]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[Ada] Rename some observer callbacks in ada-tasks.c
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0e9f083f 23#include <string.h>
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
a53b64ea 35#include "varobj.h"
14f9c5c9
AS
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2 45#include "completer.h"
53ce3c39 46#include <sys/stat.h>
14f9c5c9 47#include "ui-out.h"
fe898f56 48#include "block.h"
04714b91 49#include "infcall.h"
de4f826b 50#include "dictionary.h"
60250e8b 51#include "exceptions.h"
f7f9143b
JB
52#include "annotate.h"
53#include "valprint.h"
9bbc9174 54#include "source.h"
0259addd 55#include "observer.h"
2ba95b9b 56#include "vec.h"
692465f1 57#include "stack.h"
fa864999 58#include "gdb_vecs.h"
79d43c61 59#include "typeprint.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
0fcd72ba 65#include "cli/cli-utils.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 112 const struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
852dff6c
JB
272
273static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
c6044dd1
JB
311/* Maintenance-related settings for this module. */
312
313static struct cmd_list_element *maint_set_ada_cmdlist;
314static struct cmd_list_element *maint_show_ada_cmdlist;
315
316/* Implement the "maintenance set ada" (prefix) command. */
317
318static void
319maint_set_ada_cmd (char *args, int from_tty)
320{
321 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
322}
323
324/* Implement the "maintenance show ada" (prefix) command. */
325
326static void
327maint_show_ada_cmd (char *args, int from_tty)
328{
329 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
330}
331
332/* The "maintenance ada set/show ignore-descriptive-type" value. */
333
334static int ada_ignore_descriptive_types_p = 0;
335
e802dbe0
JB
336 /* Inferior-specific data. */
337
338/* Per-inferior data for this module. */
339
340struct ada_inferior_data
341{
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
346 struct type *tsd_type;
3eecfa55
JB
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
351 const struct exception_support_info *exception_info;
e802dbe0
JB
352};
353
354/* Our key to this module's inferior data. */
355static const struct inferior_data *ada_inferior_data;
356
357/* A cleanup routine for our inferior data. */
358static void
359ada_inferior_data_cleanup (struct inferior *inf, void *arg)
360{
361 struct ada_inferior_data *data;
362
363 data = inferior_data (inf, ada_inferior_data);
364 if (data != NULL)
365 xfree (data);
366}
367
368/* Return our inferior data for the given inferior (INF).
369
370 This function always returns a valid pointer to an allocated
371 ada_inferior_data structure. If INF's inferior data has not
372 been previously set, this functions creates a new one with all
373 fields set to zero, sets INF's inferior to it, and then returns
374 a pointer to that newly allocated ada_inferior_data. */
375
376static struct ada_inferior_data *
377get_ada_inferior_data (struct inferior *inf)
378{
379 struct ada_inferior_data *data;
380
381 data = inferior_data (inf, ada_inferior_data);
382 if (data == NULL)
383 {
41bf6aca 384 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
385 set_inferior_data (inf, ada_inferior_data, data);
386 }
387
388 return data;
389}
390
391/* Perform all necessary cleanups regarding our module's inferior data
392 that is required after the inferior INF just exited. */
393
394static void
395ada_inferior_exit (struct inferior *inf)
396{
397 ada_inferior_data_cleanup (inf, NULL);
398 set_inferior_data (inf, ada_inferior_data, NULL);
399}
400
4c4b4cd2
PH
401 /* Utilities */
402
720d1a40 403/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 404 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
405
406 Normally, we really expect a typedef type to only have 1 typedef layer.
407 In other words, we really expect the target type of a typedef type to be
408 a non-typedef type. This is particularly true for Ada units, because
409 the language does not have a typedef vs not-typedef distinction.
410 In that respect, the Ada compiler has been trying to eliminate as many
411 typedef definitions in the debugging information, since they generally
412 do not bring any extra information (we still use typedef under certain
413 circumstances related mostly to the GNAT encoding).
414
415 Unfortunately, we have seen situations where the debugging information
416 generated by the compiler leads to such multiple typedef layers. For
417 instance, consider the following example with stabs:
418
419 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
420 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
421
422 This is an error in the debugging information which causes type
423 pck__float_array___XUP to be defined twice, and the second time,
424 it is defined as a typedef of a typedef.
425
426 This is on the fringe of legality as far as debugging information is
427 concerned, and certainly unexpected. But it is easy to handle these
428 situations correctly, so we can afford to be lenient in this case. */
429
430static struct type *
431ada_typedef_target_type (struct type *type)
432{
433 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
434 type = TYPE_TARGET_TYPE (type);
435 return type;
436}
437
41d27058
JB
438/* Given DECODED_NAME a string holding a symbol name in its
439 decoded form (ie using the Ada dotted notation), returns
440 its unqualified name. */
441
442static const char *
443ada_unqualified_name (const char *decoded_name)
444{
445 const char *result = strrchr (decoded_name, '.');
446
447 if (result != NULL)
448 result++; /* Skip the dot... */
449 else
450 result = decoded_name;
451
452 return result;
453}
454
455/* Return a string starting with '<', followed by STR, and '>'.
456 The result is good until the next call. */
457
458static char *
459add_angle_brackets (const char *str)
460{
461 static char *result = NULL;
462
463 xfree (result);
88c15c34 464 result = xstrprintf ("<%s>", str);
41d27058
JB
465 return result;
466}
96d887e8 467
4c4b4cd2
PH
468static char *
469ada_get_gdb_completer_word_break_characters (void)
470{
471 return ada_completer_word_break_characters;
472}
473
e79af960
JB
474/* Print an array element index using the Ada syntax. */
475
476static void
477ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 478 const struct value_print_options *options)
e79af960 479{
79a45b7d 480 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
481 fprintf_filtered (stream, " => ");
482}
483
f27cf670 484/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 485 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 486 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 487
f27cf670
AS
488void *
489grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 490{
d2e4a39e
AS
491 if (*size < min_size)
492 {
493 *size *= 2;
494 if (*size < min_size)
4c4b4cd2 495 *size = min_size;
f27cf670 496 vect = xrealloc (vect, *size * element_size);
d2e4a39e 497 }
f27cf670 498 return vect;
14f9c5c9
AS
499}
500
501/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 502 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
503
504static int
ebf56fd3 505field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
506{
507 int len = strlen (target);
5b4ee69b 508
d2e4a39e 509 return
4c4b4cd2
PH
510 (strncmp (field_name, target, len) == 0
511 && (field_name[len] == '\0'
512 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
513 && strcmp (field_name + strlen (field_name) - 6,
514 "___XVN") != 0)));
14f9c5c9
AS
515}
516
517
872c8b51
JB
518/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
519 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
520 and return its index. This function also handles fields whose name
521 have ___ suffixes because the compiler sometimes alters their name
522 by adding such a suffix to represent fields with certain constraints.
523 If the field could not be found, return a negative number if
524 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
525
526int
527ada_get_field_index (const struct type *type, const char *field_name,
528 int maybe_missing)
529{
530 int fieldno;
872c8b51
JB
531 struct type *struct_type = check_typedef ((struct type *) type);
532
533 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
534 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
535 return fieldno;
536
537 if (!maybe_missing)
323e0a4a 538 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 539 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
540
541 return -1;
542}
543
544/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
545
546int
d2e4a39e 547ada_name_prefix_len (const char *name)
14f9c5c9
AS
548{
549 if (name == NULL)
550 return 0;
d2e4a39e 551 else
14f9c5c9 552 {
d2e4a39e 553 const char *p = strstr (name, "___");
5b4ee69b 554
14f9c5c9 555 if (p == NULL)
4c4b4cd2 556 return strlen (name);
14f9c5c9 557 else
4c4b4cd2 558 return p - name;
14f9c5c9
AS
559 }
560}
561
4c4b4cd2
PH
562/* Return non-zero if SUFFIX is a suffix of STR.
563 Return zero if STR is null. */
564
14f9c5c9 565static int
d2e4a39e 566is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
567{
568 int len1, len2;
5b4ee69b 569
14f9c5c9
AS
570 if (str == NULL)
571 return 0;
572 len1 = strlen (str);
573 len2 = strlen (suffix);
4c4b4cd2 574 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
575}
576
4c4b4cd2
PH
577/* The contents of value VAL, treated as a value of type TYPE. The
578 result is an lval in memory if VAL is. */
14f9c5c9 579
d2e4a39e 580static struct value *
4c4b4cd2 581coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 582{
61ee279c 583 type = ada_check_typedef (type);
df407dfe 584 if (value_type (val) == type)
4c4b4cd2 585 return val;
d2e4a39e 586 else
14f9c5c9 587 {
4c4b4cd2
PH
588 struct value *result;
589
590 /* Make sure that the object size is not unreasonable before
591 trying to allocate some memory for it. */
714e53ab 592 check_size (type);
4c4b4cd2 593
41e8491f
JK
594 if (value_lazy (val)
595 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
596 result = allocate_value_lazy (type);
597 else
598 {
599 result = allocate_value (type);
600 memcpy (value_contents_raw (result), value_contents (val),
601 TYPE_LENGTH (type));
602 }
74bcbdf3 603 set_value_component_location (result, val);
9bbda503
AC
604 set_value_bitsize (result, value_bitsize (val));
605 set_value_bitpos (result, value_bitpos (val));
42ae5230 606 set_value_address (result, value_address (val));
eca07816 607 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
608 return result;
609 }
610}
611
fc1a4b47
AC
612static const gdb_byte *
613cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
614{
615 if (valaddr == NULL)
616 return NULL;
617 else
618 return valaddr + offset;
619}
620
621static CORE_ADDR
ebf56fd3 622cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
623{
624 if (address == 0)
625 return 0;
d2e4a39e 626 else
14f9c5c9
AS
627 return address + offset;
628}
629
4c4b4cd2
PH
630/* Issue a warning (as for the definition of warning in utils.c, but
631 with exactly one argument rather than ...), unless the limit on the
632 number of warnings has passed during the evaluation of the current
633 expression. */
a2249542 634
77109804
AC
635/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
636 provided by "complaint". */
a0b31db1 637static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 638
14f9c5c9 639static void
a2249542 640lim_warning (const char *format, ...)
14f9c5c9 641{
a2249542 642 va_list args;
a2249542 643
5b4ee69b 644 va_start (args, format);
4c4b4cd2
PH
645 warnings_issued += 1;
646 if (warnings_issued <= warning_limit)
a2249542
MK
647 vwarning (format, args);
648
649 va_end (args);
4c4b4cd2
PH
650}
651
714e53ab
PH
652/* Issue an error if the size of an object of type T is unreasonable,
653 i.e. if it would be a bad idea to allocate a value of this type in
654 GDB. */
655
656static void
657check_size (const struct type *type)
658{
659 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 660 error (_("object size is larger than varsize-limit"));
714e53ab
PH
661}
662
0963b4bd 663/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 664static LONGEST
c3e5cd34 665max_of_size (int size)
4c4b4cd2 666{
76a01679 667 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 668
76a01679 669 return top_bit | (top_bit - 1);
4c4b4cd2
PH
670}
671
0963b4bd 672/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 673static LONGEST
c3e5cd34 674min_of_size (int size)
4c4b4cd2 675{
c3e5cd34 676 return -max_of_size (size) - 1;
4c4b4cd2
PH
677}
678
0963b4bd 679/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 680static ULONGEST
c3e5cd34 681umax_of_size (int size)
4c4b4cd2 682{
76a01679 683 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 684
76a01679 685 return top_bit | (top_bit - 1);
4c4b4cd2
PH
686}
687
0963b4bd 688/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
689static LONGEST
690max_of_type (struct type *t)
4c4b4cd2 691{
c3e5cd34
PH
692 if (TYPE_UNSIGNED (t))
693 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
694 else
695 return max_of_size (TYPE_LENGTH (t));
696}
697
0963b4bd 698/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
699static LONGEST
700min_of_type (struct type *t)
701{
702 if (TYPE_UNSIGNED (t))
703 return 0;
704 else
705 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
706}
707
708/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
709LONGEST
710ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 711{
76a01679 712 switch (TYPE_CODE (type))
4c4b4cd2
PH
713 {
714 case TYPE_CODE_RANGE:
690cc4eb 715 return TYPE_HIGH_BOUND (type);
4c4b4cd2 716 case TYPE_CODE_ENUM:
14e75d8e 717 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
718 case TYPE_CODE_BOOL:
719 return 1;
720 case TYPE_CODE_CHAR:
76a01679 721 case TYPE_CODE_INT:
690cc4eb 722 return max_of_type (type);
4c4b4cd2 723 default:
43bbcdc2 724 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
725 }
726}
727
14e75d8e 728/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
729LONGEST
730ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 731{
76a01679 732 switch (TYPE_CODE (type))
4c4b4cd2
PH
733 {
734 case TYPE_CODE_RANGE:
690cc4eb 735 return TYPE_LOW_BOUND (type);
4c4b4cd2 736 case TYPE_CODE_ENUM:
14e75d8e 737 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
738 case TYPE_CODE_BOOL:
739 return 0;
740 case TYPE_CODE_CHAR:
76a01679 741 case TYPE_CODE_INT:
690cc4eb 742 return min_of_type (type);
4c4b4cd2 743 default:
43bbcdc2 744 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
745 }
746}
747
748/* The identity on non-range types. For range types, the underlying
76a01679 749 non-range scalar type. */
4c4b4cd2
PH
750
751static struct type *
18af8284 752get_base_type (struct type *type)
4c4b4cd2
PH
753{
754 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
755 {
76a01679
JB
756 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
757 return type;
4c4b4cd2
PH
758 type = TYPE_TARGET_TYPE (type);
759 }
760 return type;
14f9c5c9 761}
41246937
JB
762
763/* Return a decoded version of the given VALUE. This means returning
764 a value whose type is obtained by applying all the GNAT-specific
765 encondings, making the resulting type a static but standard description
766 of the initial type. */
767
768struct value *
769ada_get_decoded_value (struct value *value)
770{
771 struct type *type = ada_check_typedef (value_type (value));
772
773 if (ada_is_array_descriptor_type (type)
774 || (ada_is_constrained_packed_array_type (type)
775 && TYPE_CODE (type) != TYPE_CODE_PTR))
776 {
777 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
778 value = ada_coerce_to_simple_array_ptr (value);
779 else
780 value = ada_coerce_to_simple_array (value);
781 }
782 else
783 value = ada_to_fixed_value (value);
784
785 return value;
786}
787
788/* Same as ada_get_decoded_value, but with the given TYPE.
789 Because there is no associated actual value for this type,
790 the resulting type might be a best-effort approximation in
791 the case of dynamic types. */
792
793struct type *
794ada_get_decoded_type (struct type *type)
795{
796 type = to_static_fixed_type (type);
797 if (ada_is_constrained_packed_array_type (type))
798 type = ada_coerce_to_simple_array_type (type);
799 return type;
800}
801
4c4b4cd2 802\f
76a01679 803
4c4b4cd2 804 /* Language Selection */
14f9c5c9
AS
805
806/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 807 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 808
14f9c5c9 809enum language
ccefe4c4 810ada_update_initial_language (enum language lang)
14f9c5c9 811{
d2e4a39e 812 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
813 (struct objfile *) NULL) != NULL)
814 return language_ada;
14f9c5c9
AS
815
816 return lang;
817}
96d887e8
PH
818
819/* If the main procedure is written in Ada, then return its name.
820 The result is good until the next call. Return NULL if the main
821 procedure doesn't appear to be in Ada. */
822
823char *
824ada_main_name (void)
825{
826 struct minimal_symbol *msym;
f9bc20b9 827 static char *main_program_name = NULL;
6c038f32 828
96d887e8
PH
829 /* For Ada, the name of the main procedure is stored in a specific
830 string constant, generated by the binder. Look for that symbol,
831 extract its address, and then read that string. If we didn't find
832 that string, then most probably the main procedure is not written
833 in Ada. */
834 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
835
836 if (msym != NULL)
837 {
f9bc20b9
JB
838 CORE_ADDR main_program_name_addr;
839 int err_code;
840
96d887e8
PH
841 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
842 if (main_program_name_addr == 0)
323e0a4a 843 error (_("Invalid address for Ada main program name."));
96d887e8 844
f9bc20b9
JB
845 xfree (main_program_name);
846 target_read_string (main_program_name_addr, &main_program_name,
847 1024, &err_code);
848
849 if (err_code != 0)
850 return NULL;
96d887e8
PH
851 return main_program_name;
852 }
853
854 /* The main procedure doesn't seem to be in Ada. */
855 return NULL;
856}
14f9c5c9 857\f
4c4b4cd2 858 /* Symbols */
d2e4a39e 859
4c4b4cd2
PH
860/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
861 of NULLs. */
14f9c5c9 862
d2e4a39e
AS
863const struct ada_opname_map ada_opname_table[] = {
864 {"Oadd", "\"+\"", BINOP_ADD},
865 {"Osubtract", "\"-\"", BINOP_SUB},
866 {"Omultiply", "\"*\"", BINOP_MUL},
867 {"Odivide", "\"/\"", BINOP_DIV},
868 {"Omod", "\"mod\"", BINOP_MOD},
869 {"Orem", "\"rem\"", BINOP_REM},
870 {"Oexpon", "\"**\"", BINOP_EXP},
871 {"Olt", "\"<\"", BINOP_LESS},
872 {"Ole", "\"<=\"", BINOP_LEQ},
873 {"Ogt", "\">\"", BINOP_GTR},
874 {"Oge", "\">=\"", BINOP_GEQ},
875 {"Oeq", "\"=\"", BINOP_EQUAL},
876 {"One", "\"/=\"", BINOP_NOTEQUAL},
877 {"Oand", "\"and\"", BINOP_BITWISE_AND},
878 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
879 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
880 {"Oconcat", "\"&\"", BINOP_CONCAT},
881 {"Oabs", "\"abs\"", UNOP_ABS},
882 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
883 {"Oadd", "\"+\"", UNOP_PLUS},
884 {"Osubtract", "\"-\"", UNOP_NEG},
885 {NULL, NULL}
14f9c5c9
AS
886};
887
4c4b4cd2
PH
888/* The "encoded" form of DECODED, according to GNAT conventions.
889 The result is valid until the next call to ada_encode. */
890
14f9c5c9 891char *
4c4b4cd2 892ada_encode (const char *decoded)
14f9c5c9 893{
4c4b4cd2
PH
894 static char *encoding_buffer = NULL;
895 static size_t encoding_buffer_size = 0;
d2e4a39e 896 const char *p;
14f9c5c9 897 int k;
d2e4a39e 898
4c4b4cd2 899 if (decoded == NULL)
14f9c5c9
AS
900 return NULL;
901
4c4b4cd2
PH
902 GROW_VECT (encoding_buffer, encoding_buffer_size,
903 2 * strlen (decoded) + 10);
14f9c5c9
AS
904
905 k = 0;
4c4b4cd2 906 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 907 {
cdc7bb92 908 if (*p == '.')
