]> git.ipfire.org Git - thirdparty/xz.git/commitdiff
liblzma: Add threaded .xz decompressor.
authorLasse Collin <lasse.collin@tukaani.org>
Sun, 6 Mar 2022 21:36:20 +0000 (23:36 +0200)
committerLasse Collin <lasse.collin@tukaani.org>
Sun, 6 Mar 2022 22:35:53 +0000 (00:35 +0200)
I realize that this is about a decade late.

Big thanks to Sebastian Andrzej Siewior for the original patch.
I made a bunch of smaller changes but after a while quite a few
things got rewritten. So any bugs in the commit were created by me.

src/liblzma/api/lzma/container.h
src/liblzma/common/Makefile.inc
src/liblzma/common/common.h
src/liblzma/common/stream_decoder_mt.c [new file with mode: 0644]
src/liblzma/liblzma.map

index cbb37c8b79700004200e1af872054125203a2bd3..b2b912d5ddf81a60b5268c67921a9dbdd5b54013 100644 (file)
@@ -69,7 +69,11 @@ typedef struct {
         *
         * Set this to zero if no flags are wanted.
         *
-        * No flags are currently supported.
+        * Encoder: No flags are currently supported.
+        *
+        * Decoder: Bitwise-or of zero or more of the decoder flags:
+        * LZMA_TELL_NO_CHECK, LZMA_TELL_UNSUPPORTED_CHECK,
+        * LZMA_TELL_ANY_CHECK, LZMA_CONCATENATED
         */
        uint32_t flags;
 
@@ -79,7 +83,7 @@ typedef struct {
        uint32_t threads;
 
        /**
-        * \brief       Maximum uncompressed size of a Block
+        * \brief       Encoder only: Maximum uncompressed size of a Block
         *
         * The encoder will start a new .xz Block every block_size bytes.
         * Using LZMA_FULL_FLUSH or LZMA_FULL_BARRIER with lzma_code()
@@ -135,7 +139,7 @@ typedef struct {
        uint32_t timeout;
 
        /**
-        * \brief       Compression preset (level and possible flags)
+        * \brief       Encoder only: Compression preset
         *
         * The preset is set just like with lzma_easy_encoder().
         * The preset is ignored if filters below is non-NULL.
@@ -143,7 +147,7 @@ typedef struct {
        uint32_t preset;
 
        /**
-        * \brief       Filter chain (alternative to a preset)
+        * \brief       Encoder only: Filter chain (alternative to a preset)
         *
         * If this is NULL, the preset above is used. Otherwise the preset
         * is ignored and the filter chain specified here is used.
@@ -151,7 +155,7 @@ typedef struct {
        const lzma_filter *filters;
 
        /**
-        * \brief       Integrity check type
+        * \brief       Encoder only: Integrity check type
         *
         * See check.h for available checks. The xz command line tool
         * defaults to LZMA_CHECK_CRC64, which is a good choice if you
@@ -173,8 +177,50 @@ typedef struct {
        uint32_t reserved_int2;
        uint32_t reserved_int3;
        uint32_t reserved_int4;
-       uint64_t reserved_int5;
-       uint64_t reserved_int6;
+
+       /**
+        * \brief       Memory usage limit to reduce the number of threads
+        *
+        * Encoder: Ignored.
+        *
+        * Decoder:
+        *
+        * If the number of threads has been set so high that more than
+        * memlimit_threading bytes of memory would be needed, the number
+        * of threads will be reduced so that the memory usage will not exceed
+        * memlimit_threading bytes. However, if memlimit_threading cannot
+        * be met even in single-threaded mode, then decoding will continue
+        * in single-threaded mode and memlimit_threading may be exceeded
+        * even by a large amount. That is, memlimit_threading will never make
+        * lzma_code() return LZMA_MEMLIMIT_ERROR. To truly cap the memory
+        * usage, see memlimit_stop below.
+        *
+        * Setting memlimit_threading to UINT64_MAX or a similar huge value
+        * means that liblzma is allowed to keep the whole compressed file
+        * and the whole uncompressed file in memory in addition to the memory
+        * needed by the decompressor data structures used by each thread!
+        * In other words, a reasonable value limit must be set here or it
+        * will cause problems sooner or later. If you have no idea what
+        * a reasonable value could be, try lzma_physmem() / 4 as a starting
+        * point. Setting this limit will never prevent decompression of
+        * a file; this will only reduce the number of threads.
+        *
+        * If memlimit_threading is greater than memlimit_stop, then the value
+        * of memlimit_stop will be used for both.
+        */
+       uint64_t memlimit_threading;
+
+       /**
+        * \brief       Memory usage limit that should never be exceeded
+        *
+        * Encoder: Ignored.
+        *
+        * Decoder: If decompressing will need more than this amount of
+        * memory even in the single-threaded mode, then lzma_code() will
+        * return LZMA_MEMLIMIT_ERROR.
+        */
+       uint64_t memlimit_stop;
+
        uint64_t reserved_int7;
        uint64_t reserved_int8;
        void *reserved_ptr1;
@@ -592,6 +638,36 @@ extern LZMA_API(lzma_ret) lzma_stream_decoder(
                lzma_nothrow lzma_attr_warn_unused_result;
 
 
+/**
+ * \brief       Initialize multithreaded .xz Stream decoder
+ *
+ * \param       strm        Pointer to properly prepared lzma_stream
+ * \param       options     Pointer to multithreaded compression options
+ *
+ * The decoder can decode multiple Blocks in parallel. This requires that each
+ * Block Header contains the Compressed Size and Uncompressed size fields
+ * which are added by the multi-threaded encoder, see lzma_stream_encoder_mt().
+ *
+ * A Stream with one Block will only utilize one thread. A Stream with multiple
+ * Blocks but without size information in Block Headers will be processed in
+ * single-threaded mode in the same way as done by lzma_stream_decoder().
+ * Concatenated Streams are processed one Stream at a time; no inter-Stream
+ * parallelization is done.
+ *
+ * This function behaves like lzma_stream_decoder() when options->threads == 1
+ * and options->memlimit_threading <= 1.
+ *
+ * \return      - LZMA_OK: Initialization was successful.
+ *              - LZMA_MEM_ERROR: Cannot allocate memory.
+ *              - LZMA_MEMLIMIT_ERROR: Memory usage limit was reached.
+ *              - LZMA_OPTIONS_ERROR: Unsupported flags.
+ *              - LZMA_PROG_ERROR
+ */
+extern LZMA_API(lzma_ret) lzma_stream_decoder_mt(
+               lzma_stream *strm, const lzma_mt *options)
+               lzma_nothrow lzma_attr_warn_unused_result;
+
+
 /**
  * \brief       Decode .xz Streams and .lzma files with autodetection
  *
index 1a4fb1263862264d313f589a2520df4b48688786..8f0d84ec551f56833595abeb4da4c449478bfe4f 100644 (file)
@@ -80,4 +80,9 @@ liblzma_la_SOURCES += \
        common/stream_decoder.h \
        common/stream_flags_decoder.c \
        common/vli_decoder.c
+
+if COND_THREADS
+liblzma_la_SOURCES += \
+       common/stream_decoder_mt.c
+endif
 endif
index 95313042cf344fbde3752ee2f6659b2f4dd18616..67996228c5988c85a543e1f27f4c2263ee9d6eba 100644 (file)
 /// LZMA_OK in lzma_code().
 #define LZMA_TIMED_OUT LZMA_RET_INTERNAL1
 
+/// Special return value (lzma_ret) for use in stream_decoder_mt.c to
+/// indicate Index was detected instead of a Block Header.
+#define LZMA_INDEX_DETECTED LZMA_RET_INTERNAL2
+
 
 typedef struct lzma_next_coder_s lzma_next_coder;
 
diff --git a/src/liblzma/common/stream_decoder_mt.c b/src/liblzma/common/stream_decoder_mt.c
new file mode 100644 (file)
index 0000000..1f1cd77
--- /dev/null
@@ -0,0 +1,1814 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file       stream_decoder_mt.c
+/// \brief      Multithreaded .xz Stream decoder
+//
+//  Authors:    Sebastian Andrzej Siewior
+//              Lasse Collin
+//
+//  This file has been put into the public domain.
+//  You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "common.h"
+#include "block_decoder.h"
+#include "stream_decoder.h"
+#include "index.h"
+#include "outqueue.h"
+
+
+typedef enum {
+       /// Waiting for work.
+       /// Main thread may change this to THR_RUN or THR_EXIT.
+       THR_IDLE,
+
+       /// Decoding is in progress.
+       /// Main thread may change this to THR_STOP or THR_EXIT.
+       /// The worker thread may change this to THR_IDLE.
+       THR_RUN,
+
+       /// The main thread wants the thread to stop whatever it was doing
+       /// but not exit. Main thread may change this to THR_EXIT.
