** May you share freely, never taking more than you give.
**
*************************************************************************
-** The code in this file implements the Virtual Database Engine (VDBE)
+** The code in this file implements execution method of the
+** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
+** handles housekeeping details such as creating and deleting
+** VDBE instances. This file is solely interested in executing
+** the VDBE program.
+**
+** In the external interface, an "sqlite_vm*" is an opaque pointer
+** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement. VDBE programs are
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
-** $Id: vdbe.c,v 1.238 2003/09/06 01:10:48 drh Exp $
+** $Id: vdbe.c,v 1.239 2003/09/06 20:12:01 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
-
-/*
-** The makefile scans this source file and creates the following
-** array of string constants which are the names of all VDBE opcodes.
-** This array is defined in a separate source code file named opcode.c
-** which is automatically generated by the makefile.
-*/
-extern char *sqliteOpcodeNames[];
+#include "vdbeInt.h"
/*
** The following global variable is incremented every time a cursor
*/
int sqlite_search_count = 0;
-/*
-** SQL is translated into a sequence of instructions to be
-** executed by a virtual machine. Each instruction is an instance
-** of the following structure.
-*/
-typedef struct VdbeOp Op;
-
-/*
-** Boolean values
-*/
-typedef unsigned char Bool;
-
-/*
-** A cursor is a pointer into a single BTree within a database file.
-** The cursor can seek to a BTree entry with a particular key, or
-** loop over all entries of the Btree. You can also insert new BTree
-** entries or retrieve the key or data from the entry that the cursor
-** is currently pointing to.
-**
-** Every cursor that the virtual machine has open is represented by an
-** instance of the following structure.
-**
-** If the Cursor.isTriggerRow flag is set it means that this cursor is
-** really a single row that represents the NEW or OLD pseudo-table of
-** a row trigger. The data for the row is stored in Cursor.pData and
-** the rowid is in Cursor.iKey.
-*/
-struct Cursor {
- BtCursor *pCursor; /* The cursor structure of the backend */
- int lastRecno; /* Last recno from a Next or NextIdx operation */
- int nextRowid; /* Next rowid returned by OP_NewRowid */
- Bool recnoIsValid; /* True if lastRecno is valid */
- Bool keyAsData; /* The OP_Column command works on key instead of data */
- Bool atFirst; /* True if pointing to first entry */
- Bool useRandomRowid; /* Generate new record numbers semi-randomly */
- Bool nullRow; /* True if pointing to a row with no data */
- Bool nextRowidValid; /* True if the nextRowid field is valid */
- Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
- Btree *pBt; /* Separate file holding temporary table */
- int nData; /* Number of bytes in pData */
- char *pData; /* Data for a NEW or OLD pseudo-table */
- int iKey; /* Key for the NEW or OLD pseudo-table row */
-};
-typedef struct Cursor Cursor;
-
-/*
-** A sorter builds a list of elements to be sorted. Each element of
-** the list is an instance of the following structure.
-*/
-typedef struct Sorter Sorter;
-struct Sorter {
- int nKey; /* Number of bytes in the key */
- char *zKey; /* The key by which we will sort */
- int nData; /* Number of bytes in the data */
- char *pData; /* The data associated with this key */
- Sorter *pNext; /* Next in the list */
-};
-
-/*
-** Number of buckets used for merge-sort.
-*/
-#define NSORT 30
-
-/*
-** Number of bytes of string storage space available to each stack
-** layer without having to malloc. NBFS is short for Number of Bytes
-** For Strings.
-*/
-#define NBFS 32
-
-/*
-** A single level of the stack is an instance of the following
-** structure. Except, string values are stored on a separate
-** list of of pointers to character. The reason for storing
-** strings separately is so that they can be easily passed
-** to the callback function.
-*/
-struct Stack {
- int i; /* Integer value */
- int n; /* Number of characters in string value, including '\0' */
- int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
- double r; /* Real value */
- char z[NBFS]; /* Space for short strings */
-};
-typedef struct Stack Stack;
-
-/*
-** Memory cells use the same structure as the stack except that space
-** for an arbitrary string is added.
-*/
-struct Mem {
- Stack s; /* All values of the memory cell besides string */
- char *z; /* String value for this memory cell */
-};
-typedef struct Mem Mem;
-
-/*
-** Allowed values for Stack.flags
-*/
-#define STK_Null 0x0001 /* Value is NULL */
-#define STK_Str 0x0002 /* Value is a string */
-#define STK_Int 0x0004 /* Value is an integer */
-#define STK_Real 0x0008 /* Value is a real number */
-#define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[] */
-#define STK_Static 0x0020 /* zStack[] points to a static string */
-#define STK_Ephem 0x0040 /* zStack[] points to an ephemeral string */
-
-/* The following STK_ value appears only in AggElem.aMem.s.flag fields.
-** It indicates that the corresponding AggElem.aMem.z points to a
-** aggregate function context that needs to be finalized.
-*/
-#define STK_AggCtx 0x0040 /* zStack[] points to an agg function context */
-
-/*
-** The "context" argument for a installable function. A pointer to an
-** instance of this structure is the first argument to the routines used
-** implement the SQL functions.
-**
-** There is a typedef for this structure in sqlite.h. So all routines,
-** even the public interface to SQLite, can use a pointer to this structure.
-** But this file is the only place where the internal details of this
-** structure are known.
-**
-** This structure is defined inside of vdbe.c because it uses substructures
-** (Stack) which are only defined there.
-*/
-struct sqlite_func {
- FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
- Stack s; /* Small strings, ints, and double values go here */
- char *z; /* Space for holding dynamic string results */
- void *pAgg; /* Aggregate context */
- u8 isError; /* Set to true for an error */
- u8 isStep; /* Current in the step function */
- int cnt; /* Number of times that the step function has been called */
-};
-
-/*
-** An Agg structure describes an Aggregator. Each Agg consists of
-** zero or more Aggregator elements (AggElem). Each AggElem contains
-** a key and one or more values. The values are used in processing
-** aggregate functions in a SELECT. The key is used to implement
-** the GROUP BY clause of a select.
-*/
-typedef struct Agg Agg;
-typedef struct AggElem AggElem;
-struct Agg {
- int nMem; /* Number of values stored in each AggElem */
- AggElem *pCurrent; /* The AggElem currently in focus */
- HashElem *pSearch; /* The hash element for pCurrent */
- Hash hash; /* Hash table of all aggregate elements */
- FuncDef **apFunc; /* Information about aggregate functions */
-};
-struct AggElem {
- char *zKey; /* The key to this AggElem */
- int nKey; /* Number of bytes in the key, including '\0' at end */
- Mem aMem[1]; /* The values for this AggElem */
-};
-
-/*
-** A Set structure is used for quick testing to see if a value
-** is part of a small set. Sets are used to implement code like
-** this:
-** x.y IN ('hi','hoo','hum')
-*/
-typedef struct Set Set;
-struct Set {
- Hash hash; /* A set is just a hash table */
- HashElem *prev; /* Previously accessed hash elemen */
-};
-
-/*
-** A Keylist is a bunch of keys into a table. The keylist can
-** grow without bound. The keylist stores the ROWIDs of database
-** records that need to be deleted or updated.
-*/
-typedef struct Keylist Keylist;
-struct Keylist {
- int nKey; /* Number of slots in aKey[] */
- int nUsed; /* Next unwritten slot in aKey[] */
- int nRead; /* Next unread slot in aKey[] */
- Keylist *pNext; /* Next block of keys */
- int aKey[1]; /* One or more keys. Extra space allocated as needed */
-};
-
-/*
-** An instance of the virtual machine. This structure contains the complete
-** state of the virtual machine.
-**
-** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
-** is really a pointer to an instance of this structure.
-*/
-struct Vdbe {
- sqlite *db; /* The whole database */
- Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
- FILE *trace; /* Write an execution trace here, if not NULL */
- int nOp; /* Number of instructions in the program */
- int nOpAlloc; /* Number of slots allocated for aOp[] */
- Op *aOp; /* Space to hold the virtual machine's program */
- int nLabel; /* Number of labels used */
- int nLabelAlloc; /* Number of slots allocated in aLabel[] */
- int *aLabel; /* Space to hold the labels */
- int tos; /* Index of top of stack */
- Stack *aStack; /* The operand stack, except string values */
- char **zStack; /* Text or binary values of the stack */
- char **azColName; /* Becomes the 4th parameter to callbacks */
- int nCursor; /* Number of slots in aCsr[] */
- Cursor *aCsr; /* One element of this array for each open cursor */
- Sorter *pSort; /* A linked list of objects to be sorted */
- FILE *pFile; /* At most one open file handler */
- int nField; /* Number of file fields */
- char **azField; /* Data for each file field */
- int nVariable; /* Number of entries in azVariable[] */
- char **azVariable; /* Values for the OP_Variable opcode */
- char *zLine; /* A single line from the input file */
- int nLineAlloc; /* Number of spaces allocated for zLine */
- int magic; /* Magic number for sanity checking */
- int nMem; /* Number of memory locations currently allocated */
- Mem *aMem; /* The memory locations */
- Agg agg; /* Aggregate information */
- int nSet; /* Number of sets allocated */
- Set *aSet; /* An array of sets */
- int nCallback; /* Number of callbacks invoked so far */
- Keylist *pList; /* A list of ROWIDs */
- int keylistStackDepth; /* The size of the "keylist" stack */
- Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
- int pc; /* The program counter */
- int rc; /* Value to return */
- unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
- int errorAction; /* Recovery action to do in case of an error */
- int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
- int inTempTrans; /* True if temp database is transactioned */
- int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
- int returnDepth; /* Next unused element in returnStack[] */
- int nResColumn; /* Number of columns in one row of the result set */
- char **azResColumn; /* Values for one row of result */
- int (*xCallback)(void*,int,char**,char**); /* Callback for SELECT results */
- void *pCbArg; /* First argument to xCallback() */
- int popStack; /* Pop the stack this much on entry to VdbeExec() */
- char *zErrMsg; /* Error message written here */
- u8 explain; /* True if EXPLAIN present on SQL command */
-};
-
-/*
-** The following are allowed values for Vdbe.magic
-*/
-#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
-#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
-#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
-#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
-
-/*
-** When debugging the code generator in a symbolic debugger, one can
-** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
-** as they are added to the instruction stream.