4c4b4cd2
PH
909 {
910 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
911 k += 2;
912 }
14f9c5c9 913 else if (*p == '"')
4c4b4cd2
PH
914 {
915 const struct ada_opname_map *mapping;
916
917 for (mapping = ada_opname_table;
1265e4aa
JB
918 mapping->encoded != NULL
919 && strncmp (mapping->decoded, p,
920 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
921 ;
922 if (mapping->encoded == NULL)
323e0a4a 923 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
924 strcpy (encoding_buffer + k, mapping->encoded);
925 k += strlen (mapping->encoded);
926 break;
927 }
d2e4a39e 928 else
4c4b4cd2
PH
929 {
930 encoding_buffer[k] = *p;
931 k += 1;
932 }
14f9c5c9
AS
933 }
934
4c4b4cd2
PH
935 encoding_buffer[k] = '\0';
936 return encoding_buffer;
14f9c5c9
AS
937}
938
939/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
940 quotes, unfolded, but with the quotes stripped away. Result good
941 to next call. */
942
d2e4a39e
AS
943char *
944ada_fold_name (const char *name)
14f9c5c9 945{
d2e4a39e 946 static char *fold_buffer = NULL;
14f9c5c9
AS
947 static size_t fold_buffer_size = 0;
948
949 int len = strlen (name);
d2e4a39e 950 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
951
952 if (name[0] == '\'')
953 {
d2e4a39e
AS
954 strncpy (fold_buffer, name + 1, len - 2);
955 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
956 }
957 else
958 {
959 int i;
5b4ee69b 960
14f9c5c9 961 for (i = 0; i <= len; i += 1)
4c4b4cd2 962 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
963 }
964
965 return fold_buffer;
966}
967
529cad9c
PH
968/* Return nonzero if C is either a digit or a lowercase alphabet character. */
969
970static int
971is_lower_alphanum (const char c)
972{
973 return (isdigit (c) || (isalpha (c) && islower (c)));
974}
975
c90092fe
JB
976/* ENCODED is the linkage name of a symbol and LEN contains its length.
977 This function saves in LEN the length of that same symbol name but
978 without either of these suffixes:
29480c32
JB
979 . .{DIGIT}+
980 . ${DIGIT}+
981 . ___{DIGIT}+
982 . __{DIGIT}+.
c90092fe 983
29480c32
JB
984 These are suffixes introduced by the compiler for entities such as
985 nested subprogram for instance, in order to avoid name clashes.
986 They do not serve any purpose for the debugger. */
987
988static void
989ada_remove_trailing_digits (const char *encoded, int *len)
990{
991 if (*len > 1 && isdigit (encoded[*len - 1]))
992 {
993 int i = *len - 2;
5b4ee69b 994
29480c32
JB
995 while (i > 0 && isdigit (encoded[i]))
996 i--;
997 if (i >= 0 && encoded[i] == '.')
998 *len = i;
999 else if (i >= 0 && encoded[i] == '$')
1000 *len = i;
1001 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1002 *len = i - 2;
1003 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1004 *len = i - 1;
1005 }
1006}
1007
1008/* Remove the suffix introduced by the compiler for protected object
1009 subprograms. */
1010
1011static void
1012ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1013{
1014 /* Remove trailing N. */
1015
1016 /* Protected entry subprograms are broken into two
1017 separate subprograms: The first one is unprotected, and has
1018 a 'N' suffix; the second is the protected version, and has
0963b4bd 1019 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1020 the protection. Since the P subprograms are internally generated,
1021 we leave these names undecoded, giving the user a clue that this
1022 entity is internal. */
1023
1024 if (*len > 1
1025 && encoded[*len - 1] == 'N'
1026 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1027 *len = *len - 1;
1028}
1029
69fadcdf
JB
1030/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1031
1032static void
1033ada_remove_Xbn_suffix (const char *encoded, int *len)
1034{
1035 int i = *len - 1;
1036
1037 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1038 i--;
1039
1040 if (encoded[i] != 'X')
1041 return;
1042
1043 if (i == 0)
1044 return;
1045
1046 if (isalnum (encoded[i-1]))
1047 *len = i;
1048}
1049
29480c32
JB
1050/* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1052 replaced by ENCODED.
14f9c5c9 1053
4c4b4cd2 1054 The resulting string is valid until the next call of ada_decode.
29480c32 1055 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1056 is returned. */
1057
1058const char *
1059ada_decode (const char *encoded)
14f9c5c9
AS
1060{
1061 int i, j;
1062 int len0;
d2e4a39e 1063 const char *p;
4c4b4cd2 1064 char *decoded;
14f9c5c9 1065 int at_start_name;
4c4b4cd2
PH
1066 static char *decoding_buffer = NULL;
1067 static size_t decoding_buffer_size = 0;
d2e4a39e 1068
29480c32
JB
1069 /* The name of the Ada main procedure starts with "_ada_".
1070 This prefix is not part of the decoded name, so skip this part
1071 if we see this prefix. */
4c4b4cd2
PH
1072 if (strncmp (encoded, "_ada_", 5) == 0)
1073 encoded += 5;
14f9c5c9 1074
29480c32
JB
1075 /* If the name starts with '_', then it is not a properly encoded
1076 name, so do not attempt to decode it. Similarly, if the name
1077 starts with '<', the name should not be decoded. */
4c4b4cd2 1078 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1079 goto Suppress;
1080
4c4b4cd2 1081 len0 = strlen (encoded);
4c4b4cd2 1082
29480c32
JB
1083 ada_remove_trailing_digits (encoded, &len0);
1084 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1085
4c4b4cd2
PH
1086 /* Remove the ___X.* suffix if present. Do not forget to verify that
1087 the suffix is located before the current "end" of ENCODED. We want
1088 to avoid re-matching parts of ENCODED that have previously been
1089 marked as discarded (by decrementing LEN0). */
1090 p = strstr (encoded, "___");
1091 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1092 {
1093 if (p[3] == 'X')
4c4b4cd2 1094 len0 = p - encoded;
14f9c5c9 1095 else
4c4b4cd2 1096 goto Suppress;
14f9c5c9 1097 }
4c4b4cd2 1098
29480c32
JB
1099 /* Remove any trailing TKB suffix. It tells us that this symbol
1100 is for the body of a task, but that information does not actually
1101 appear in the decoded name. */
1102
4c4b4cd2 1103 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1104 len0 -= 3;
76a01679 1105
a10967fa
JB
1106 /* Remove any trailing TB suffix. The TB suffix is slightly different
1107 from the TKB suffix because it is used for non-anonymous task
1108 bodies. */
1109
1110 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1111 len0 -= 2;
1112
29480c32
JB
1113 /* Remove trailing "B" suffixes. */
1114 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1115
4c4b4cd2 1116 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1117 len0 -= 1;
1118
4c4b4cd2 1119 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1120
4c4b4cd2
PH
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1122 decoded = decoding_buffer;
14f9c5c9 1123
29480c32
JB
1124 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1125
4c4b4cd2 1126 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1127 {
4c4b4cd2
PH
1128 i = len0 - 2;
1129 while ((i >= 0 && isdigit (encoded[i]))
1130 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1131 i -= 1;
1132 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1133 len0 = i - 1;
1134 else if (encoded[i] == '$')
1135 len0 = i;
d2e4a39e 1136 }
14f9c5c9 1137
29480c32
JB
1138 /* The first few characters that are not alphabetic are not part
1139 of any encoding we use, so we can copy them over verbatim. */
1140
4c4b4cd2
PH
1141 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1142 decoded[j] = encoded[i];
14f9c5c9
AS
1143
1144 at_start_name = 1;
1145 while (i < len0)
1146 {
29480c32 1147 /* Is this a symbol function? */
4c4b4cd2
PH
1148 if (at_start_name && encoded[i] == 'O')
1149 {
1150 int k;
5b4ee69b 1151
4c4b4cd2
PH
1152 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1153 {
1154 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1155 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1156 op_len - 1) == 0)
1157 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1158 {
1159 strcpy (decoded + j, ada_opname_table[k].decoded);
1160 at_start_name = 0;
1161 i += op_len;
1162 j += strlen (ada_opname_table[k].decoded);
1163 break;
1164 }
1165 }
1166 if (ada_opname_table[k].encoded != NULL)
1167 continue;
1168 }
14f9c5c9
AS
1169 at_start_name = 0;
1170
529cad9c
PH
1171 /* Replace "TK__" with "__", which will eventually be translated
1172 into "." (just below). */
1173
4c4b4cd2
PH
1174 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1175 i += 2;
529cad9c 1176
29480c32
JB
1177 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1178 be translated into "." (just below). These are internal names
1179 generated for anonymous blocks inside which our symbol is nested. */
1180
1181 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1182 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1183 && isdigit (encoded [i+4]))
1184 {
1185 int k = i + 5;
1186
1187 while (k < len0 && isdigit (encoded[k]))
1188 k++; /* Skip any extra digit. */
1189
1190 /* Double-check that the "__B_{DIGITS}+" sequence we found
1191 is indeed followed by "__". */
1192 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1193 i = k;
1194 }
1195
529cad9c
PH
1196 /* Remove _E{DIGITS}+[sb] */
1197
1198 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1199 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1200 one implements the actual entry code, and has a suffix following
1201 the convention above; the second one implements the barrier and
1202 uses the same convention as above, except that the 'E' is replaced
1203 by a 'B'.
1204
1205 Just as above, we do not decode the name of barrier functions
1206 to give the user a clue that the code he is debugging has been
1207 internally generated. */
1208
1209 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1210 && isdigit (encoded[i+2]))
1211 {
1212 int k = i + 3;
1213
1214 while (k < len0 && isdigit (encoded[k]))
1215 k++;
1216
1217 if (k < len0
1218 && (encoded[k] == 'b' || encoded[k] == 's'))
1219 {
1220 k++;
1221 /* Just as an extra precaution, make sure that if this
1222 suffix is followed by anything else, it is a '_'.
1223 Otherwise, we matched this sequence by accident. */
1224 if (k == len0
1225 || (k < len0 && encoded[k] == '_'))
1226 i = k;
1227 }
1228 }
1229
1230 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1231 the GNAT front-end in protected object subprograms. */
1232
1233 if (i < len0 + 3
1234 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1235 {
1236 /* Backtrack a bit up until we reach either the begining of
1237 the encoded name, or "__". Make sure that we only find
1238 digits or lowercase characters. */
1239 const char *ptr = encoded + i - 1;
1240
1241 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1242 ptr--;
1243 if (ptr < encoded
1244 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1245 i++;
1246 }
1247
4c4b4cd2
PH
1248 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1249 {
29480c32
JB
1250 /* This is a X[bn]* sequence not separated from the previous
1251 part of the name with a non-alpha-numeric character (in other
1252 words, immediately following an alpha-numeric character), then
1253 verify that it is placed at the end of the encoded name. If
1254 not, then the encoding is not valid and we should abort the
1255 decoding. Otherwise, just skip it, it is used in body-nested
1256 package names. */
4c4b4cd2
PH
1257 do
1258 i += 1;
1259 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1260 if (i < len0)
1261 goto Suppress;
1262 }
cdc7bb92 1263 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1264 {
29480c32 1265 /* Replace '__' by '.'. */
4c4b4cd2
PH
1266 decoded[j] = '.';
1267 at_start_name = 1;
1268 i += 2;
1269 j += 1;
1270 }
14f9c5c9 1271 else
4c4b4cd2 1272 {
29480c32
JB
1273 /* It's a character part of the decoded name, so just copy it
1274 over. */
4c4b4cd2
PH
1275 decoded[j] = encoded[i];
1276 i += 1;
1277 j += 1;
1278 }
14f9c5c9 1279 }
4c4b4cd2 1280 decoded[j] = '\000';
14f9c5c9 1281
29480c32
JB
1282 /* Decoded names should never contain any uppercase character.
1283 Double-check this, and abort the decoding if we find one. */
1284
4c4b4cd2
PH
1285 for (i = 0; decoded[i] != '\0'; i += 1)
1286 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1287 goto Suppress;
1288
4c4b4cd2
PH
1289 if (strcmp (decoded, encoded) == 0)
1290 return encoded;
1291 else
1292 return decoded;
14f9c5c9
AS
1293
1294Suppress:
4c4b4cd2
PH
1295 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1296 decoded = decoding_buffer;
1297 if (encoded[0] == '<')
1298 strcpy (decoded, encoded);
14f9c5c9 1299 else
88c15c34 1300 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1301 return decoded;
1302
1303}
1304
1305/* Table for keeping permanent unique copies of decoded names. Once
1306 allocated, names in this table are never released. While this is a
1307 storage leak, it should not be significant unless there are massive
1308 changes in the set of decoded names in successive versions of a
1309 symbol table loaded during a single session. */
1310static struct htab *decoded_names_store;
1311
1312/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1313 in the language-specific part of GSYMBOL, if it has not been
1314 previously computed. Tries to save the decoded name in the same
1315 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1316 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1317 GSYMBOL).
4c4b4cd2
PH
1318 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1319 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1320 when a decoded name is cached in it. */
4c4b4cd2 1321
45e6c716 1322const char *
f85f34ed 1323ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1324{
f85f34ed
TT
1325 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1326 const char **resultp =
1327 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1328
f85f34ed 1329 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1330 {
1331 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1332 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1333
f85f34ed 1334 gsymbol->ada_mangled = 1;
5b4ee69b 1335
f85f34ed
TT
1336 if (obstack != NULL)
1337 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1338 else
76a01679 1339 {
f85f34ed
TT
1340 /* Sometimes, we can't find a corresponding objfile, in
1341 which case, we put the result on the heap. Since we only
1342 decode when needed, we hope this usually does not cause a
1343 significant memory leak (FIXME). */
1344
76a01679
JB
1345 char **slot = (char **) htab_find_slot (decoded_names_store,
1346 decoded, INSERT);
5b4ee69b 1347
76a01679
JB
1348 if (*slot == NULL)
1349 *slot = xstrdup (decoded);
1350 *resultp = *slot;
1351 }
4c4b4cd2 1352 }
14f9c5c9 1353
4c4b4cd2
PH
1354 return *resultp;
1355}
76a01679 1356
2c0b251b 1357static char *
76a01679 1358ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1359{
1360 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1361}
1362
1363/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1364 suffixes that encode debugging information or leading _ada_ on
1365 SYM_NAME (see is_name_suffix commentary for the debugging
1366 information that is ignored). If WILD, then NAME need only match a
1367 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1368 either argument is NULL. */
14f9c5c9 1369
2c0b251b 1370static int
40658b94 1371match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1372{
1373 if (sym_name == NULL || name == NULL)
1374 return 0;
1375 else if (wild)
73589123 1376 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1377 else
1378 {
1379 int len_name = strlen (name);
5b4ee69b 1380
4c4b4cd2
PH
1381 return (strncmp (sym_name, name, len_name) == 0
1382 && is_name_suffix (sym_name + len_name))
1383 || (strncmp (sym_name, "_ada_", 5) == 0
1384 && strncmp (sym_name + 5, name, len_name) == 0
1385 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1386 }
14f9c5c9 1387}
14f9c5c9 1388\f
d2e4a39e 1389
4c4b4cd2 1390 /* Arrays */
14f9c5c9 1391
28c85d6c
JB
1392/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1393 generated by the GNAT compiler to describe the index type used
1394 for each dimension of an array, check whether it follows the latest
1395 known encoding. If not, fix it up to conform to the latest encoding.
1396 Otherwise, do nothing. This function also does nothing if
1397 INDEX_DESC_TYPE is NULL.
1398
1399 The GNAT encoding used to describle the array index type evolved a bit.
1400 Initially, the information would be provided through the name of each
1401 field of the structure type only, while the type of these fields was
1402 described as unspecified and irrelevant. The debugger was then expected
1403 to perform a global type lookup using the name of that field in order
1404 to get access to the full index type description. Because these global
1405 lookups can be very expensive, the encoding was later enhanced to make
1406 the global lookup unnecessary by defining the field type as being
1407 the full index type description.
1408
1409 The purpose of this routine is to allow us to support older versions
1410 of the compiler by detecting the use of the older encoding, and by
1411 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1412 we essentially replace each field's meaningless type by the associated
1413 index subtype). */
1414
1415void
1416ada_fixup_array_indexes_type (struct type *index_desc_type)
1417{
1418 int i;
1419
1420 if (index_desc_type == NULL)
1421 return;
1422 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1423
1424 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1425 to check one field only, no need to check them all). If not, return
1426 now.