+       /// The worker thread may change this to THR_IDLE.
+       THR_STOP,
+
+       /// The main thread wants the thread to exit.
+       THR_EXIT,
+
+} worker_state;
+
+
+struct worker_thread {
+       /// Worker state is protected with our mutex.
+       worker_state state;
+
+       /// Input buffer that will contain the whole Block except Block Header.
+       uint8_t *in;
+
+       /// Amount of memory allocated for "in"
+       size_t in_size;
+
+       /// Number of bytes written to "in" by the main thread
+       size_t in_filled;
+
+       /// Number of bytes consumed from "in" by the worker thread.
+       size_t in_pos;
+
+       /// Amount of uncompressed data that has been decoded. This local
+       /// copy is needed because updating outbuf->pos requires locking
+       /// the main mutex (coder->mutex).
+       size_t out_pos;
+
+       /// Pointer to the main structure is needed to (1) lock the main
+       /// mutex (coder->mutex) when updating outbuf->pos and (2) when
+       /// putting this thread back to the stack of free threads.
+       struct lzma_stream_coder *coder;
+
+       /// The allocator is set by the main thread. Since a copy of the
+       /// pointer is kept here, the application must not change the
+       /// allocator before calling lzma_end().
+       const lzma_allocator *allocator;
+
+       /// Output queue buffer to which the uncompressed data is written.
+       lzma_outbuf *outbuf;
+
+       /// Amount of compressed data that has already been decompressed.
+       /// This is updated from in_pos when our mutex is locked.
+       /// This is size_t, not uint64_t, because per-thread progress
+       /// is limited to sizes of allocated buffers.
+       size_t progress_in;
+
+       /// Like progress_in but for uncompressed data.
+       size_t progress_out;
+
+       /// Updating outbuf->pos requires locking the main mutex
+       /// (coder->mutex). Since the main thread will only read output
+       /// from the oldest outbuf in the queue, only the worker thread
+       /// that is associated with the oldest outbuf needs to update its
+       /// outbuf->pos. This avoids useless mutex contention that would
+       /// happen if all worker threads were frequently locking the main
+       /// mutex to update their outbuf->pos.
+       ///
+       /// Only when partial_update is true, this worker thread will update
+       /// outbuf->pos after each call to the Block decoder.
+       bool partial_update;
+
+       /// Block decoder
+       lzma_next_coder block_decoder;
+
+       /// Thread-specific Block options are needed because the Block
+       /// decoder modifies the struct given to it at initialization.
+       lzma_block block_options;
+
+       /// Filter chain memory usage
+       uint64_t mem_filters;
+
+       /// Next structure in the stack of free worker threads.
+       struct worker_thread *next;
+
+       mythread_mutex mutex;
+       mythread_cond cond;
+
+       /// The ID of this thread is used to join the thread
+       /// when it's not needed anymore.
+       mythread thread_id;
+};
+
+
+struct lzma_stream_coder {
+       enum {
+               SEQ_STREAM_HEADER,
+               SEQ_BLOCK_HEADER,
+               SEQ_BLOCK_INIT,
+               SEQ_BLOCK_THR_INIT,
+               SEQ_BLOCK_THR_RUN,
+               SEQ_BLOCK_DIRECT_INIT,
+               SEQ_BLOCK_DIRECT_RUN,
+               SEQ_INDEX_WAIT_OUTPUT,
+               SEQ_INDEX_DECODE,
+               SEQ_STREAM_FOOTER,
+               SEQ_STREAM_PADDING,
+               SEQ_ERROR,
+       } sequence;
+
+       /// Block decoder
+       lzma_next_coder block_decoder;
+
+       /// Every Block Header will be decoded into this structure.
+       /// This is also used to initialize a Block decoder when in
+       /// direct mode. In threaded mode, a thread-specific copy will
+       /// be made for decoder initialization because the Block decoder
+       /// will modify the structure given to it.
+       lzma_block block_options;
+
+       /// Buffer to hold a filter chain for Block Header decoding and
+       /// initialization. These are freed after successful Block decoder
+       /// initialization or at stream_decoder_mt_end(). The thread-specific
+       /// copy of block_options won't hold a pointer to filters[] after
+       /// initialization.
+       lzma_filter filters[LZMA_FILTERS_MAX + 1];
+
+       /// Stream Flags from Stream Header
+       lzma_stream_flags stream_flags;
+
+       /// Index is hashed so that it can be compared to the sizes of Blocks
+       /// with O(1) memory usage.
+       lzma_index_hash *index_hash;
+
+
+       /// Maximum wait time if cannot use all the input and cannot
+       /// fill the output buffer. This is in milliseconds.
+       uint32_t timeout;
+
+
+       /// Error code from a worker thread.
+       ///
+       /// \note       Use mutex.
+       lzma_ret thread_error;
+
+       /// Error code to return after pending output has been copied out. If
+       /// set in read_output_and_wait(), this is a mirror of thread_error.
+       /// If set in stream_decode_mt() then it's, for example, error that
+       /// occurred when decoding Block Header.
+       lzma_ret pending_error;
+
+       /// Number of threads that will be created at maximum.
+       uint32_t threads_max;
+
+       /// Number of thread structures that have been initialized from
+       /// "threads", and thus the number of worker threads actually
+       /// created so far.
+       uint32_t threads_initialized;
+
+       /// Array of allocated thread-specific structures. When no threads
+       /// are in use (direct mode) this is NULL. In threaded mode this
+       /// points to an array of threads_max number of worker_thread structs.
+       struct worker_thread *threads;
+
+       /// Stack of free threads. When a thread finishes, it puts itself
+       /// back into this stack. This starts as empty because threads
+       /// are created only when actually needed.
+       ///
+       /// \note       Use mutex.
+       struct worker_thread *threads_free;
+
+       /// The most recent worker thread to which the main thread writes
+       /// the new input from the application.
+       struct worker_thread *thr;
+
+       /// Output buffer queue for decompressed data from the worker threads
+       ///
+       /// \note       Use mutex with operations that need it.
+       lzma_outq outq;
+
+       mythread_mutex mutex;
+       mythread_cond cond;
+
+
+       /// Memory usage that will not be exceeded in multi-threaded mode.
+       /// Single-threaded mode can exceed this even by a large amount.
+       uint64_t memlimit_threading;
+
+       /// Memory usage limit that should never be exceeded.
+       /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
+       /// even in single-threaded mode without exceeding this limit.
+       uint64_t memlimit_stop;
+
+       /// Amount of memory in use by the direct mode decoder
+       /// (coder->block_decoder). In threaded mode this is 0.
+       uint64_t mem_direct_mode;
+
+       /// Amount of memory needed by the running worker threads.
+       /// This doesn't include the memory needed by the output buffer.
+       ///
+       /// \note       Use mutex.
+       uint64_t mem_in_use;
+
+       /// Amount of memory used by the idle (cached) threads.
+       ///
+       /// \note       Use mutex.
+       uint64_t mem_cached;
+
+
+       /// Amount of memory needed for the filter chain of the next Block.
+       uint64_t mem_next_filters;
+
+       /// Amount of memory needed for the thread-specific input buffer
+       /// for the next Block.
+       uint64_t mem_next_in;
+
+       /// Amount of memory actually needed to decode the next Block
+       /// in threaded mode. This is
+       /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
+       uint64_t mem_next_block;
+
+
+       /// Amount of compressed data in Stream Header + Blocks that have
+       /// already been finished.
+       ///
+       /// \note       Use mutex.
+       uint64_t progress_in;
+
+       /// Amount of uncompressed data in Blocks that have already
+       /// been finished.
+       ///
+       /// \note       Use mutex.
+       uint64_t progress_out;
+
+
+       /// If true, LZMA_NO_CHECK is returned if the Stream has
+       /// no integrity check.
+       bool tell_no_check;
+
+       /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
+       /// an integrity check that isn't supported by this liblzma build.
+       bool tell_unsupported_check;
+
+       /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
+       bool tell_any_check;
+
+       /// If true, we will tell the Block decoder to skip calculating
+       /// and verifying the integrity check.
+       bool ignore_check;
+
+       /// If true, we will decode concatenated Streams that possibly have
+       /// Stream Padding between or after them. LZMA_STREAM_END is returned
+       /// once the application isn't giving us any new input (LZMA_FINISH),
+       /// and we aren't in the middle of a Stream, and possible
+       /// Stream Padding is a multiple of four bytes.
+       bool concatenated;
+
+       /// When decoding concatenated Streams, this is true as long as we
+       /// are decoding the first Stream. This is needed to avoid misleading
+       /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
+       /// bytes.