-*/
-#ifndef NDEBUG
-int sqlite_vdbe_addop_trace = 0;
-static void vdbePrintOp(FILE*, int, Op*);
-#endif
-
-/*
-** Create a new virtual database engine.
-*/
-Vdbe *sqliteVdbeCreate(sqlite *db){
- Vdbe *p;
- p = sqliteMalloc( sizeof(Vdbe) );
- if( p==0 ) return 0;
- p->db = db;
- if( db->pVdbe ){
- db->pVdbe->pPrev = p;
- }
- p->pNext = db->pVdbe;
- p->pPrev = 0;
- db->pVdbe = p;
- p->magic = VDBE_MAGIC_INIT;
- return p;
-}
-
-/*
-** Turn tracing on or off
-*/
-void sqliteVdbeTrace(Vdbe *p, FILE *trace){
- p->trace = trace;
-}
-
-/*
-** Add a new instruction to the list of instructions current in the
-** VDBE. Return the address of the new instruction.
-**
-** Parameters:
-**
-** p Pointer to the VDBE
-**
-** op The opcode for this instruction
-**
-** p1, p2 First two of the three possible operands.
-**
-** Use the sqliteVdbeResolveLabel() function to fix an address and
-** the sqliteVdbeChangeP3() function to change the value of the P3
-** operand.
-*/
-int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
- int i;
-
- i = p->nOp;
- p->nOp++;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( i>=p->nOpAlloc ){
- int oldSize = p->nOpAlloc;
- Op *aNew;
- p->nOpAlloc = p->nOpAlloc*2 + 100;
- aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
- if( aNew==0 ){
- p->nOpAlloc = oldSize;
- return 0;
- }
- p->aOp = aNew;
- memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
- }
- p->aOp[i].opcode = op;
- p->aOp[i].p1 = p1;
- if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
- p2 = p->aLabel[-1-p2];
- }
- p->aOp[i].p2 = p2;
- p->aOp[i].p3 = 0;
- p->aOp[i].p3type = P3_NOTUSED;
-#ifndef NDEBUG
- if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i, &p->aOp[i]);
-#endif
- return i;
-}
-
-/*
-** Create a new symbolic label for an instruction that has yet to be
-** coded. The symbolic label is really just a negative number. The
-** label can be used as the P2 value of an operation. Later, when
-** the label is resolved to a specific address, the VDBE will scan
-** through its operation list and change all values of P2 which match
-** the label into the resolved address.
-**
-** The VDBE knows that a P2 value is a label because labels are
-** always negative and P2 values are suppose to be non-negative.
-** Hence, a negative P2 value is a label that has yet to be resolved.
-*/
-int sqliteVdbeMakeLabel(Vdbe *p){
- int i;
- i = p->nLabel++;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( i>=p->nLabelAlloc ){
- int *aNew;
- p->nLabelAlloc = p->nLabelAlloc*2 + 10;
- aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
- if( aNew==0 ){
- sqliteFree(p->aLabel);
- }
- p->aLabel = aNew;
- }
- if( p->aLabel==0 ){
- p->nLabel = 0;
- p->nLabelAlloc = 0;
- return 0;
- }
- p->aLabel[i] = -1;
- return -1-i;
-}
-
-/*
-** Resolve label "x" to be the address of the next instruction to
-** be inserted. The parameter "x" must have been obtained from
-** a prior call to sqliteVdbeMakeLabel().
-*/
-void sqliteVdbeResolveLabel(Vdbe *p, int x){
- int j;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( x<0 && (-x)<=p->nLabel && p->aOp ){
- if( p->aLabel[-1-x]==p->nOp ) return;
- assert( p->aLabel[-1-x]<0 );
- p->aLabel[-1-x] = p->nOp;
- for(j=0; j<p->nOp; j++){
- if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
- }
- }
-}
-
-/*
-** Return the address of the next instruction to be inserted.
-*/
-int sqliteVdbeCurrentAddr(Vdbe *p){
- assert( p->magic==VDBE_MAGIC_INIT );
- return p->nOp;
-}
-
-/*
-** Add a whole list of operations to the operation stack. Return the
-** address of the first operation added.
-*/
-int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){
- int addr;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->nOp + nOp >= p->nOpAlloc ){
- int oldSize = p->nOpAlloc;
- Op *aNew;
- p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
- aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
- if( aNew==0 ){
- p->nOpAlloc = oldSize;
- return 0;
- }
- p->aOp = aNew;
- memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
- }
- addr = p->nOp;
- if( nOp>0 ){
- int i;
- for(i=0; i<nOp; i++){
- int p2 = aOp[i].p2;
- p->aOp[i+addr] = aOp[i];
- if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2);
- p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED;
-#ifndef NDEBUG
- if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i+addr, &p->aOp[i+addr]);
-#endif
- }
- p->nOp += nOp;
- }
- return addr;
-}
-
-/*
-** Change the value of the P1 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqliteVdbeAddOpList but we want to make a
-** few minor changes to the program.
-*/
-void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p1 = val;
- }
-}
-
-/*
-** Change the value of the P2 operand for a specific instruction.
-** This routine is useful for setting a jump destination.
-*/
-void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
- assert( val>=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p2 = val;
- }
-}
-
-/*
-** Change the value of the P3 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqliteVdbeAddOpList but we want to make a
-** few minor changes to the program.
-**
-** If n>=0 then the P3 operand is dynamic, meaning that a copy of
-** the string is made into memory obtained from sqliteMalloc().
-** A value of n==0 means copy bytes of zP3 up to and including the
-** first null byte. If n>0 then copy n+1 bytes of zP3.
-**
-** If n==P3_STATIC it means that zP3 is a pointer to a constant static
-** string and we can just copy the pointer. n==P3_POINTER means zP3 is
-** a pointer to some object other than a string.
-**
-** If addr<0 then change P3 on the most recently inserted instruction.
-*/
-void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
- Op *pOp;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p==0 || p->aOp==0 ) return;
- if( addr<0 || addr>=p->nOp ){
- addr = p->nOp - 1;
- if( addr<0 ) return;
- }
- pOp = &p->aOp[addr];
- if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
- sqliteFree(pOp->p3);
- pOp->p3 = 0;
- }
- if( zP3==0 ){
- pOp->p3 = 0;
- pOp->p3type = P3_NOTUSED;
- }else if( n<0 ){
- pOp->p3 = (char*)zP3;
- pOp->p3type = n;
- }else{
- sqliteSetNString(&pOp->p3, zP3, n, 0);
- pOp->p3type = P3_DYNAMIC;
- }
-}
-
-/*
-** If the P3 operand to the specified instruction appears
-** to be a quoted string token, then this procedure removes
-** the quotes.
-**
-** The quoting operator can be either a grave ascent (ASCII 0x27)
-** or a double quote character (ASCII 0x22). Two quotes in a row
-** resolve to be a single actual quote character within the string.
-*/
-void sqliteVdbeDequoteP3(Vdbe *p, int addr){
- Op *pOp;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
- pOp = &p->aOp[addr];
- if( pOp->p3==0 || pOp->p3[0]==0 ) return;
- if( pOp->p3type==P3_POINTER ) return;
- if( pOp->p3type!=P3_DYNAMIC ){
- pOp->p3 = sqliteStrDup(pOp->p3);
- pOp->p3type = P3_DYNAMIC;
- }
- sqliteDequote(pOp->p3);
-}
-
-/*
-** On the P3 argument of the given instruction, change all
-** strings of whitespace characters into a single space and
-** delete leading and trailing whitespace.
-*/
-void sqliteVdbeCompressSpace(Vdbe *p, int addr){
- unsigned char *z;
- int i, j;
- Op *pOp;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
- pOp = &p->aOp[addr];
- if( pOp->p3type==P3_POINTER ){
- return;
- }
- if( pOp->p3type!=P3_DYNAMIC ){
- pOp->p3 = sqliteStrDup(pOp->p3);
- pOp->p3type = P3_DYNAMIC;
- }
- z = (unsigned char*)pOp->p3;
- if( z==0 ) return;
- i = j = 0;
- while( isspace(z[i]) ){ i++; }
- while( z[i] ){
- if( isspace(z[i]) ){
- z[j++] = ' ';
- while( isspace(z[++i]) ){}
- }else{
- z[j++] = z[i++];
- }
- }
- while( j>0 && isspace(z[j-1]) ){ j--; }
- z[j] = 0;
-}
-
-/*
-** Search for the current program for the given opcode and P2
-** value. Return the address plus 1 if found and 0 if not found.
-*/
-int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
- int i;
- assert( p->magic==VDBE_MAGIC_INIT );
- for(i=0; i<p->nOp; i++){
- if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
- }
- return 0;
-}
-
-/*
-** Return the opcode for a given address.
-*/
-VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( addr>=0 && addr<p->nOp );
- return &p->aOp[addr];
-}
-
-/*
-** The following group or routines are employed by installable functions
-** to return their results.
-**
-** The sqlite_set_result_string() routine can be used to return a string
-** value or to return a NULL. To return a NULL, pass in NULL for zResult.
-** A copy is made of the string before this routine returns so it is safe
-** to pass in an ephemeral string.
-**
-** sqlite_set_result_error() works like sqlite_set_result_string() except
-** that it signals a fatal error. The string argument, if any, is the
-** error message. If the argument is NULL a generic substitute error message
-** is used.
-**
-** The sqlite_set_result_int() and sqlite_set_result_double() set the return
-** value of the user function to an integer or a double.
-**
-** These routines are defined here in vdbe.c because they depend on knowing
-** the internals of the sqlite_func structure which is only defined in
-** this source file.
