From 956dfda6a70885f18c0f8236a461aa2bc4f556ad Mon Sep 17 00:00:00 2001 From: Aaron Lu Date: Thu, 30 Oct 2025 11:27:55 +0800 Subject: [PATCH] sched/fair: Prevent cfs_rq from being unthrottled with zero runtime_remaining When a cfs_rq is to be throttled, its limbo list should be empty and that's why there is a warn in tg_throttle_down() for non empty cfs_rq->throttled_limbo_list. When running a test with the following hierarchy: root / \ A* ... / | \ ... B / \ C* where both A and C have quota settings, that warn on non empty limbo list is triggered for a cfs_rq of C, let's call it cfs_rq_c(and ignore the cpu part of the cfs_rq for the sake of simpler representation). Debug showed it happened like this: Task group C is created and quota is set, so in tg_set_cfs_bandwidth(), cfs_rq_c is initialized with runtime_enabled set, runtime_remaining equals to 0 and *unthrottled*. Before any tasks are enqueued to cfs_rq_c, *multiple* throttled tasks can migrate to cfs_rq_c (e.g., due to task group changes). When enqueue_task_fair(cfs_rq_c, throttled_task) is called and cfs_rq_c is in a throttled hierarchy (e.g., A is throttled), these throttled tasks are directly placed into cfs_rq_c's limbo list by enqueue_throttled_task(). Later, when A is unthrottled, tg_unthrottle_up(cfs_rq_c) enqueues these tasks. The first enqueue triggers check_enqueue_throttle(), and with zero runtime_remaining, cfs_rq_c can be throttled in throttle_cfs_rq() if it can't get more runtime and enters tg_throttle_down(), where the warning is hit due to remaining tasks in the limbo list. I think it's a chaos to trigger throttle on unthrottle path, the status of a being unthrottled cfs_rq can be in a mixed state in the end, so fix this by granting 1ns to cfs_rq in tg_set_cfs_bandwidth(). This ensures cfs_rq_c has a positive runtime_remaining when initialized as unthrottled and cannot enter tg_unthrottle_up() with zero runtime_remaining. Also, update outdated comments in tg_throttle_down() since unthrottle_cfs_rq() is no longer called with zero runtime_remaining. While at it, remove a redundant assignment to se in tg_throttle_down(). Fixes: e1fad12dcb66 ("sched/fair: Switch to task based throttle model") Reviewed-By: Benjamin Segall Suggested-by: Benjamin Segall Signed-off-by: Aaron Lu Signed-off-by: Peter Zijlstra (Intel) Reviewed-by: K Prateek Nayak Tested-by: K Prateek Nayak Tested-by: Hao Jia Link: https://patch.msgid.link/20251030032755.560-1-ziqianlu@bytedance.com --- kernel/sched/core.c | 2 +- kernel/sched/fair.c | 15 ++++++--------- 2 files changed, 7 insertions(+), 10 deletions(-) diff --git a/kernel/sched/core.c b/kernel/sched/core.c index f1ebf67b48e2..f754a60de848 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -9606,7 +9606,7 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, guard(rq_lock_irq)(rq); cfs_rq->runtime_enabled = runtime_enabled; - cfs_rq->runtime_remaining = 0; + cfs_rq->runtime_remaining = 1; if (cfs_rq->throttled) unthrottle_cfs_rq(cfs_rq); diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 25970dbbb279..5b752324270b 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -6024,20 +6024,17 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; /* - * It's possible we are called with !runtime_remaining due to things - * like user changed quota setting(see tg_set_cfs_bandwidth()) or async - * unthrottled us with a positive runtime_remaining but other still - * running entities consumed those runtime before we reached here. + * It's possible we are called with runtime_remaining < 0 due to things + * like async unthrottled us with a positive runtime_remaining but other + * still running entities consumed those runtime before we reached here. * - * Anyway, we can't unthrottle this cfs_rq without any runtime remaining - * because any enqueue in tg_unthrottle_up() will immediately trigger a - * throttle, which is not supposed to happen on unthrottle path. + * We can't unthrottle this cfs_rq without any runtime remaining because + * any enqueue in tg_unthrottle_up() will immediately trigger a throttle, + * which is not supposed to happen on unthrottle path. */ if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0) return; - se = cfs_rq->tg->se[cpu_of(rq)]; - cfs_rq->throttled = 0; update_rq_clock(rq); -- 2.47.3