+       bool first_stream;
+
+
+       /// Write position in buffer[] and position in Stream Padding
+       size_t pos;
+
+       /// Buffer to hold Stream Header, Block Header, and Stream Footer.
+       /// Block Header has biggest maximum size.
+       uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
+};
+
+
+/// Enables updating of outbuf->pos. This is a callback function that is
+/// used with lzma_outq_enable_partial_output().
+static void
+worker_enable_partial_update(void *thr_ptr)
+{
+       struct worker_thread *thr = thr_ptr;
+
+       mythread_sync(thr->mutex) {
+               thr->partial_update = true;
+       }
+}
+
+
+/// Things do to at THR_STOP or when finishing a Block.
+/// This is called with thr->mutex locked.
+static void
+worker_stop(struct worker_thread *thr)
+{
+       // Update memory usage counters.
+       thr->coder->mem_in_use -= thr->in_size;
+       thr->in_size = 0; // thr->in was freed above.
+
+       thr->coder->mem_in_use -= thr->mem_filters;
+       thr->coder->mem_cached += thr->mem_filters;
+
+       // Put this thread to the stack of free threads.
+       thr->next = thr->coder->threads_free;
+       thr->coder->threads_free = thr;
+
+       mythread_cond_signal(&thr->coder->cond);
+       return;
+}
+
+
+static MYTHREAD_RET_TYPE
+worker_decoder(void *thr_ptr)
+{
+       struct worker_thread *thr = thr_ptr;
+       size_t in_filled;
+       lzma_ret ret;
+
+next_loop_lock:
+
+       mythread_mutex_lock(&thr->mutex);
+next_loop_unlocked:
+
+       if (thr->state == THR_IDLE) {
+               mythread_cond_wait(&thr->cond, &thr->mutex);
+               goto next_loop_unlocked;
+       }
+
+       if (thr->state == THR_EXIT) {
+               mythread_mutex_unlock(&thr->mutex);
+
+               lzma_free(thr->in, thr->allocator);
+               lzma_next_end(&thr->block_decoder, thr->allocator);
+
+               mythread_mutex_destroy(&thr->mutex);
+               mythread_cond_destroy(&thr->cond);
+
+               return MYTHREAD_RET_VALUE;
+       }
+
+       if (thr->state == THR_STOP) {
+               thr->state = THR_IDLE;
+               mythread_mutex_unlock(&thr->mutex);
+
+               mythread_sync(thr->coder->mutex) {
+                       worker_stop(thr);
+               }
+
+               goto next_loop_lock;
+       }
+
+       assert(thr->state == THR_RUN);
+
+       in_filled = thr->in_filled;
+
+       if (in_filled == thr->in_pos) {
+               mythread_cond_wait(&thr->cond, &thr->mutex);
+               goto next_loop_unlocked;
+       }
+
+       mythread_mutex_unlock(&thr->mutex);
+
+       // Pass the input in small chunks to the Block decoder.
+       // This way we react reasonably fast if we are told to stop/exit,
+       // and (when partial_update is true) we tell about our progress
+       // to the main thread frequently enough.
+       const size_t chunk_size = 16384;
+       if ((in_filled - thr->in_pos) > chunk_size)
+               in_filled = thr->in_pos + chunk_size;
+
+       ret = thr->block_decoder.code(
+                       thr->block_decoder.coder, thr->allocator,
+                       thr->in, &thr->in_pos, in_filled,
+                       thr->outbuf->buf, &thr->out_pos,
+                       thr->outbuf->allocated, LZMA_RUN);
+
+       if (ret == LZMA_OK) {
+               bool partial_update;
+
+               mythread_sync(thr->mutex) {
+                       // Update progress info for get_progress().
+                       thr->progress_in = thr->in_pos;
+                       thr->progress_out = thr->out_pos;
+
+                       partial_update = thr->partial_update;
+               }
+
+               if (partial_update) {
+                       // The main thread is reading decompressed data
+                       // from thr->outbuf. Tell the main thread about
+                       // our progress.
+                       //
+                       // NOTE: It's possible that we consumed input without
+                       // producing any new output so it's possible that
+                       // only in_pos has changed.
+                       mythread_sync(thr->coder->mutex) {
+                               thr->outbuf->pos = thr->out_pos;
+                               thr->outbuf->decoder_in_pos = thr->in_pos;
+                               mythread_cond_signal(&thr->coder->cond);
+                       }
+               }
+
+               goto next_loop_lock;
+       }
+
+       // Either we finished successfully (LZMA_STREAM_END) or an error
+       // occurred. Both cases are handled almost identically. The error
+       // case requires updating thr->coder->thread_error.
+       //
+       // The sizes are in the Block Header and the Block decoder
+       // checks that they match, thus we know these:
+       assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
+       assert(ret != LZMA_STREAM_END
+               || thr->out_pos == thr->block_options.uncompressed_size);
+
+       // Free the input buffer. Don't update in_size as we need
+       // it later to update thr->coder->mem_in_use.
+       lzma_free(thr->in, thr->allocator);
+       thr->in = NULL;
+
+       mythread_sync(thr->mutex) {
+               if (thr->state != THR_EXIT)
+                       thr->state = THR_IDLE;
+       }
+
+       mythread_sync(thr->coder->mutex) {
+               // Move our progress info to the main thread.
+               thr->coder->progress_in += thr->in_pos;
+               thr->coder->progress_out += thr->out_pos;
+               thr->progress_in = 0;
+               thr->progress_out = 0;
+
+               // Mark the outbuf as finished.
+               thr->outbuf->pos = thr->out_pos;
+               thr->outbuf->decoder_in_pos = thr->in_pos;
+               thr->outbuf->finished = true;
+               thr->outbuf->finish_ret = ret;
+               thr->outbuf = NULL;
+
+               // If an error occurred, tell it to the main thread.
+               if (ret != LZMA_STREAM_END
+                               && thr->coder->thread_error == LZMA_OK)
+                       thr->coder->thread_error = ret;
+
+               worker_stop(thr);
+       }
+
+       goto next_loop_lock;
+}
+
+
+/// Tells the worker threads to exit and waits for them to terminate.
+static void
+threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
+{
+       for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
+               mythread_sync(coder->threads[i].mutex) {
+                       coder->threads[i].state = THR_EXIT;
+                       mythread_cond_signal(&coder->threads[i].cond);
+               }
+       }
+
+       for (uint32_t i = 0; i < coder->threads_initialized; ++i)
+               mythread_join(coder->threads[i].thread_id);
+
+       lzma_free(coder->threads, allocator);
+       coder->threads_initialized = 0;
+       coder->threads = NULL;
+       coder->threads_free = NULL;
+
+       // The threads don't update these when they exit. Do it here.
+       coder->mem_in_use = 0;
+       coder->mem_cached = 0;
+
+       return;
+}
+
+
+static void
+threads_stop(struct lzma_stream_coder *coder)
+{
+       for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
+               mythread_sync(coder->threads[i].mutex) {
+                       // The state must be changed conditionally because
+                       // THR_IDLE -> THR_STOP is not a valid state change.
+                       if (coder->threads[i].state != THR_IDLE) {
+                               coder->threads[i].state = THR_STOP;
+                               mythread_cond_signal(&coder->threads[i].cond);
+                       }
+               }
+       }
+
+       return;
+}
+
+
+/// Initialize a new worker_thread structure and create a new thread.
+static lzma_ret
+initialize_new_thread(struct lzma_stream_coder *coder,
+               const lzma_allocator *allocator)
+{
+       // Allocate the coder->threads array if needed. It's done here instead
+       // of when initializing the decoder because we don't need this if we
+       // use the direct mode (we may even free coder->threads in the middle
+       // of the file if we switch from threaded to direct mode).
+       if (coder->threads == NULL) {
+               coder->threads = lzma_alloc(
+                       coder->threads_max * sizeof(struct worker_thread),
+                       allocator);
+
+               if (coder->threads == NULL)
+                       return LZMA_MEM_ERROR;
+       }
+
+       // Pick a free structure.
+       assert(coder->threads_initialized < coder->threads_max);
+       struct worker_thread *thr
+                       = &coder->threads[coder->threads_initialized];
+
+       if (mythread_mutex_init(&thr->mutex))
+               goto error_mutex;
+
+       if (mythread_cond_init(&thr->cond))
+               goto error_cond;
+
+       thr->state = THR_IDLE;
+       thr->in = NULL;
+       thr->in_size = 0;
+       thr->allocator = allocator;
+       thr->coder = coder;
+       thr->outbuf = NULL;
+       thr->block_decoder = LZMA_NEXT_CODER_INIT;
+       thr->mem_filters = 0;
+
+       if (mythread_create(&thr->thread_id, worker_decoder, thr))
+               goto error_thread;
+
+       ++coder->threads_initialized;
+       coder->thr = thr;
+
+       return LZMA_OK;
+
+error_thread:
+       mythread_cond_destroy(&thr->cond);
+
+error_cond:
+       mythread_mutex_destroy(&thr->mutex);
+
+error_mutex:
+       return LZMA_MEM_ERROR;
+}
+
+
+static lzma_ret
+get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
+{
+       // If there is a free structure on the stack, use it.