-*/
-char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
- assert( !p->isStep );
- if( p->s.flags & STK_Dyn ){
- sqliteFree(p->z);
- }
- if( zResult==0 ){
- p->s.flags = STK_Null;
- n = 0;
- p->z = 0;
- p->s.n = 0;
- }else{
- if( n<0 ) n = strlen(zResult);
- if( n<NBFS-1 ){
- memcpy(p->s.z, zResult, n);
- p->s.z[n] = 0;
- p->s.flags = STK_Str;
- p->z = p->s.z;
- }else{
- p->z = sqliteMallocRaw( n+1 );
- if( p->z ){
- memcpy(p->z, zResult, n);
- p->z[n] = 0;
- }
- p->s.flags = STK_Str | STK_Dyn;
- }
- p->s.n = n+1;
- }
- return p->z;
-}
-void sqlite_set_result_int(sqlite_func *p, int iResult){
- assert( !p->isStep );
- if( p->s.flags & STK_Dyn ){
- sqliteFree(p->z);
- }
- p->s.i = iResult;
- p->s.flags = STK_Int;
-}
-void sqlite_set_result_double(sqlite_func *p, double rResult){
- assert( !p->isStep );
- if( p->s.flags & STK_Dyn ){
- sqliteFree(p->z);
- }
- p->s.r = rResult;
- p->s.flags = STK_Real;
-}
-void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
- assert( !p->isStep );
- sqlite_set_result_string(p, zMsg, n);
- p->isError = 1;
-}
-
-/*
-** Extract the user data from a sqlite_func structure and return a
-** pointer to it.
-**
-** This routine is defined here in vdbe.c because it depends on knowing
-** the internals of the sqlite_func structure which is only defined in
-** this source file.
-*/
-void *sqlite_user_data(sqlite_func *p){
- assert( p && p->pFunc );
- return p->pFunc->pUserData;
-}
-
-/*
-** Allocate or return the aggregate context for a user function. A new
-** context is allocated on the first call. Subsequent calls return the
-** same context that was returned on prior calls.
-**
-** This routine is defined here in vdbe.c because it depends on knowing
-** the internals of the sqlite_func structure which is only defined in
-** this source file.
-*/
-void *sqlite_aggregate_context(sqlite_func *p, int nByte){
- assert( p && p->pFunc && p->pFunc->xStep );
- if( p->pAgg==0 ){
- if( nByte<=NBFS ){
- p->pAgg = (void*)p->z;
- }else{
- p->pAgg = sqliteMalloc( nByte );
- }
- }
- return p->pAgg;
-}
-
-/*
-** Return the number of times the Step function of a aggregate has been
-** called.
-**
-** This routine is defined here in vdbe.c because it depends on knowing
-** the internals of the sqlite_func structure which is only defined in
-** this source file.
-*/
-int sqlite_aggregate_count(sqlite_func *p){
- assert( p && p->pFunc && p->pFunc->xStep );
- return p->cnt;
-}
/*
** Advance the virtual machine to the next output row.
return rc;
}
-/*
-** Reset an Agg structure. Delete all its contents.
-**
-** For installable aggregate functions, if the step function has been
-** called, make sure the finalizer function has also been called. The
-** finalizer might need to free memory that was allocated as part of its
-** private context. If the finalizer has not been called yet, call it
-** now.
-*/
-static void AggReset(Agg *pAgg){
- int i;
- HashElem *p;
- for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
- AggElem *pElem = sqliteHashData(p);
- assert( pAgg->apFunc!=0 );
- for(i=0; i<pAgg->nMem; i++){
- Mem *pMem = &pElem->aMem[i];
- if( pAgg->apFunc[i] && (pMem->s.flags & STK_AggCtx)!=0 ){
- sqlite_func ctx;
- ctx.pFunc = pAgg->apFunc[i];
- ctx.s.flags = STK_Null;
- ctx.z = 0;
- ctx.pAgg = pMem->z;
- ctx.cnt = pMem->s.i;
- ctx.isStep = 0;
- ctx.isError = 0;
- (*pAgg->apFunc[i]->xFinalize)(&ctx);
- if( pMem->z!=0 && pMem->z!=pMem->s.z ){
- sqliteFree(pMem->z);
- }
- }else if( pMem->s.flags & STK_Dyn ){
- sqliteFree(pMem->z);
- }
- }
- sqliteFree(pElem);
- }
- sqliteHashClear(&pAgg->hash);
- sqliteFree(pAgg->apFunc);
- pAgg->apFunc = 0;
- pAgg->pCurrent = 0;
- pAgg->pSearch = 0;
- pAgg->nMem = 0;
-}
-
/*
** Insert a new aggregate element and make it the element that
** has focus.
p->aStack[i].flags |= STK_Real;
}
-/*
-** Pop the stack N times. Free any memory associated with the
-** popped stack elements.
-*/
-static void PopStack(Vdbe *p, int N){
- assert( N>=0 );
- if( p->zStack==0 ) return;
- assert( p->aStack || sqlite_malloc_failed );
- if( p->aStack==0 ) return;
- while( N-- > 0 ){
- if( p->aStack[p->tos].flags & STK_Dyn ){
- sqliteFree(p->zStack[p->tos]);
- }
- p->aStack[p->tos].flags = 0;
- p->zStack[p->tos] = 0;
- p->tos--;
- }
-}
-
-/*
-** Here is a macro to handle the common case of popping the stack
-** once. This macro only works from within the sqliteVdbeExec()
-** function.
-*/
-#define POPSTACK \
- assert(p->tos>=0); \
- if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \
- p->tos--;
-
-/*
-** Delete a keylist
-*/
-static void KeylistFree(Keylist *p){
- while( p ){
- Keylist *pNext = p->pNext;
- sqliteFree(p);
- p = pNext;
- }
-}
-
-/*
-** Close a cursor and release all the resources that cursor happens
-** to hold.
-*/
-static void cleanupCursor(Cursor *pCx){
- if( pCx->pCursor ){
- sqliteBtreeCloseCursor(pCx->pCursor);
- }
- if( pCx->pBt ){
- sqliteBtreeClose(pCx->pBt);
- }
- sqliteFree(pCx->pData);
- memset(pCx, 0, sizeof(Cursor));
-}
-
-/*
-** Close all cursors
-*/
-static void closeAllCursors(Vdbe *p){
- int i;
- for(i=0; i<p->nCursor; i++){
- cleanupCursor(&p->aCsr[i]);
- }
- sqliteFree(p->aCsr);
- p->aCsr = 0;
- p->nCursor = 0;
-}
-
-/*
-** Remove any elements that remain on the sorter for the VDBE given.
-*/
-static void SorterReset(Vdbe *p){
- while( p->pSort ){
- Sorter *pSorter = p->pSort;
- p->pSort = pSorter->pNext;
- sqliteFree(pSorter->zKey);
- sqliteFree(pSorter->pData);
- sqliteFree(pSorter);
- }
-}
-
-/*
-** Delete the variables in p->azVariable[]
-*/
-static void ClearVariableArray(Vdbe *p){
- sqliteFree(p->azVariable);
- p->nVariable = 0;
- p->azVariable = 0;
-}
-
-/*
-** Clean up the VM after execution.
-**
-** This routine will automatically close any cursors, lists, and/or
-** sorters that were left open. It also deletes the values of
-** variables in the azVariable[] array.
-*/
-static void Cleanup(Vdbe *p){
- int i;
- PopStack(p, p->tos+1);
- closeAllCursors(p);
- if( p->aMem ){
- for(i=0; i<p->nMem; i++){
- if( p->aMem[i].s.flags & STK_Dyn ){
- sqliteFree(p->aMem[i].z);
- }
- }
- }
- sqliteFree(p->aMem);
- p->aMem = 0;
- p->nMem = 0;
- if( p->pList ){
- KeylistFree(p->pList);
- p->pList = 0;
- }
- SorterReset(p);
- if( p->pFile ){
- if( p->pFile!=stdin ) fclose(p->pFile);
- p->pFile = 0;
- }
- if( p->azField ){
- sqliteFree(p->azField);
- p->azField = 0;
- }
- p->nField = 0;
- if( p->zLine ){
- sqliteFree(p->zLine);
- p->zLine = 0;
- }
- p->nLineAlloc = 0;
- AggReset(&p->agg);
- if( p->aSet ){
- for(i=0; i<p->nSet; i++){
- sqliteHashClear(&p->aSet[i].hash);
- }
- }
- sqliteFree(p->aSet);
- p->aSet = 0;
- p->nSet = 0;
- if( p->keylistStack ){
- int ii;
- for(ii = 0; ii < p->keylistStackDepth; ii++){
- KeylistFree(p->keylistStack[ii]);
- }
- sqliteFree(p->keylistStack);
- p->keylistStackDepth = 0;
- p->keylistStack = 0;
- }
- sqliteFree(p->zErrMsg);
- p->zErrMsg = 0;
- ClearVariableArray(p);
-}
-
-/*
-** Delete an entire VDBE.
-*/
-void sqliteVdbeDelete(Vdbe *p){
- int i;
- if( p==0 ) return;
- Cleanup(p);
- if( p->pPrev ){
- p->pPrev->pNext = p->pNext;
- }else{
- assert( p->db->pVdbe==p );
- p->db->pVdbe = p->pNext;
- }
- if( p->pNext ){
- p->pNext->pPrev = p->pPrev;
- }
- p->pPrev = p->pNext = 0;
- if( p->nOpAlloc==0 ){
- p->aOp = 0;
- p->nOp = 0;
- }
- for(i=0; i<p->nOp; i++){
- if( p->aOp[i].p3type==P3_DYNAMIC ){
- sqliteFree(p->aOp[i].p3);
- }
- }
- sqliteFree(p->aOp);
- sqliteFree(p->aLabel);
- sqliteFree(p->aStack);
- p->magic = VDBE_MAGIC_DEAD;
- sqliteFree(p);
-}
-
-/*
-** Give a listing of the program in the virtual machine.
-**
-** The interface is the same as sqliteVdbeExec(). But instead of
-** running the code, it invokes the callback once for each instruction.
-** This feature is used to implement "EXPLAIN".