1427
1428 If our INDEX_DESC_TYPE was generated using the older encoding,
1429 the field type should be a meaningless integer type whose name
1430 is not equal to the field name. */
1431 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1432 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1433 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1434 return;
1435
1436 /* Fixup each field of INDEX_DESC_TYPE. */
1437 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1438 {
0d5cff50 1439 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1440 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1441
1442 if (raw_type)
1443 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1444 }
1445}
1446
4c4b4cd2 1447/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1448
d2e4a39e
AS
1449static char *bound_name[] = {
1450 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1451 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1452};
1453
1454/* Maximum number of array dimensions we are prepared to handle. */
1455
4c4b4cd2 1456#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1457
14f9c5c9 1458
4c4b4cd2
PH
1459/* The desc_* routines return primitive portions of array descriptors
1460 (fat pointers). */
14f9c5c9
AS
1461
1462/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1463 level of indirection, if needed. */
1464
d2e4a39e
AS
1465static struct type *
1466desc_base_type (struct type *type)
14f9c5c9
AS
1467{
1468 if (type == NULL)
1469 return NULL;
61ee279c 1470 type = ada_check_typedef (type);
720d1a40
JB
1471 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1472 type = ada_typedef_target_type (type);
1473
1265e4aa
JB
1474 if (type != NULL
1475 && (TYPE_CODE (type) == TYPE_CODE_PTR
1476 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1477 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1478 else
1479 return type;
1480}
1481
4c4b4cd2
PH
1482/* True iff TYPE indicates a "thin" array pointer type. */
1483
14f9c5c9 1484static int
d2e4a39e 1485is_thin_pntr (struct type *type)
14f9c5c9 1486{
d2e4a39e 1487 return
14f9c5c9
AS
1488 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1489 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1490}
1491
4c4b4cd2
PH
1492/* The descriptor type for thin pointer type TYPE. */
1493
d2e4a39e
AS
1494static struct type *
1495thin_descriptor_type (struct type *type)
14f9c5c9 1496{
d2e4a39e 1497 struct type *base_type = desc_base_type (type);
5b4ee69b 1498
14f9c5c9
AS
1499 if (base_type == NULL)
1500 return NULL;
1501 if (is_suffix (ada_type_name (base_type), "___XVE"))
1502 return base_type;
d2e4a39e 1503 else
14f9c5c9 1504 {
d2e4a39e 1505 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1506
14f9c5c9 1507 if (alt_type == NULL)
4c4b4cd2 1508 return base_type;
14f9c5c9 1509 else
4c4b4cd2 1510 return alt_type;
14f9c5c9
AS
1511 }
1512}
1513
4c4b4cd2
PH
1514/* A pointer to the array data for thin-pointer value VAL. */
1515
d2e4a39e
AS
1516static struct value *
1517thin_data_pntr (struct value *val)
14f9c5c9 1518{
828292f2 1519 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1520 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1521
556bdfd4
UW
1522 data_type = lookup_pointer_type (data_type);
1523
14f9c5c9 1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1525 return value_cast (data_type, value_copy (val));
d2e4a39e 1526 else
42ae5230 1527 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1528}
1529
4c4b4cd2
PH
1530/* True iff TYPE indicates a "thick" array pointer type. */
1531
14f9c5c9 1532static int
d2e4a39e 1533is_thick_pntr (struct type *type)
14f9c5c9
AS
1534{
1535 type = desc_base_type (type);
1536 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1537 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1538}
1539
4c4b4cd2
PH
1540/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1541 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1542
d2e4a39e
AS
1543static struct type *
1544desc_bounds_type (struct type *type)
14f9c5c9 1545{
d2e4a39e 1546 struct type *r;
14f9c5c9
AS
1547
1548 type = desc_base_type (type);
1549
1550 if (type == NULL)
1551 return NULL;
1552 else if (is_thin_pntr (type))
1553 {
1554 type = thin_descriptor_type (type);
1555 if (type == NULL)
4c4b4cd2 1556 return NULL;
14f9c5c9
AS
1557 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1558 if (r != NULL)
61ee279c 1559 return ada_check_typedef (r);
14f9c5c9
AS
1560 }
1561 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1562 {
1563 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1564 if (r != NULL)
61ee279c 1565 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1566 }
1567 return NULL;
1568}
1569
1570/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1571 one, a pointer to its bounds data. Otherwise NULL. */
1572
d2e4a39e
AS
1573static struct value *
1574desc_bounds (struct value *arr)
14f9c5c9 1575{
df407dfe 1576 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1577
d2e4a39e 1578 if (is_thin_pntr (type))
14f9c5c9 1579 {
d2e4a39e 1580 struct type *bounds_type =
4c4b4cd2 1581 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1582 LONGEST addr;
1583
4cdfadb1 1584 if (bounds_type == NULL)
323e0a4a 1585 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1586
1587 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1588 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1589 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1590 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1591 addr = value_as_long (arr);
d2e4a39e 1592 else
42ae5230 1593 addr = value_address (arr);
14f9c5c9 1594
d2e4a39e 1595 return
4c4b4cd2
PH
1596 value_from_longest (lookup_pointer_type (bounds_type),
1597 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1598 }
1599
1600 else if (is_thick_pntr (type))
05e522ef
JB
1601 {
1602 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1603 _("Bad GNAT array descriptor"));
1604 struct type *p_bounds_type = value_type (p_bounds);
1605
1606 if (p_bounds_type
1607 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1608 {
1609 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1610
1611 if (TYPE_STUB (target_type))
1612 p_bounds = value_cast (lookup_pointer_type
1613 (ada_check_typedef (target_type)),
1614 p_bounds);
1615 }
1616 else
1617 error (_("Bad GNAT array descriptor"));
1618
1619 return p_bounds;
1620 }
14f9c5c9
AS
1621 else
1622 return NULL;
1623}
1624
4c4b4cd2
PH
1625/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the bounds data. */
1627
14f9c5c9 1628static int
d2e4a39e 1629fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1630{
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1632}
1633
1634/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1635 size of the field containing the address of the bounds data. */
1636
14f9c5c9 1637static int
d2e4a39e 1638fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1639{
1640 type = desc_base_type (type);
1641
d2e4a39e 1642 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1643 return TYPE_FIELD_BITSIZE (type, 1);
1644 else
61ee279c 1645 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1646}
1647
4c4b4cd2 1648/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1649 pointer to one, the type of its array data (a array-with-no-bounds type);
1650 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1651 data. */
4c4b4cd2 1652
d2e4a39e 1653static struct type *
556bdfd4 1654desc_data_target_type (struct type *type)
14f9c5c9
AS
1655{
1656 type = desc_base_type (type);
1657
4c4b4cd2 1658 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1659 if (is_thin_pntr (type))
556bdfd4 1660 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1661 else if (is_thick_pntr (type))
556bdfd4
UW
1662 {
1663 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1664
1665 if (data_type
1666 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1667 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1668 }
1669
1670 return NULL;
14f9c5c9
AS
1671}
1672
1673/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1674 its array data. */
4c4b4cd2 1675
d2e4a39e
AS
1676static struct value *
1677desc_data (struct value *arr)
14f9c5c9 1678{
df407dfe 1679 struct type *type = value_type (arr);
5b4ee69b 1680
14f9c5c9
AS
1681 if (is_thin_pntr (type))
1682 return thin_data_pntr (arr);
1683 else if (is_thick_pntr (type))
d2e4a39e 1684 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1685 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1686 else
1687 return NULL;
1688}
1689
1690
1691/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1692 position of the field containing the address of the data. */
1693
14f9c5c9 1694static int
d2e4a39e 1695fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1696{
1697 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1698}
1699
1700/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1701 size of the field containing the address of the data. */
1702
14f9c5c9 1703static int
d2e4a39e 1704fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1705{
1706 type = desc_base_type (type);
1707
1708 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1709 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1710 else
14f9c5c9
AS
1711 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1712}
1713
4c4b4cd2 1714/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1715 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1716 bound, if WHICH is 1. The first bound is I=1. */
1717
d2e4a39e
AS
1718static struct value *
1719desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1720{
d2e4a39e 1721 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1722 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1723}
1724
1725/* If BOUNDS is an array-bounds structure type, return the bit position
1726 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1727 bound, if WHICH is 1. The first bound is I=1. */
1728
14f9c5c9 1729static int
d2e4a39e 1730desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1731{
d2e4a39e 1732 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1733}
1734
1735/* If BOUNDS is an array-bounds structure type, return the bit field size
1736 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1737 bound, if WHICH is 1. The first bound is I=1. */
1738
76a01679 1739static int
d2e4a39e 1740desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1741{
1742 type = desc_base_type (type);
1743
d2e4a39e
AS
1744 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1745 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1746 else
1747 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1748}
1749
1750/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1751 Ith bound (numbering from 1). Otherwise, NULL. */
1752
d2e4a39e
AS
1753static struct type *
1754desc_index_type (struct type *type, int i)
14f9c5c9
AS
1755{
1756 type = desc_base_type (type);
1757
1758 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1759 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1760 else
14f9c5c9
AS
1761 return NULL;
1762}
1763
4c4b4cd2
PH
1764/* The number of index positions in the array-bounds type TYPE.
1765 Return 0 if TYPE is NULL. */
1766
14f9c5c9 1767static int
d2e4a39e 1768desc_arity (struct type *type)
14f9c5c9
AS
1769{
1770 type = desc_base_type (type);
1771
1772 if (type != NULL)
1773 return TYPE_NFIELDS (type) / 2;
1774 return 0;
1775}
1776
4c4b4cd2
PH
1777/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1778 an array descriptor type (representing an unconstrained array
1779 type). */
1780
76a01679
JB
1781static int
1782ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1783{
1784 if (type == NULL)
1785 return 0;
61ee279c 1786 type = ada_check_typedef (type);
4c4b4cd2 1787 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1788 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1789}
1790
52ce6436 1791/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1792 * to one. */
52ce6436 1793
2c0b251b 1794static int
52ce6436
PH
1795ada_is_array_type (struct type *type)
1796{
1797 while (type != NULL
1798 && (TYPE_CODE (type) == TYPE_CODE_PTR
1799 || TYPE_CODE (type) == TYPE_CODE_REF))
1800 type = TYPE_TARGET_TYPE (type);
1801 return ada_is_direct_array_type (type);
1802}
1803
4c4b4cd2 1804/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1805
14f9c5c9 1806int
4c4b4cd2 1807ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1808{
1809 if (type == NULL)
1810 return 0;
61ee279c 1811 type = ada_check_typedef (type);
14f9c5c9 1812 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1813 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1814 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1815 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1816}
1817
4c4b4cd2
PH
1818/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1819
14f9c5c9 1820int
4c4b4cd2 1821ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1822{
556bdfd4 1823 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1824
1825 if (type == NULL)
1826 return 0;
61ee279c 1827 type = ada_check_typedef (type);
556bdfd4
UW
1828 return (data_type != NULL
1829 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1830 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1831}
1832
1833/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1834 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1835 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1836 is still needed. */
1837
14f9c5c9 1838int
ebf56fd3 1839ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1840{
d2e4a39e 1841 return
14f9c5c9
AS
1842 type != NULL
1843 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1844 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1845 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1846 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1847}
1848
1849
4c4b4cd2 1850/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1851 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1852 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1853 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1854 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1855 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1856 a descriptor. */
d2e4a39e
AS
1857struct type *
1858ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1859{
ad82864c
JB
1860 if (ada_is_constrained_packed_array_type (value_type (arr)))
1861 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1862
df407dfe
AC
1863 if (!ada_is_array_descriptor_type (value_type (arr)))
1864 return value_type (arr);
d2e4a39e
AS
1865
1866 if (!bounds)
ad82864c
JB
1867 {
1868 struct type *array_type =
1869 ada_check_typedef (desc_data_target_type (value_type (arr)));
1870
1871 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1872 TYPE_FIELD_BITSIZE (array_type, 0) =
1873 decode_packed_array_bitsize (value_type (arr));
1874
1875 return array_type;
1876 }
14f9c5c9
AS
1877 else
1878 {
d2e4a39e 1879 struct type *elt_type;
14f9c5c9 1880 int arity;
d2e4a39e 1881 struct value *descriptor;
14f9c5c9 1882
df407dfe
AC
1883 elt_type = ada_array_element_type (value_type (arr), -1);
1884 arity = ada_array_arity (value_type (arr));
14f9c5c9 1885
d2e4a39e 1886 if (elt_type == NULL || arity == 0)
df407dfe 1887 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1888
1889 descriptor = desc_bounds (arr);
d2e4a39e 1890 if (value_as_long (descriptor) == 0)
4c4b4cd2 1891 return NULL;
d2e4a39e 1892 while (arity > 0)
4c4b4cd2 1893 {
e9bb382b
UW
1894 struct type *range_type = alloc_type_copy (value_type (arr));
1895 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1896 struct value *low = desc_one_bound (descriptor, arity, 0);
1897 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1898
5b4ee69b 1899 arity -= 1;
df407dfe 1900 create_range_type (range_type, value_type (low),
529cad9c
PH
1901 longest_to_int (value_as_long (low)),
1902 longest_to_int (value_as_long (high)));
4c4b4cd2 1903 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1904
1905 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1906 {
1907 /* We need to store the element packed bitsize, as well as
1908 recompute the array size, because it was previously
1909 computed based on the unpacked element size. */
1910 LONGEST lo = value_as_long (low);
1911 LONGEST hi = value_as_long (high);
1912
1913 TYPE_FIELD_BITSIZE (elt_type, 0) =
1914 decode_packed_array_bitsize (value_type (arr));
1915 /* If the array has no element, then the size is already
1916 zero, and does not need to be recomputed. */
1917 if (lo < hi)
1918 {
1919 int array_bitsize =
1920 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1921
1922 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1923 }
1924 }
4c4b4cd2 1925 }
14f9c5c9
AS
1926
1927 return lookup_pointer_type (elt_type);
1928 }
1929}
1930
1931/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1932 Otherwise, returns either a standard GDB array with bounds set
1933 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1934 GDB array. Returns NULL if ARR is a null fat pointer. */
1935
d2e4a39e
AS
1936struct value *
1937ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1938{
df407dfe 1939 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1940 {
d2e4a39e 1941 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1942
14f9c5c9 1943 if (arrType == NULL)
4c4b4cd2 1944 return NULL;
14f9c5c9
AS
1945 return value_cast (arrType, value_copy (desc_data (arr)));
1946 }
ad82864c
JB
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1949 else
1950 return arr;
1951}
1952
1953/* If ARR does not represent an array, returns ARR unchanged.
1954 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1955 be ARR itself if it already is in the proper form). */
1956
720d1a40 1957struct value *
d2e4a39e 1958ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1959{
df407dfe 1960 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1961 {
d2e4a39e 1962 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1963
14f9c5c9 1964 if (arrVal == NULL)
323e0a4a 1965 error (_("Bounds unavailable for null array pointer."));
529cad9c 1966 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1967 return value_ind (arrVal);
1968 }
ad82864c
JB
1969 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1970 return decode_constrained_packed_array (arr);
d2e4a39e 1971 else
14f9c5c9
AS
1972 return arr;
1973}
1974
1975/* If TYPE represents a GNAT array type, return it translated to an
1976 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1977 packing). For other types, is the identity. */
1978
d2e4a39e
AS
1979struct type *
1980ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (type))
1983 return decode_constrained_packed_array_type (type);
17280b9f
UW
1984
1985 if (ada_is_array_descriptor_type (type))
556bdfd4 1986 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1987
1988 return type;
14f9c5c9
AS
1989}
1990
4c4b4cd2
PH
1991/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1992
ad82864c
JB
1993static int
1994ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1995{
1996 if (type == NULL)
1997 return 0;
4c4b4cd2 1998 type = desc_base_type (type);
61ee279c 1999 type = ada_check_typedef (type);
d2e4a39e 2000 return
14f9c5c9
AS
2001 ada_type_name (type) != NULL
2002 && strstr (ada_type_name (type), "___XP") != NULL;
2003}
2004
ad82864c
JB
2005/* Non-zero iff TYPE represents a standard GNAT constrained
2006 packed-array type. */
2007
2008int
2009ada_is_constrained_packed_array_type (struct type *type)
2010{
2011 return ada_is_packed_array_type (type)
2012 && !ada_is_array_descriptor_type (type);
2013}
2014
2015/* Non-zero iff TYPE represents an array descriptor for a
2016 unconstrained packed-array type. */
2017
2018static int
2019ada_is_unconstrained_packed_array_type (struct type *type)
2020{
2021 return ada_is_packed_array_type (type)
2022 && ada_is_array_descriptor_type (type);
2023}
2024
2025/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2026 return the size of its elements in bits. */
2027
2028static long
2029decode_packed_array_bitsize (struct type *type)
2030{
0d5cff50
DE
2031 const char *raw_name;
2032 const char *tail;
ad82864c
JB
2033 long bits;
2034
720d1a40
JB
2035 /* Access to arrays implemented as fat pointers are encoded as a typedef
2036 of the fat pointer type. We need the name of the fat pointer type
2037 to do the decoding, so strip the typedef layer. */
2038 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2039 type = ada_typedef_target_type (type);
2040
2041 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2042 if (!raw_name)
2043 raw_name = ada_type_name (desc_base_type (type));
2044
2045 if (!raw_name)
2046 return 0;
2047
2048 tail = strstr (raw_name, "___XP");
720d1a40 2049 gdb_assert (tail != NULL);
ad82864c
JB
2050
2051 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2052 {
2053 lim_warning
2054 (_("could not understand bit size information on packed array"));
2055 return 0;
2056 }
2057
2058 return bits;
2059}
2060
14f9c5c9
AS
2061/* Given that TYPE is a standard GDB array type with all bounds filled
2062 in, and that the element size of its ultimate scalar constituents
2063 (that is, either its elements, or, if it is an array of arrays, its
2064 elements' elements, etc.) is *ELT_BITS, return an identical type,
2065 but with the bit sizes of its elements (and those of any
2066 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2067 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2068 in bits. */
2069
d2e4a39e 2070static struct type *
ad82864c 2071constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2072{
d2e4a39e
AS
2073 struct type *new_elt_type;
2074 struct type *new_type;
99b1c762
JB
2075 struct type *index_type_desc;
2076 struct type *index_type;
14f9c5c9
AS
2077 LONGEST low_bound, high_bound;
2078
61ee279c 2079 type = ada_check_typedef (type);
14f9c5c9
AS
2080 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2081 return type;
2082
99b1c762
JB
2083 index_type_desc = ada_find_parallel_type (type, "___XA");
2084 if (index_type_desc)
2085 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2086 NULL);
2087 else
2088 index_type = TYPE_INDEX_TYPE (type);
2089
e9bb382b 2090 new_type = alloc_type_copy (type);
ad82864c
JB
2091 new_elt_type =
2092 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2093 elt_bits);
99b1c762 2094 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2095 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2096 TYPE_NAME (new_type) = ada_type_name (type);
2097
99b1c762 2098 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2099 low_bound = high_bound = 0;
2100 if (high_bound < low_bound)
2101 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2102 else
14f9c5c9
AS
2103 {
2104 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2105 TYPE_LENGTH (new_type) =
4c4b4cd2 2106 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2107 }
2108
876cecd0 2109 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2110 return new_type;
2111}
2112
ad82864c
JB
2113/* The array type encoded by TYPE, where
2114 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2115
d2e4a39e 2116static struct type *
ad82864c 2117decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2118{
0d5cff50 2119 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2120 char *name;
0d5cff50 2121 const char *tail;
d2e4a39e 2122 struct type *shadow_type;
14f9c5c9 2123 long bits;
14f9c5c9 2124
727e3d2e
JB
2125 if (!raw_name)
2126 raw_name = ada_type_name (desc_base_type (type));
2127
2128 if (!raw_name)
2129 return NULL;
2130
2131 name = (char *) alloca (strlen (raw_name) + 1);
2132 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2133 type = desc_base_type (type);
2134
14f9c5c9
AS
2135 memcpy (name, raw_name, tail - raw_name);
2136 name[tail - raw_name] = '\000';
2137
b4ba55a1
JB
2138 shadow_type = ada_find_parallel_type_with_name (type, name);
2139
2140 if (shadow_type == NULL)
14f9c5c9 2141 {
323e0a4a 2142 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2143 return NULL;
2144 }
cb249c71 2145 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2146
2147 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2148 {
0963b4bd
MS
2149 lim_warning (_("could not understand bounds "
2150 "information on packed array"));
14f9c5c9
AS
2151 return NULL;
2152 }
d2e4a39e 2153
ad82864c
JB
2154 bits = decode_packed_array_bitsize (type);
2155 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2156}
2157
ad82864c
JB
2158/* Given that ARR is a struct value *indicating a GNAT constrained packed
2159 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2160 standard GDB array type except that the BITSIZEs of the array
2161 target types are set to the number of bits in each element, and the
4c4b4cd2 2162 type length is set appropriately. */
14f9c5c9 2163
d2e4a39e 2164static struct value *
ad82864c 2165decode_constrained_packed_array (struct value *arr)
14f9c5c9 2166{
4c4b4cd2 2167 struct type *type;
14f9c5c9 2168
4c4b4cd2 2169 arr = ada_coerce_ref (arr);
284614f0
JB
2170
2171 /* If our value is a pointer, then dererence it. Make sure that
2172 this operation does not cause the target type to be fixed, as
2173 this would indirectly cause this array to be decoded. The rest
2174 of the routine assumes that the array hasn't been decoded yet,
2175 so we use the basic "value_ind" routine to perform the dereferencing,
2176 as opposed to using "ada_value_ind". */
828292f2 2177 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2178 arr = value_ind (arr);
4c4b4cd2 2179
ad82864c 2180 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2181 if (type == NULL)
2182 {
323e0a4a 2183 error (_("can't unpack array"));
14f9c5c9
AS
2184 return NULL;
2185 }
61ee279c 2186
50810684 2187 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2188 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2189 {
2190 /* This is a (right-justified) modular type representing a packed
2191 array with no wrapper. In order to interpret the value through
2192 the (left-justified) packed array type we just built, we must
2193 first left-justify it. */
2194 int bit_size, bit_pos;
2195 ULONGEST mod;
2196
df407dfe 2197 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2198 bit_size = 0;
2199 while (mod > 0)
2200 {
2201 bit_size += 1;
2202 mod >>= 1;
2203 }
df407dfe 2204 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2205 arr = ada_value_primitive_packed_val (arr, NULL,
2206 bit_pos / HOST_CHAR_BIT,
2207 bit_pos % HOST_CHAR_BIT,
2208 bit_size,
2209 type);
2210 }
2211
4c4b4cd2 2212 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2213}
2214
2215
2216/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2217 given in IND. ARR must be a simple array. */
14f9c5c9 2218
d2e4a39e
AS
2219static struct value *
2220value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2221{
2222 int i;
2223 int bits, elt_off, bit_off;
2224 long elt_total_bit_offset;
d2e4a39e
AS
2225 struct type *elt_type;
2226 struct value *v;
14f9c5c9
AS
2227
2228 bits = 0;
2229 elt_total_bit_offset = 0;
df407dfe 2230 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2231 for (i = 0; i < arity; i += 1)
14f9c5c9 2232 {
d2e4a39e 2233 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2234 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2235 error
0963b4bd
MS
2236 (_("attempt to do packed indexing of "
2237 "something other than a packed array"));
14f9c5c9 2238 else
4c4b4cd2
PH
2239 {
2240 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2241 LONGEST lowerbound, upperbound;
2242 LONGEST idx;
2243
2244 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2245 {
323e0a4a 2246 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2247 lowerbound = upperbound = 0;
2248 }
2249
3cb382c9 2250 idx = pos_atr (ind[i]);
4c4b4cd2 2251 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2252 lim_warning (_("packed array index %ld out of bounds"),
2253 (long) idx);
4c4b4cd2
PH
2254 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2255 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2256 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2257 }
14f9c5c9
AS
2258 }
2259 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2260 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2261
2262 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2263 bits, elt_type);
14f9c5c9
AS
2264 return v;
2265}
2266
4c4b4cd2 2267/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2268
2269static int
d2e4a39e 2270has_negatives (struct type *type)
14f9c5c9 2271{
d2e4a39e
AS
2272 switch (TYPE_CODE (type))
2273 {
2274 default:
2275 return 0;
2276 case TYPE_CODE_INT:
2277 return !TYPE_UNSIGNED (type);
2278 case TYPE_CODE_RANGE:
2279 return TYPE_LOW_BOUND (type) < 0;
2280 }
14f9c5c9 2281}
d2e4a39e 2282
14f9c5c9
AS
2283
2284/* Create a new value of type TYPE from the contents of OBJ starting
2285 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2286 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2287 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2288 VALADDR is ignored unless OBJ is NULL, in which case,
2289 VALADDR+OFFSET must address the start of storage containing the
2290 packed value. The value returned in this case is never an lval.