+       mythread_sync(coder->mutex) {
+               if (coder->threads_free != NULL) {
+                       coder->thr = coder->threads_free;
+                       coder->threads_free = coder->threads_free->next;
+
+                       // The thread is no longer in the cache so substract
+                       // it from the cached memory usage. Don't add it
+                       // to mem_in_use though; the caller will handle it
+                       // since it knows how much memory it will actually
+                       // use (the filter chain might change).
+                       coder->mem_cached -= coder->thr->mem_filters;
+               }
+       }
+
+       if (coder->thr == NULL) {
+               assert(coder->threads_initialized < coder->threads_max);
+
+               // Initialize a new thread.
+               return_if_error(initialize_new_thread(coder, allocator));
+       }
+
+       coder->thr->in_filled = 0;
+       coder->thr->in_pos = 0;
+       coder->thr->out_pos = 0;
+
+       coder->thr->progress_in = 0;
+       coder->thr->progress_out = 0;
+
+       coder->thr->partial_update = false;
+
+       return LZMA_OK;
+}
+
+
+static lzma_ret
+read_output_and_wait(struct lzma_stream_coder *coder,
+               const lzma_allocator *allocator,
+               uint8_t *restrict out, size_t *restrict out_pos,
+               size_t out_size,
+               bool *input_is_possible,
+               bool waiting_allowed,
+               mythread_condtime *wait_abs, bool *has_blocked)
+{
+       lzma_ret ret = LZMA_OK;
+
+       mythread_sync(coder->mutex) {
+               do {
+                       // Get as much output from the queue as is possible
+                       // without blocking.
+                       do {
+                               ret = lzma_outq_read(&coder->outq, allocator,
+                                               out, out_pos, out_size,
+                                               NULL, NULL);
+
+                               // If a Block was finished, tell the worker
+                               // thread of the next Block (if it is still
+                               // running) to start telling the main thread
+                               // when new output is available.
+                               if (ret == LZMA_STREAM_END)
+                                       lzma_outq_enable_partial_output(
+                                               &coder->outq,
+                                               &worker_enable_partial_update);
+
+                               // Loop until a Block wasn't finished.
+                               // It's important to loop around even if
+                               // *out_pos == out_size because there could
+                               // be an empty Block that will return
+                               // LZMA_STREAM_END without needing any
+                               // output space.
+                       } while (ret == LZMA_STREAM_END);
+
+                       // Check if lzma_outq_read reported an error from
+                       // the Block decoder.
+                       if (ret != LZMA_OK)
+                               break;
+
+                       // Check if any thread has indicated an error.
+                       if (coder->thread_error != LZMA_OK) {
+                               if (coder->pending_error == LZMA_OK)
+                                       coder->pending_error
+                                                       = coder->thread_error;
+
+                               // FIXME? Add a flag to do this conditionally?
+                               // That way errors would get reported to the
+                               // application without a delay.
+//                             if (coder->fast_errors) {
+//                                     ret = coder->thread_error;
+//                                     break;
+//                             }
+                       }
+
+                       // Check if decoding of the next Block can be started.
+                       // The memusage of the active threads must be low
+                       // enough, there must be a free buffer slot in the
+                       // output queue, and there must be a free thread
+                       // (that can be either created or an existing one
+                       // reused).
+                       //
+                       // NOTE: This is checked after reading the output
+                       // above because reading the output can free a slot in
+                       // the output queue and also reduce active memusage.
+                       //
+                       // NOTE: If output queue is empty, then input will
+                       // always be possible.
+                       if (input_is_possible != NULL
+                                       && coder->memlimit_threading
+                                               - coder->mem_in_use
+                                               - coder->outq.mem_in_use
+                                               >= coder->mem_next_block
+                                       && lzma_outq_has_buf(&coder->outq)
+                                       && (coder->threads_initialized
+                                                       < coder->threads_max
+                                               || coder->threads_free
+                                                       != NULL)) {
+                               *input_is_possible = true;
+                               break;
+                       }
+
+                       // If the caller doesn't want us to block, return now.
+                       if (!waiting_allowed)
+                               break;
+
+                       // This check is needed only when input_is_possible
+                       // is NULL. We must return if we aren't waiting for
+                       // input to become possible and there is no more
+                       // output coming from the queue.
+                       if (lzma_outq_is_empty(&coder->outq)) {
+                               assert(input_is_possible == NULL);
+                               break;
+                       }
+
+                       // If there is more data available from the queue,
+                       // our out buffer must be full and we need to return
+                       // so that the application can provide more output
+                       // space.
+                       //
+                       // NOTE: In general lzma_outq_is_readable() can return
+                       // true also when there are no more bytes available.
+                       // This can happen when a Block has finished without
+                       // providing any new output. We know that this is not
+                       // the case because in the beginning of this loop we
+                       // tried to read as much as possible even when we had
+                       // no output space left and the mutex has been locked
+                       // all the time (so worker threads cannot have changed
+                       // anything). Thus there must be actual pending output
+                       // in the queue.
+                       if (lzma_outq_is_readable(&coder->outq)) {
+                               assert(*out_pos == out_size);
+                               break;
+                       }
+
+                       // If the application stops providing more input
+                       // in the middle of a Block, there will eventually
+                       // be one worker thread left that is stuck waiting for
+                       // more input (that might never arrive) and a matching
+                       // outbuf which the worker thread cannot finish due
+                       // to lack of input. We must detect this situation,
+                       // otherwise we would end up waiting indefinitely
+                       // (if no timeout is in use) or keep returning
+                       // LZMA_TIMED_OUT while making no progress. Thus, the
+                       // application would never get LZMA_BUF_ERROR from
+                       // lzma_code() which would tell the application that
+                       // no more progress is possible. No LZMA_BUF_ERROR
+                       // means that, for example, truncated .xz files could
+                       // cause an infinite loop.
+                       //
+                       // A worker thread doing partial updates will
+                       // store not only the output position in outbuf->pos
+                       // but also the matching input position in
+                       // outbuf->decoder_in_pos. Here we check if that
+                       // input position matches the amount of input that
+                       // the worker thread has been given (in_filled).
+                       // If so, we must return and not wait as no more
+                       // output will be coming without first getting more
+                       // input to the worker thread. If the application
+                       // keeps calling lzma_code() without providing more
+                       // input, it will eventually get LZMA_BUF_ERROR.
+                       //
+                       // NOTE: We can read partial_update and in_filled
+                       // without thr->mutex as only the main thread
+                       // modifies these variables. decoder_in_pos requires
+                       // coder->mutex which we are already holding.
+                       if (coder->thr != NULL && coder->thr->partial_update) {
+                               // There is exactly one outbuf in the queue.
+                               assert(coder->thr->outbuf == coder->outq.head);
+                               assert(coder->thr->outbuf == coder->outq.tail);
+
+                               if (coder->thr->outbuf->decoder_in_pos
+                                               == coder->thr->in_filled)
+                                       break;
+                       }
+
+                       // Wait for input or output to become possible.
+                       if (coder->timeout != 0) {
+                               // See the comment in stream_encoder_mt.c
+                               // about why mythread_condtime_set() is used
+                               // like this.
+                               //
+                               // FIXME?
+                               // In contrast to the encoder, this calls
+                               // _condtime_set while the mutex is locked.
+                               if (!*has_blocked) {
+                                       *has_blocked = true;
+                                       mythread_condtime_set(wait_abs,
+                                                       &coder->cond,
+                                                       coder->timeout);
+                               }
+
+                               if (mythread_cond_timedwait(&coder->cond,
+                                               &coder->mutex,
+                                               wait_abs) != 0) {
+                                       ret = LZMA_TIMED_OUT;
+                                       break;
+                               }
+                       } else {
+                               mythread_cond_wait(&coder->cond,
+                                               &coder->mutex);
+                       }
+               } while (ret == LZMA_OK);
+       }
+
+       // If we are returning an error, then the application cannot get
+       // more output from us and thus keeping the threads running is
+       // useless and waste of CPU time.
+       if (ret != LZMA_OK)
+               threads_stop(coder);
+
+       return ret;
+}
+
+
+static lzma_ret
+decode_block_header(struct lzma_stream_coder *coder,
+               const lzma_allocator *allocator, const uint8_t *restrict in,
+               size_t *restrict in_pos, size_t in_size)
+{
+       if (*in_pos >= in_size)
+               return LZMA_OK;
+
+       if (coder->pos == 0) {
+               // Detect if it's Index.