-*/
-int sqliteVdbeList(
- Vdbe *p /* The VDBE */
-){
- sqlite *db = p->db;
- int i;
- static char *azColumnNames[] = {
- "addr", "opcode", "p1", "p2", "p3",
- "int", "text", "int", "int", "text",
- 0
- };
-
- assert( p->popStack==0 );
- assert( p->explain );
- p->azColName = azColumnNames;
- p->azResColumn = p->zStack;
- for(i=0; i<5; i++) p->zStack[i] = p->aStack[i].z;
- p->rc = SQLITE_OK;
- for(i=p->pc; p->rc==SQLITE_OK && i<p->nOp; i++){
- if( db->flags & SQLITE_Interrupt ){
- db->flags &= ~SQLITE_Interrupt;
- if( db->magic!=SQLITE_MAGIC_BUSY ){
- p->rc = SQLITE_MISUSE;
- }else{
- p->rc = SQLITE_INTERRUPT;
- }
- sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), 0);
- break;
- }
- sprintf(p->zStack[0],"%d",i);
- sprintf(p->zStack[2],"%d", p->aOp[i].p1);
- sprintf(p->zStack[3],"%d", p->aOp[i].p2);
- if( p->aOp[i].p3type==P3_POINTER ){
- sprintf(p->aStack[4].z, "ptr(%#x)", (int)p->aOp[i].p3);
- p->zStack[4] = p->aStack[4].z;
- }else{
- p->zStack[4] = p->aOp[i].p3;
- }
- p->zStack[1] = sqliteOpcodeNames[p->aOp[i].opcode];
- if( p->xCallback==0 ){
- p->pc = i+1;
- p->azResColumn = p->zStack;
- p->nResColumn = 5;
- return SQLITE_ROW;
- }
- if( sqliteSafetyOff(db) ){
- p->rc = SQLITE_MISUSE;
- break;
- }
- if( p->xCallback(p->pCbArg, 5, p->zStack, p->azColName) ){
- p->rc = SQLITE_ABORT;
- }
- if( sqliteSafetyOn(db) ){
- p->rc = SQLITE_MISUSE;
- }
- }
- return p->rc==SQLITE_OK ? SQLITE_DONE : SQLITE_ERROR;
-}
-
/*
** The parameters are pointers to the head of two sorted lists
** of Sorter structures. Merge these two lists together and return
return i>0 ? zBuf : 0;
}
-#if !defined(NDEBUG) || defined(VDBE_PROFILE)
-/*
-** Print a single opcode. This routine is used for debugging only.
-*/
-static void vdbePrintOp(FILE *pOut, int pc, Op *pOp){
- char *zP3;
- char zPtr[40];
- if( pOp->p3type==P3_POINTER ){
- sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
- zP3 = zPtr;
- }else{
- zP3 = pOp->p3;
- }
- if( pOut==0 ) pOut = stdout;
- fprintf(pOut,"%4d %-12s %4d %4d %s\n",
- pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
- fflush(pOut);
-}
-#endif
-
/*
** Make sure there is space in the Vdbe structure to hold at least
** mxCursor cursors. If there is not currently enough space, then
if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
-/*
-** Prepare a virtual machine for execution. This involves things such
-** as allocating stack space and initializing the program counter.
-** After the VDBE has be prepped, it can be executed by one or more
-** calls to sqliteVdbeExec().
-**
-** The behavior of sqliteVdbeExec() is influenced by the parameters to
-** this routine. If xCallback is NULL, then sqliteVdbeExec() will return
-** with SQLITE_ROW whenever there is a row of the result set ready
-** to be delivered. p->azResColumn will point to the row and
-** p->nResColumn gives the number of columns in the row. If xCallback
-** is not NULL, then the xCallback() routine is invoked to process each
-** row in the result set.
-*/
-void sqliteVdbeMakeReady(
- Vdbe *p, /* The VDBE */
- sqlite_callback xCallback, /* Result callback */
- void *pCallbackArg, /* 1st argument to xCallback() */
- int isExplain /* True if the EXPLAIN keywords is present */
-){
- int n;
-
- assert( p!=0 );
- assert( p->aStack==0 );
- assert( p->magic==VDBE_MAGIC_INIT );
-
- /* Add a HALT instruction to the very end of the program.
- */
- if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
- sqliteVdbeAddOp(p, OP_Halt, 0, 0);
- }
-
- /* No instruction ever pushes more than a single element onto the
- ** stack. And the stack never grows on successive executions of the
- ** same loop. So the total number of instructions is an upper bound
- ** on the maximum stack depth required.
- **
- ** Allocation all the stack space we will ever need.
- */
- n = isExplain ? 10 : p->nOp;
- p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) );
- p->zStack = (char**)&p->aStack[n];
- p->azColName = (char**)&p->zStack[n];
-
- sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
- p->agg.pSearch = 0;
-#ifdef MEMORY_DEBUG
- if( sqliteOsFileExists("vdbe_trace") ){
- p->trace = stdout;
- }
-#endif
- p->tos = -1;
- p->pc = 0;
- p->rc = SQLITE_OK;
- p->uniqueCnt = 0;
- p->returnDepth = 0;
- p->errorAction = OE_Abort;
- p->undoTransOnError = 0;
- p->xCallback = xCallback;
- p->pCbArg = pCallbackArg;
- p->popStack = 0;
- p->explain |= isExplain;
- p->magic = VDBE_MAGIC_RUN;
-#ifdef VDBE_PROFILE
- for(i=0; i<p->nOp; i++){
- p->aOp[i].cnt = 0;
- p->aOp[i].cycles = 0;
- }
-#endif
-}
-
/*
** Execute as much of a VDBE program as we can then return.
**
assert( p->explain==0 );
if( sqlite_malloc_failed ) goto no_mem;
if( p->popStack ){
- PopStack(p, p->popStack);
+ sqliteVdbePopStack(p, p->popStack);
p->popStack = 0;
}
for(pc=p->pc; rc==SQLITE_OK; pc++){
*/
#ifndef NDEBUG
if( p->trace ){
- vdbePrintOp(p->trace, pc, pOp);
+ sqliteVdbePrintOp(p->trace, pc, pOp);
}
#endif
*/
case OP_Pop: {
assert( p->tos+1>=pOp->p1 );
- PopStack(p, pOp->p1);
+ sqliteVdbePopStack(p, pOp->p1);
break;
}
}
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
p->nCallback++;
- PopStack(p, pOp->p1);
+ sqliteVdbePopStack(p, pOp->p1);
if( sqlite_malloc_failed ) goto no_mem;
break;
}
}
}
if( nByte<0 ){
- if( pOp->p2==0 ) PopStack(p, nField);
+ if( pOp->p2==0 ) sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].flags = STK_Null;
zStack[p->tos] = 0;
}
}
zNew[j] = 0;
- if( pOp->p2==0 ) PopStack(p, nField);
+ if( pOp->p2==0 ) sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
aStack[p->tos].flags = STK_Str|STK_Dyn;
break;
divide_by_zero:
- PopStack(p, 2);
+ sqliteVdbePopStack(p, 2);
p->tos = nos;
aStack[nos].flags = STK_Null;
break;
ctx.isError = 0;
ctx.isStep = 0;
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)&zStack[p->tos-n+1]);
- PopStack(p, n);
+ sqliteVdbePopStack(p, n);
p->tos++;
aStack[p->tos] = ctx.s;
if( ctx.s.flags & STK_Dyn ){
break;
}
}
- if( pOp->p1>0 ) PopStack(p, cnt);
+ if( pOp->p1>0 ) sqliteVdbePopStack(p, cnt);
break;
}
j += aStack[i].n;
}
}
- PopStack(p, nField);
+ sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
if( nByte<=NBFS ){
Integerify(p, p->tos-nField);
iKey = intToKey(aStack[p->tos-nField].i);
memcpy(&zNewKey[j], &iKey, sizeof(u32));
- PopStack(p, nField+1);
+ sqliteVdbePopStack(p, nField+1);
if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
}else{
- if( pOp->p2==0 ) PopStack(p, nField+addRowid);
+ if( pOp->p2==0 ) sqliteVdbePopStack(p, nField+addRowid);
}
p->tos++;
aStack[p->tos].n = nByte;
}
VERIFY( if( i<0 ) goto bad_instruction; )
if( expandCursorArraySize(p, i) ) goto no_mem;
- cleanupCursor(&p->aCsr[i]);
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
memset(&p->aCsr[i], 0, sizeof(Cursor));
p->aCsr[i].nullRow = 1;
if( pX==0 ) break;
VERIFY( if( i<0 ) goto bad_instruction; )
if( expandCursorArraySize(p, i) ) goto no_mem;
pCx = &p->aCsr[i];
- cleanupCursor(pCx);
+ sqliteVdbeCleanupCursor(pCx);
memset(pCx, 0, sizeof(*pCx));
pCx->nullRow = 1;
rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
VERIFY( if( i<0 ) goto bad_instruction; )
if( expandCursorArraySize(p, i) ) goto no_mem;
pCx = &p->aCsr[i];
- cleanupCursor(pCx);
+ sqliteVdbeCleanupCursor(pCx);
memset(pCx, 0, sizeof(*pCx));
pCx->nullRow = 1;
pCx->pseudoTable = 1;
case OP_Close: {
int i = pOp->p1;
if( i>=0 && i<p->nCursor ){
- cleanupCursor(&p->aCsr[i]);
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
}
break;
}
*/
case OP_ListReset: {
if( p->pList ){
- KeylistFree(p->pList);
+ sqliteVdbeKeylistFree(p->pList);
p->pList = 0;
}
break;
case OP_ListPop: {
assert(p->keylistStackDepth > 0);
p->keylistStackDepth--;
- KeylistFree(p->pList);
+ sqliteVdbeKeylistFree(p->pList);
p->pList = p->keylistStack[p->keylistStackDepth];
p->keylistStack[p->keylistStackDepth] = 0;
if( p->keylistStackDepth == 0 ){
z += aStack[i].n;
}
}
- PopStack(p, nField);
+ sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
zStack[p->tos] = (char*)azArg;
}
zNewKey[j] = 0;
assert( j<nByte );
- PopStack(p, nField);
+ sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
aStack[p->tos].flags = STK_Str|STK_Dyn;
** Remove any elements that remain on the sorter.
*/
case OP_SortReset: {
- SorterReset(p);
+ sqliteVdbeSorterReset(p);
break;
}
** Future aggregator elements will contain P2 values each.
*/
case OP_AggReset: {
- AggReset(&p->agg);
+ sqliteVdbeAggReset(&p->agg);
p->agg.nMem = pOp->p2;
p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
if( p->agg.apFunc==0 ) goto no_mem;
(ctx.pFunc->xStep)(&ctx, n, (const char**)&zStack[p->tos-n]);
pMem->z = ctx.pAgg;
pMem->s.flags = STK_AggCtx;
- PopStack(p, n+1);
+ sqliteVdbePopStack(p, n+1);
if( ctx.isError ){
rc = SQLITE_ERROR;
}
pOp->cnt++;
#if 0
fprintf(stdout, "%10lld ", elapse);
- vdbePrintOp(stdout, origPc, &p->aOp[origPc]);
+ sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
}
#endif
goto vdbe_halt;
)
}
-
-
-/*
-** Clean up a VDBE after execution but do not delete the VDBE just yet.
