpx_supported())
7226 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7227 if (!cpu_has_vmx_invpcid())
7228 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7229 if (vmx_pt_mode_is_host_guest())
7230 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7231
7232 if (!enable_sgx) {
7233 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7234 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7235 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7236 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7237 }
7238
7239 if (vmx_umip_emulated())
7240 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7241
7242 /* CPUID 0xD.1 */
7243 supported_xss = 0;
7244 if (!cpu_has_vmx_xsaves())
7245 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7246
7247 /* CPUID 0x80000001 and 0x7 (RDPID) */
7248 if (!cpu_has_vmx_rdtscp()) {
7249 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7250 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7251 }
7252
7253 if (cpu_has_vmx_waitpkg())
7254 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7255 }
7256
7257 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7258 {
7259 to_vmx(vcpu)->req_immediate_exit = true;
7260 }
7261
7262 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7263 struct x86_instruction_info *info)
7264 {
7265 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7266 unsigned short port;
7267 bool intercept;
7268 int size;
7269
7270 if (info->intercept == x86_intercept_in ||
7271 info->intercept == x86_intercept_ins) {
7272 port = info->src_val;
7273 size = info->dst_bytes;
7274 } else {
7275 port = info->dst_val;
7276 size = info->src_bytes;
7277 }
7278
7279 /*
7280 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7281 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7282 * control.
7283 *
7284 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7285 */
7286 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7287 intercept = nested_cpu_has(vmcs12,
7288 CPU_BASED_UNCOND_IO_EXITING);
7289 else
7290 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7291
7292 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7293 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7294 }
7295
7296 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7297 struct x86_instruction_info *info,
7298 enum x86_intercept_stage stage,
7299 struct x86_exception *exception)
7300 {
7301 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7302
7303 switch (info->intercept) {
7304 /*
7305 * RDPID causes #UD if disabled through secondary execution controls.
7306 * Because it is marked as EmulateOnUD, we need to intercept it here.
7307 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7308 */
7309 case x86_intercept_rdpid:
7310 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7311 exception->vector = UD_VECTOR;
7312 exception->error_code_valid = false;
7313 return X86EMUL_PROPAGATE_FAULT;
7314 }
7315 break;
7316
7317 case x86_intercept_in:
7318 case x86_intercept_ins:
7319 case x86_intercept_out:
7320 case x86_intercept_outs:
7321 return vmx_check_intercept_io(vcpu, info);
7322
7323 case x86_intercept_lgdt:
7324 case x86_intercept_lidt:
7325 case x86_intercept_lldt:
7326 case x86_intercept_ltr:
7327 case x86_intercept_sgdt:
7328 case x86_intercept_sidt:
7329 case x86_intercept_sldt:
7330 case x86_intercept_str:
7331 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7332 return X86EMUL_CONTINUE;
7333
7334 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7335 break;
7336
7337 /* TODO: check more intercepts... */
7338 default:
7339 break;
7340 }
7341
7342 return X86EMUL_UNHANDLEABLE;
7343 }
7344
7345 #ifdef CONFIG_X86_64
7346 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7347 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7348 u64 divisor, u64 *result)
7349 {
7350 u64 low = a << shift, high = a >> (64 - shift);
7351
7352 /* To avoid the overflow on divq */
7353 if (high >= divisor)
7354 return 1;
7355
7356 /* Low hold the result, high hold rem which is discarded */
7357 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7358 "rm" (divisor), "0" (low), "1" (high));
7359 *result = low;
7360
7361 return 0;
7362 }
7363
7364 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7365 bool *expired)
7366 {
7367 struct vcpu_vmx *vmx;
7368 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7369 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7370
7371 vmx = to_vmx(vcpu);
7372 tscl = rdtsc();
7373 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7374 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7375 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7376 ktimer->timer_advance_ns);
7377
7378 if (delta_tsc > lapic_timer_advance_cycles)
7379 delta_tsc -= lapic_timer_advance_cycles;
7380 else
7381 delta_tsc = 0;
7382
7383 /* Convert to host delta tsc if tsc scaling is enabled */
7384 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7385 delta_tsc && u64_shl_div_u64(delta_tsc,
7386 kvm_tsc_scaling_ratio_frac_bits,
7387 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7388 return -ERANGE;
7389
7390 /*
7391 * If the delta tsc can't fit in the 32 bit after the multi shift,
7392 * we can't use the preemption timer.