2291 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2292
d2e4a39e 2293struct value *
fc1a4b47 2294ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2295 long offset, int bit_offset, int bit_size,
4c4b4cd2 2296 struct type *type)
14f9c5c9 2297{
d2e4a39e 2298 struct value *v;
4c4b4cd2
PH
2299 int src, /* Index into the source area */
2300 targ, /* Index into the target area */
2301 srcBitsLeft, /* Number of source bits left to move */
2302 nsrc, ntarg, /* Number of source and target bytes */
2303 unusedLS, /* Number of bits in next significant
2304 byte of source that are unused */
2305 accumSize; /* Number of meaningful bits in accum */
2306 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2307 unsigned char *unpacked;
4c4b4cd2 2308 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2309 unsigned char sign;
2310 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2311 /* Transmit bytes from least to most significant; delta is the direction
2312 the indices move. */
50810684 2313 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2314
61ee279c 2315 type = ada_check_typedef (type);
14f9c5c9
AS
2316
2317 if (obj == NULL)
2318 {
2319 v = allocate_value (type);
d2e4a39e 2320 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2321 }
9214ee5f 2322 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2323 {
53ba8333 2324 v = value_at (type, value_address (obj));
d2e4a39e 2325 bytes = (unsigned char *) alloca (len);
53ba8333 2326 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2327 }
d2e4a39e 2328 else
14f9c5c9
AS
2329 {
2330 v = allocate_value (type);
0fd88904 2331 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2332 }
d2e4a39e
AS
2333
2334 if (obj != NULL)
14f9c5c9 2335 {
53ba8333 2336 long new_offset = offset;
5b4ee69b 2337
74bcbdf3 2338 set_value_component_location (v, obj);
9bbda503
AC
2339 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2340 set_value_bitsize (v, bit_size);
df407dfe 2341 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2342 {
53ba8333 2343 ++new_offset;
9bbda503 2344 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2345 }
53ba8333
JB
2346 set_value_offset (v, new_offset);
2347
2348 /* Also set the parent value. This is needed when trying to
2349 assign a new value (in inferior memory). */
2350 set_value_parent (v, obj);
14f9c5c9
AS
2351 }
2352 else
9bbda503 2353 set_value_bitsize (v, bit_size);
0fd88904 2354 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2355
2356 srcBitsLeft = bit_size;
2357 nsrc = len;
2358 ntarg = TYPE_LENGTH (type);
2359 sign = 0;
2360 if (bit_size == 0)
2361 {
2362 memset (unpacked, 0, TYPE_LENGTH (type));
2363 return v;
2364 }
50810684 2365 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2366 {
d2e4a39e 2367 src = len - 1;
1265e4aa
JB
2368 if (has_negatives (type)
2369 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2370 sign = ~0;
d2e4a39e
AS
2371
2372 unusedLS =
4c4b4cd2
PH
2373 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2374 % HOST_CHAR_BIT;
14f9c5c9
AS
2375
2376 switch (TYPE_CODE (type))
4c4b4cd2
PH
2377 {
2378 case TYPE_CODE_ARRAY:
2379 case TYPE_CODE_UNION:
2380 case TYPE_CODE_STRUCT:
2381 /* Non-scalar values must be aligned at a byte boundary... */
2382 accumSize =
2383 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2384 /* ... And are placed at the beginning (most-significant) bytes
2385 of the target. */
529cad9c 2386 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2387 ntarg = targ + 1;
4c4b4cd2
PH
2388 break;
2389 default:
2390 accumSize = 0;
2391 targ = TYPE_LENGTH (type) - 1;
2392 break;
2393 }
14f9c5c9 2394 }
d2e4a39e 2395 else
14f9c5c9
AS
2396 {
2397 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2398
2399 src = targ = 0;
2400 unusedLS = bit_offset;
2401 accumSize = 0;
2402
d2e4a39e 2403 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2404 sign = ~0;
14f9c5c9 2405 }
d2e4a39e 2406
14f9c5c9
AS
2407 accum = 0;
2408 while (nsrc > 0)
2409 {
2410 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2411 part of the value. */
d2e4a39e 2412 unsigned int unusedMSMask =
4c4b4cd2
PH
2413 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2414 1;
2415 /* Sign-extend bits for this byte. */
14f9c5c9 2416 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2417
d2e4a39e 2418 accum |=
4c4b4cd2 2419 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2420 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2421 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2422 {
2423 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2424 accumSize -= HOST_CHAR_BIT;
2425 accum >>= HOST_CHAR_BIT;
2426 ntarg -= 1;
2427 targ += delta;
2428 }
14f9c5c9
AS
2429 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2430 unusedLS = 0;
2431 nsrc -= 1;
2432 src += delta;
2433 }
2434 while (ntarg > 0)
2435 {
2436 accum |= sign << accumSize;
2437 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2438 accumSize -= HOST_CHAR_BIT;
2439 accum >>= HOST_CHAR_BIT;
2440 ntarg -= 1;
2441 targ += delta;
2442 }
2443
2444 return v;
2445}
d2e4a39e 2446
14f9c5c9
AS
2447/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2448 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2449 not overlap. */
14f9c5c9 2450static void
fc1a4b47 2451move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2452 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2453{
2454 unsigned int accum, mask;
2455 int accum_bits, chunk_size;
2456
2457 target += targ_offset / HOST_CHAR_BIT;
2458 targ_offset %= HOST_CHAR_BIT;
2459 source += src_offset / HOST_CHAR_BIT;
2460 src_offset %= HOST_CHAR_BIT;
50810684 2461 if (bits_big_endian_p)
14f9c5c9
AS
2462 {
2463 accum = (unsigned char) *source;
2464 source += 1;
2465 accum_bits = HOST_CHAR_BIT - src_offset;
2466
d2e4a39e 2467 while (n > 0)
4c4b4cd2
PH
2468 {
2469 int unused_right;
5b4ee69b 2470
4c4b4cd2
PH
2471 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2472 accum_bits += HOST_CHAR_BIT;
2473 source += 1;
2474 chunk_size = HOST_CHAR_BIT - targ_offset;
2475 if (chunk_size > n)
2476 chunk_size = n;
2477 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2478 mask = ((1 << chunk_size) - 1) << unused_right;
2479 *target =
2480 (*target & ~mask)
2481 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488 else
2489 {
2490 accum = (unsigned char) *source >> src_offset;
2491 source += 1;
2492 accum_bits = HOST_CHAR_BIT - src_offset;
2493
d2e4a39e 2494 while (n > 0)
4c4b4cd2
PH
2495 {
2496 accum = accum + ((unsigned char) *source << accum_bits);
2497 accum_bits += HOST_CHAR_BIT;
2498 source += 1;
2499 chunk_size = HOST_CHAR_BIT - targ_offset;
2500 if (chunk_size > n)
2501 chunk_size = n;
2502 mask = ((1 << chunk_size) - 1) << targ_offset;
2503 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2504 n -= chunk_size;
2505 accum_bits -= chunk_size;
2506 accum >>= chunk_size;
2507 target += 1;
2508 targ_offset = 0;
2509 }
14f9c5c9
AS
2510 }
2511}
2512
14f9c5c9
AS
2513/* Store the contents of FROMVAL into the location of TOVAL.
2514 Return a new value with the location of TOVAL and contents of
2515 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2516 floating-point or non-scalar types. */
14f9c5c9 2517
d2e4a39e
AS
2518static struct value *
2519ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2520{
df407dfe
AC
2521 struct type *type = value_type (toval);
2522 int bits = value_bitsize (toval);
14f9c5c9 2523
52ce6436
PH
2524 toval = ada_coerce_ref (toval);
2525 fromval = ada_coerce_ref (fromval);
2526
2527 if (ada_is_direct_array_type (value_type (toval)))
2528 toval = ada_coerce_to_simple_array (toval);
2529 if (ada_is_direct_array_type (value_type (fromval)))
2530 fromval = ada_coerce_to_simple_array (fromval);
2531
88e3b34b 2532 if (!deprecated_value_modifiable (toval))
323e0a4a 2533 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2534
d2e4a39e 2535 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2536 && bits > 0
d2e4a39e 2537 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2538 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2539 {
df407dfe
AC
2540 int len = (value_bitpos (toval)
2541 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2542 int from_size;
948f8e3d 2543 gdb_byte *buffer = alloca (len);
d2e4a39e 2544 struct value *val;
42ae5230 2545 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2546
2547 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2548 fromval = value_cast (type, fromval);
14f9c5c9 2549
52ce6436 2550 read_memory (to_addr, buffer, len);
aced2898
PH
2551 from_size = value_bitsize (fromval);
2552 if (from_size == 0)
2553 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2554 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2555 move_bits (buffer, value_bitpos (toval),
50810684 2556 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2557 else
50810684
UW
2558 move_bits (buffer, value_bitpos (toval),
2559 value_contents (fromval), 0, bits, 0);
972daa01 2560 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2561
14f9c5c9 2562 val = value_copy (toval);
0fd88904 2563 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2564 TYPE_LENGTH (type));
04624583 2565 deprecated_set_value_type (val, type);
d2e4a39e 2566
14f9c5c9
AS
2567 return val;
2568 }
2569
2570 return value_assign (toval, fromval);
2571}
2572
2573
52ce6436
PH
2574/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2575 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2576 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2577 * COMPONENT, and not the inferior's memory. The current contents
2578 * of COMPONENT are ignored. */
2579static void
2580value_assign_to_component (struct value *container, struct value *component,
2581 struct value *val)
2582{
2583 LONGEST offset_in_container =
42ae5230 2584 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2585 int bit_offset_in_container =
2586 value_bitpos (component) - value_bitpos (container);
2587 int bits;
2588
2589 val = value_cast (value_type (component), val);
2590
2591 if (value_bitsize (component) == 0)
2592 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2593 else
2594 bits = value_bitsize (component);
2595
50810684 2596 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2597 move_bits (value_contents_writeable (container) + offset_in_container,
2598 value_bitpos (container) + bit_offset_in_container,
2599 value_contents (val),
2600 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2601 bits, 1);
52ce6436
PH
2602 else
2603 move_bits (value_contents_writeable (container) + offset_in_container,
2604 value_bitpos (container) + bit_offset_in_container,
50810684 2605 value_contents (val), 0, bits, 0);
52ce6436
PH
2606}
2607
4c4b4cd2
PH
2608/* The value of the element of array ARR at the ARITY indices given in IND.
2609 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2610 thereto. */
2611
d2e4a39e
AS
2612struct value *
2613ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2614{
2615 int k;
d2e4a39e
AS
2616 struct value *elt;
2617 struct type *elt_type;
14f9c5c9
AS
2618
2619 elt = ada_coerce_to_simple_array (arr);
2620
df407dfe 2621 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2622 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2623 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2624 return value_subscript_packed (elt, arity, ind);
2625
2626 for (k = 0; k < arity; k += 1)
2627 {
2628 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2629 error (_("too many subscripts (%d expected)"), k);
2497b498 2630 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2631 }
2632 return elt;
2633}
2634
2635/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2636 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2637 IND. Does not read the entire array into memory. */
14f9c5c9 2638
2c0b251b 2639static struct value *
d2e4a39e 2640ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2641 struct value **ind)
14f9c5c9
AS
2642{
2643 int k;
2644
2645 for (k = 0; k < arity; k += 1)
2646 {
2647 LONGEST lwb, upb;
14f9c5c9
AS
2648
2649 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2650 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2651 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2652 value_copy (arr));
14f9c5c9 2653 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2654 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2655 type = TYPE_TARGET_TYPE (type);
2656 }
2657
2658 return value_ind (arr);
2659}
2660
0b5d8877 2661/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2662 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2663 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2664 per Ada rules. */
0b5d8877 2665static struct value *
f5938064
JG
2666ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2667 int low, int high)
0b5d8877 2668{
b0dd7688 2669 struct type *type0 = ada_check_typedef (type);
6c038f32 2670 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2671 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2672 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2673 struct type *index_type =
b0dd7688 2674 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2675 low, high);
6c038f32 2676 struct type *slice_type =
b0dd7688 2677 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2678
f5938064 2679 return value_at_lazy (slice_type, base);
0b5d8877
PH
2680}
2681
2682
2683static struct value *
2684ada_value_slice (struct value *array, int low, int high)
2685{
b0dd7688 2686 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2687 struct type *index_type =
0b5d8877 2688 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2689 struct type *slice_type =
0b5d8877 2690 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2691
6c038f32 2692 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2693}
2694
14f9c5c9
AS
2695/* If type is a record type in the form of a standard GNAT array
2696 descriptor, returns the number of dimensions for type. If arr is a
2697 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2698 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2699
2700int
d2e4a39e 2701ada_array_arity (struct type *type)
14f9c5c9
AS
2702{
2703 int arity;
2704
2705 if (type == NULL)
2706 return 0;
2707
2708 type = desc_base_type (type);
2709
2710 arity = 0;
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2712 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2713 else
2714 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2715 {
4c4b4cd2 2716 arity += 1;
61ee279c 2717 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2718 }
d2e4a39e 2719
14f9c5c9
AS
2720 return arity;
2721}
2722
2723/* If TYPE is a record type in the form of a standard GNAT array
2724 descriptor or a simple array type, returns the element type for
2725 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2726 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2727
d2e4a39e
AS
2728struct type *
2729ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2730{
2731 type = desc_base_type (type);
2732
d2e4a39e 2733 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2734 {
2735 int k;
d2e4a39e 2736 struct type *p_array_type;
14f9c5c9 2737
556bdfd4 2738 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2739
2740 k = ada_array_arity (type);
2741 if (k == 0)
4c4b4cd2 2742 return NULL;
d2e4a39e 2743
4c4b4cd2 2744 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2745 if (nindices >= 0 && k > nindices)
4c4b4cd2 2746 k = nindices;
d2e4a39e 2747 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2748 {
61ee279c 2749 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2750 k -= 1;
2751 }
14f9c5c9
AS
2752 return p_array_type;
2753 }
2754 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2755 {
2756 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2757 {
2758 type = TYPE_TARGET_TYPE (type);
2759 nindices -= 1;
2760 }
14f9c5c9
AS
2761 return type;
2762 }
2763
2764 return NULL;
2765}
2766
4c4b4cd2 2767/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2768 Does not examine memory. Throws an error if N is invalid or TYPE
2769 is not an array type. NAME is the name of the Ada attribute being
2770 evaluated ('range, 'first, 'last, or 'length); it is used in building
2771 the error message. */
14f9c5c9 2772
1eea4ebd
UW
2773static struct type *
2774ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2775{
4c4b4cd2
PH
2776 struct type *result_type;
2777
14f9c5c9
AS
2778 type = desc_base_type (type);
2779
1eea4ebd
UW
2780 if (n < 0 || n > ada_array_arity (type))
2781 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2782
4c4b4cd2 2783 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2784 {
2785 int i;
2786
2787 for (i = 1; i < n; i += 1)
4c4b4cd2 2788 type = TYPE_TARGET_TYPE (type);
262452ec 2789 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2790 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2791 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2792 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2793 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2794 result_type = NULL;
14f9c5c9 2795 }
d2e4a39e 2796 else
1eea4ebd
UW
2797 {
2798 result_type = desc_index_type (desc_bounds_type (type), n);
2799 if (result_type == NULL)
2800 error (_("attempt to take bound of something that is not an array"));
2801 }
2802
2803 return result_type;
14f9c5c9
AS
2804}
2805
2806/* Given that arr is an array type, returns the lower bound of the
2807 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2808 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2809 array-descriptor type. It works for other arrays with bounds supplied
2810 by run-time quantities other than discriminants. */
14f9c5c9 2811
abb68b3e 2812static LONGEST
fb5e3d5c 2813ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2814{
8a48ac95 2815 struct type *type, *index_type_desc, *index_type;
1ce677a4 2816 int i;
262452ec
JK
2817
2818 gdb_assert (which == 0 || which == 1);
14f9c5c9 2819
ad82864c
JB
2820 if (ada_is_constrained_packed_array_type (arr_type))
2821 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2822
4c4b4cd2 2823 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2824 return (LONGEST) - which;
14f9c5c9
AS
2825
2826 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2827 type = TYPE_TARGET_TYPE (arr_type);
2828 else
2829 type = arr_type;
2830
2831 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2832 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2833 if (index_type_desc != NULL)
28c85d6c
JB
2834 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2835 NULL);
262452ec 2836 else
8a48ac95
JB
2837 {
2838 struct type *elt_type = check_typedef (type);
2839
2840 for (i = 1; i < n; i++)
2841 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2842
2843 index_type = TYPE_INDEX_TYPE (elt_type);
2844 }
262452ec 2845
43bbcdc2
PH
2846 return
2847 (LONGEST) (which == 0
2848 ? ada_discrete_type_low_bound (index_type)
2849 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2850}
2851
2852/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2853 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2854 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2855 supplied by run-time quantities other than discriminants. */
14f9c5c9 2856
1eea4ebd 2857static LONGEST
4dc81987 2858ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2859{
df407dfe 2860 struct type *arr_type = value_type (arr);
14f9c5c9 2861
ad82864c
JB
2862 if (ada_is_constrained_packed_array_type (arr_type))
2863 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2864 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2865 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2866 else
1eea4ebd 2867 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2868}
2869
2870/* Given that arr is an array value, returns the length of the
2871 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2872 supplied by run-time quantities other than discriminants.