-** Write any error messages into *pzErrMsg. Return the result code.
-**
-** After this routine is run, the VDBE should be ready to be executed
-** again.
-*/
-int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
- sqlite *db = p->db;
- int i;
-
- if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
- sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
- return SQLITE_MISUSE;
- }
- if( p->zErrMsg ){
- if( pzErrMsg && *pzErrMsg==0 ){
- *pzErrMsg = p->zErrMsg;
- }else{
- sqliteFree(p->zErrMsg);
- }
- p->zErrMsg = 0;
- }
- Cleanup(p);
- if( p->rc!=SQLITE_OK ){
- switch( p->errorAction ){
- case OE_Abort: {
- if( !p->undoTransOnError ){
- for(i=0; i<db->nDb; i++){
- if( db->aDb[i].pBt ){
- sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
- }
- }
- break;
- }
- /* Fall through to ROLLBACK */
- }
- case OE_Rollback: {
- sqliteRollbackAll(db);
- db->flags &= ~SQLITE_InTrans;
- db->onError = OE_Default;
- break;
- }
- default: {
- if( p->undoTransOnError ){
- sqliteRollbackAll(db);
- db->flags &= ~SQLITE_InTrans;
- db->onError = OE_Default;
- }
- break;
- }
- }
- sqliteRollbackInternalChanges(db);
- }
- for(i=0; i<db->nDb; i++){
- if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
- sqliteBtreeCommitCkpt(db->aDb[i].pBt);
- db->aDb[i].inTrans = 1;
- }
- }
- assert( p->tos<p->pc || sqlite_malloc_failed==1 );
-#ifdef VDBE_PROFILE
- {
- FILE *out = fopen("vdbe_profile.out", "a");
- if( out ){
- int i;
- fprintf(out, "---- ");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%02x", p->aOp[i].opcode);
- }
- fprintf(out, "\n");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%6d %10lld %8lld ",
- p->aOp[i].cnt,
- p->aOp[i].cycles,
- p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
- );
- vdbePrintOp(out, i, &p->aOp[i]);
- }
- fclose(out);
- }
- }
-#endif
- p->magic = VDBE_MAGIC_INIT;
- return p->rc;
-}
-
-/*
-** Clean up and delete a VDBE after execution. Return an integer which is
-** the result code. Write any error message text into *pzErrMsg.
-*/
-int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
- int rc;
- sqlite *db;
-
- if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
- sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
- return SQLITE_MISUSE;
- }
- db = p->db;
- rc = sqliteVdbeReset(p, pzErrMsg);
- sqliteVdbeDelete(p);
- if( db->want_to_close && db->pVdbe==0 ){
- sqlite_close(db);
- }
- return rc;
-}
-
-/*
-** Set the values of all variables. Variable $1 in the original SQL will
-** be the string azValue[0]. $2 will have the value azValue[1]. And
-** so forth. If a value is out of range (for example $3 when nValue==2)
-** then its value will be NULL.
-**
-** This routine overrides any prior call.
-*/
-int sqliteVdbeSetVariables(Vdbe *p, int nValue, const char **azValue){
- int i, n;
- char *z;
- if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 || p->nVariable!=0 ){
- return SQLITE_MISUSE;
- }
- ClearVariableArray(p);
- if( nValue==0 ){
- p->nVariable = 0;
- p->azVariable = 0;
- }
- for(i=n=0; i<nValue; i++){
- if( azValue[i] ) n += strlen(azValue[i]) + 1;
- }
- p->azVariable = sqliteMalloc( sizeof(p->azVariable[0])*nValue + n );
- if( p->azVariable==0 ){
- p->nVariable = 0;
- return SQLITE_NOMEM;
- }
- z = (char*)&p->azVariable[nValue];
- for(i=0; i<nValue; i++){
- if( azValue[i]==0 ){
- p->azVariable[i] = 0;
- }else{
- p->azVariable[i] = z;
- n = strlen(azValue[i]);
- memcpy(z, azValue[i], n+1);
- z += n+1;
- }
- }
- p->nVariable = nValue;
- return SQLITE_OK;
-}
-
-
-#if 0
-/*
-** Create a new Vdbe in *pOut and populate it with the program from p. Then
-** pass p to sqliteVdbeFinalize().
-*/
-int sqliteVdbeReset(Vdbe *p, char ** pErrMsg, Vdbe** pOut){
- if( pOut && p->rc != SQLITE_SCHEMA ){
-
- /* Create a new VDBE and populate it with the program used by the old
- ** VDBE. Don't copy the last instruction of the program, as this is an
- ** OP_Halt coded by sqliteVdbeMakeReady().
- */
- *pOut = sqliteVdbeCreate( p->db );
- (*pOut)->aOp = p->aOp;
- (*pOut)->nOp = p->nOp-1;
- (*pOut)->nOpAlloc = p->nOpAlloc;
- sqliteVdbeMakeReady( *pOut, p->xCallback, p->pCbArg, (int)p->explain );
- p->aOp = 0;
- p->nOp = 0;
- p->nOpAlloc = 0;
- }else if( pOut ){
- *pOut = NULL;
- }
- return sqliteVdbeFinalize(p, pErrMsg);
-}
-#endif
--- /dev/null
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for information that is private to the
+** VDBE. This information used to all be at the top of the single
+** source code file "vdbe.c". When that file became too big (over
+** 6000 lines long) it was split up into several smaller files and
+** this header information was factored out.
+*/
+
+/*
+** The makefile scans this source file and creates the following
+** array of string constants which are the names of all VDBE opcodes.
+** This array is defined in a separate source code file named opcode.c
+** which is automatically generated by the makefile.
+*/
+extern char *sqliteOpcodeNames[];
+
+/*
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
+*/
+typedef struct VdbeOp Op;
+
+/*
+** Boolean values
+*/
+typedef unsigned char Bool;
+
+/*
+** A cursor is a pointer into a single BTree within a database file.
+** The cursor can seek to a BTree entry with a particular key, or
+** loop over all entries of the Btree. You can also insert new BTree
+** entries or retrieve the key or data from the entry that the cursor
+** is currently pointing to.
+**
+** Every cursor that the virtual machine has open is represented by an
+** instance of the following structure.
+**
+** If the Cursor.isTriggerRow flag is set it means that this cursor is
+** really a single row that represents the NEW or OLD pseudo-table of
+** a row trigger. The data for the row is stored in Cursor.pData and
+** the rowid is in Cursor.iKey.
+*/
+struct Cursor {
+ BtCursor *pCursor; /* The cursor structure of the backend */
+ int lastRecno; /* Last recno from a Next or NextIdx operation */
+ int nextRowid; /* Next rowid returned by OP_NewRowid */
+ Bool recnoIsValid; /* True if lastRecno is valid */
+ Bool keyAsData; /* The OP_Column command works on key instead of data */
+ Bool atFirst; /* True if pointing to first entry */
+ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
+ Bool nullRow; /* True if pointing to a row with no data */
+ Bool nextRowidValid; /* True if the nextRowid field is valid */
+ Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
+ Btree *pBt; /* Separate file holding temporary table */
+ int nData; /* Number of bytes in pData */
+ char *pData; /* Data for a NEW or OLD pseudo-table */
+ int iKey; /* Key for the NEW or OLD pseudo-table row */
+};
+typedef struct Cursor Cursor;
+
+/*
+** A sorter builds a list of elements to be sorted. Each element of
+** the list is an instance of the following structure.
+*/
+typedef struct Sorter Sorter;
+struct Sorter {
+ int nKey; /* Number of bytes in the key */
+ char *zKey; /* The key by which we will sort */
+ int nData; /* Number of bytes in the data */
+ char *pData; /* The data associated with this key */
+ Sorter *pNext; /* Next in the list */
+};
+
+/*
+** Number of buckets used for merge-sort.
+*/
+#define NSORT 30
+
+/*
+** Number of bytes of string storage space available to each stack
+** layer without having to malloc. NBFS is short for Number of Bytes
+** For Strings.
+*/
+#define NBFS 32
+
+/*
+** A single level of the stack is an instance of the following
+** structure. Except, string values are stored on a separate
+** list of of pointers to character. The reason for storing
+** strings separately is so that they can be easily passed
+** to the callback function.
+*/
+struct Stack {
+ int i; /* Integer value */
+ int n; /* Number of characters in string value, including '\0' */
+ int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
+ double r; /* Real value */
+ char z[NBFS]; /* Space for short strings */
+};
+typedef struct Stack Stack;
+
+/*
+** Memory cells use the same structure as the stack except that space
+** for an arbitrary string is added.