7393 * It's possible that it fits on later vmentries, but checking
7394 * on every vmentry is costly so we just use an hrtimer.
7395 */
7396 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7397 return -ERANGE;
7398
7399 vmx->hv_deadline_tsc = tscl + delta_tsc;
7400 *expired = !delta_tsc;
7401 return 0;
7402 }
7403
7404 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7405 {
7406 to_vmx(vcpu)->hv_deadline_tsc = -1;
7407 }
7408 #endif
7409
7410 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7411 {
7412 if (!kvm_pause_in_guest(vcpu->kvm))
7413 shrink_ple_window(vcpu);
7414 }
7415
7416 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7417 {
7418 struct vcpu_vmx *vmx = to_vmx(vcpu);
7419
7420 if (is_guest_mode(vcpu)) {
7421 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7422 return;
7423 }
7424
7425 /*
7426 * Note, cpu_dirty_logging_count can be changed concurrent with this
7427 * code, but in that case another update request will be made and so
7428 * the guest will never run with a stale PML value.
7429 */
7430 if (vcpu->kvm->arch.cpu_dirty_logging_count)
7431 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7432 else
7433 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7434 }
7435
7436 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7437 {
7438 if (pi_pre_block(vcpu))
7439 return 1;
7440
7441 if (kvm_lapic_hv_timer_in_use(vcpu))
7442 kvm_lapic_switch_to_sw_timer(vcpu);
7443
7444 return 0;
7445 }
7446
7447 static void vmx_post_block(struct kvm_vcpu *vcpu)
7448 {
7449 if (kvm_x86_ops.set_hv_timer)
7450 kvm_lapic_switch_to_hv_timer(vcpu);
7451
7452 pi_post_block(vcpu);
7453 }
7454
7455 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7456 {
7457 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7458 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7459 FEAT_CTL_LMCE_ENABLED;
7460 else
7461 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7462 ~FEAT_CTL_LMCE_ENABLED;
7463 }
7464
7465 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7466 {
7467 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7468 if (to_vmx(vcpu)->nested.nested_run_pending)
7469 return -EBUSY;
7470 return !is_smm(vcpu);
7471 }
7472
7473 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7474 {
7475 struct vcpu_vmx *vmx = to_vmx(vcpu);
7476
7477 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7478 if (vmx->nested.smm.guest_mode)
7479 nested_vmx_vmexit(vcpu, -1, 0, 0);
7480
7481 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7482 vmx->nested.vmxon = false;
7483 vmx_clear_hlt(vcpu);
7484 return 0;
7485 }
7486
7487 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7488 {
7489 struct vcpu_vmx *vmx = to_vmx(vcpu);
7490 int ret;
7491
7492 if (vmx->nested.smm.vmxon) {
7493 vmx->nested.vmxon = true;
7494 vmx->nested.smm.vmxon = false;
7495 }
7496
7497 if (vmx->nested.smm.guest_mode) {
7498 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7499 if (ret)
7500 return ret;
7501
7502 vmx->nested.smm.guest_mode = false;
7503 }
7504 return 0;
7505 }
7506
7507 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7508 {
7509 /* RSM will cause a vmexit anyway. */
7510 }
7511
7512 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7513 {
7514 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7515 }
7516
7517 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7518 {
7519 if (is_guest_mode(vcpu)) {
7520 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7521
7522 if (hrtimer_try_to_cancel(timer) == 1)
7523 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7524 }
7525 }
7526
7527 static void hardware_unsetup(void)
7528 {
7529 if (nested)
7530 nested_vmx_hardware_unsetup();
7531
7532 free_kvm_area();
7533 }
7534
7535 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7536 {