+               if (in[*in_pos] == 0x00)
+                       return LZMA_INDEX_DETECTED;
+
+               // Calculate the size of the Block Header. Note that
+               // Block Header decoder wants to see this byte too
+               // so don't advance *in_pos.
+               coder->block_options.header_size
+                               = lzma_block_header_size_decode(
+                                       in[*in_pos]);
+       }
+
+       // Copy the Block Header to the internal buffer.
+       lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
+                       coder->block_options.header_size);
+
+       // Return if we didn't get the whole Block Header yet.
+       if (coder->pos < coder->block_options.header_size)
+               return LZMA_OK;
+
+       coder->pos = 0;
+
+       // Version 1 is needed to support the .ignore_check option.
+       coder->block_options.version = 1;
+
+       // Block Header decoder will initialize all members of this array
+       // so we don't need to do it here.
+       coder->block_options.filters = coder->filters;
+
+       // Decode the Block Header.
+       return_if_error(lzma_block_header_decode(&coder->block_options,
+                       allocator, coder->buffer));
+
+       // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
+       // It has to be set after lzma_block_header_decode() because
+       // it always resets this to false.
+       coder->block_options.ignore_check = coder->ignore_check;
+
+       // coder->block_options is ready now.
+       return LZMA_STREAM_END;
+}
+
+
+static void
+cleanup_filters(lzma_filter *filters, const lzma_allocator *allocator)
+{
+       for (uint32_t i = 0; i < LZMA_FILTERS_MAX; ++i) {
+               lzma_free(filters[i].options, allocator);
+               filters[i].options = NULL;
+       }
+
+       return;
+}
+
+
+/// Get the size of the Compressed Data + Block Padding + Check.
+static size_t
+comp_blk_size(const struct lzma_stream_coder *coder)
+{
+       return vli_ceil4(coder->block_options.compressed_size)
+                       + lzma_check_size(coder->stream_flags.check);
+}
+
+
+/// Returns true if the size (compressed or uncompressed) is such that
+/// threaded decompression cannot be used. Sizes that are too big compared
+/// to SIZE_MAX must be rejected to avoid integer overflows and truncations
+/// when lzma_vli is assigned to a size_t.
+static bool
+is_direct_mode_needed(lzma_vli size)
+{
+       return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
+}
+
+
+static lzma_ret
+stream_decoder_reset(struct lzma_stream_coder *coder,
+               const lzma_allocator *allocator)
+{
+       // Initialize the Index hash used to verify the Index.
+       coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
+       if (coder->index_hash == NULL)
+               return LZMA_MEM_ERROR;
+
+       // Reset the rest of the variables.
+       coder->sequence = SEQ_STREAM_HEADER;
+       coder->pos = 0;
+
+       return LZMA_OK;
+}
+
+
+static lzma_ret
+stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
+                const uint8_t *restrict in, size_t *restrict in_pos,
+                size_t in_size,
+                uint8_t *restrict out, size_t *restrict out_pos,
+                size_t out_size, lzma_action action)
+{
+       struct lzma_stream_coder *coder = coder_ptr;
+
+       const size_t in_start = *in_pos;
+
+       mythread_condtime wait_abs;
+       bool has_blocked = false;
+
+       while (true)
+       switch (coder->sequence) {
+       case SEQ_STREAM_HEADER: {
+               // Copy the Stream Header to the internal buffer.
+               const size_t in_old = *in_pos;
+               lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
+                               LZMA_STREAM_HEADER_SIZE);
+               coder->progress_in += *in_pos - in_old;
+
+               // Return if we didn't get the whole Stream Header yet.
+               if (coder->pos < LZMA_STREAM_HEADER_SIZE)
+                       return LZMA_OK;
+
+               coder->pos = 0;
+
+               // Decode the Stream Header.
+               const lzma_ret ret = lzma_stream_header_decode(
+                               &coder->stream_flags, coder->buffer);
+               if (ret != LZMA_OK)
+                       return ret == LZMA_FORMAT_ERROR && !coder->first_stream
+                                       ? LZMA_DATA_ERROR : ret;
+
+               // If we are decoding concatenated Streams, and the later
+               // Streams have invalid Header Magic Bytes, we give
+               // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
+               coder->first_stream = false;
+
+               // Copy the type of the Check so that Block Header and Block
+               // decoders see it.
+               coder->block_options.check = coder->stream_flags.check;
+
+               // Even if we return LZMA_*_CHECK below, we want
+               // to continue from Block Header decoding.
+               coder->sequence = SEQ_BLOCK_HEADER;
+
+               // Detect if there's no integrity check or if it is
+               // unsupported if those were requested by the application.
+               if (coder->tell_no_check && coder->stream_flags.check
+                               == LZMA_CHECK_NONE)
+                       return LZMA_NO_CHECK;
+
+               if (coder->tell_unsupported_check
+                               && !lzma_check_is_supported(
+                                       coder->stream_flags.check))
+                       return LZMA_UNSUPPORTED_CHECK;
+
+               if (coder->tell_any_check)
+                       return LZMA_GET_CHECK;
+       }
+
+       // Fall through
+
+       case SEQ_BLOCK_HEADER: {
+               const size_t in_old = *in_pos;
+               const lzma_ret ret = decode_block_header(coder, allocator,
+                               in, in_pos, in_size);
+               coder->progress_in += *in_pos - in_old;
+
+               if (ret == LZMA_OK) {
+                       // We didn't decode the whole Block Header yet.
+                       //
+                       // Read output from the queue before returning. This
+                       // is important because it is possible that the
+                       // application doesn't have any new input available
+                       // immediately. If we didn't try to copy output from
+                       // the output queue here, lzma_code() could end up
+                       // returning LZMA_BUF_ERROR even though queued output
+                       // is available.
+                       //
+                       // If the lzma_code() call provided at least one input
+                       // byte, only copy as much data from the output queue
+                       // as is available immediately. This way the
+                       // application will be able to provide more input
+                       // without a delay.
+                       //
+                       // On the other hand, if lzma_code() was called with
+                       // an empty input buffer (in_start == in_size), treat
+                       // it specially: try to fill the output buffer even
+                       // if it requires waiting for the worker threads to
+                       // provide output (timeout, if specified, can still
+                       // cause us to return).
+                       //
+                       //   - This way the application will be able to get all
+                       //     data that can be decoded from the input provided
+                       //     so far.
+                       //
+                       //   - We avoid both premature LZMA_BUF_ERROR and
+                       //     busy-waiting where the application repeatedly
+                       //     calls lzma_code() which immediately returns
+                       //     LZMA_OK without providing new data.
+                       //
+                       //   - If the queue becomes empty, we won't wait
+                       //     anything and will return LZMA_OK immediately
+                       //     (coder->timeout is completely ignored).
+                       //
+                       assert(*in_pos == in_size);
+
+                       return_if_error(read_output_and_wait(coder, allocator,
+                               out, out_pos, out_size,
+                               NULL, in_start == in_size,
+                               &wait_abs, &has_blocked));
+
+                       if (coder->pending_error != LZMA_OK) {
+                               coder->sequence = SEQ_ERROR;
+                               break;
+                       }
+
+                       return LZMA_OK;
+               }
+
+               if (ret == LZMA_INDEX_DETECTED) {
+                       coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
+                       break;
+               }
+
+               // See if an error occurred.
+               if (ret != LZMA_STREAM_END) {
+                       if (coder->pending_error == LZMA_OK)
+                               coder->pending_error = ret;
+
+                       coder->sequence = SEQ_ERROR;
+                       break;
+               }
+
+               // Calculate the memory usage of the filters / Block decoder.
+               coder->mem_next_filters = lzma_raw_decoder_memusage(
+                               coder->filters);
+
+               if (coder->mem_next_filters == UINT64_MAX) {
+                       // One or more unknown Filter IDs.
+                       if (coder->pending_error == LZMA_OK)
+                               coder->pending_error = LZMA_OPTIONS_ERROR;
+
+                       coder->sequence = SEQ_ERROR;
+                       break;
+               }
+
+               coder->sequence = SEQ_BLOCK_INIT;
+       }
+
+       // Fall through
+
+       case SEQ_BLOCK_INIT: {
+               // Check if decoding is possible at all with the current
+               // memlimit_stop which we must never exceed.
+               //
+               // This needs to be the first thing in SEQ_BLOCK_INIT
+               // to make it possible to restart decoding after increasing
+               // memlimit_stop with lzma_memlimit_set().
+               if (coder->mem_next_filters > coder->memlimit_stop) {
+                       // Flush pending output before returning
+                       // LZMA_MEMLIMIT_ERROR. If the application doesn't
+                       // want to increase the limit, at least it will get
+                       // all the output possible so far.