+*/
+struct Mem {
+ Stack s; /* All values of the memory cell besides string */
+ char *z; /* String value for this memory cell */
+};
+typedef struct Mem Mem;
+
+/*
+** Allowed values for Stack.flags
+*/
+#define STK_Null 0x0001 /* Value is NULL */
+#define STK_Str 0x0002 /* Value is a string */
+#define STK_Int 0x0004 /* Value is an integer */
+#define STK_Real 0x0008 /* Value is a real number */
+#define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[] */
+#define STK_Static 0x0020 /* zStack[] points to a static string */
+#define STK_Ephem 0x0040 /* zStack[] points to an ephemeral string */
+
+/* The following STK_ value appears only in AggElem.aMem.s.flag fields.
+** It indicates that the corresponding AggElem.aMem.z points to a
+** aggregate function context that needs to be finalized.
+*/
+#define STK_AggCtx 0x0040 /* zStack[] points to an agg function context */
+
+/*
+** The "context" argument for a installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
+**
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbe.c because it uses substructures
+** (Stack) which are only defined there.
+*/
+struct sqlite_func {
+ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
+ Stack s; /* Small strings, ints, and double values go here */
+ char *z; /* Space for holding dynamic string results */
+ void *pAgg; /* Aggregate context */
+ u8 isError; /* Set to true for an error */
+ u8 isStep; /* Current in the step function */
+ int cnt; /* Number of times that the step function has been called */
+};
+
+/*
+** An Agg structure describes an Aggregator. Each Agg consists of
+** zero or more Aggregator elements (AggElem). Each AggElem contains
+** a key and one or more values. The values are used in processing
+** aggregate functions in a SELECT. The key is used to implement
+** the GROUP BY clause of a select.
+*/
+typedef struct Agg Agg;
+typedef struct AggElem AggElem;
+struct Agg {
+ int nMem; /* Number of values stored in each AggElem */
+ AggElem *pCurrent; /* The AggElem currently in focus */
+ HashElem *pSearch; /* The hash element for pCurrent */
+ Hash hash; /* Hash table of all aggregate elements */
+ FuncDef **apFunc; /* Information about aggregate functions */
+};
+struct AggElem {
+ char *zKey; /* The key to this AggElem */
+ int nKey; /* Number of bytes in the key, including '\0' at end */
+ Mem aMem[1]; /* The values for this AggElem */
+};
+
+/*
+** A Set structure is used for quick testing to see if a value
+** is part of a small set. Sets are used to implement code like
+** this:
+** x.y IN ('hi','hoo','hum')
+*/
+typedef struct Set Set;
+struct Set {
+ Hash hash; /* A set is just a hash table */
+ HashElem *prev; /* Previously accessed hash elemen */
+};
+
+/*
+** A Keylist is a bunch of keys into a table. The keylist can
+** grow without bound. The keylist stores the ROWIDs of database
+** records that need to be deleted or updated.
+*/
+typedef struct Keylist Keylist;
+struct Keylist {
+ int nKey; /* Number of slots in aKey[] */
+ int nUsed; /* Next unwritten slot in aKey[] */
+ int nRead; /* Next unread slot in aKey[] */
+ Keylist *pNext; /* Next block of keys */
+ int aKey[1]; /* One or more keys. Extra space allocated as needed */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
+** is really a pointer to an instance of this structure.
+*/
+struct Vdbe {
+ sqlite *db; /* The whole database */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ FILE *trace; /* Write an execution trace here, if not NULL */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nLabel; /* Number of labels used */
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
+ int *aLabel; /* Space to hold the labels */
+ int tos; /* Index of top of stack */
+ Stack *aStack; /* The operand stack, except string values */
+ char **zStack; /* Text or binary values of the stack */
+ char **azColName; /* Becomes the 4th parameter to callbacks */
+ int nCursor; /* Number of slots in aCsr[] */
+ Cursor *aCsr; /* One element of this array for each open cursor */
+ Sorter *pSort; /* A linked list of objects to be sorted */
+ FILE *pFile; /* At most one open file handler */
+ int nField; /* Number of file fields */
+ char **azField; /* Data for each file field */
+ int nVariable; /* Number of entries in azVariable[] */
+ char **azVariable; /* Values for the OP_Variable opcode */
+ char *zLine; /* A single line from the input file */
+ int nLineAlloc; /* Number of spaces allocated for zLine */
+ int magic; /* Magic number for sanity checking */
+ int nMem; /* Number of memory locations currently allocated */
+ Mem *aMem; /* The memory locations */
+ Agg agg; /* Aggregate information */
+ int nSet; /* Number of sets allocated */
+ Set *aSet; /* An array of sets */
+ int nCallback; /* Number of callbacks invoked so far */
+ Keylist *pList; /* A list of ROWIDs */
+ int keylistStackDepth; /* The size of the "keylist" stack */
+ Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
+ int errorAction; /* Recovery action to do in case of an error */
+ int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
+ int inTempTrans; /* True if temp database is transactioned */
+ int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
+ int returnDepth; /* Next unused element in returnStack[] */
+ int nResColumn; /* Number of columns in one row of the result set */
+ char **azResColumn; /* Values for one row of result */
+ int (*xCallback)(void*,int,char**,char**); /* Callback for SELECT results */
+ void *pCbArg; /* First argument to xCallback() */
+ int popStack; /* Pop the stack this much on entry to VdbeExec() */
+ char *zErrMsg; /* Error message written here */
+ u8 explain; /* True if EXPLAIN present on SQL command */
+};
+
+/*
+** The following are allowed values for Vdbe.magic
+*/
+#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
+#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
+#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
+#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
+
+/*
+** Here is a macro to handle the common case of popping the stack
+** once. This macro only works from within the sqliteVdbeExec()
+** function.
+*/
+#define POPSTACK \
+ assert(p->tos>=0); \
+ if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \
+ p->tos--;
+
+/*
+** Function prototypes
+*/
+void sqliteVdbeCleanupCursor(Cursor*);
+void sqliteVdbeSorterReset(Vdbe*);
+void sqliteVdbeAggReset(Agg*);
+void sqliteVdbeKeylistFree(Keylist*);
+void sqliteVdbePopStack(Vdbe*,int);
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
+void sqliteVdbePrintOp(FILE*, int, Op*);
+#endif
--- /dev/null
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used for creating, destroying, and populating
+** a VDBE (or an "sqlite_vm" as it is known to the outside world.) Prior
+** to version 2.8.7, all this code was combined into the vdbe.c source file.
+** But that file was getting too big so this subroutines were split out.
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include "vdbeInt.h"
+
+
+/*
+** When debugging the code generator in a symbolic debugger, one can
+** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
+** as they are added to the instruction stream.
+*/
+#ifndef NDEBUG
+int sqlite_vdbe_addop_trace = 0;
+#endif
+
+
+/*
+** Create a new virtual database engine.
+*/
+Vdbe *sqliteVdbeCreate(sqlite *db){
+ Vdbe *p;
+ p = sqliteMalloc( sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ p->magic = VDBE_MAGIC_INIT;
+ return p;
+}
+
+/*
+** Turn tracing on or off
+*/
+void sqliteVdbeTrace(Vdbe *p, FILE *trace){
+ p->trace = trace;
+}
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2 First two of the three possible operands.
+**
+** Use the sqliteVdbeResolveLabel() function to fix an address and
+** the sqliteVdbeChangeP3() function to change the value of the P3
+** operand.
+*/
+int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
+ int i;
+
+ i = p->nOp;
+ p->nOp++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + 100;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ p->aOp[i].opcode = op;
+ p->aOp[i].p1 = p1;
+ if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
+ p2 = p->aLabel[-1-p2];
+ }
+ p->aOp[i].p2 = p2;
+ p->aOp[i].p3 = 0;
+ p->aOp[i].p3type = P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ) sqliteVdbePrintOp(0, i, &p->aOp[i]);
+#endif
+ return i;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+*/
+int sqliteVdbeMakeLabel(Vdbe *p){
+ int i;
+ i = p->nLabel++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nLabelAlloc ){
+ int *aNew;
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
+ aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
+ if( aNew==0 ){
+ sqliteFree(p->aLabel);
+ }
+ p->aLabel = aNew;
+ }
+ if( p->aLabel==0 ){
+ p->nLabel = 0;
+ p->nLabelAlloc = 0;
+ return 0;
+ }
+ p->aLabel[i] = -1;
+ return -1-i;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqliteVdbeMakeLabel().
+*/
+void sqliteVdbeResolveLabel(Vdbe *p, int x){
+ int j;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( x<0 && (-x)<=p->nLabel && p->aOp ){
+ if( p->aLabel[-1-x]==p->nOp ) return;
+ assert( p->aLabel[-1-x]<0 );
+ p->aLabel[-1-x] = p->nOp;
+ for(j=0; j<p->nOp; j++){
+ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
+ }
+ }
+}
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+int sqliteVdbeCurrentAddr(Vdbe *p){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ return p->nOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return the
+** address of the first operation added.
+*/
+int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){
+ int addr;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOp + nOp >= p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ addr = p->nOp;
+ if( nOp>0 ){
+ int i;
+ for(i=0; i<nOp; i++){
+ int p2 = aOp[i].p2;
+ p->aOp[i+addr] = aOp[i];
+ if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2);
+ p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ){
+ sqliteVdbePrintOp(0, i+addr, &p->aOp[i+addr]);
+ }
+#endif
+ }
+ p->nOp += nOp;
+ }
+ return addr;
+}
+
+/*
+** Change the value of the P1 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+*/
+void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p1 = val;
+ }
+}
+
+/*
+** Change the value of the P2 operand for a specific instruction.
+** This routine is useful for setting a jump destination.
+*/
+void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( val>=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p2 = val;
+ }
+}
+
+/*
+** Change the value of the P3 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P3 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqliteMalloc().
+** A value of n==0 means copy bytes of zP3 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP3.
+**
+** If n==P3_STATIC it means that zP3 is a pointer to a constant static
+** string and we can just copy the pointer. n==P3_POINTER means zP3 is
+** a pointer to some object other than a string.
+**
+** If addr<0 then change P3 on the most recently inserted instruction.