7537 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7538 BIT(APICV_INHIBIT_REASON_HYPERV);
7539
7540 return supported & BIT(bit);
7541 }
7542
7543 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7544 .hardware_unsetup = hardware_unsetup,
7545
7546 .hardware_enable = hardware_enable,
7547 .hardware_disable = hardware_disable,
7548 .cpu_has_accelerated_tpr = report_flexpriority,
7549 .has_emulated_msr = vmx_has_emulated_msr,
7550
7551 .vm_size = sizeof(struct kvm_vmx),
7552 .vm_init = vmx_vm_init,
7553
7554 .vcpu_create = vmx_create_vcpu,
7555 .vcpu_free = vmx_free_vcpu,
7556 .vcpu_reset = vmx_vcpu_reset,
7557
7558 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7559 .vcpu_load = vmx_vcpu_load,
7560 .vcpu_put = vmx_vcpu_put,
7561
7562 .update_exception_bitmap = vmx_update_exception_bitmap,
7563 .get_msr_feature = vmx_get_msr_feature,
7564 .get_msr = vmx_get_msr,
7565 .set_msr = vmx_set_msr,
7566 .get_segment_base = vmx_get_segment_base,
7567 .get_segment = vmx_get_segment,
7568 .set_segment = vmx_set_segment,
7569 .get_cpl = vmx_get_cpl,
7570 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7571 .set_cr0 = vmx_set_cr0,
7572 .is_valid_cr4 = vmx_is_valid_cr4,
7573 .set_cr4 = vmx_set_cr4,
7574 .set_efer = vmx_set_efer,
7575 .get_idt = vmx_get_idt,
7576 .set_idt = vmx_set_idt,
7577 .get_gdt = vmx_get_gdt,
7578 .set_gdt = vmx_set_gdt,
7579 .set_dr7 = vmx_set_dr7,
7580 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7581 .cache_reg = vmx_cache_reg,
7582 .get_rflags = vmx_get_rflags,
7583 .set_rflags = vmx_set_rflags,
7584
7585 .tlb_flush_all = vmx_flush_tlb_all,
7586 .tlb_flush_current = vmx_flush_tlb_current,
7587 .tlb_flush_gva = vmx_flush_tlb_gva,
7588 .tlb_flush_guest = vmx_flush_tlb_guest,
7589
7590 .run = vmx_vcpu_run,
7591 .handle_exit = vmx_handle_exit,
7592 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7593 .update_emulated_instruction = vmx_update_emulated_instruction,
7594 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7595 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7596 .patch_hypercall = vmx_patch_hypercall,
7597 .set_irq = vmx_inject_irq,
7598 .set_nmi = vmx_inject_nmi,
7599 .queue_exception = vmx_queue_exception,
7600 .cancel_injection = vmx_cancel_injection,
7601 .interrupt_allowed = vmx_interrupt_allowed,
7602 .nmi_allowed = vmx_nmi_allowed,
7603 .get_nmi_mask = vmx_get_nmi_mask,
7604 .set_nmi_mask = vmx_set_nmi_mask,
7605 .enable_nmi_window = vmx_enable_nmi_window,
7606 .enable_irq_window = vmx_enable_irq_window,
7607 .update_cr8_intercept = vmx_update_cr8_intercept,
7608 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7609 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7610 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7611 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7612 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7613 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7614 .hwapic_irr_update = vmx_hwapic_irr_update,
7615 .hwapic_isr_update = vmx_hwapic_isr_update,
7616 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7617 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7618 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7619 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7620
7621 .set_tss_addr = vmx_set_tss_addr,
7622 .set_identity_map_addr = vmx_set_identity_map_addr,
7623 .get_mt_mask = vmx_get_mt_mask,
7624
7625 .get_exit_info = vmx_get_exit_info,
7626
7627 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7628
7629 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7630
7631 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7632 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7633 .write_tsc_offset = vmx_write_tsc_offset,
7634 .write_tsc_multiplier = vmx_write_tsc_multiplier,
7635
7636 .load_mmu_pgd = vmx_load_mmu_pgd,
7637
7638 .check_intercept = vmx_check_intercept,