2873 Does not work for arrays indexed by enumeration types with representation
2874 clauses at the moment. */
14f9c5c9 2875
1eea4ebd 2876static LONGEST
d2e4a39e 2877ada_array_length (struct value *arr, int n)
14f9c5c9 2878{
df407dfe 2879 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2880
ad82864c
JB
2881 if (ada_is_constrained_packed_array_type (arr_type))
2882 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2883
4c4b4cd2 2884 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2885 return (ada_array_bound_from_type (arr_type, n, 1)
2886 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2887 else
1eea4ebd
UW
2888 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2889 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2890}
2891
2892/* An empty array whose type is that of ARR_TYPE (an array type),
2893 with bounds LOW to LOW-1. */
2894
2895static struct value *
2896empty_array (struct type *arr_type, int low)
2897{
b0dd7688 2898 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2899 struct type *index_type =
b0dd7688 2900 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2901 low, low - 1);
b0dd7688 2902 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2903
0b5d8877 2904 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2905}
14f9c5c9 2906\f
d2e4a39e 2907
4c4b4cd2 2908 /* Name resolution */
14f9c5c9 2909
4c4b4cd2
PH
2910/* The "decoded" name for the user-definable Ada operator corresponding
2911 to OP. */
14f9c5c9 2912
d2e4a39e 2913static const char *
4c4b4cd2 2914ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2915{
2916 int i;
2917
4c4b4cd2 2918 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2919 {
2920 if (ada_opname_table[i].op == op)
4c4b4cd2 2921 return ada_opname_table[i].decoded;
14f9c5c9 2922 }
323e0a4a 2923 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2924}
2925
2926
4c4b4cd2
PH
2927/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2928 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2929 undefined namespace) and converts operators that are
2930 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2931 non-null, it provides a preferred result type [at the moment, only
2932 type void has any effect---causing procedures to be preferred over
2933 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2934 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2935
4c4b4cd2
PH
2936static void
2937resolve (struct expression **expp, int void_context_p)
14f9c5c9 2938{
30b15541
UW
2939 struct type *context_type = NULL;
2940 int pc = 0;
2941
2942 if (void_context_p)
2943 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2944
2945 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2946}
2947
4c4b4cd2
PH
2948/* Resolve the operator of the subexpression beginning at
2949 position *POS of *EXPP. "Resolving" consists of replacing
2950 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2951 with their resolutions, replacing built-in operators with
2952 function calls to user-defined operators, where appropriate, and,
2953 when DEPROCEDURE_P is non-zero, converting function-valued variables
2954 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2955 are as in ada_resolve, above. */
14f9c5c9 2956
d2e4a39e 2957static struct value *
4c4b4cd2 2958resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2959 struct type *context_type)
14f9c5c9
AS
2960{
2961 int pc = *pos;
2962 int i;
4c4b4cd2 2963 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2964 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2965 struct value **argvec; /* Vector of operand types (alloca'ed). */
2966 int nargs; /* Number of operands. */
52ce6436 2967 int oplen;
14f9c5c9
AS
2968
2969 argvec = NULL;
2970 nargs = 0;
2971 exp = *expp;
2972
52ce6436
PH
2973 /* Pass one: resolve operands, saving their types and updating *pos,
2974 if needed. */
14f9c5c9
AS
2975 switch (op)
2976 {
4c4b4cd2
PH
2977 case OP_FUNCALL:
2978 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2979 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2980 *pos += 7;
4c4b4cd2
PH
2981 else
2982 {
2983 *pos += 3;
2984 resolve_subexp (expp, pos, 0, NULL);
2985 }
2986 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2987 break;
2988
14f9c5c9 2989 case UNOP_ADDR:
4c4b4cd2
PH
2990 *pos += 1;
2991 resolve_subexp (expp, pos, 0, NULL);
2992 break;
2993
52ce6436
PH
2994 case UNOP_QUAL:
2995 *pos += 3;
17466c1a 2996 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2997 break;
2998
52ce6436 2999 case OP_ATR_MODULUS:
4c4b4cd2
PH
3000 case OP_ATR_SIZE:
3001 case OP_ATR_TAG:
4c4b4cd2
PH
3002 case OP_ATR_FIRST:
3003 case OP_ATR_LAST:
3004 case OP_ATR_LENGTH:
3005 case OP_ATR_POS:
3006 case OP_ATR_VAL:
4c4b4cd2
PH
3007 case OP_ATR_MIN:
3008 case OP_ATR_MAX:
52ce6436
PH
3009 case TERNOP_IN_RANGE:
3010 case BINOP_IN_BOUNDS:
3011 case UNOP_IN_RANGE:
3012 case OP_AGGREGATE:
3013 case OP_OTHERS:
3014 case OP_CHOICES:
3015 case OP_POSITIONAL:
3016 case OP_DISCRETE_RANGE:
3017 case OP_NAME:
3018 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3019 *pos += oplen;
14f9c5c9
AS
3020 break;
3021
3022 case BINOP_ASSIGN:
3023 {
4c4b4cd2
PH
3024 struct value *arg1;
3025
3026 *pos += 1;
3027 arg1 = resolve_subexp (expp, pos, 0, NULL);
3028 if (arg1 == NULL)
3029 resolve_subexp (expp, pos, 1, NULL);
3030 else
df407dfe 3031 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3032 break;
14f9c5c9
AS
3033 }
3034
4c4b4cd2 3035 case UNOP_CAST:
4c4b4cd2
PH
3036 *pos += 3;
3037 nargs = 1;
3038 break;
14f9c5c9 3039
4c4b4cd2
PH
3040 case BINOP_ADD:
3041 case BINOP_SUB:
3042 case BINOP_MUL:
3043 case BINOP_DIV:
3044 case BINOP_REM:
3045 case BINOP_MOD:
3046 case BINOP_EXP:
3047 case BINOP_CONCAT:
3048 case BINOP_LOGICAL_AND:
3049 case BINOP_LOGICAL_OR:
3050 case BINOP_BITWISE_AND:
3051 case BINOP_BITWISE_IOR:
3052 case BINOP_BITWISE_XOR:
14f9c5c9 3053
4c4b4cd2
PH
3054 case BINOP_EQUAL:
3055 case BINOP_NOTEQUAL:
3056 case BINOP_LESS:
3057 case BINOP_GTR:
3058 case BINOP_LEQ:
3059 case BINOP_GEQ:
14f9c5c9 3060
4c4b4cd2
PH
3061 case BINOP_REPEAT:
3062 case BINOP_SUBSCRIPT:
3063 case BINOP_COMMA:
40c8aaa9
JB
3064 *pos += 1;
3065 nargs = 2;
3066 break;
14f9c5c9 3067
4c4b4cd2
PH
3068 case UNOP_NEG:
3069 case UNOP_PLUS:
3070 case UNOP_LOGICAL_NOT:
3071 case UNOP_ABS:
3072 case UNOP_IND:
3073 *pos += 1;
3074 nargs = 1;
3075 break;
14f9c5c9 3076
4c4b4cd2
PH
3077 case OP_LONG:
3078 case OP_DOUBLE:
3079 case OP_VAR_VALUE:
3080 *pos += 4;
3081 break;
14f9c5c9 3082
4c4b4cd2
PH
3083 case OP_TYPE:
3084 case OP_BOOL:
3085 case OP_LAST:
4c4b4cd2
PH
3086 case OP_INTERNALVAR:
3087 *pos += 3;
3088 break;
14f9c5c9 3089
4c4b4cd2
PH
3090 case UNOP_MEMVAL:
3091 *pos += 3;
3092 nargs = 1;
3093 break;
3094
67f3407f
DJ
3095 case OP_REGISTER:
3096 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3097 break;
3098
4c4b4cd2
PH
3099 case STRUCTOP_STRUCT:
3100 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3101 nargs = 1;
3102 break;
3103
4c4b4cd2 3104 case TERNOP_SLICE:
4c4b4cd2
PH
3105 *pos += 1;
3106 nargs = 3;
3107 break;
3108
52ce6436 3109 case OP_STRING:
14f9c5c9 3110 break;
4c4b4cd2
PH
3111
3112 default:
323e0a4a 3113 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3114 }
3115
76a01679 3116 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3117 for (i = 0; i < nargs; i += 1)
3118 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3119 argvec[i] = NULL;
3120 exp = *expp;
3121
3122 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3123 switch (op)
3124 {
3125 default:
3126 break;
3127
14f9c5c9 3128 case OP_VAR_VALUE:
4c4b4cd2 3129 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3130 {
3131 struct ada_symbol_info *candidates;
3132 int n_candidates;
3133
3134 n_candidates =
3135 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3136 (exp->elts[pc + 2].symbol),
3137 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3138 &candidates);
76a01679
JB
3139
3140 if (n_candidates > 1)
3141 {
3142 /* Types tend to get re-introduced locally, so if there
3143 are any local symbols that are not types, first filter
3144 out all types. */
3145 int j;
3146 for (j = 0; j < n_candidates; j += 1)
3147 switch (SYMBOL_CLASS (candidates[j].sym))
3148 {
3149 case LOC_REGISTER:
3150 case LOC_ARG:
3151 case LOC_REF_ARG:
76a01679
JB
3152 case LOC_REGPARM_ADDR:
3153 case LOC_LOCAL:
76a01679 3154 case LOC_COMPUTED:
76a01679
JB
3155 goto FoundNonType;
3156 default:
3157 break;
3158 }
3159 FoundNonType:
3160 if (j < n_candidates)
3161 {
3162 j = 0;
3163 while (j < n_candidates)
3164 {
3165 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3166 {
3167 candidates[j] = candidates[n_candidates - 1];
3168 n_candidates -= 1;
3169 }
3170 else
3171 j += 1;
3172 }
3173 }
3174 }
3175
3176 if (n_candidates == 0)
323e0a4a 3177 error (_("No definition found for %s"),
76a01679
JB
3178 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3179 else if (n_candidates == 1)
3180 i = 0;
3181 else if (deprocedure_p
3182 && !is_nonfunction (candidates, n_candidates))
3183 {
06d5cf63
JB
3184 i = ada_resolve_function
3185 (candidates, n_candidates, NULL, 0,
3186 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3187 context_type);
76a01679 3188 if (i < 0)
323e0a4a 3189 error (_("Could not find a match for %s"),
76a01679
JB
3190 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3191 }
3192 else
3193 {
323e0a4a 3194 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3195 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3196 user_select_syms (candidates, n_candidates, 1);
3197 i = 0;
3198 }
3199
3200 exp->elts[pc + 1].block = candidates[i].block;
3201 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3202 if (innermost_block == NULL
3203 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3204 innermost_block = candidates[i].block;
3205 }
3206
3207 if (deprocedure_p
3208 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3209 == TYPE_CODE_FUNC))
3210 {
3211 replace_operator_with_call (expp, pc, 0, 0,
3212 exp->elts[pc + 2].symbol,
3213 exp->elts[pc + 1].block);
3214 exp = *expp;
3215 }
14f9c5c9
AS
3216 break;
3217
3218 case OP_FUNCALL:
3219 {
4c4b4cd2 3220 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3221 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
76a01679
JB
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 5].symbol),
3229 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3230 &candidates);
4c4b4cd2
PH
3231 if (n_candidates == 1)
3232 i = 0;
3233 else
3234 {
06d5cf63
JB
3235 i = ada_resolve_function
3236 (candidates, n_candidates,
3237 argvec, nargs,
3238 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3239 context_type);
4c4b4cd2 3240 if (i < 0)
323e0a4a 3241 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3242 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3243 }
3244
3245 exp->elts[pc + 4].block = candidates[i].block;
3246 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3247 if (innermost_block == NULL
3248 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3249 innermost_block = candidates[i].block;
3250 }
14f9c5c9
AS
3251 }
3252 break;
3253 case BINOP_ADD:
3254 case BINOP_SUB:
3255 case BINOP_MUL:
3256 case BINOP_DIV:
3257 case BINOP_REM:
3258 case BINOP_MOD:
3259 case BINOP_CONCAT:
3260 case BINOP_BITWISE_AND:
3261 case BINOP_BITWISE_IOR:
3262 case BINOP_BITWISE_XOR:
3263 case BINOP_EQUAL:
3264 case BINOP_NOTEQUAL:
3265 case BINOP_LESS:
3266 case BINOP_GTR:
3267 case BINOP_LEQ:
3268 case BINOP_GEQ:
3269 case BINOP_EXP:
3270 case UNOP_NEG:
3271 case UNOP_PLUS:
3272 case UNOP_LOGICAL_NOT:
3273 case UNOP_ABS:
3274 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3275 {
3276 struct ada_symbol_info *candidates;
3277 int n_candidates;
3278
3279 n_candidates =
3280 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3281 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3282 &candidates);
4c4b4cd2 3283 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3284 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3285 if (i < 0)
3286 break;
3287
76a01679
JB
3288 replace_operator_with_call (expp, pc, nargs, 1,
3289 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3290 exp = *expp;
3291 }
14f9c5c9 3292 break;
4c4b4cd2
PH
3293
3294 case OP_TYPE:
b3dbf008 3295 case OP_REGISTER:
4c4b4cd2 3296 return NULL;
14f9c5c9
AS
3297 }
3298
3299 *pos = pc;
3300 return evaluate_subexp_type (exp, pos);
3301}
3302
3303/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3304 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3305 a non-pointer. */
14f9c5c9 3306/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3307 liberal. */
14f9c5c9
AS
3308
3309static int
4dc81987 3310ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3311{
61ee279c
PH
3312 ftype = ada_check_typedef (ftype);
3313 atype = ada_check_typedef (atype);
14f9c5c9
AS
3314
3315 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3316 ftype = TYPE_TARGET_TYPE (ftype);
3317 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3318 atype = TYPE_TARGET_TYPE (atype);
3319
d2e4a39e 3320 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3321 {
3322 default:
5b3d5b7d 3323 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3324 case TYPE_CODE_PTR:
3325 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3326 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3327 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3328 else
1265e4aa
JB
3329 return (may_deref
3330 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3331 case TYPE_CODE_INT:
3332 case TYPE_CODE_ENUM:
3333 case TYPE_CODE_RANGE:
3334 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3335 {
3336 case TYPE_CODE_INT:
3337 case TYPE_CODE_ENUM:
3338 case TYPE_CODE_RANGE:
3339 return 1;
3340 default:
3341 return 0;
3342 }
14f9c5c9
AS
3343
3344 case TYPE_CODE_ARRAY:
d2e4a39e 3345 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3346 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3347
3348 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3349 if (ada_is_array_descriptor_type (ftype))
3350 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3351 || ada_is_array_descriptor_type (atype));
14f9c5c9 3352 else
4c4b4cd2
PH
3353 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3354 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3355
3356 case TYPE_CODE_UNION:
3357 case TYPE_CODE_FLT:
3358 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3359 }
3360}
3361
3362/* Return non-zero if the formals of FUNC "sufficiently match" the
3363 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3364 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3365 argument function. */
14f9c5c9
AS
3366
3367static int
d2e4a39e 3368ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3369{
3370 int i;
d2e4a39e 3371 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3372
1265e4aa
JB
3373 if (SYMBOL_CLASS (func) == LOC_CONST
3374 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3375 return (n_actuals == 0);
3376 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3377 return 0;
3378
3379 if (TYPE_NFIELDS (func_type) != n_actuals)
3380 return 0;
3381
3382 for (i = 0; i < n_actuals; i += 1)
3383 {
4c4b4cd2 3384 if (actuals[i] == NULL)
76a01679
JB
3385 return 0;
3386 else
3387 {
5b4ee69b
MS
3388 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3389 i));
df407dfe 3390 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3391
76a01679
JB
3392 if (!ada_type_match (ftype, atype, 1))
3393 return 0;
3394 }
14f9c5c9
AS
3395 }
3396 return 1;
3397}
3398
3399/* False iff function type FUNC_TYPE definitely does not produce a value
3400 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3401 FUNC_TYPE is not a valid function type with a non-null return type
3402 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3403
3404static int
d2e4a39e 3405return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3406{
d2e4a39e 3407 struct type *return_type;
14f9c5c9
AS
3408
3409 if (func_type == NULL)
3410 return 1;
3411
4c4b4cd2 3412 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3413 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3414 else
18af8284 3415 return_type = get_base_type (func_type);
14f9c5c9
AS
3416 if (return_type == NULL)
3417 return 1;
3418
18af8284 3419 context_type = get_base_type (context_type);
14f9c5c9
AS
3420
3421 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3422 return context_type == NULL || return_type == context_type;
3423 else if (context_type == NULL)
3424 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3425 else
3426 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3427}
3428
3429
4c4b4cd2 3430/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3431 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3432 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3433 that returns that type, then eliminate matches that don't. If
3434 CONTEXT_TYPE is void and there is at least one match that does not
3435 return void, eliminate all matches that do.
3436
14f9c5c9
AS
3437 Asks the user if there is more than one match remaining. Returns -1
3438 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3439 solely for messages. May re-arrange and modify SYMS in
3440 the process; the index returned is for the modified vector. */
14f9c5c9 3441
4c4b4cd2
PH
3442static int
3443ada_resolve_function (struct ada_symbol_info syms[],
3444 int nsyms, struct value **args, int nargs,
3445 const char *name, struct type *context_type)
14f9c5c9 3446{
30b15541 3447 int fallback;
14f9c5c9 3448 int k;
4c4b4cd2 3449 int m; /* Number of hits */
14f9c5c9 3450
d2e4a39e 3451 m = 0;
30b15541
UW
3452 /* In the first pass of the loop, we only accept functions matching
3453 context_type. If none are found, we add a second pass of the loop
3454 where every function is accepted. */
3455 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3456 {
3457 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3458 {
61ee279c 3459 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3460
3461 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3462 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3463 {
3464 syms[m] = syms[k];
3465 m += 1;
3466 }
3467 }
14f9c5c9
AS
3468 }
3469
3470 if (m == 0)
3471 return -1;
3472 else if (m > 1)
3473 {
323e0a4a 3474 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3475 user_select_syms (syms, m, 1);
14f9c5c9
AS
3476 return 0;
3477 }
3478 return 0;
3479}
3480
4c4b4cd2
PH
3481/* Returns true (non-zero) iff decoded name N0 should appear before N1
3482 in a listing of choices during disambiguation (see sort_choices, below).
3483 The idea is that overloadings of a subprogram name from the
3484 same package should sort in their source order. We settle for ordering
3485 such symbols by their trailing number (__N or $N). */
3486
14f9c5c9 3487static int
0d5cff50 3488encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3489{
3490 if (N1 == NULL)
3491 return 0;
3492 else if (N0 == NULL)
3493 return 1;
3494 else
3495 {
3496 int k0, k1;
5b4ee69b 3497
d2e4a39e 3498 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3499 ;
d2e4a39e 3500 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3501 ;
d2e4a39e 3502 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3503 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3504 {
3505 int n0, n1;
5b4ee69b 3506
4c4b4cd2
PH
3507 n0 = k0;
3508 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3509 n0 -= 1;
3510 n1 = k1;
3511 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3512 n1 -= 1;
3513 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3514 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3515 }
14f9c5c9
AS
3516 return (strcmp (N0, N1) < 0);
3517 }
3518}
d2e4a39e 3519
4c4b4cd2
PH
3520/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3521 encoded names. */
3522
d2e4a39e 3523static void
4c4b4cd2 3524sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3525{
4c4b4cd2 3526 int i;
5b4ee69b 3527
d2e4a39e 3528 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3529 {
4c4b4cd2 3530 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3531 int j;
3532
d2e4a39e 3533 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3534 {
3535 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3536 SYMBOL_LINKAGE_NAME (sym.sym)))
3537 break;
3538 syms[j + 1] = syms[j];
3539 }
d2e4a39e 3540 syms[j + 1] = sym;
14f9c5c9
AS
3541 }
3542}
3543
4c4b4cd2
PH
3544/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3545 by asking the user (if necessary), returning the number selected,
3546 and setting the first elements of SYMS items. Error if no symbols
3547 selected. */
14f9c5c9
AS
3548
3549/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3550 to be re-integrated one of these days. */
14f9c5c9
AS
3551
3552int
4c4b4cd2 3553user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3554{
3555 int i;
d2e4a39e 3556 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3557 int n_chosen;
3558 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3559 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3560
3561 if (max_results < 1)
323e0a4a 3562 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3563 if (nsyms <= 1)
3564 return nsyms;
3565
717d2f5a
JB
3566 if (select_mode == multiple_symbols_cancel)
3567 error (_("\
3568canceled because the command is ambiguous\n\
3569See set/show multiple-symbol."));
3570
3571 /* If select_mode is "all", then return all possible symbols.