+*/
+void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p==0 || p->aOp==0 ) return;
+ if( addr<0 || addr>=p->nOp ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ pOp->p3 = 0;
+ }
+ if( zP3==0 ){
+ pOp->p3 = 0;
+ pOp->p3type = P3_NOTUSED;
+ }else if( n<0 ){
+ pOp->p3 = (char*)zP3;
+ pOp->p3type = n;
+ }else{
+ sqliteSetNString(&pOp->p3, zP3, n, 0);
+ pOp->p3type = P3_DYNAMIC;
+ }
+}
+
+/*
+** If the P3 operand to the specified instruction appears
+** to be a quoted string token, then this procedure removes
+** the quotes.
+**
+** The quoting operator can be either a grave ascent (ASCII 0x27)
+** or a double quote character (ASCII 0x22). Two quotes in a row
+** resolve to be a single actual quote character within the string.
+*/
+void sqliteVdbeDequoteP3(Vdbe *p, int addr){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
+ pOp = &p->aOp[addr];
+ if( pOp->p3==0 || pOp->p3[0]==0 ) return;
+ if( pOp->p3type==P3_POINTER ) return;
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ sqliteDequote(pOp->p3);
+}
+
+/*
+** On the P3 argument of the given instruction, change all
+** strings of whitespace characters into a single space and
+** delete leading and trailing whitespace.
+*/
+void sqliteVdbeCompressSpace(Vdbe *p, int addr){
+ unsigned char *z;
+ int i, j;
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
+ pOp = &p->aOp[addr];
+ if( pOp->p3type==P3_POINTER ){
+ return;
+ }
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ z = (unsigned char*)pOp->p3;
+ if( z==0 ) return;
+ i = j = 0;
+ while( isspace(z[i]) ){ i++; }
+ while( z[i] ){
+ if( isspace(z[i]) ){
+ z[j++] = ' ';
+ while( isspace(z[++i]) ){}
+ }else{
+ z[j++] = z[i++];
+ }
+ }
+ while( j>0 && isspace(z[j-1]) ){ j--; }
+ z[j] = 0;
+}
+
+/*
+** Search for the current program for the given opcode and P2
+** value. Return the address plus 1 if found and 0 if not found.
+*/
+int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
+ int i;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
+ }
+ return 0;
+}
+
+/*
+** Return the opcode for a given address.
+*/
+VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( addr>=0 && addr<p->nOp );
+ return &p->aOp[addr];
+}
+
+/*
+** The following group or routines are employed by installable functions
+** to return their results.
+**
+** The sqlite_set_result_string() routine can be used to return a string
+** value or to return a NULL. To return a NULL, pass in NULL for zResult.
+** A copy is made of the string before this routine returns so it is safe
+** to pass in an ephemeral string.
+**
+** sqlite_set_result_error() works like sqlite_set_result_string() except
+** that it signals a fatal error. The string argument, if any, is the
+** error message. If the argument is NULL a generic substitute error message
+** is used.
+**
+** The sqlite_set_result_int() and sqlite_set_result_double() set the return
+** value of the user function to an integer or a double.
+**
+** These routines are defined here in vdbe.c because they depend on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ if( zResult==0 ){
+ p->s.flags = STK_Null;
+ n = 0;
+ p->z = 0;
+ p->s.n = 0;
+ }else{
+ if( n<0 ) n = strlen(zResult);
+ if( n<NBFS-1 ){
+ memcpy(p->s.z, zResult, n);
+ p->s.z[n] = 0;
+ p->s.flags = STK_Str;
+ p->z = p->s.z;
+ }else{
+ p->z = sqliteMallocRaw( n+1 );
+ if( p->z ){
+ memcpy(p->z, zResult, n);
+ p->z[n] = 0;
+ }
+ p->s.flags = STK_Str | STK_Dyn;
+ }
+ p->s.n = n+1;
+ }
+ return p->z;
+}
+void sqlite_set_result_int(sqlite_func *p, int iResult){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ p->s.i = iResult;
+ p->s.flags = STK_Int;
+}
+void sqlite_set_result_double(sqlite_func *p, double rResult){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ p->s.r = rResult;
+ p->s.flags = STK_Real;
+}
+void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
+ assert( !p->isStep );
+ sqlite_set_result_string(p, zMsg, n);
+ p->isError = 1;
+}
+
+/*
+** Extract the user data from a sqlite_func structure and return a
+** pointer to it.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+void *sqlite_user_data(sqlite_func *p){
+ assert( p && p->pFunc );
+ return p->pFunc->pUserData;
+}
+
+/*
+** Allocate or return the aggregate context for a user function. A new
+** context is allocated on the first call. Subsequent calls return the
+** same context that was returned on prior calls.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+void *sqlite_aggregate_context(sqlite_func *p, int nByte){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ if( p->pAgg==0 ){
+ if( nByte<=NBFS ){
+ p->pAgg = (void*)p->z;
+ }else{
+ p->pAgg = sqliteMalloc( nByte );
+ }
+ }
+ return p->pAgg;
+}
+
+/*
+** Return the number of times the Step function of a aggregate has been
+** called.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+int sqlite_aggregate_count(sqlite_func *p){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ return p->cnt;
+}
+
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+void sqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP3;
+ char zPtr[40];
+ if( pOp->p3type==P3_POINTER ){
+ sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
+ zP3 = zPtr;
+ }else{
+ zP3 = pOp->p3;
+ }
+ if( pOut==0 ) pOut = stdout;
+ fprintf(pOut,"%4d %-12s %4d %4d %s\n",
+ pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
+ fflush(pOut);
+}
+#endif
+
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqliteVdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+*/
+int sqliteVdbeList(
+ Vdbe *p /* The VDBE */
+){
+ sqlite *db = p->db;
+ int i;
+ static char *azColumnNames[] = {
+ "addr", "opcode", "p1", "p2", "p3",
+ "int", "text", "int", "int", "text",
+ 0
+ };
+
+ assert( p->popStack==0 );
+ assert( p->explain );
+ p->azColName = azColumnNames;
+ p->azResColumn = p->zStack;
+ for(i=0; i<5; i++) p->zStack[i] = p->aStack[i].z;
+ p->rc = SQLITE_OK;
+ for(i=p->pc; p->rc==SQLITE_OK && i<p->nOp; i++){
+ if( db->flags & SQLITE_Interrupt ){
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ p->rc = SQLITE_MISUSE;
+ }else{
+ p->rc = SQLITE_INTERRUPT;
+ }
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), 0);
+ break;
+ }
+ sprintf(p->zStack[0],"%d",i);
+ sprintf(p->zStack[2],"%d", p->aOp[i].p1);
+ sprintf(p->zStack[3],"%d", p->aOp[i].p2);
+ if( p->aOp[i].p3type==P3_POINTER ){
+ sprintf(p->aStack[4].z, "ptr(%#x)", (int)p->aOp[i].p3);
+ p->zStack[4] = p->aStack[4].z;
+ }else{
+ p->zStack[4] = p->aOp[i].p3;
+ }
+ p->zStack[1] = sqliteOpcodeNames[p->aOp[i].opcode];
+ if( p->xCallback==0 ){
+ p->pc = i+1;
+ p->azResColumn = p->zStack;
+ p->nResColumn = 5;
+ return SQLITE_ROW;
+ }
+ if( sqliteSafetyOff(db) ){
+ p->rc = SQLITE_MISUSE;
+ break;
+ }
+ if( p->xCallback(p->pCbArg, 5, p->zStack, p->azColName) ){
+ p->rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ){
+ p->rc = SQLITE_MISUSE;
+ }
+ }
+ return p->rc==SQLITE_OK ? SQLITE_DONE : SQLITE_ERROR;
+}
+
+/*
+** Prepare a virtual machine for execution. This involves things such
+** as allocating stack space and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqliteVdbeExec().
+**
+** The behavior of sqliteVdbeExec() is influenced by the parameters to
+** this routine. If xCallback is NULL, then sqliteVdbeExec() will return
+** with SQLITE_ROW whenever there is a row of the result set ready
+** to be delivered. p->azResColumn will point to the row and
+** p->nResColumn gives the number of columns in the row. If xCallback
+** is not NULL, then the xCallback() routine is invoked to process each
+** row in the result set.
+*/
+void sqliteVdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ sqlite_callback xCallback, /* Result callback */
+ void *pCallbackArg, /* 1st argument to xCallback() */
+ int isExplain /* True if the EXPLAIN keywords is present */
+){
+ int n;
+
+ assert( p!=0 );
+ assert( p->aStack==0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+
+ /* Add a HALT instruction to the very end of the program.
+ */
+ if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
+ sqliteVdbeAddOp(p, OP_Halt, 0, 0);
+ }
+
+ /* No instruction ever pushes more than a single element onto the
+ ** stack. And the stack never grows on successive executions of the
+ ** same loop. So the total number of instructions is an upper bound
+ ** on the maximum stack depth required.
+ **
+ ** Allocation all the stack space we will ever need.
+ */
+ n = isExplain ? 10 : p->nOp;
+ p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) );
+ p->zStack = (char**)&p->aStack[n];
+ p->azColName = (char**)&p->zStack[n];
+
+ sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
+ p->agg.pSearch = 0;
+#ifdef MEMORY_DEBUG
+ if( sqliteOsFileExists("vdbe_trace") ){
+ p->trace = stdout;
+ }
+#endif
+ p->tos = -1;
+ p->pc = 0;
+ p->rc = SQLITE_OK;
+ p->uniqueCnt = 0;
+ p->returnDepth = 0;
+ p->errorAction = OE_Abort;
+ p->undoTransOnError = 0;
+ p->xCallback = xCallback;
+ p->pCbArg = pCallbackArg;
+ p->popStack = 0;
+ p->explain |= isExplain;
+ p->magic = VDBE_MAGIC_RUN;
+#ifdef VDBE_PROFILE
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+#endif
+}
+
+
+/*
+** Remove any elements that remain on the sorter for the VDBE given.