+                       return_if_error(read_output_and_wait(coder, allocator,
+                                       out, out_pos, out_size,
+                                       NULL, true, &wait_abs, &has_blocked));
+
+                       if (!lzma_outq_is_empty(&coder->outq))
+                               return LZMA_OK;
+
+                       return LZMA_MEMLIMIT_ERROR;
+               }
+
+               // Check if the size information is available in Block Header.
+               // If it is, check if the sizes are small enough that we don't
+               // need to worry *too* much about integer overflows later in
+               // the code. If these conditions are not met, we must use the
+               // single-threaded direct mode.
+               if (is_direct_mode_needed(coder->block_options.compressed_size)
+                               || is_direct_mode_needed(
+                               coder->block_options.uncompressed_size)) {
+                       coder->sequence = SEQ_BLOCK_DIRECT_INIT;
+                       break;
+               }
+
+               // Calculate the amount of memory needed for the input and
+               // output buffers in threaded mode.
+               //
+               // These cannot overflow because we already checked that
+               // the sizes are small enough using is_direct_mode_needed().
+               coder->mem_next_in = comp_blk_size(coder);
+               const uint64_t mem_buffers = coder->mem_next_in
+                               + lzma_outq_outbuf_memusage(
+                               coder->block_options.uncompressed_size);
+
+               // Add the amount needed by the filters.
+               // Avoid integer overflows.
+               if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
+                       // Use direct mode if the memusage would overflow.
+                       // This is a theoretical case that shouldn't happen
+                       // in practice unless the input file is weird (broken
+                       // or malicious).
+                       coder->sequence = SEQ_BLOCK_DIRECT_INIT;
+                       break;
+               }
+
+               // Amount of memory needed to decode this Block in
+               // threaded mode:
+               coder->mem_next_block = coder->mem_next_filters + mem_buffers;
+
+               // If this alone would exceed memlimit_threading, then we must
+               // use the single-threaded direct mode.
+               if (coder->mem_next_block > coder->memlimit_threading) {
+                       coder->sequence = SEQ_BLOCK_DIRECT_INIT;
+                       break;
+               }
+
+               // Use the threaded mode. Free the direct mode decoder in
+               // case it has been initialized.
+               lzma_next_end(&coder->block_decoder, allocator);
+               coder->mem_direct_mode = 0;
+
+               // Since we already know what the sizes are supposed to be,
+               // we can already add them to the Index hash. The Block
+               // decoder will verify the values while decoding.
+               const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
+                               lzma_block_unpadded_size(
+                                       &coder->block_options),
+                               coder->block_options.uncompressed_size);
+               if (ret != LZMA_OK) {
+                       if (coder->pending_error == LZMA_OK)
+                               coder->pending_error = ret;
+
+                       coder->sequence = SEQ_ERROR;
+                       break;
+               }
+
+               coder->sequence = SEQ_BLOCK_THR_INIT;
+       }
+
+       // Fall through
+
+       case SEQ_BLOCK_THR_INIT: {
+               // We need to wait for a multiple conditions to become true
+               // until we can initialize the Block decoder and let a worker
+               // thread decode it:
+               //
+               //   - Wait for the memory usage of the active threads to drop
+               //     so that starting the decoding of this Block won't make
+               //     us go over memlimit_threading.
+               //
+               //   - Wait for at least one free output queue slot.
+               //
+               //   - Wait for a free worker thread.
+               //
+               // While we wait, we must copy decompressed data to the out
+               // buffer and catch possible decoder errors.
+               //
+               // read_output_and_wait() does all the above.
+               bool block_can_start = false;
+
+               return_if_error(read_output_and_wait(coder, allocator,
+                               out, out_pos, out_size,
+                               &block_can_start, true,
+                               &wait_abs, &has_blocked));
+
+               if (coder->pending_error != LZMA_OK) {
+                       coder->sequence = SEQ_ERROR;
+                       break;
+               }
+
+               if (!block_can_start) {
+                       // It's not a timeout because return_if_error handles
+                       // it already. Output queue cannot be empty either
+                       // because in that case block_can_start would have
+                       // been true. Thus the output buffer must be full and
+                       // the queue isn't empty.
+                       assert(*out_pos == out_size);
+                       assert(!lzma_outq_is_empty(&coder->outq));
+                       return LZMA_OK;
+               }
+
+               // We know that we can start decoding this Block without
+               // exceeding memlimit_threading. However, to stay below
+               // memlimit_threading may require freeing some of the
+               // cached memory.
+               //
+               // Get a local copy of variables that require locking the
+               // mutex. It is fine if the worker threads modify the real
+               // values after we read these as those changes can only be
+               // towards more favorable conditions (less memory in use,
+               // more in cache).
+               uint64_t mem_in_use;
+               uint64_t mem_cached;
+               struct worker_thread *thr;
+
+               mythread_sync(coder->mutex) {
+                       mem_in_use = coder->mem_in_use;
+                       mem_cached = coder->mem_cached;
+                       thr = coder->threads_free;
+               }
+
+               // The maximum amount of memory that can be held by other
+               // threads and cached buffers while allowing us to start
+               // decoding the next Block.
+               const uint64_t mem_max = coder->memlimit_threading
+                               - coder->mem_next_block;
+
+               // If the existing allocations are so large that starting
+               // to decode this Block might exceed memlimit_threads,
+               // try to free memory from the output queue cache first.
+               //
+               // NOTE: This math assumes the worst case. It's possible
+               // that the limit wouldn't be exceeded if the existing cached
+               // allocations are reused.
+               if (mem_in_use + mem_cached + coder->outq.mem_allocated
+                               > mem_max) {
+                       // Clear the outq cache except leave one buffer in
+                       // the cache if its size is correct. That way we
+                       // don't free and almost immediately reallocate
+                       // an identical buffer.
+                       lzma_outq_clear_cache2(&coder->outq, allocator,
+                               coder->block_options.uncompressed_size);
+               }
+
+               // If there is at least one worker_thread in the cache and
+               // the existing allocations are so large that starting to
+               // decode this Block might exceed memlimit_threads, free
+               // memory by freeing cached Block decoders.
+               //
+               // NOTE: The comparison is different here than above.
+               // Here we don't care about cached buffers in outq anymore
+               // and only look at memory actually in use. This is because
+               // if there is something in outq cache, it's a single buffer
+               // that can be used as is. We ensured this in the above
+               // if-block.
+               uint64_t mem_freed = 0;
+               if (thr != NULL && mem_in_use + mem_cached
+                               + coder->outq.mem_in_use > mem_max) {
+                       // Don't free the first Block decoder if its memory
+                       // usage isn't greater than what this Block will need.
+                       // Typically the same filter chain is used for all
+                       // Blocks so this way the allocations can be reused
+                       // when get_thread() picks the first worker_thread
+                       // from the cache.
+                       if (thr->mem_filters <= coder->mem_next_filters)
+                               thr = thr->next;
+
+                       while (thr != NULL) {
+                               lzma_next_end(&thr->block_decoder, allocator);
+                               mem_freed += thr->mem_filters;
+                               thr->mem_filters = 0;
+                               thr = thr->next;
+                       }
+               }
+
+               // Update the memory usage counters. Note that coder->mem_*
+               // may have changed since we read them so we must substract
+               // or add the changes.
+               mythread_sync(coder->mutex) {
+                       coder->mem_cached -= mem_freed;
+
+                       // Memory needed for the filters and the input buffer.
+                       // The output queue takes care of its own counter so
+                       // we don't touch it here.
+                       //
+                       // NOTE: After this, coder->mem_in_use +
+                       // coder->mem_cached might count the same thing twice.
+                       // If so, this will get corrected in get_thread() when
+                       // a worker_thread is picked from coder->free_threads
+                       // and its memory usage is substracted from mem_cached.
+                       coder->mem_in_use += coder->mem_next_in
+                                       + coder->mem_next_filters;
+               }
+
+               // Allocate memory for the output buffer in the output queue.
+               return_if_error(lzma_outq_prealloc_buf(
+                               &coder->outq, allocator,
+                               coder->block_options.uncompressed_size));
+
+               // Set up coder->thr.
+               return_if_error(get_thread(coder, allocator));
+
+               // The new Block decoder memory usage is already counted in
+               // coder->mem_in_use. Store it in the thread too.
+               coder->thr->mem_filters = coder->mem_next_filters;
+
+               // Initialize the Block decoder.
+               coder->thr->block_options = coder->block_options;
+               const lzma_ret ret = lzma_block_decoder_init(
+                                       &coder->thr->block_decoder, allocator,
+                                       &coder->thr->block_options);
+
+               // Free the allocated filter options since they are needed
+               // only to initialize the Block decoder.
+               cleanup_filters(coder->filters, allocator);
+               coder->thr->block_options.filters = NULL;
+
+               // Check if memory usage calculation and Block encoder
+               // initialization succeeded.