7639 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7640
7641 .request_immediate_exit = vmx_request_immediate_exit,
7642
7643 .sched_in = vmx_sched_in,
7644
7645 .cpu_dirty_log_size = PML_ENTITY_NUM,
7646 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7647
7648 .pre_block = vmx_pre_block,
7649 .post_block = vmx_post_block,
7650
7651 .pmu_ops = &intel_pmu_ops,
7652 .nested_ops = &vmx_nested_ops,
7653
7654 .update_pi_irte = pi_update_irte,
7655 .start_assignment = vmx_pi_start_assignment,
7656
7657 #ifdef CONFIG_X86_64
7658 .set_hv_timer = vmx_set_hv_timer,
7659 .cancel_hv_timer = vmx_cancel_hv_timer,
7660 #endif
7661
7662 .setup_mce = vmx_setup_mce,
7663
7664 .smi_allowed = vmx_smi_allowed,
7665 .enter_smm = vmx_enter_smm,
7666 .leave_smm = vmx_leave_smm,
7667 .enable_smi_window = vmx_enable_smi_window,
7668
7669 .can_emulate_instruction = vmx_can_emulate_instruction,
7670 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7671 .migrate_timers = vmx_migrate_timers,
7672
7673 .msr_filter_changed = vmx_msr_filter_changed,
7674 .complete_emulated_msr = kvm_complete_insn_gp,
7675
7676 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7677 };
7678
7679 static __init void vmx_setup_user_return_msrs(void)
7680 {
7681
7682 /*
7683 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7684 * will emulate SYSCALL in legacy mode if the vendor string in guest
7685 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7686 * support this emulation, MSR_STAR is included in the list for i386,
7687 * but is never loaded into hardware. MSR_CSTAR is also never loaded
7688 * into hardware and is here purely for emulation purposes.
7689 */
7690 const u32 vmx_uret_msrs_list[] = {
7691 #ifdef CONFIG_X86_64
7692 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7693 #endif
7694 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7695 MSR_IA32_TSX_CTRL,
7696 };
7697 int i;
7698
7699 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7700
7701 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7702 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7703 }
7704
7705 static __init int hardware_setup(void)
7706 {
7707 unsigned long host_bndcfgs;
7708 struct desc_ptr dt;
7709 int r, ept_lpage_level;
7710
7711 store_idt(&dt);
7712 host_idt_base = dt.address;
7713
7714 vmx_setup_user_return_msrs();
7715
7716 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7717 return -EIO;
7718
7719 if (boot_cpu_has(X86_FEATURE_NX))
7720 kvm_enable_efer_bits(EFER_NX);
7721
7722 if (boot_cpu_has(X86_FEATURE_MPX)) {
7723 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7724 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7725 }
7726
7727 if (!cpu_has_vmx_mpx())
7728 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7729 XFEATURE_MASK_BNDCSR);
7730
7731 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7732 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7733 enable_vpid = 0;
7734
7735 if (!cpu_has_vmx_ept() ||
7736 !cpu_has_vmx_ept_4levels() ||
7737 !cpu_has_vmx_ept_mt_wb() ||
7738 !cpu_has_vmx_invept_global())
7739 enable_ept = 0;
7740
7741 /* NX support is required for shadow paging. */
7742 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7743 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7744 return -EOPNOTSUPP;
7745 }
7746
7747 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7748 enable_ept_ad_bits = 0;
7749
7750 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7751 enable_unrestricted_guest = 0;
7752
7753 if (!cpu_has_vmx_flexpriority())
7754 flexpriority_enabled = 0;
7755
7756 if (!cpu_has_virtual_nmis())
7757 enable_vnmi = 0;
7758
7759 /*
7760 * set_apic_access_page_addr() is used to reload apic access
7761 * page upon invalidation. No need to do anything if not
7762 * using the APIC_ACCESS_ADDR VMCS field.