+*/
+void sqliteVdbeSorterReset(Vdbe *p){
+ while( p->pSort ){
+ Sorter *pSorter = p->pSort;
+ p->pSort = pSorter->pNext;
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter->pData);
+ sqliteFree(pSorter);
+ }
+}
+
+/*
+** Pop the stack N times. Free any memory associated with the
+** popped stack elements.
+*/
+void sqliteVdbePopStack(Vdbe *p, int N){
+ assert( N>=0 );
+ if( p->zStack==0 ) return;
+ assert( p->aStack || sqlite_malloc_failed );
+ if( p->aStack==0 ) return;
+ while( N-- > 0 ){
+ if( p->aStack[p->tos].flags & STK_Dyn ){
+ sqliteFree(p->zStack[p->tos]);
+ }
+ p->aStack[p->tos].flags = 0;
+ p->zStack[p->tos] = 0;
+ p->tos--;
+ }
+}
+
+/*
+** Reset an Agg structure. Delete all its contents.
+**
+** For installable aggregate functions, if the step function has been
+** called, make sure the finalizer function has also been called. The
+** finalizer might need to free memory that was allocated as part of its
+** private context. If the finalizer has not been called yet, call it
+** now.
+*/
+void sqliteVdbeAggReset(Agg *pAgg){
+ int i;
+ HashElem *p;
+ for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
+ AggElem *pElem = sqliteHashData(p);
+ assert( pAgg->apFunc!=0 );
+ for(i=0; i<pAgg->nMem; i++){
+ Mem *pMem = &pElem->aMem[i];
+ if( pAgg->apFunc[i] && (pMem->s.flags & STK_AggCtx)!=0 ){
+ sqlite_func ctx;
+ ctx.pFunc = pAgg->apFunc[i];
+ ctx.s.flags = STK_Null;
+ ctx.z = 0;
+ ctx.pAgg = pMem->z;
+ ctx.cnt = pMem->s.i;
+ ctx.isStep = 0;
+ ctx.isError = 0;
+ (*pAgg->apFunc[i]->xFinalize)(&ctx);
+ if( pMem->z!=0 && pMem->z!=pMem->s.z ){
+ sqliteFree(pMem->z);
+ }
+ }else if( pMem->s.flags & STK_Dyn ){
+ sqliteFree(pMem->z);
+ }
+ }
+ sqliteFree(pElem);
+ }
+ sqliteHashClear(&pAgg->hash);
+ sqliteFree(pAgg->apFunc);
+ pAgg->apFunc = 0;
+ pAgg->pCurrent = 0;
+ pAgg->pSearch = 0;
+ pAgg->nMem = 0;
+}
+
+/*
+** Delete a keylist
+*/
+void sqliteVdbeKeylistFree(Keylist *p){
+ while( p ){
+ Keylist *pNext = p->pNext;
+ sqliteFree(p);
+ p = pNext;
+ }
+}
+
+/*
+** Close a cursor and release all the resources that cursor happens
+** to hold.
+*/
+void sqliteVdbeCleanupCursor(Cursor *pCx){
+ if( pCx->pCursor ){
+ sqliteBtreeCloseCursor(pCx->pCursor);
+ }
+ if( pCx->pBt ){
+ sqliteBtreeClose(pCx->pBt);
+ }
+ sqliteFree(pCx->pData);
+ memset(pCx, 0, sizeof(Cursor));
+}
+
+/*
+** Close all cursors
+*/
+static void closeAllCursors(Vdbe *p){
+ int i;
+ for(i=0; i<p->nCursor; i++){
+ sqliteVdbeCleanupCursor(&p->aCsr[i]);
+ }
+ sqliteFree(p->aCsr);
+ p->aCsr = 0;
+ p->nCursor = 0;
+}
+
+/*
+** Delete the variables in p->azVariable[]
+*/
+static void ClearVariableArray(Vdbe *p){
+ sqliteFree(p->azVariable);
+ p->nVariable = 0;
+ p->azVariable = 0;
+}
+
+/*
+** Clean up the VM after execution.
+**
+** This routine will automatically close any cursors, lists, and/or
+** sorters that were left open. It also deletes the values of
+** variables in the azVariable[] array.
+*/
+static void Cleanup(Vdbe *p){
+ int i;
+ sqliteVdbePopStack(p, p->tos+1);
+ closeAllCursors(p);
+ if( p->aMem ){
+ for(i=0; i<p->nMem; i++){
+ if( p->aMem[i].s.flags & STK_Dyn ){
+ sqliteFree(p->aMem[i].z);
+ }
+ }
+ }
+ sqliteFree(p->aMem);
+ p->aMem = 0;
+ p->nMem = 0;
+ if( p->pList ){
+ sqliteVdbeKeylistFree(p->pList);
+ p->pList = 0;
+ }
+ sqliteVdbeSorterReset(p);
+ if( p->pFile ){
+ if( p->pFile!=stdin ) fclose(p->pFile);
+ p->pFile = 0;
+ }
+ if( p->azField ){
+ sqliteFree(p->azField);
+ p->azField = 0;
+ }
+ p->nField = 0;
+ if( p->zLine ){
+ sqliteFree(p->zLine);
+ p->zLine = 0;
+ }
+ p->nLineAlloc = 0;
+ sqliteVdbeAggReset(&p->agg);
+ if( p->aSet ){
+ for(i=0; i<p->nSet; i++){
+ sqliteHashClear(&p->aSet[i].hash);
+ }
+ }
+ sqliteFree(p->aSet);
+ p->aSet = 0;
+ p->nSet = 0;
+ if( p->keylistStack ){
+ int ii;
+ for(ii = 0; ii < p->keylistStackDepth; ii++){
+ sqliteVdbeKeylistFree(p->keylistStack[ii]);
+ }
+ sqliteFree(p->keylistStack);
+ p->keylistStackDepth = 0;
+ p->keylistStack = 0;
+ }
+ sqliteFree(p->zErrMsg);
+ p->zErrMsg = 0;
+ ClearVariableArray(p);
+}
+
+/*
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
+** Write any error messages into *pzErrMsg. Return the result code.
+**
+** After this routine is run, the VDBE should be ready to be executed
+** again.
+*/
+int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
+ sqlite *db = p->db;
+ int i;
+
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
+ return SQLITE_MISUSE;
+ }
+ if( p->zErrMsg ){
+ if( pzErrMsg && *pzErrMsg==0 ){
+ *pzErrMsg = p->zErrMsg;
+ }else{
+ sqliteFree(p->zErrMsg);
+ }
+ p->zErrMsg = 0;
+ }
+ Cleanup(p);
+ if( p->rc!=SQLITE_OK ){
+ switch( p->errorAction ){
+ case OE_Abort: {
+ if( !p->undoTransOnError ){
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt ){
+ sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
+ }
+ }
+ break;
+ }
+ /* Fall through to ROLLBACK */
+ }
+ case OE_Rollback: {
+ sqliteRollbackAll(db);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ break;
+ }
+ default: {
+ if( p->undoTransOnError ){
+ sqliteRollbackAll(db);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ }
+ break;
+ }
+ }
+ sqliteRollbackInternalChanges(db);
+ }
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
+ sqliteBtreeCommitCkpt(db->aDb[i].pBt);
+ db->aDb[i].inTrans = 1;
+ }
+ }
+ assert( p->tos<p->pc || sqlite_malloc_failed==1 );
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ int i;
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%6d %10lld %8lld ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ sqliteVdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ p->magic = VDBE_MAGIC_INIT;
+ return p->rc;
+}
+
+/*
+** Clean up and delete a VDBE after execution. Return an integer which is
+** the result code. Write any error message text into *pzErrMsg.
+*/
+int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
+ int rc;
+ sqlite *db;
+
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
+ return SQLITE_MISUSE;
+ }
+ db = p->db;
+ rc = sqliteVdbeReset(p, pzErrMsg);
+ sqliteVdbeDelete(p);
+ if( db->want_to_close && db->pVdbe==0 ){
+ sqlite_close(db);
+ }
+ return rc;
+}
+
+/*
+** Set the values of all variables. Variable $1 in the original SQL will
+** be the string azValue[0]. $2 will have the value azValue[1]. And
+** so forth. If a value is out of range (for example $3 when nValue==2)
+** then its value will be NULL.
+**
+** This routine overrides any prior call.
+*/
+int sqliteVdbeSetVariables(Vdbe *p, int nValue, const char **azValue){
+ int i, n;
+ char *z;
+ if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 || p->nVariable!=0 ){
+ return SQLITE_MISUSE;
+ }
+ ClearVariableArray(p);
+ if( nValue==0 ){
+ p->nVariable = 0;
+ p->azVariable = 0;
+ }
+ for(i=n=0; i<nValue; i++){
+ if( azValue[i] ) n += strlen(azValue[i]) + 1;
+ }
+ p->azVariable = sqliteMalloc( sizeof(p->azVariable[0])*nValue + n );
+ if( p->azVariable==0 ){
+ p->nVariable = 0;
+ return SQLITE_NOMEM;
+ }
+ z = (char*)&p->azVariable[nValue];
+ for(i=0; i<nValue; i++){
+ if( azValue[i]==0 ){
+ p->azVariable[i] = 0;
+ }else{
+ p->azVariable[i] = z;
+ n = strlen(azValue[i]);
+ memcpy(z, azValue[i], n+1);
+ z += n+1;
+ }
+ }
+ p->nVariable = nValue;
+ return SQLITE_OK;
+}
+
+
+/*
+** Delete an entire VDBE.
+*/
+void sqliteVdbeDelete(Vdbe *p){
+ int i;
+ if( p==0 ) return;
+ Cleanup(p);
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( p->db->pVdbe==p );
+ p->db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ p->pPrev = p->pNext = 0;
+ if( p->nOpAlloc==0 ){
+ p->aOp = 0;
+ p->nOp = 0;
+ }
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].p3type==P3_DYNAMIC ){
+ sqliteFree(p->aOp[i].p3);
+ }
+ }
+ sqliteFree(p->aOp);
+ sqliteFree(p->aLabel);
+ sqliteFree(p->aStack);
+ p->magic = VDBE_MAGIC_DEAD;
+ sqliteFree(p);
+}