+               if (ret != LZMA_OK) {
+                       if (coder->pending_error == LZMA_OK)
+                               coder->pending_error = ret;
+
+                       coder->sequence = SEQ_ERROR;
+                       break;
+               }
+
+               // Allocate the input buffer.
+               coder->thr->in_size = coder->mem_next_in;
+               coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
+               if (coder->thr->in == NULL)
+                       return LZMA_MEM_ERROR;
+
+               // Get the preallocated output buffer.
+               coder->thr->outbuf = lzma_outq_get_buf(
+                               &coder->outq, coder->thr);
+
+               // Start the decoder.
+               mythread_sync(coder->thr->mutex) {
+                       assert(coder->thr->state == THR_IDLE);
+                       coder->thr->state = THR_RUN;
+                       mythread_cond_signal(&coder->thr->cond);
+               }
+
+               // Enable output from the thread that holds the oldest output
+               // buffer in the output queue (if such a thread exists).
+               mythread_sync(coder->mutex) {
+                       lzma_outq_enable_partial_output(&coder->outq,
+                                       &worker_enable_partial_update);
+               }
+
+               coder->sequence = SEQ_BLOCK_THR_RUN;
+       }
+
+       // Fall through
+
+       case SEQ_BLOCK_THR_RUN: {
+               // Copy input to the worker thread.
+               size_t cur_in_filled = coder->thr->in_filled;
+               lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
+                               &cur_in_filled, coder->thr->in_size);
+
+               // Tell the thread how much we copied.
+               mythread_sync(coder->thr->mutex) {
+                       coder->thr->in_filled = cur_in_filled;
+
+                       // NOTE: Most of the time we are copying input faster
+                       // than the thread can decode so most of the time
+                       // calling mythread_cond_signal() is useless but
+                       // we cannot make it conditional because thr->in_pos
+                       // is updated without a mutex. And the overhead should
+                       // be very much negligible anyway.
+                       mythread_cond_signal(&coder->thr->cond);
+               }
+
+               // Read output from the output queue. Just like in
+               // SEQ_BLOCK_HEADER, we wait to fill the output buffer
+               // only if lzma_code() was called without providing any input.
+               return_if_error(read_output_and_wait(coder, allocator,
+                               out, out_pos, out_size,
+                               NULL, in_start == in_size,
+                               &wait_abs, &has_blocked));
+
+               if (coder->pending_error != LZMA_OK) {
+                       coder->sequence = SEQ_ERROR;
+                       break;
+               }
+
+               // Return if the input didn't contain the whole Block.
+               if (coder->thr->in_filled < coder->thr->in_size) {
+                       assert(*in_pos == in_size);
+                       return LZMA_OK;
+               }
+
+               // The whole Block has been copied to the thread-specific
+               // buffer. Continue from the next Block Header or Index.
+               coder->thr = NULL;
+               coder->sequence = SEQ_BLOCK_HEADER;
+               break;
+       }
+
+       case SEQ_BLOCK_DIRECT_INIT: {
+               // Wait for the threads to finish and that all decoded data
+               // has been copied to the output. That is, wait until the
+               // output queue becomes empty.
+               //
+               // NOTE: No need to check for coder->pending_error as
+               // we aren't consuming any input until the queue is empty
+               // and if there is a pending error, read_output_and_wait()
+               // will eventually return it before the queue is empty.
+               return_if_error(read_output_and_wait(coder, allocator,
+                               out, out_pos, out_size,
+                               NULL, true, &wait_abs, &has_blocked));
+               if (!lzma_outq_is_empty(&coder->outq))
+                       return LZMA_OK;
+
+               // Free the cached output buffers.
+               lzma_outq_clear_cache(&coder->outq, allocator);
+
+               // Get rid of the worker threads, including the coder->threads
+               // array.
+               threads_end(coder, allocator);
+
+               // Initialize the Block decoder.
+               const lzma_ret ret = lzma_block_decoder_init(
+                               &coder->block_decoder, allocator,
+                               &coder->block_options);
+
+               // Free the allocated filter options since they are needed
+               // only to initialize the Block decoder.
+               cleanup_filters(coder->filters, allocator);
+               coder->block_options.filters = NULL;
+
+               // Check if Block decoder initialization succeeded.
+               if (ret != LZMA_OK)
+                       return ret;
+
+               // Make the memory usage visible to _memconfig().
+               coder->mem_direct_mode = coder->mem_next_filters;
+
+               coder->sequence = SEQ_BLOCK_DIRECT_RUN;
+       }
+
+       // Fall through
+
+       case SEQ_BLOCK_DIRECT_RUN: {
+               const size_t in_old = *in_pos;
+               const size_t out_old = *out_pos;
+               const lzma_ret ret = coder->block_decoder.code(
+                               coder->block_decoder.coder, allocator,
+                               in, in_pos, in_size, out, out_pos, out_size,
+                               action);
+               coder->progress_in += *in_pos - in_old;
+               coder->progress_out += *out_pos - out_old;
+
+               if (ret != LZMA_STREAM_END)
+                       return ret;
+
+               // Block decoded successfully. Add the new size pair to
+               // the Index hash.
+               return_if_error(lzma_index_hash_append(coder->index_hash,
+                               lzma_block_unpadded_size(
+                                       &coder->block_options),
+                               coder->block_options.uncompressed_size));
+
+               coder->sequence = SEQ_BLOCK_HEADER;
+               break;
+       }
+
+       case SEQ_INDEX_WAIT_OUTPUT:
+               // Flush the output from all worker threads so that we can
+               // decode the Index without thinking about threading.
+               return_if_error(read_output_and_wait(coder, allocator,
+                               out, out_pos, out_size,
+                               NULL, true, &wait_abs, &has_blocked));
+
+               if (!lzma_outq_is_empty(&coder->outq))
+                       return LZMA_OK;
+
+               coder->sequence = SEQ_INDEX_DECODE;
+
+       // Fall through
+
+       case SEQ_INDEX_DECODE: {
+               // If we don't have any input, don't call
+               // lzma_index_hash_decode() since it would return
+               // LZMA_BUF_ERROR, which we must not do here.
+               if (*in_pos >= in_size)
+                       return LZMA_OK;
+
+               // Decode the Index and compare it to the hash calculated
+               // from the sizes of the Blocks (if any).
+               const size_t in_old = *in_pos;
+               const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
+                               in, in_pos, in_size);
+               coder->progress_in += *in_pos - in_old;
+               if (ret != LZMA_STREAM_END)
+                       return ret;
+
+               coder->sequence = SEQ_STREAM_FOOTER;
+       }
+
+       // Fall through
+
+       case SEQ_STREAM_FOOTER: {
+               // Copy the Stream Footer to the internal buffer.
+               const size_t in_old = *in_pos;
+               lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
+                               LZMA_STREAM_HEADER_SIZE);
+               coder->progress_in += *in_pos - in_old;
+
+               // Return if we didn't get the whole Stream Footer yet.
+               if (coder->pos < LZMA_STREAM_HEADER_SIZE)
+                       return LZMA_OK;
+
+               coder->pos = 0;
+
+               // Decode the Stream Footer. The decoder gives
+               // LZMA_FORMAT_ERROR if the magic bytes don't match,
+               // so convert that return code to LZMA_DATA_ERROR.
+               lzma_stream_flags footer_flags;
+               const lzma_ret ret = lzma_stream_footer_decode(
+                               &footer_flags, coder->buffer);
+               if (ret != LZMA_OK)
+                       return ret == LZMA_FORMAT_ERROR
+                                       ? LZMA_DATA_ERROR : ret;
+
+               // Check that Index Size stored in the Stream Footer matches
+               // the real size of the Index field.
+               if (lzma_index_hash_size(coder->index_hash)
+                               != footer_flags.backward_size)
+                       return LZMA_DATA_ERROR;
+
+               // Compare that the Stream Flags fields are identical in
+               // both Stream Header and Stream Footer.
+               return_if_error(lzma_stream_flags_compare(
+                               &coder->stream_flags, &footer_flags));
+
+               if (!coder->concatenated)
+                       return LZMA_STREAM_END;
+
+               coder->sequence = SEQ_STREAM_PADDING;
+       }
+
+       // Fall through
+
+       case SEQ_STREAM_PADDING:
+               assert(coder->concatenated);
+
+               // Skip over possible Stream Padding.
+               while (true) {
+                       if (*in_pos >= in_size) {
+                               // Unless LZMA_FINISH was used, we cannot
+                               // know if there's more input coming later.
+                               if (action != LZMA_FINISH)
+                                       return LZMA_OK;
+
+                               // Stream Padding must be a multiple of
+                               // four bytes.