3572 Only do that if more than one symbol can be selected, of course.
3573 Otherwise, display the menu as usual. */
3574 if (select_mode == multiple_symbols_all && max_results > 1)
3575 return nsyms;
3576
323e0a4a 3577 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3578 if (max_results > 1)
323e0a4a 3579 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3580
4c4b4cd2 3581 sort_choices (syms, nsyms);
14f9c5c9
AS
3582
3583 for (i = 0; i < nsyms; i += 1)
3584 {
4c4b4cd2
PH
3585 if (syms[i].sym == NULL)
3586 continue;
3587
3588 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3589 {
76a01679
JB
3590 struct symtab_and_line sal =
3591 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3592
323e0a4a
AC
3593 if (sal.symtab == NULL)
3594 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3595 i + first_choice,
3596 SYMBOL_PRINT_NAME (syms[i].sym),
3597 sal.line);
3598 else
3599 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3600 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3601 symtab_to_filename_for_display (sal.symtab),
3602 sal.line);
4c4b4cd2
PH
3603 continue;
3604 }
d2e4a39e 3605 else
4c4b4cd2
PH
3606 {
3607 int is_enumeral =
3608 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3609 && SYMBOL_TYPE (syms[i].sym) != NULL
3610 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3611 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3612
3613 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3614 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3615 i + first_choice,
3616 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3617 symtab_to_filename_for_display (symtab),
3618 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3619 else if (is_enumeral
3620 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3621 {
a3f17187 3622 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3623 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3624 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3625 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3626 SYMBOL_PRINT_NAME (syms[i].sym));
3627 }
3628 else if (symtab != NULL)
3629 printf_unfiltered (is_enumeral
323e0a4a
AC
3630 ? _("[%d] %s in %s (enumeral)\n")
3631 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3632 i + first_choice,
3633 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3634 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3635 else
3636 printf_unfiltered (is_enumeral
323e0a4a
AC
3637 ? _("[%d] %s (enumeral)\n")
3638 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3639 i + first_choice,
3640 SYMBOL_PRINT_NAME (syms[i].sym));
3641 }
14f9c5c9 3642 }
d2e4a39e 3643
14f9c5c9 3644 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3645 "overload-choice");
14f9c5c9
AS
3646
3647 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3648 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3649
3650 return n_chosen;
3651}
3652
3653/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3654 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3655 order in CHOICES[0 .. N-1], and return N.
3656
3657 The user types choices as a sequence of numbers on one line
3658 separated by blanks, encoding them as follows:
3659
4c4b4cd2 3660 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3661 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3662 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3663
4c4b4cd2 3664 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3665
3666 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3667 prompts (for use with the -f switch). */
14f9c5c9
AS
3668
3669int
d2e4a39e 3670get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3671 int is_all_choice, char *annotation_suffix)
14f9c5c9 3672{
d2e4a39e 3673 char *args;
0bcd0149 3674 char *prompt;
14f9c5c9
AS
3675 int n_chosen;
3676 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3677
14f9c5c9
AS
3678 prompt = getenv ("PS2");
3679 if (prompt == NULL)
0bcd0149 3680 prompt = "> ";
14f9c5c9 3681
0bcd0149 3682 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3683
14f9c5c9 3684 if (args == NULL)
323e0a4a 3685 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3686
3687 n_chosen = 0;
76a01679 3688
4c4b4cd2
PH
3689 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3690 order, as given in args. Choices are validated. */
14f9c5c9
AS
3691 while (1)
3692 {
d2e4a39e 3693 char *args2;
14f9c5c9
AS
3694 int choice, j;
3695
0fcd72ba 3696 args = skip_spaces (args);
14f9c5c9 3697 if (*args == '\0' && n_chosen == 0)
323e0a4a 3698 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3699 else if (*args == '\0')
4c4b4cd2 3700 break;
14f9c5c9
AS
3701
3702 choice = strtol (args, &args2, 10);
d2e4a39e 3703 if (args == args2 || choice < 0
4c4b4cd2 3704 || choice > n_choices + first_choice - 1)
323e0a4a 3705 error (_("Argument must be choice number"));
14f9c5c9
AS
3706 args = args2;
3707
d2e4a39e 3708 if (choice == 0)
323e0a4a 3709 error (_("cancelled"));
14f9c5c9
AS
3710
3711 if (choice < first_choice)
4c4b4cd2
PH
3712 {
3713 n_chosen = n_choices;
3714 for (j = 0; j < n_choices; j += 1)
3715 choices[j] = j;
3716 break;
3717 }
14f9c5c9
AS
3718 choice -= first_choice;
3719
d2e4a39e 3720 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3721 {
3722 }
14f9c5c9
AS
3723
3724 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3725 {
3726 int k;
5b4ee69b 3727
4c4b4cd2
PH
3728 for (k = n_chosen - 1; k > j; k -= 1)
3729 choices[k + 1] = choices[k];
3730 choices[j + 1] = choice;
3731 n_chosen += 1;
3732 }
14f9c5c9
AS
3733 }
3734
3735 if (n_chosen > max_results)
323e0a4a 3736 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3737
14f9c5c9
AS
3738 return n_chosen;
3739}
3740
4c4b4cd2
PH
3741/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3742 on the function identified by SYM and BLOCK, and taking NARGS
3743 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3744
3745static void
d2e4a39e 3746replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3747 int oplen, struct symbol *sym,
270140bd 3748 const struct block *block)
14f9c5c9
AS
3749{
3750 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3751 symbol, -oplen for operator being replaced). */
d2e4a39e 3752 struct expression *newexp = (struct expression *)
8c1a34e7 3753 xzalloc (sizeof (struct expression)
4c4b4cd2 3754 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3755 struct expression *exp = *expp;
14f9c5c9
AS
3756
3757 newexp->nelts = exp->nelts + 7 - oplen;
3758 newexp->language_defn = exp->language_defn;
3489610d 3759 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3760 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3761 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3762 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3763
3764 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3765 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3766
3767 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3768 newexp->elts[pc + 4].block = block;
3769 newexp->elts[pc + 5].symbol = sym;
3770
3771 *expp = newexp;
aacb1f0a 3772 xfree (exp);
d2e4a39e 3773}
14f9c5c9
AS
3774
3775/* Type-class predicates */
3776
4c4b4cd2
PH
3777/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3778 or FLOAT). */
14f9c5c9
AS
3779
3780static int
d2e4a39e 3781numeric_type_p (struct type *type)
14f9c5c9
AS
3782{
3783 if (type == NULL)
3784 return 0;
d2e4a39e
AS
3785 else
3786 {
3787 switch (TYPE_CODE (type))
4c4b4cd2
PH
3788 {
3789 case TYPE_CODE_INT:
3790 case TYPE_CODE_FLT:
3791 return 1;
3792 case TYPE_CODE_RANGE:
3793 return (type == TYPE_TARGET_TYPE (type)
3794 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3795 default:
3796 return 0;
3797 }
d2e4a39e 3798 }
14f9c5c9
AS
3799}
3800
4c4b4cd2 3801/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3802
3803static int
d2e4a39e 3804integer_type_p (struct type *type)
14f9c5c9
AS
3805{
3806 if (type == NULL)
3807 return 0;
d2e4a39e
AS
3808 else
3809 {
3810 switch (TYPE_CODE (type))
4c4b4cd2
PH
3811 {
3812 case TYPE_CODE_INT:
3813 return 1;
3814 case TYPE_CODE_RANGE:
3815 return (type == TYPE_TARGET_TYPE (type)
3816 || integer_type_p (TYPE_TARGET_TYPE (type)));
3817 default:
3818 return 0;
3819 }
d2e4a39e 3820 }
14f9c5c9
AS
3821}
3822
4c4b4cd2 3823/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3824
3825static int
d2e4a39e 3826scalar_type_p (struct type *type)
14f9c5c9
AS
3827{
3828 if (type == NULL)
3829 return 0;
d2e4a39e
AS
3830 else
3831 {
3832 switch (TYPE_CODE (type))
4c4b4cd2
PH
3833 {
3834 case TYPE_CODE_INT:
3835 case TYPE_CODE_RANGE:
3836 case TYPE_CODE_ENUM:
3837 case TYPE_CODE_FLT:
3838 return 1;
3839 default:
3840 return 0;
3841 }
d2e4a39e 3842 }
14f9c5c9
AS
3843}
3844
4c4b4cd2 3845/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3846
3847static int
d2e4a39e 3848discrete_type_p (struct type *type)
14f9c5c9
AS
3849{
3850 if (type == NULL)
3851 return 0;
d2e4a39e
AS
3852 else
3853 {
3854 switch (TYPE_CODE (type))
4c4b4cd2
PH
3855 {
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_RANGE:
3858 case TYPE_CODE_ENUM:
872f0337 3859 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3860 return 1;
3861 default:
3862 return 0;
3863 }
d2e4a39e 3864 }
14f9c5c9
AS
3865}
3866
4c4b4cd2
PH
3867/* Returns non-zero if OP with operands in the vector ARGS could be
3868 a user-defined function. Errs on the side of pre-defined operators
3869 (i.e., result 0). */
14f9c5c9
AS
3870
3871static int
d2e4a39e 3872possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3873{
76a01679 3874 struct type *type0 =
df407dfe 3875 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3876 struct type *type1 =
df407dfe 3877 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3878
4c4b4cd2
PH
3879 if (type0 == NULL)
3880 return 0;
3881
14f9c5c9
AS
3882 switch (op)
3883 {
3884 default:
3885 return 0;
3886
3887 case BINOP_ADD:
3888 case BINOP_SUB:
3889 case BINOP_MUL:
3890 case BINOP_DIV:
d2e4a39e 3891 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3892
3893 case BINOP_REM:
3894 case BINOP_MOD:
3895 case BINOP_BITWISE_AND:
3896 case BINOP_BITWISE_IOR:
3897 case BINOP_BITWISE_XOR:
d2e4a39e 3898 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3899
3900 case BINOP_EQUAL:
3901 case BINOP_NOTEQUAL:
3902 case BINOP_LESS:
3903 case BINOP_GTR:
3904 case BINOP_LEQ:
3905 case BINOP_GEQ:
d2e4a39e 3906 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3907
3908 case BINOP_CONCAT:
ee90b9ab 3909 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3910
3911 case BINOP_EXP:
d2e4a39e 3912 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3913
3914 case UNOP_NEG:
3915 case UNOP_PLUS:
3916 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3917 case UNOP_ABS:
3918 return (!numeric_type_p (type0));
14f9c5c9
AS
3919
3920 }
3921}
3922\f
4c4b4cd2 3923 /* Renaming */
14f9c5c9 3924
aeb5907d
JB
3925/* NOTES:
3926
3927 1. In the following, we assume that a renaming type's name may
3928 have an ___XD suffix. It would be nice if this went away at some
3929 point.
3930 2. We handle both the (old) purely type-based representation of
3931 renamings and the (new) variable-based encoding. At some point,
3932 it is devoutly to be hoped that the former goes away
3933 (FIXME: hilfinger-2007-07-09).
3934 3. Subprogram renamings are not implemented, although the XRS
3935 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3936
3937/* If SYM encodes a renaming,
3938
3939 <renaming> renames <renamed entity>,
3940
3941 sets *LEN to the length of the renamed entity's name,
3942 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3943 the string describing the subcomponent selected from the renamed
0963b4bd 3944 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3945 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3946 are undefined). Otherwise, returns a value indicating the category
3947 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3948 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3949 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3950 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3951 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3952 may be NULL, in which case they are not assigned.
3953
3954 [Currently, however, GCC does not generate subprogram renamings.] */
3955
3956enum ada_renaming_category
3957ada_parse_renaming (struct symbol *sym,
3958 const char **renamed_entity, int *len,
3959 const char **renaming_expr)
3960{
3961 enum ada_renaming_category kind;
3962 const char *info;
3963 const char *suffix;
3964
3965 if (sym == NULL)
3966 return ADA_NOT_RENAMING;
3967 switch (SYMBOL_CLASS (sym))
14f9c5c9 3968 {
aeb5907d
JB
3969 default:
3970 return ADA_NOT_RENAMING;
3971 case LOC_TYPEDEF:
3972 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3973 renamed_entity, len, renaming_expr);
3974 case LOC_LOCAL:
3975 case LOC_STATIC:
3976 case LOC_COMPUTED:
3977 case LOC_OPTIMIZED_OUT:
3978 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3979 if (info == NULL)
3980 return ADA_NOT_RENAMING;
3981 switch (info[5])
3982 {
3983 case '_':
3984 kind = ADA_OBJECT_RENAMING;
3985 info += 6;
3986 break;
3987 case 'E':
3988 kind = ADA_EXCEPTION_RENAMING;
3989 info += 7;
3990 break;
3991 case 'P':
3992 kind = ADA_PACKAGE_RENAMING;
3993 info += 7;
3994 break;
3995 case 'S':
3996 kind = ADA_SUBPROGRAM_RENAMING;
3997 info += 7;
3998 break;
3999 default:
4000 return ADA_NOT_RENAMING;
4001 }
14f9c5c9 4002 }
4c4b4cd2 4003
aeb5907d
JB
4004 if (renamed_entity != NULL)
4005 *renamed_entity = info;
4006 suffix = strstr (info, "___XE");
4007 if (suffix == NULL || suffix == info)
4008 return ADA_NOT_RENAMING;
4009 if (len != NULL)
4010 *len = strlen (info) - strlen (suffix);
4011 suffix += 5;
4012 if (renaming_expr != NULL)
4013 *renaming_expr = suffix;
4014 return kind;
4015}
4016
4017/* Assuming TYPE encodes a renaming according to the old encoding in
4018 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4019 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4020 ADA_NOT_RENAMING otherwise. */
4021static enum ada_renaming_category
4022parse_old_style_renaming (struct type *type,
4023 const char **renamed_entity, int *len,
4024 const char **renaming_expr)
4025{
4026 enum ada_renaming_category kind;
4027 const char *name;
4028 const char *info;
4029 const char *suffix;
14f9c5c9 4030
aeb5907d
JB
4031 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4032 || TYPE_NFIELDS (type) != 1)
4033 return ADA_NOT_RENAMING;
14f9c5c9 4034
aeb5907d
JB
4035 name = type_name_no_tag (type);
4036 if (name == NULL)
4037 return ADA_NOT_RENAMING;
4038
4039 name = strstr (name, "___XR");
4040 if (name == NULL)
4041 return ADA_NOT_RENAMING;
4042 switch (name[5])
4043 {
4044 case '\0':
4045 case '_':
4046 kind = ADA_OBJECT_RENAMING;
4047 break;
4048 case 'E':
4049 kind = ADA_EXCEPTION_RENAMING;
4050 break;
4051 case 'P':
4052 kind = ADA_PACKAGE_RENAMING;
4053 break;
4054 case 'S':
4055 kind = ADA_SUBPROGRAM_RENAMING;
4056 break;
4057 default:
4058 return ADA_NOT_RENAMING;
4059 }
14f9c5c9 4060
aeb5907d
JB
4061 info = TYPE_FIELD_NAME (type, 0);
4062 if (info == NULL)
4063 return ADA_NOT_RENAMING;
4064 if (renamed_entity != NULL)
4065 *renamed_entity = info;
4066 suffix = strstr (info, "___XE");
4067 if (renaming_expr != NULL)
4068 *renaming_expr = suffix + 5;
4069 if (suffix == NULL || suffix == info)
4070 return ADA_NOT_RENAMING;
4071 if (len != NULL)
4072 *len = suffix - info;
4073 return kind;
a5ee536b
JB
4074}
4075
4076/* Compute the value of the given RENAMING_SYM, which is expected to
4077 be a symbol encoding a renaming expression. BLOCK is the block
4078 used to evaluate the renaming. */
52ce6436 4079
a5ee536b
JB
4080static struct value *
4081ada_read_renaming_var_value (struct symbol *renaming_sym,
4082 struct block *block)
4083{
bbc13ae3 4084 const char *sym_name;
a5ee536b
JB
4085 struct expression *expr;
4086 struct value *value;
4087 struct cleanup *old_chain = NULL;
4088
bbc13ae3 4089 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4090 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4091 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4092 value = evaluate_expression (expr);
4093
4094 do_cleanups (old_chain);
4095 return value;
4096}
14f9c5c9 4097\f
d2e4a39e 4098
4c4b4cd2 4099 /* Evaluation: Function Calls */
14f9c5c9 4100
4c4b4cd2 4101/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4102 lvalues, and otherwise has the side-effect of allocating memory
4103 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4104
d2e4a39e 4105static struct value *
40bc484c 4106ensure_lval (struct value *val)
14f9c5c9 4107{
40bc484c
JB
4108 if (VALUE_LVAL (val) == not_lval
4109 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4110 {
df407dfe 4111 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4112 const CORE_ADDR addr =
4113 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4114
40bc484c 4115 set_value_address (val, addr);
a84a8a0d 4116 VALUE_LVAL (val) = lval_memory;
40bc484c 4117 write_memory (addr, value_contents (val), len);
c3e5cd34 4118 }
14f9c5c9
AS
4119
4120 return val;
4121}
4122
4123/* Return the value ACTUAL, converted to be an appropriate value for a
4124 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4125 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4126 values not residing in memory, updating it as needed. */
14f9c5c9 4127
a93c0eb6 4128struct value *
40bc484c 4129ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4130{
df407dfe 4131 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4132 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4133 struct type *formal_target =
4134 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4135 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4136 struct type *actual_target =
4137 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4138 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4139
4c4b4cd2 4140 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4141 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4142 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4143 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4144 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4145 {
a84a8a0d 4146 struct value *result;
5b4ee69b 4147
14f9c5c9 4148 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4149 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4150 result = desc_data (actual);
14f9c5c9 4151 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4152 {
4153 if (VALUE_LVAL (actual) != lval_memory)
4154 {
4155 struct value *val;
5b4ee69b 4156
df407dfe 4157 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4158 val = allocate_value (actual_type);
990a07ab 4159 memcpy ((char *) value_contents_raw (val),
0fd88904 4160 (char *) value_contents (actual),
4c4b4cd2 4161 TYPE_LENGTH (actual_type));
40bc484c 4162 actual = ensure_lval (val);
4c4b4cd2 4163 }
a84a8a0d 4164 result = value_addr (actual);
4c4b4cd2 4165 }
a84a8a0d
JB
4166 else
4167 return actual;
b1af9e97 4168 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4169 }
4170 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4171 return ada_value_ind (actual);
4172
4173 return actual;
4174}
4175
438c98a1
JB
4176/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4177 type TYPE. This is usually an inefficient no-op except on some targets
4178 (such as AVR) where the representation of a pointer and an address
4179 differs. */
4180
4181static CORE_ADDR
4182value_pointer (struct value *value, struct type *type)
4183{
4184 struct gdbarch *gdbarch = get_type_arch (type);
4185 unsigned len = TYPE_LENGTH (type);
4186 gdb_byte *buf = alloca (len);
4187 CORE_ADDR addr;
4188
4189 addr = value_address (value);
4190 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4191 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4192 return addr;
4193}
4194
14f9c5c9 4195
4c4b4cd2
PH
4196/* Push a descriptor of type TYPE for array value ARR on the stack at
4197 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4198 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4199 to-descriptor type rather than a descriptor type), a struct value *
4200 representing a pointer to this descriptor. */
14f9c5c9 4201
d2e4a39e 4202static struct value *
40bc484c 4203make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4204{
d2e4a39e
AS
4205 struct type *bounds_type = desc_bounds_type (type);
4206 struct type *desc_type = desc_base_type (type);
4207 struct value *descriptor = allocate_value (desc_type);
4208 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4209 int i;
d2e4a39e 4210
0963b4bd
MS
4211 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4212 i > 0; i -= 1)
14f9c5c9 4213 {
19f220c3
JK
4214 modify_field (value_type (bounds), value_contents_writeable (bounds),
4215 ada_array_bound (arr, i, 0),
4216 desc_bound_bitpos (bounds_type, i, 0),
4217 desc_bound_bitsize (bounds_type, i, 0));
4218 modify_field (value_type (bounds), value_contents_writeable (bounds),
4219 ada_array_bound (arr, i, 1),
4220 desc_bound_bitpos (bounds_type, i, 1),
4221 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4222 }
d2e4a39e 4223
40bc484c 4224 bounds = ensure_lval (bounds);
d2e4a39e 4225
19f220c3
JK
4226 modify_field (value_type (descriptor),
4227 value_contents_writeable (descriptor),
4228 value_pointer (ensure_lval (arr),
4229 TYPE_FIELD_TYPE (desc_type, 0)),
4230 fat_pntr_data_bitpos (desc_type),
4231 fat_pntr_data_bitsize (desc_type));
4232
4233 modify_field (value_type (descriptor),
4234 value_contents_writeable (descriptor),
4235 value_pointer (bounds,
4236 TYPE_FIELD_TYPE (desc_type, 1)),
4237 fat_pntr_bounds_bitpos (desc_type),
4238 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4239
40bc484c 4240 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4241
4242 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4243 return value_addr (descriptor);
4244 else
4245 return descriptor;
4246}
14f9c5c9 4247\f
3d9434b5
JB
4248 /* Symbol Cache Module */
4249
4250/* This section implements a simple, fixed-sized hash table for those
4251 Ada-mode symbols that get looked up in the course of executing the user's
4252 commands. The size is fixed on the grounds that there are not
4253 likely to be all that many symbols looked up during any given
4254 session, regardless of the size of the symbol table. If we decide
4255 to go to a resizable table, let's just use the stuff from libiberty
4256 instead. */
4257
4258/* Performance measurements made as of 2010-01-15 indicate that
4259 this case does bring some noticeable improvements. Depending
4260 on the type of entity being printed, the cache can make it as much
4261 as an order of magnitude faster than without it.