7763 */
7764 if (!flexpriority_enabled)
7765 vmx_x86_ops.set_apic_access_page_addr = NULL;
7766
7767 if (!cpu_has_vmx_tpr_shadow())
7768 vmx_x86_ops.update_cr8_intercept = NULL;
7769
7770 #if IS_ENABLED(CONFIG_HYPERV)
7771 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7772 && enable_ept) {
7773 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7774 vmx_x86_ops.tlb_remote_flush_with_range =
7775 hv_remote_flush_tlb_with_range;
7776 }
7777 #endif
7778
7779 if (!cpu_has_vmx_ple()) {
7780 ple_gap = 0;
7781 ple_window = 0;
7782 ple_window_grow = 0;
7783 ple_window_max = 0;
7784 ple_window_shrink = 0;
7785 }
7786
7787 if (!cpu_has_vmx_apicv()) {
7788 enable_apicv = 0;
7789 vmx_x86_ops.sync_pir_to_irr = NULL;
7790 }
7791
7792 if (cpu_has_vmx_tsc_scaling()) {
7793 kvm_has_tsc_control = true;
7794 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7795 kvm_tsc_scaling_ratio_frac_bits = 48;
7796 }
7797
7798 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7799
7800 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7801
7802 if (enable_ept)
7803 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7804 cpu_has_vmx_ept_execute_only());
7805
7806 if (!enable_ept)
7807 ept_lpage_level = 0;
7808 else if (cpu_has_vmx_ept_1g_page())
7809 ept_lpage_level = PG_LEVEL_1G;
7810 else if (cpu_has_vmx_ept_2m_page())
7811 ept_lpage_level = PG_LEVEL_2M;
7812 else
7813 ept_lpage_level = PG_LEVEL_4K;
7814 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7815
7816 /*
7817 * Only enable PML when hardware supports PML feature, and both EPT
7818 * and EPT A/D bit features are enabled -- PML depends on them to work.
7819 */
7820 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7821 enable_pml = 0;
7822
7823 if (!enable_pml)
7824 vmx_x86_ops.cpu_dirty_log_size = 0;
7825
7826 if (!cpu_has_vmx_preemption_timer())
7827 enable_preemption_timer = false;
7828
7829 if (enable_preemption_timer) {
7830 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7831 u64 vmx_msr;
7832
7833 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7834 cpu_preemption_timer_multi =
7835 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7836
7837 if (tsc_khz)
7838 use_timer_freq = (u64)tsc_khz * 1000;
7839 use_timer_freq >>= cpu_preemption_timer_multi;
7840
7841 /*
7842 * KVM "disables" the preemption timer by setting it to its max
7843 * value. Don't use the timer if it might cause spurious exits
7844 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7845 */
7846 if (use_timer_freq > 0xffffffffu / 10)
7847 enable_preemption_timer = false;
7848 }
7849
7850 if (!enable_preemption_timer) {
7851 vmx_x86_ops.set_hv_timer = NULL;
7852 vmx_x86_ops.cancel_hv_timer = NULL;
7853 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7854 }
7855
7856 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7857
7858 kvm_mce_cap_supported |= MCG_LMCE_P;
7859
7860 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7861 return -EINVAL;
7862 if (!enable_ept || !cpu_has_vmx_intel_pt())
7863 pt_mode = PT_MODE_SYSTEM;
7864
7865 setup_default_sgx_lepubkeyhash();
7866
7867 if (nested) {
7868 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7869 vmx_capability.ept);
7870
7871 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7872 if (r)
7873 return r;
7874 }
7875
7876 vmx_set_cpu_caps();
7877
7878 r = alloc_kvm_area();
7879 if (r)
7880 nested_vmx_hardware_unsetup();
7881 return r;
7882 }
7883
7884 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7885 .cpu_has_kvm_support = cpu_has_kvm_support,
7886 .disabled_by_bios = vmx_disabled_by_bios,