+                               return coder->pos == 0
+                                               ? LZMA_STREAM_END
+                                               : LZMA_DATA_ERROR;
+                       }
+
+                       // If the byte is not zero, it probably indicates
+                       // beginning of a new Stream (or the file is corrupt).
+                       if (in[*in_pos] != 0x00)
+                               break;
+
+                       ++*in_pos;
+                       ++coder->progress_in;
+                       coder->pos = (coder->pos + 1) & 3;
+               }
+
+               // Stream Padding must be a multiple of four bytes (empty
+               // Stream Padding is OK).
+               if (coder->pos != 0) {
+                       ++*in_pos;
+                       ++coder->progress_in;
+                       return LZMA_DATA_ERROR;
+               }
+
+               // Prepare to decode the next Stream.
+               return_if_error(stream_decoder_reset(coder, allocator));
+               break;
+
+       case SEQ_ERROR:
+               // Let the application get all data before the point where
+               // the error was detected. This matches the behavior of
+               // single-threaded use.
+               //
+               // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
+               // they are returned immediately. Thus in rare cases the
+               // output will be less than in single-threaded mode. But
+               // maybe this doesn't matter much in practice.
+               return_if_error(read_output_and_wait(coder, allocator,
+                               out, out_pos, out_size,
+                               NULL, true, &wait_abs, &has_blocked));
+
+               // We get here only if the error happened in the main thread,
+               // for example, unsupported Block Header.
+               if (!lzma_outq_is_empty(&coder->outq))
+                       return LZMA_OK;
+
+               return coder->pending_error;
+
+       default:
+               assert(0);
+               return LZMA_PROG_ERROR;
+       }
+
+       // Never reached
+}
+
+
+static void
+stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
+{
+       struct lzma_stream_coder *coder = coder_ptr;
+
+       threads_end(coder, allocator);
+       lzma_outq_end(&coder->outq, allocator);
+
+       lzma_next_end(&coder->block_decoder, allocator);
+       cleanup_filters(coder->filters, allocator);
+       lzma_index_hash_end(coder->index_hash, allocator);
+
+       lzma_free(coder, allocator);
+       return;
+}
+
+
+static lzma_check
+stream_decoder_mt_get_check(const void *coder_ptr)
+{
+       const struct lzma_stream_coder *coder = coder_ptr;
+       return coder->stream_flags.check;
+}
+
+
+static lzma_ret
+stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
+               uint64_t *old_memlimit, uint64_t new_memlimit)
+{
+       // NOTE: This function gets/sets memlimit_stop. For now,
+       // memlimit_threading cannot be modified after initialization.
+       struct lzma_stream_coder *coder = coder_ptr;
+
+       mythread_sync(coder->mutex) {
+               *memusage = coder->mem_direct_mode + coder->mem_in_use
+                               + coder->outq.mem_in_use; // FIXME?
+       }
+
+       // If no filter chains are allocated, *memusage may be zero.
+       // Always return at least LZMA_MEMUSAGE_BASE.
+       if (*memusage < LZMA_MEMUSAGE_BASE)
+               *memusage = LZMA_MEMUSAGE_BASE;
+
+       *old_memlimit = coder->memlimit_stop;
+
+       if (new_memlimit != 0) {
+               if (new_memlimit < *memusage) // FIXME?
+                       return LZMA_MEMLIMIT_ERROR;
+
+               coder->memlimit_stop = new_memlimit;
+       }
+
+       return LZMA_OK;
+}
+
+
+static void
+stream_decoder_mt_get_progress(void *coder_ptr,
+               uint64_t *progress_in, uint64_t *progress_out)
+{
+       struct lzma_stream_coder *coder = coder_ptr;
+
+       // Lock coder->mutex to prevent finishing threads from moving their
+       // progress info from the worker_thread structure to lzma_stream_coder.
+       mythread_sync(coder->mutex) {
+               *progress_in = coder->progress_in;
+               *progress_out = coder->progress_out;
+
+               for (size_t i = 0; i < coder->threads_initialized; ++i) {
+                       mythread_sync(coder->threads[i].mutex) {
+                               *progress_in += coder->threads[i].progress_in;
+                               *progress_out += coder->threads[i]
+                                               .progress_out;
+                       }
+               }
+       }
+
+       return;
+}
+
+
+static lzma_ret
+stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
+                      const lzma_mt *options)
+{
+       struct lzma_stream_coder *coder;
+
+       if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
+               return LZMA_OPTIONS_ERROR;
+
+       if (options->flags & ~LZMA_SUPPORTED_FLAGS)
+               return LZMA_OPTIONS_ERROR;
+
+       lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
+
+       coder = next->coder;
+       if (!coder) {
+               coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
+               if (coder == NULL)
+                       return LZMA_MEM_ERROR;
+
+               next->coder = coder;
+
+               if (mythread_mutex_init(&coder->mutex)) {
+                       lzma_free(coder, allocator);
+                       return LZMA_MEM_ERROR;
+               }
+
+               if (mythread_cond_init(&coder->cond)) {
+                       mythread_mutex_destroy(&coder->mutex);
+                       lzma_free(coder, allocator);
+                       return LZMA_MEM_ERROR;
+               }
+
+               next->code = &stream_decode_mt;
+               next->end = &stream_decoder_mt_end;
+               next->get_check = &stream_decoder_mt_get_check;
+               next->memconfig = &stream_decoder_mt_memconfig;
+               next->get_progress = &stream_decoder_mt_get_progress;
+
+               memzero(coder->filters, sizeof(coder->filters));
+               memzero(&coder->outq, sizeof(coder->outq));
+
+               coder->block_decoder = LZMA_NEXT_CODER_INIT;
+               coder->mem_direct_mode = 0;
+
+               coder->index_hash = NULL;
+               coder->threads = NULL;
+               coder->threads_free = NULL;
+               coder->threads_initialized = 0;
+       }
+
+       // Cleanup old filter chain if one remains after unfinished decoding
+       // of a previous Stream.
+       cleanup_filters(coder->filters, allocator);
+
+       // By allocating threads from scratch we can start memory-usage
+       // accounting from scratch, too. Changes in filter and block sizes may
+       // affect number of threads.
+       //
+       // FIXME? Reusing should be easy but unlike the single-threaded
+       // decoder, with some types of input file combinations reusing
+       // could leave quite a lot of memory allocated but unused (first
+       // file could allocate a lot, the next files could use fewer
+       // threads and some of the allocations from the first file would not
+       // get freed unless memlimit_threading forces us to clear caches).
+       //
+       // NOTE: The direct mode decoder isn't freed here if one exists.
+       // It will be reused or freed as needed in the main loop.
+       threads_end(coder, allocator);
+
+       // All memusage counters start at 0 (including mem_direct_mode).
+       // The little extra that is needed for the structs in this file
+       // get accounted well enough by the filter chain memory usage
+       // which adds LZMA_MEMUSAGE_BASE for each chain. However,
+       // stream_decoder_mt_memconfig() has to handle this specially so that
+       // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
+       coder->mem_in_use = 0;
+       coder->mem_cached = 0;
+       coder->mem_next_block = 0;
+
+       coder->progress_in = 0;
+       coder->progress_out = 0;
+
+       coder->sequence = SEQ_STREAM_HEADER;
+       coder->thread_error = LZMA_OK;
+       coder->pending_error = LZMA_OK;
+       coder->thr = NULL;
+
+       coder->timeout = options->timeout;
+
+       coder->memlimit_threading = my_max(1, options->memlimit_threading);
+       coder->memlimit_stop = my_max(1, options->memlimit_stop);
+       if (coder->memlimit_threading > coder->memlimit_stop)
+               coder->memlimit_threading = coder->memlimit_stop;
+
+       coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
+       coder->tell_unsupported_check
+                       = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
+       coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
+       coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
+       coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
+       coder->first_stream = true;
+       coder->pos = 0;
+
+       coder->threads_max = options->threads;
+
+       return_if_error(lzma_outq_init(&coder->outq, allocator,
+                                      coder->threads_max));
+
+       return stream_decoder_reset(coder, allocator);
+}
+
+
+extern LZMA_API(lzma_ret)
+lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
+{
+       lzma_next_strm_init(stream_decoder_mt_init, strm, options);
+
+       strm->internal->supported_actions[LZMA_RUN] = true;
+       strm->internal->supported_actions[LZMA_FINISH] = true;
+
+       return LZMA_OK;
+}
index 6896a94ebbaddf6e0dce2607c4a7fa29d825d7c6..4462dac4e05eadeaabce9a80f24c2f5e79a8a16b 100644 (file)
@@ -109,6 +109,7 @@ global:
        lzma_microlzma_decoder;
        lzma_microlzma_encoder;
        lzma_file_info_decoder;
+       lzma_stream_decoder_mt;
 
 local:
        *;