4262
4263 The descriptive type DWARF extension has significantly reduced
4264 the need for this cache, at least when DWARF is being used. However,
4265 even in this case, some expensive name-based symbol searches are still
4266 sometimes necessary - to find an XVZ variable, mostly. */
4267
4268#define HASH_SIZE 1009
4269
4270/* The result of a symbol lookup to be stored in our cache. */
4271
4272struct cache_entry
4273{
4274 /* The name used to perform the lookup. */
4275 const char *name;
4276 /* The namespace used during the lookup. */
4277 domain_enum namespace;
4278 /* The symbol returned by the lookup, or NULL if no matching symbol
4279 was found. */
4280 struct symbol *sym;
4281 /* The block where the symbol was found, or NULL if no matching
4282 symbol was found. */
4283 const struct block *block;
4284 /* A pointer to the next entry with the same hash. */
4285 struct cache_entry *next;
4286};
4287
4288/* An obstack used to store the entries in our cache. */
4289static struct obstack cache_space;
4290
4291/* The root of the hash table used to implement our symbol cache. */
4292static struct cache_entry *cache[HASH_SIZE];
4293
4294/* Clear all entries from the symbol cache. */
4295
4296static void
4297ada_clear_symbol_cache (void)
4298{
4299 obstack_free (&cache_space, NULL);
4300 obstack_init (&cache_space);
4301 memset (cache, '\000', sizeof (cache));
4302}
4303
4304/* Search our cache for an entry matching NAME and NAMESPACE.
4305 Return it if found, or NULL otherwise. */
4306
4307static struct cache_entry **
4308find_entry (const char *name, domain_enum namespace)
4309{
4310 int h = msymbol_hash (name) % HASH_SIZE;
4311 struct cache_entry **e;
4312
4313 for (e = &cache[h]; *e != NULL; e = &(*e)->next)
4314 {
4315 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4316 return e;
4317 }
4318 return NULL;
4319}
4320
4321/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4322 Return 1 if found, 0 otherwise.
4323
4324 If an entry was found and SYM is not NULL, set *SYM to the entry's
4325 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4326
96d887e8
PH
4327static int
4328lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4329 struct symbol **sym, const struct block **block)
96d887e8 4330{
3d9434b5
JB
4331 struct cache_entry **e = find_entry (name, namespace);
4332
4333 if (e == NULL)
4334 return 0;
4335 if (sym != NULL)
4336 *sym = (*e)->sym;
4337 if (block != NULL)
4338 *block = (*e)->block;
4339 return 1;
96d887e8
PH
4340}
4341
3d9434b5
JB
4342/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4343 in domain NAMESPACE, save this result in our symbol cache. */
4344
96d887e8
PH
4345static void
4346cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4347 const struct block *block)
96d887e8 4348{
3d9434b5
JB
4349 int h;
4350 char *copy;
4351 struct cache_entry *e;
4352
4353 /* If the symbol is a local symbol, then do not cache it, as a search
4354 for that symbol depends on the context. To determine whether
4355 the symbol is local or not, we check the block where we found it
4356 against the global and static blocks of its associated symtab. */
4357 if (sym
4358 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4359 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4360 return;
4361
4362 h = msymbol_hash (name) % HASH_SIZE;
4363 e = (struct cache_entry *) obstack_alloc (&cache_space, sizeof (*e));
4364 e->next = cache[h];
4365 cache[h] = e;
4366 e->name = copy = obstack_alloc (&cache_space, strlen (name) + 1);
4367 strcpy (copy, name);
4368 e->sym = sym;
4369 e->namespace = namespace;
4370 e->block = block;
96d887e8 4371}
4c4b4cd2
PH
4372\f
4373 /* Symbol Lookup */
4374
c0431670
JB
4375/* Return nonzero if wild matching should be used when searching for
4376 all symbols matching LOOKUP_NAME.
4377
4378 LOOKUP_NAME is expected to be a symbol name after transformation
4379 for Ada lookups (see ada_name_for_lookup). */
4380
4381static int
4382should_use_wild_match (const char *lookup_name)
4383{
4384 return (strstr (lookup_name, "__") == NULL);
4385}
4386
4c4b4cd2
PH
4387/* Return the result of a standard (literal, C-like) lookup of NAME in
4388 given DOMAIN, visible from lexical block BLOCK. */
4389
4390static struct symbol *
4391standard_lookup (const char *name, const struct block *block,
4392 domain_enum domain)
4393{
acbd605d
MGD
4394 /* Initialize it just to avoid a GCC false warning. */
4395 struct symbol *sym = NULL;
4c4b4cd2 4396
2570f2b7 4397 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4398 return sym;
2570f2b7
UW
4399 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4400 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4401 return sym;
4402}
4403
4404
4405/* Non-zero iff there is at least one non-function/non-enumeral symbol
4406 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4407 since they contend in overloading in the same way. */
4408static int
4409is_nonfunction (struct ada_symbol_info syms[], int n)
4410{
4411 int i;
4412
4413 for (i = 0; i < n; i += 1)
4414 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4415 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4416 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4417 return 1;
4418
4419 return 0;
4420}
4421
4422/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4423 struct types. Otherwise, they may not. */
14f9c5c9
AS
4424
4425static int
d2e4a39e 4426equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4427{
d2e4a39e 4428 if (type0 == type1)
14f9c5c9 4429 return 1;
d2e4a39e 4430 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4431 || TYPE_CODE (type0) != TYPE_CODE (type1))
4432 return 0;
d2e4a39e 4433 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4434 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4435 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4436 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4437 return 1;
d2e4a39e 4438
14f9c5c9
AS
4439 return 0;
4440}
4441
4442/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4443 no more defined than that of SYM1. */
14f9c5c9
AS
4444
4445static int
d2e4a39e 4446lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4447{
4448 if (sym0 == sym1)
4449 return 1;
176620f1 4450 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4451 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4452 return 0;
4453
d2e4a39e 4454 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4455 {
4456 case LOC_UNDEF:
4457 return 1;
4458 case LOC_TYPEDEF:
4459 {
4c4b4cd2
PH
4460 struct type *type0 = SYMBOL_TYPE (sym0);
4461 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4462 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4463 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4464 int len0 = strlen (name0);
5b4ee69b 4465
4c4b4cd2
PH
4466 return
4467 TYPE_CODE (type0) == TYPE_CODE (type1)
4468 && (equiv_types (type0, type1)
4469 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4470 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4471 }
4472 case LOC_CONST:
4473 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4474 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4475 default:
4476 return 0;
14f9c5c9
AS
4477 }
4478}
4479
4c4b4cd2
PH
4480/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4481 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4482
4483static void
76a01679
JB
4484add_defn_to_vec (struct obstack *obstackp,
4485 struct symbol *sym,
f0c5f9b2 4486 const struct block *block)
14f9c5c9
AS
4487{
4488 int i;
4c4b4cd2 4489 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4490
529cad9c
PH
4491 /* Do not try to complete stub types, as the debugger is probably
4492 already scanning all symbols matching a certain name at the
4493 time when this function is called. Trying to replace the stub
4494 type by its associated full type will cause us to restart a scan
4495 which may lead to an infinite recursion. Instead, the client
4496 collecting the matching symbols will end up collecting several
4497 matches, with at least one of them complete. It can then filter
4498 out the stub ones if needed. */
4499
4c4b4cd2
PH
4500 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4501 {
4502 if (lesseq_defined_than (sym, prevDefns[i].sym))
4503 return;
4504 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4505 {
4506 prevDefns[i].sym = sym;
4507 prevDefns[i].block = block;
4c4b4cd2 4508 return;
76a01679 4509 }
4c4b4cd2
PH
4510 }
4511
4512 {
4513 struct ada_symbol_info info;
4514
4515 info.sym = sym;
4516 info.block = block;
4c4b4cd2
PH
4517 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4518 }
4519}
4520
4521/* Number of ada_symbol_info structures currently collected in
4522 current vector in *OBSTACKP. */
4523
76a01679
JB
4524static int
4525num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4526{
4527 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4528}
4529
4530/* Vector of ada_symbol_info structures currently collected in current
4531 vector in *OBSTACKP. If FINISH, close off the vector and return
4532 its final address. */
4533
76a01679 4534static struct ada_symbol_info *
4c4b4cd2
PH
4535defns_collected (struct obstack *obstackp, int finish)
4536{
4537 if (finish)
4538 return obstack_finish (obstackp);
4539 else
4540 return (struct ada_symbol_info *) obstack_base (obstackp);
4541}
4542
7c7b6655
TT
4543/* Return a bound minimal symbol matching NAME according to Ada
4544 decoding rules. Returns an invalid symbol if there is no such
4545 minimal symbol. Names prefixed with "standard__" are handled
4546 specially: "standard__" is first stripped off, and only static and
4547 global symbols are searched. */
4c4b4cd2 4548
7c7b6655 4549struct bound_minimal_symbol
96d887e8 4550ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4551{
7c7b6655 4552 struct bound_minimal_symbol result;
4c4b4cd2 4553 struct objfile *objfile;
96d887e8 4554 struct minimal_symbol *msymbol;
dc4024cd 4555 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4556
7c7b6655
TT
4557 memset (&result, 0, sizeof (result));
4558
c0431670
JB
4559 /* Special case: If the user specifies a symbol name inside package
4560 Standard, do a non-wild matching of the symbol name without
4561 the "standard__" prefix. This was primarily introduced in order
4562 to allow the user to specifically access the standard exceptions
4563 using, for instance, Standard.Constraint_Error when Constraint_Error
4564 is ambiguous (due to the user defining its own Constraint_Error
4565 entity inside its program). */
96d887e8 4566 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4567 name += sizeof ("standard__") - 1;
4c4b4cd2 4568
96d887e8
PH
4569 ALL_MSYMBOLS (objfile, msymbol)
4570 {
dc4024cd 4571 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4572 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4573 {
4574 result.minsym = msymbol;
4575 result.objfile = objfile;
4576 break;
4577 }
96d887e8 4578 }
4c4b4cd2 4579
7c7b6655 4580 return result;
96d887e8 4581}
4c4b4cd2 4582
96d887e8
PH
4583/* For all subprograms that statically enclose the subprogram of the
4584 selected frame, add symbols matching identifier NAME in DOMAIN
4585 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4586 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4587 with a wildcard prefix. */
4c4b4cd2 4588
96d887e8
PH
4589static void
4590add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4591 const char *name, domain_enum namespace,
48b78332 4592 int wild_match_p)
96d887e8 4593{
96d887e8 4594}
14f9c5c9 4595
96d887e8
PH
4596/* True if TYPE is definitely an artificial type supplied to a symbol
4597 for which no debugging information was given in the symbol file. */
14f9c5c9 4598
96d887e8
PH
4599static int
4600is_nondebugging_type (struct type *type)
4601{
0d5cff50 4602 const char *name = ada_type_name (type);
5b4ee69b 4603
96d887e8
PH
4604 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4605}
4c4b4cd2 4606
8f17729f
JB
4607/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4608 that are deemed "identical" for practical purposes.
4609
4610 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4611 types and that their number of enumerals is identical (in other
4612 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4613
4614static int
4615ada_identical_enum_types_p (struct type *type1, struct type *type2)
4616{
4617 int i;
4618
4619 /* The heuristic we use here is fairly conservative. We consider
4620 that 2 enumerate types are identical if they have the same
4621 number of enumerals and that all enumerals have the same
4622 underlying value and name. */
4623
4624 /* All enums in the type should have an identical underlying value. */
4625 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4626 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4627 return 0;
4628
4629 /* All enumerals should also have the same name (modulo any numerical
4630 suffix). */
4631 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4632 {
0d5cff50
DE
4633 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4634 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4635 int len_1 = strlen (name_1);
4636 int len_2 = strlen (name_2);
4637
4638 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4639 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4640 if (len_1 != len_2
4641 || strncmp (TYPE_FIELD_NAME (type1, i),
4642 TYPE_FIELD_NAME (type2, i),
4643 len_1) != 0)
4644 return 0;
4645 }
4646
4647 return 1;
4648}
4649
4650/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4651 that are deemed "identical" for practical purposes. Sometimes,
4652 enumerals are not strictly identical, but their types are so similar
4653 that they can be considered identical.
4654
4655 For instance, consider the following code:
4656
4657 type Color is (Black, Red, Green, Blue, White);
4658 type RGB_Color is new Color range Red .. Blue;
4659
4660 Type RGB_Color is a subrange of an implicit type which is a copy
4661 of type Color. If we call that implicit type RGB_ColorB ("B" is
4662 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4663 As a result, when an expression references any of the enumeral
4664 by name (Eg. "print green"), the expression is technically
4665 ambiguous and the user should be asked to disambiguate. But
4666 doing so would only hinder the user, since it wouldn't matter
4667 what choice he makes, the outcome would always be the same.
4668 So, for practical purposes, we consider them as the same. */
4669
4670static int
4671symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4672{
4673 int i;
4674
4675 /* Before performing a thorough comparison check of each type,
4676 we perform a series of inexpensive checks. We expect that these
4677 checks will quickly fail in the vast majority of cases, and thus
4678 help prevent the unnecessary use of a more expensive comparison.
4679 Said comparison also expects us to make some of these checks
4680 (see ada_identical_enum_types_p). */
4681
4682 /* Quick check: All symbols should have an enum type. */
4683 for (i = 0; i < nsyms; i++)
4684 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4685 return 0;
4686
4687 /* Quick check: They should all have the same value. */
4688 for (i = 1; i < nsyms; i++)
4689 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4690 return 0;
4691
4692 /* Quick check: They should all have the same number of enumerals. */
4693 for (i = 1; i < nsyms; i++)
4694 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4695 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4696 return 0;
4697
4698 /* All the sanity checks passed, so we might have a set of
4699 identical enumeration types. Perform a more complete
4700 comparison of the type of each symbol. */
4701 for (i = 1; i < nsyms; i++)
4702 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4703 SYMBOL_TYPE (syms[0].sym)))
4704 return 0;
4705
4706 return 1;
4707}
4708
96d887e8
PH
4709/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4710 duplicate other symbols in the list (The only case I know of where
4711 this happens is when object files containing stabs-in-ecoff are
4712 linked with files containing ordinary ecoff debugging symbols (or no
4713 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4714 Returns the number of items in the modified list. */
4c4b4cd2 4715
96d887e8
PH
4716static int
4717remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4718{
4719 int i, j;
4c4b4cd2 4720
8f17729f
JB
4721 /* We should never be called with less than 2 symbols, as there
4722 cannot be any extra symbol in that case. But it's easy to
4723 handle, since we have nothing to do in that case. */
4724 if (nsyms < 2)
4725 return nsyms;
4726
96d887e8
PH
4727 i = 0;
4728 while (i < nsyms)
4729 {
a35ddb44 4730 int remove_p = 0;
339c13b6
JB
4731
4732 /* If two symbols have the same name and one of them is a stub type,
4733 the get rid of the stub. */
4734
4735 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4736 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4737 {
4738 for (j = 0; j < nsyms; j++)
4739 {
4740 if (j != i
4741 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4742 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4743 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4744 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4745 remove_p = 1;
339c13b6
JB
4746 }
4747 }
4748
4749 /* Two symbols with the same name, same class and same address
4750 should be identical. */
4751
4752 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4753 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4754 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4755 {
4756 for (j = 0; j < nsyms; j += 1)
4757 {
4758 if (i != j
4759 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4760 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4761 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4762 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4763 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4764 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4765 remove_p = 1;
4c4b4cd2 4766 }
4c4b4cd2 4767 }
339c13b6 4768
a35ddb44 4769 if (remove_p)
339c13b6
JB
4770 {
4771 for (j = i + 1; j < nsyms; j += 1)
4772 syms[j - 1] = syms[j];
4773 nsyms -= 1;
4774 }
4775
96d887e8 4776 i += 1;
14f9c5c9 4777 }
8f17729f
JB
4778
4779 /* If all the remaining symbols are identical enumerals, then
4780 just keep the first one and discard the rest.
