from documents.models import Tag
from documents.permissions import get_objects_for_user_owner_aware
-MATCH_THRESHOLD = 0.7
+MATCH_THRESHOLD = 0.8
logger = logging.getLogger("paperless.ai.matching")
def _match_names_to_queryset(names: list[str], queryset, attr: str):
results = []
objects = list(queryset)
- object_names = [getattr(obj, attr) for obj in objects]
- norm_names = [_normalize(name) for name in object_names]
+ object_names = [_normalize(getattr(obj, attr)) for obj in objects]
for name in names:
if not name:
target = _normalize(name)
# First try exact match
- if target in norm_names:
- index = norm_names.index(target)
+ if target in object_names:
+ index = object_names.index(target)
results.append(objects[index])
+ # Remove the matched name from the list to avoid fuzzy matching later
+ object_names.remove(target)
continue
# Fuzzy match fallback
matches = difflib.get_close_matches(
target,
- norm_names,
+ object_names,
n=1,
cutoff=MATCH_THRESHOLD,
)
if matches:
- index = norm_names.index(matches[0])
+ index = object_names.index(matches[0])
results.append(objects[index])
else:
- # Optional: log or store unmatched name
- logging.debug(f"No match for: '{name}' in {attr} list")
-
+ pass
return results
def extract_unmatched_names(
- llm_names: list[str],
+ names: list[str],
matched_objects: list,
attr="name",
) -> list[str]:
matched_names = {getattr(obj, attr).lower() for obj in matched_objects}
- return [name for name in llm_names if name.lower() not in matched_names]
+ return [name for name in names if name.lower() not in matched_names]
--- /dev/null
+import json
+from unittest.mock import patch
+
+import pytest
+
+from documents.models import Document
+from paperless.ai.ai_classifier import get_ai_document_classification
+from paperless.ai.ai_classifier import parse_ai_classification_response
+
+
+@pytest.fixture
+def mock_document():
+ return Document(filename="test.pdf", content="This is a test document content.")
+
+
+@patch("paperless.ai.ai_classifier.run_llm_query")
+def test_get_ai_document_classification_success(mock_run_llm_query, mock_document):
+ mock_response = json.dumps(
+ {
+ "title": "Test Title",
+ "tags": ["test", "document"],
+ "correspondents": ["John Doe"],
+ "document_types": ["report"],
+ "storage_paths": ["Reports"],
+ "dates": ["2023-01-01"],
+ },
+ )
+ mock_run_llm_query.return_value = mock_response
+
+ result = get_ai_document_classification(mock_document)
+
+ assert result["title"] == "Test Title"
+ assert result["tags"] == ["test", "document"]
+ assert result["correspondents"] == ["John Doe"]
+ assert result["document_types"] == ["report"]
+ assert result["storage_paths"] == ["Reports"]
+ assert result["dates"] == ["2023-01-01"]
+
+
+@patch("paperless.ai.ai_classifier.run_llm_query")
+def test_get_ai_document_classification_failure(mock_run_llm_query, mock_document):
+ mock_run_llm_query.side_effect = Exception("LLM query failed")
+
+ result = get_ai_document_classification(mock_document)
+
+ assert result == {}
+
+
+def test_parse_llm_classification_response_valid():
+ mock_response = json.dumps(
+ {
+ "title": "Test Title",
+ "tags": ["test", "document"],
+ "correspondents": ["John Doe"],
+ "document_types": ["report"],
+ "storage_paths": ["Reports"],
+ "dates": ["2023-01-01"],
+ },
+ )
+
+ result = parse_ai_classification_response(mock_response)
+
+ assert result["title"] == "Test Title"
+ assert result["tags"] == ["test", "document"]
+ assert result["correspondents"] == ["John Doe"]