7887 .check_processor_compatibility = vmx_check_processor_compat,
7888 .hardware_setup = hardware_setup,
7889
7890 .runtime_ops = &vmx_x86_ops,
7891 };
7892
7893 static void vmx_cleanup_l1d_flush(void)
7894 {
7895 if (vmx_l1d_flush_pages) {
7896 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7897 vmx_l1d_flush_pages = NULL;
7898 }
7899 /* Restore state so sysfs ignores VMX */
7900 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7901 }
7902
7903 static void vmx_exit(void)
7904 {
7905 #ifdef CONFIG_KEXEC_CORE
7906 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7907 synchronize_rcu();
7908 #endif
7909
7910 kvm_exit();
7911
7912 #if IS_ENABLED(CONFIG_HYPERV)
7913 if (static_branch_unlikely(&enable_evmcs)) {
7914 int cpu;
7915 struct hv_vp_assist_page *vp_ap;
7916 /*
7917 * Reset everything to support using non-enlightened VMCS
7918 * access later (e.g. when we reload the module with
7919 * enlightened_vmcs=0)
7920 */
7921 for_each_online_cpu(cpu) {
7922 vp_ap = hv_get_vp_assist_page(cpu);
7923
7924 if (!vp_ap)
7925 continue;
7926
7927 vp_ap->nested_control.features.directhypercall = 0;
7928 vp_ap->current_nested_vmcs = 0;
7929 vp_ap->enlighten_vmentry = 0;
7930 }
7931
7932 static_branch_disable(&enable_evmcs);
7933 }
7934 #endif
7935 vmx_cleanup_l1d_flush();
7936
7937 allow_smaller_maxphyaddr = false;
7938 }
7939 module_exit(vmx_exit);
7940
7941 static int __init vmx_init(void)
7942 {
7943 int r, cpu;
7944
7945 #if IS_ENABLED(CONFIG_HYPERV)
7946 /*
7947 * Enlightened VMCS usage should be recommended and the host needs
7948 * to support eVMCS v1 or above. We can also disable eVMCS support
7949 * with module parameter.
7950 */
7951 if (enlightened_vmcs &&
7952 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7953 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7954 KVM_EVMCS_VERSION) {
7955 int cpu;
7956
7957 /* Check that we have assist pages on all online CPUs */
7958 for_each_online_cpu(cpu) {
7959 if (!hv_get_vp_assist_page(cpu)) {
7960 enlightened_vmcs = false;
7961 break;
7962 }
7963 }
7964
7965 if (enlightened_vmcs) {
7966 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7967 static_branch_enable(&enable_evmcs);
7968 }
7969
7970 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7971 vmx_x86_ops.enable_direct_tlbflush
7972 = hv_enable_direct_tlbflush;
7973
7974 } else {
7975 enlightened_vmcs = false;
7976 }
7977 #endif
7978
7979 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7980 __alignof__(struct vcpu_vmx), THIS_MODULE);
7981 if (r)
7982 return r;
7983
7984 /*
7985 * Must be called after kvm_init() so enable_ept is properly set
7986 * up. Hand the parameter mitigation value in which was stored in
7987 * the pre module init parser. If no parameter was given, it will
7988 * contain 'auto' which will be turned into the default 'cond'
7989 * mitigation mode.
7990 */
7991 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7992 if (r) {
7993 vmx_exit();
7994 return r;
7995 }
7996
7997 for_each_possible_cpu(cpu) {
7998 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
7999
8000 pi_init_cpu(cpu);
8001 }
8002
8003 #ifdef CONFIG_KEXEC_CORE
8004 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8005 crash_vmclear_local_loaded_vmcss);
8006 #endif
8007 vmx_check_vmcs12_offsets();
8008
8009 /*
8010 * Shadow paging doesn't have a (further) performance penalty
8011 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8012 * by default
8013 */
8014 if (!enable_ept)
8015 allow_smaller_maxphyaddr = true;
8016
8017 return 0;
8018 }
8019 module_init(vmx_init);