From a2f4c4023314f69333d2e8cee68e316619f3d68e Mon Sep 17 00:00:00 2001 From: "Miss Islington (bot)" <31488909+miss-islington@users.noreply.github.com> Date: Sat, 2 Feb 2019 06:46:09 -0800 Subject: [PATCH] bpo-26256: Document algorithm speed for the Decimal module. (GH-4808) (#11736) (cherry picked from commit 00e9c55d27aff3e445ab4c8629cf4d59f46ff945) Co-authored-by: Cheryl Sabella --- Doc/library/decimal.rst | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/Doc/library/decimal.rst b/Doc/library/decimal.rst index f2a677e69363..bcae55eb8217 100644 --- a/Doc/library/decimal.rst +++ b/Doc/library/decimal.rst @@ -2115,3 +2115,23 @@ Alternatively, inputs can be rounded upon creation using the >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678') Decimal('1.2345') + +Q. Is the CPython implementation fast for large numbers? + +A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of +the decimal module integrate the high speed `libmpdec +`_ library for +arbitrary precision correctly-rounded decimal floating point arithmetic. +``libmpdec`` uses `Karatsuba multiplication +`_ +for medium-sized numbers and the `Number Theoretic Transform +`_ +for very large numbers. However, to realize this performance gain, the +context needs to be set for unrounded calculations. + + >>> c = getcontext() + >>> c.prec = MAX_PREC + >>> c.Emax = MAX_EMAX + >>> c.Emin = MIN_EMIN + +.. versionadded:: 3.3 \ No newline at end of file -- 2.47.3