+ assert result["document_types"] == ["report"]
+ assert result["storage_paths"] == ["Reports"]
+ assert result["dates"] == ["2023-01-01"]
+
+
+def test_parse_llm_classification_response_invalid_json():
+ mock_response = "Invalid JSON"
+
+ result = parse_ai_classification_response(mock_response)
+
+ assert result == {}
+
+
+def test_parse_llm_classification_response_partial_data():
+ mock_response = json.dumps(
+ {
+ "title": "Partial Data",
+ "tags": ["partial"],
+ "correspondents": "Jane Doe",
+ "document_types": "note",
+ "storage_paths": [],
+ "dates": [],
+ },
+ )
+
+ result = parse_ai_classification_response(mock_response)
+
+ assert result["title"] == "Partial Data"
+ assert result["tags"] == ["partial"]
+ assert result["correspondents"] == ["Jane Doe"]
+ assert result["document_types"] == ["note"]
+ assert result["storage_paths"] == []
+ assert result["dates"] == []
--- /dev/null
+import json
+from unittest.mock import patch
+
+import pytest
+from django.conf import settings
+
+from paperless.ai.client import _run_ollama_query
+from paperless.ai.client import _run_openai_query
+from paperless.ai.client import run_llm_query
+
+
+@pytest.fixture
+def mock_settings():
+ settings.LLM_BACKEND = "openai"
+ settings.LLM_MODEL = "gpt-3.5-turbo"
+ settings.LLM_API_KEY = "test-api-key"
+ settings.OPENAI_URL = "https://api.openai.com"
+ settings.OLLAMA_URL = "https://ollama.example.com"
+ yield settings
+
+
+@patch("paperless.ai.client._run_openai_query")
+@patch("paperless.ai.client._run_ollama_query")
+def test_run_llm_query_openai(mock_ollama_query, mock_openai_query, mock_settings):
+ mock_openai_query.return_value = "OpenAI response"
+ result = run_llm_query("Test prompt")
+ assert result == "OpenAI response"
+ mock_openai_query.assert_called_once_with("Test prompt")
+ mock_ollama_query.assert_not_called()
+
+
+@patch("paperless.ai.client._run_openai_query")
+@patch("paperless.ai.client._run_ollama_query")
+def test_run_llm_query_ollama(mock_ollama_query, mock_openai_query, mock_settings):
+ mock_settings.LLM_BACKEND = "ollama"
+ mock_ollama_query.return_value = "Ollama response"
+ result = run_llm_query("Test prompt")
+ assert result == "Ollama response"
+ mock_ollama_query.assert_called_once_with("Test prompt")
+ mock_openai_query.assert_not_called()
+
+
+def test_run_llm_query_unsupported_backend(mock_settings):
+ mock_settings.LLM_BACKEND = "unsupported"
+ with pytest.raises(ValueError, match="Unsupported LLM backend: unsupported"):
+ run_llm_query("Test prompt")
+
+
+def test_run_openai_query(httpx_mock, mock_settings):
+ httpx_mock.add_response(
+ url=f"{mock_settings.OPENAI_URL}/v1/chat/completions",
+ json={
+ "choices": [{"message": {"content": "OpenAI response"}}],
+ },
+ )
+
+ result = _run_openai_query("Test prompt")
+ assert result == "OpenAI response"
+
+ request = httpx_mock.get_request()
+ assert request.method == "POST"
+ assert request.url == f"{mock_settings.OPENAI_URL}/v1/chat/completions"
+ assert request.headers["Authorization"] == f"Bearer {mock_settings.LLM_API_KEY}"
+ assert request.headers["Content-Type"] == "application/json"
+ assert json.loads(request.content) == {
+ "model": mock_settings.LLM_MODEL,
+ "messages": [{"role": "user", "content": "Test prompt"}],
+ "temperature": 0.3,
+ }
+
+
+def test_run_ollama_query(httpx_mock, mock_settings):
+ httpx_mock.add_response(
+ url=f"{mock_settings.OLLAMA_URL}/api/chat",
+ json={"message": {"content": "Ollama response"}},
+ )
+
+ result = _run_ollama_query("Test prompt")
+ assert result == "Ollama response"
+
+ request = httpx_mock.get_request()
+ assert request.method == "POST"
+ assert request.url == f"{mock_settings.OLLAMA_URL}/api/chat"
+ assert json.loads(request.content) == {
+ "model": mock_settings.LLM_MODEL,
+ "messages": [{"role": "user", "content": "Test prompt"}],
+ "stream": False,
+ }
--- /dev/null
+from unittest.mock import patch
+
+from django.test import TestCase
+
+from documents.models import Correspondent
+from documents.models import DocumentType
+from documents.models import StoragePath
+from documents.models import Tag
+from paperless.ai.matching import extract_unmatched_names
+from paperless.ai.matching import match_correspondents_by_name
+from paperless.ai.matching import match_document_types_by_name
+from paperless.ai.matching import match_storage_paths_by_name
+from paperless.ai.matching import match_tags_by_name
+
+
+class TestAIMatching(TestCase):
+ def setUp(self):
+ # Create test data for Tag
+ self.tag1 = Tag.objects.create(name="Test Tag 1")
+ self.tag2 = Tag.objects.create(name="Test Tag 2")
+
+ # Create test data for Correspondent
+ self.correspondent1 = Correspondent.objects.create(name="Test Correspondent 1")
+ self.correspondent2 = Correspondent.objects.create(name="Test Correspondent 2")
+
+ # Create test data for DocumentType
+ self.document_type1 = DocumentType.objects.create(name="Test Document Type 1")
+ self.document_type2 = DocumentType.objects.create(name="Test Document Type 2")
+
+ # Create test data for StoragePath
+ self.storage_path1 = StoragePath.objects.create(name="Test Storage Path 1")
+ self.storage_path2 = StoragePath.objects.create(name="Test Storage Path 2")
+
+ @patch("paperless.ai.matching.get_objects_for_user_owner_aware")
+ def test_match_tags_by_name(self, mock_get_objects):
+ mock_get_objects.return_value = Tag.objects.all()
+ names = ["Test Tag 1", "Nonexistent Tag"]
+ result = match_tags_by_name(names, user=None)
+ self.assertEqual(len(result), 1)
+ self.assertEqual(result[0].name, "Test Tag 1")
+
+ @patch("paperless.ai.matching.get_objects_for_user_owner_aware")
+ def test_match_correspondents_by_name(self, mock_get_objects):
+ mock_get_objects.return_value = Correspondent.objects.all()
+ names = ["Test Correspondent 1", "Nonexistent Correspondent"]
+ result = match_correspondents_by_name(names, user=None)
+ self.assertEqual(len(result), 1)
+ self.assertEqual(result[0].name, "Test Correspondent 1")
+
+ @patch("paperless.ai.matching.get_objects_for_user_owner_aware")
+ def test_match_document_types_by_name(self, mock_get_objects):
+ mock_get_objects.return_value = DocumentType.objects.all()
+ names = ["Test Document Type 1", "Nonexistent Document Type"]
+ result = match_document_types_by_name(names)
+ self.assertEqual(len(result), 1)
+ self.assertEqual(result[0].name, "Test Document Type 1")
+
+ @patch("paperless.ai.matching.get_objects_for_user_owner_aware")
+ def test_match_storage_paths_by_name(self, mock_get_objects):
+ mock_get_objects.return_value = StoragePath.objects.all()
+ names = ["Test Storage Path 1", "Nonexistent Storage Path"]
+ result = match_storage_paths_by_name(names, user=None)
+ self.assertEqual(len(result), 1)
+ self.assertEqual(result[0].name, "Test Storage Path 1")
+
+ def test_extract_unmatched_names(self):
+ llm_names = ["Test Tag 1", "Nonexistent Tag"]
+ matched_objects = [self.tag1]
+ unmatched_names = extract_unmatched_names(llm_names, matched_objects)
+ self.assertEqual(unmatched_names, ["Nonexistent Tag"])