4781
4782 Unlike what we did previously, we do not discard any entry
4783 unless they are ALL identical. This is because the symbol
4784 comparison is not a strict comparison, but rather a practical
4785 comparison. If all symbols are considered identical, then
4786 we can just go ahead and use the first one and discard the rest.
4787 But if we cannot reduce the list to a single element, we have
4788 to ask the user to disambiguate anyways. And if we have to
4789 present a multiple-choice menu, it's less confusing if the list
4790 isn't missing some choices that were identical and yet distinct. */
4791 if (symbols_are_identical_enums (syms, nsyms))
4792 nsyms = 1;
4793
96d887e8 4794 return nsyms;
14f9c5c9
AS
4795}
4796
96d887e8
PH
4797/* Given a type that corresponds to a renaming entity, use the type name
4798 to extract the scope (package name or function name, fully qualified,
4799 and following the GNAT encoding convention) where this renaming has been
4800 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4801
96d887e8
PH
4802static char *
4803xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4804{
96d887e8 4805 /* The renaming types adhere to the following convention:
0963b4bd 4806 <scope>__<rename>___<XR extension>.
96d887e8
PH
4807 So, to extract the scope, we search for the "___XR" extension,
4808 and then backtrack until we find the first "__". */
76a01679 4809
96d887e8
PH
4810 const char *name = type_name_no_tag (renaming_type);
4811 char *suffix = strstr (name, "___XR");
4812 char *last;
4813 int scope_len;
4814 char *scope;
14f9c5c9 4815
96d887e8
PH
4816 /* Now, backtrack a bit until we find the first "__". Start looking
4817 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4818
96d887e8
PH
4819 for (last = suffix - 3; last > name; last--)
4820 if (last[0] == '_' && last[1] == '_')
4821 break;
76a01679 4822
96d887e8 4823 /* Make a copy of scope and return it. */
14f9c5c9 4824
96d887e8
PH
4825 scope_len = last - name;
4826 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4827
96d887e8
PH
4828 strncpy (scope, name, scope_len);
4829 scope[scope_len] = '\0';
4c4b4cd2 4830
96d887e8 4831 return scope;
4c4b4cd2
PH
4832}
4833
96d887e8 4834/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4835
96d887e8
PH
4836static int
4837is_package_name (const char *name)
4c4b4cd2 4838{
96d887e8
PH
4839 /* Here, We take advantage of the fact that no symbols are generated
4840 for packages, while symbols are generated for each function.
4841 So the condition for NAME represent a package becomes equivalent
4842 to NAME not existing in our list of symbols. There is only one
4843 small complication with library-level functions (see below). */
4c4b4cd2 4844
96d887e8 4845 char *fun_name;
76a01679 4846
96d887e8
PH
4847 /* If it is a function that has not been defined at library level,
4848 then we should be able to look it up in the symbols. */
4849 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4850 return 0;
14f9c5c9 4851
96d887e8
PH
4852 /* Library-level function names start with "_ada_". See if function
4853 "_ada_" followed by NAME can be found. */
14f9c5c9 4854
96d887e8 4855 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4856 functions names cannot contain "__" in them. */
96d887e8
PH
4857 if (strstr (name, "__") != NULL)
4858 return 0;
4c4b4cd2 4859
b435e160 4860 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4861
96d887e8
PH
4862 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4863}
14f9c5c9 4864
96d887e8 4865/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4866 not visible from FUNCTION_NAME. */
14f9c5c9 4867
96d887e8 4868static int
0d5cff50 4869old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4870{
aeb5907d 4871 char *scope;
1509e573 4872 struct cleanup *old_chain;
aeb5907d
JB
4873
4874 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4875 return 0;
4876
4877 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4878 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4879
96d887e8
PH
4880 /* If the rename has been defined in a package, then it is visible. */
4881 if (is_package_name (scope))
1509e573
JB
4882 {
4883 do_cleanups (old_chain);
4884 return 0;
4885 }
14f9c5c9 4886
96d887e8
PH
4887 /* Check that the rename is in the current function scope by checking
4888 that its name starts with SCOPE. */
76a01679 4889
96d887e8
PH
4890 /* If the function name starts with "_ada_", it means that it is
4891 a library-level function. Strip this prefix before doing the
4892 comparison, as the encoding for the renaming does not contain
4893 this prefix. */
4894 if (strncmp (function_name, "_ada_", 5) == 0)
4895 function_name += 5;
f26caa11 4896
1509e573
JB
4897 {
4898 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4899
4900 do_cleanups (old_chain);
4901 return is_invisible;
4902 }
f26caa11
PH
4903}
4904
aeb5907d
JB
4905/* Remove entries from SYMS that corresponds to a renaming entity that
4906 is not visible from the function associated with CURRENT_BLOCK or
4907 that is superfluous due to the presence of more specific renaming
4908 information. Places surviving symbols in the initial entries of
4909 SYMS and returns the number of surviving symbols.
96d887e8
PH
4910
4911 Rationale:
aeb5907d
JB
4912 First, in cases where an object renaming is implemented as a
4913 reference variable, GNAT may produce both the actual reference
4914 variable and the renaming encoding. In this case, we discard the
4915 latter.
4916
4917 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4918 entity. Unfortunately, STABS currently does not support the definition
4919 of types that are local to a given lexical block, so all renamings types
4920 are emitted at library level. As a consequence, if an application
4921 contains two renaming entities using the same name, and a user tries to
4922 print the value of one of these entities, the result of the ada symbol
4923 lookup will also contain the wrong renaming type.
f26caa11 4924
96d887e8
PH
4925 This function partially covers for this limitation by attempting to
4926 remove from the SYMS list renaming symbols that should be visible
4927 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4928 method with the current information available. The implementation
4929 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4930
4931 - When the user tries to print a rename in a function while there
4932 is another rename entity defined in a package: Normally, the
4933 rename in the function has precedence over the rename in the
4934 package, so the latter should be removed from the list. This is
4935 currently not the case.
4936
4937 - This function will incorrectly remove valid renames if
4938 the CURRENT_BLOCK corresponds to a function which symbol name
4939 has been changed by an "Export" pragma. As a consequence,
4940 the user will be unable to print such rename entities. */
4c4b4cd2 4941
14f9c5c9 4942static int
aeb5907d
JB
4943remove_irrelevant_renamings (struct ada_symbol_info *syms,
4944 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4945{
4946 struct symbol *current_function;
0d5cff50 4947 const char *current_function_name;
4c4b4cd2 4948 int i;
aeb5907d
JB
4949 int is_new_style_renaming;
4950
4951 /* If there is both a renaming foo___XR... encoded as a variable and
4952 a simple variable foo in the same block, discard the latter.
0963b4bd 4953 First, zero out such symbols, then compress. */
aeb5907d
JB
4954 is_new_style_renaming = 0;
4955 for (i = 0; i < nsyms; i += 1)
4956 {
4957 struct symbol *sym = syms[i].sym;
270140bd 4958 const struct block *block = syms[i].block;
aeb5907d
JB
4959 const char *name;
4960 const char *suffix;
4961
4962 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4963 continue;
4964 name = SYMBOL_LINKAGE_NAME (sym);
4965 suffix = strstr (name, "___XR");
4966
4967 if (suffix != NULL)
4968 {
4969 int name_len = suffix - name;
4970 int j;
5b4ee69b 4971
aeb5907d
JB
4972 is_new_style_renaming = 1;
4973 for (j = 0; j < nsyms; j += 1)
4974 if (i != j && syms[j].sym != NULL
4975 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4976 name_len) == 0
4977 && block == syms[j].block)
4978 syms[j].sym = NULL;
4979 }
4980 }
4981 if (is_new_style_renaming)
4982 {
4983 int j, k;
4984
4985 for (j = k = 0; j < nsyms; j += 1)
4986 if (syms[j].sym != NULL)
4987 {
4988 syms[k] = syms[j];
4989 k += 1;
4990 }
4991 return k;
4992 }
4c4b4cd2
PH
4993
4994 /* Extract the function name associated to CURRENT_BLOCK.
4995 Abort if unable to do so. */
76a01679 4996
4c4b4cd2
PH
4997 if (current_block == NULL)
4998 return nsyms;
76a01679 4999
7f0df278 5000 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5001 if (current_function == NULL)
5002 return nsyms;
5003
5004 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5005 if (current_function_name == NULL)
5006 return nsyms;
5007
5008 /* Check each of the symbols, and remove it from the list if it is
5009 a type corresponding to a renaming that is out of the scope of
5010 the current block. */
5011
5012 i = 0;
5013 while (i < nsyms)
5014 {
aeb5907d
JB
5015 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5016 == ADA_OBJECT_RENAMING
5017 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5018 {
5019 int j;
5b4ee69b 5020
aeb5907d 5021 for (j = i + 1; j < nsyms; j += 1)
76a01679 5022 syms[j - 1] = syms[j];
4c4b4cd2
PH
5023 nsyms -= 1;
5024 }
5025 else
5026 i += 1;
5027 }
5028
5029 return nsyms;
5030}
5031
339c13b6
JB
5032/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5033 whose name and domain match NAME and DOMAIN respectively.
5034 If no match was found, then extend the search to "enclosing"
5035 routines (in other words, if we're inside a nested function,
5036 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5037 If WILD_MATCH_P is nonzero, perform the naming matching in
5038 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5039
5040 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5041
5042static void
5043ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5044 const struct block *block, domain_enum domain,
d0a8ab18 5045 int wild_match_p)
339c13b6
JB
5046{
5047 int block_depth = 0;
5048
5049 while (block != NULL)
5050 {
5051 block_depth += 1;
d0a8ab18
JB
5052 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5053 wild_match_p);
339c13b6
JB
5054
5055 /* If we found a non-function match, assume that's the one. */
5056 if (is_nonfunction (defns_collected (obstackp, 0),
5057 num_defns_collected (obstackp)))
5058 return;
5059
5060 block = BLOCK_SUPERBLOCK (block);
5061 }
5062
5063 /* If no luck so far, try to find NAME as a local symbol in some lexically
5064 enclosing subprogram. */
5065 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5066 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5067}
5068
ccefe4c4 5069/* An object of this type is used as the user_data argument when
40658b94 5070 calling the map_matching_symbols method. */
ccefe4c4 5071
40658b94 5072struct match_data
ccefe4c4 5073{
40658b94 5074 struct objfile *objfile;
ccefe4c4 5075 struct obstack *obstackp;
40658b94
PH
5076 struct symbol *arg_sym;
5077 int found_sym;
ccefe4c4
TT
5078};
5079
40658b94
PH
5080/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5081 to a list of symbols. DATA0 is a pointer to a struct match_data *
5082 containing the obstack that collects the symbol list, the file that SYM
5083 must come from, a flag indicating whether a non-argument symbol has
5084 been found in the current block, and the last argument symbol
5085 passed in SYM within the current block (if any). When SYM is null,
5086 marking the end of a block, the argument symbol is added if no
5087 other has been found. */
ccefe4c4 5088
40658b94
PH
5089static int
5090aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5091{
40658b94
PH
5092 struct match_data *data = (struct match_data *) data0;
5093
5094 if (sym == NULL)
5095 {
5096 if (!data->found_sym && data->arg_sym != NULL)
5097 add_defn_to_vec (data->obstackp,
5098 fixup_symbol_section (data->arg_sym, data->objfile),
5099 block);
5100 data->found_sym = 0;
5101 data->arg_sym = NULL;
5102 }
5103 else
5104 {
5105 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5106 return 0;
5107 else if (SYMBOL_IS_ARGUMENT (sym))
5108 data->arg_sym = sym;
5109 else
5110 {
5111 data->found_sym = 1;
5112 add_defn_to_vec (data->obstackp,
5113 fixup_symbol_section (sym, data->objfile),
5114 block);
5115 }
5116 }
5117 return 0;
5118}
5119
db230ce3
JB
5120/* Implements compare_names, but only applying the comparision using
5121 the given CASING. */
5b4ee69b 5122
40658b94 5123static int
db230ce3
JB
5124compare_names_with_case (const char *string1, const char *string2,
5125 enum case_sensitivity casing)
40658b94
PH
5126{
5127 while (*string1 != '\0' && *string2 != '\0')
5128 {
db230ce3
JB
5129 char c1, c2;
5130
40658b94
PH
5131 if (isspace (*string1) || isspace (*string2))
5132 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5133
5134 if (casing == case_sensitive_off)
5135 {
5136 c1 = tolower (*string1);
5137 c2 = tolower (*string2);
5138 }
5139 else
5140 {
5141 c1 = *string1;
5142 c2 = *string2;
5143 }
5144 if (c1 != c2)
40658b94 5145 break;
db230ce3 5146
40658b94
PH
5147 string1 += 1;
5148 string2 += 1;
5149 }
db230ce3 5150
40658b94
PH
5151 switch (*string1)
5152 {
5153 case '(':
5154 return strcmp_iw_ordered (string1, string2);
5155 case '_':
5156 if (*string2 == '\0')
5157 {
052874e8 5158 if (is_name_suffix (string1))
40658b94
PH
5159 return 0;
5160 else
1a1d5513 5161 return 1;
40658b94 5162 }
dbb8534f 5163 /* FALLTHROUGH */
40658b94
PH
5164 default:
5165 if (*string2 == '(')
5166 return strcmp_iw_ordered (string1, string2);
5167 else
db230ce3
JB
5168 {
5169 if (casing == case_sensitive_off)
5170 return tolower (*string1) - tolower (*string2);
5171 else
5172 return *string1 - *string2;
5173 }
40658b94 5174 }
ccefe4c4
TT
5175}
5176
db230ce3
JB
5177/* Compare STRING1 to STRING2, with results as for strcmp.
5178 Compatible with strcmp_iw_ordered in that...
5179
5180 strcmp_iw_ordered (STRING1, STRING2) <= 0
5181
5182 ... implies...
5183
5184 compare_names (STRING1, STRING2) <= 0
5185
5186 (they may differ as to what symbols compare equal). */
5187
5188static int
5189compare_names (const char *string1, const char *string2)
5190{
5191 int result;
5192
5193 /* Similar to what strcmp_iw_ordered does, we need to perform
5194 a case-insensitive comparison first, and only resort to
5195 a second, case-sensitive, comparison if the first one was
5196 not sufficient to differentiate the two strings. */
5197
5198 result = compare_names_with_case (string1, string2, case_sensitive_off);
5199 if (result == 0)
5200 result = compare_names_with_case (string1, string2, case_sensitive_on);
5201
5202 return result;
5203}
5204
339c13b6
JB
5205/* Add to OBSTACKP all non-local symbols whose name and domain match
5206 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5207 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5208
5209static void
40658b94
PH
5210add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5211 domain_enum domain, int global,
5212 int is_wild_match)
339c13b6
JB
5213{
5214 struct objfile *objfile;
40658b94 5215 struct match_data data;
339c13b6 5216
6475f2fe 5217 memset (&data, 0, sizeof data);
ccefe4c4 5218 data.obstackp = obstackp;
339c13b6 5219
ccefe4c4 5220 ALL_OBJFILES (objfile)
40658b94
PH
5221 {
5222 data.objfile = objfile;
5223
5224 if (is_wild_match)
ade7ed9e 5225 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5226 aux_add_nonlocal_symbols, &data,
5227 wild_match, NULL);
5228 else
ade7ed9e 5229 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5230 aux_add_nonlocal_symbols, &data,
5231 full_match, compare_names);
5232 }
5233
5234 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5235 {
5236 ALL_OBJFILES (objfile)
5237 {
5238 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5239 strcpy (name1, "_ada_");
5240 strcpy (name1 + sizeof ("_ada_") - 1, name);
5241 data.objfile = objfile;
ade7ed9e
DE
5242 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5243 global,
0963b4bd
MS
5244 aux_add_nonlocal_symbols,
5245 &data,
40658b94
PH
5246 full_match, compare_names);
5247 }
5248 }
339c13b6
JB
5249}
5250
4eeaa230
DE
5251/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5252 non-zero, enclosing scope and in global scopes, returning the number of
5253 matches.
9f88c959 5254 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5255 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5256 any) in which they were found. This vector is transient---good only to
5257 the next call of ada_lookup_symbol_list.
5258
5259 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5260 symbol match within the nest of blocks whose innermost member is BLOCK0,
5261 is the one match returned (no other matches in that or
d9680e73 5262 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5263 surrounding BLOCK0, then these alone are returned.
5264
9f88c959 5265 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5266 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5267
4eeaa230
DE
5268static int
5269ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5270 domain_enum namespace,
5271 struct ada_symbol_info **results,
5272 int full_search)
14f9c5c9
AS
5273{
5274 struct symbol *sym;
f0c5f9b2 5275 const struct block *block;
4c4b4cd2 5276 const char *name;
82ccd55e 5277 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5278 int cacheIfUnique;
4c4b4cd2 5279 int ndefns;
14f9c5c9 5280
4c4b4cd2
PH
5281 obstack_free (&symbol_list_obstack, NULL);
5282 obstack_init (&symbol_list_obstack);
14f9c5c9 5283
14f9c5c9
AS
5284 cacheIfUnique = 0;
5285
5286 /* Search specified block and its superiors. */
5287
4c4b4cd2 5288 name = name0;
f0c5f9b2 5289 block = block0;
339c13b6
JB
5290
5291 /* Special case: If the user specifies a symbol name inside package
5292 Standard, do a non-wild matching of the symbol name without
5293 the "standard__" prefix. This was primarily introduced in order
5294 to allow the user to specifically access the standard exceptions
5295 using, for instance, Standard.Constraint_Error when Constraint_Error
5296 is ambiguous (due to the user defining its own Constraint_Error
5297 entity inside its program). */
4c4b4cd2
PH
5298 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5299 {
4c4b4cd2
PH
5300 block = NULL;
5301 name = name0 + sizeof ("standard__") - 1;
5302 }
5303
339c13b6 5304 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5305
4eeaa230
DE
5306 if (block != NULL)
5307 {
5308 if (full_search)
5309 {
5310 ada_add_local_symbols (&symbol_list_obstack, name, block,
5311 namespace, wild_match_p);
5312 }
5313 else
5314 {
5315 /* In the !full_search case we're are being called by
5316 ada_iterate_over_symbols, and we don't want to search
5317 superblocks. */
5318 ada_add_block_symbols (&symbol_list_obstack, block, name,
5319 namespace, NULL, wild_match_p);
5320 }
5321 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5322 goto done;
5323 }
d2e4a39e 5324
339c13b6
JB
5325 /* No non-global symbols found. Check our cache to see if we have
5326 already performed this search before. If we have, then return
5327 the same result. */
5328
14f9c5c9 5329 cacheIfUnique = 1;
2570f2b7 5330 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5331 {
5332 if (sym != NULL)
2570f2b7 5333 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5334 goto done;
5335 }
14f9c5c9 5336
339c13b6
JB
5337 /* Search symbols from all global blocks. */
5338
40658b94 5339 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5340 wild_match_p);
d2e4a39e 5341
4c4b4cd2 5342 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5343 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5344
4c4b4cd2 5345 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5346 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5347 wild_match_p);
14f9c5c9 5348
4c4b4cd2
PH
5349done:
5350 ndefns = num_defns_collected (&symbol_list_obstack);
5351 *results = defns_collected (&symbol_list_obstack, 1);
5352
5353 ndefns = remove_extra_symbols (*results, ndefns);
5354
2ad01556 5355 if (ndefns == 0 && full_search)
2570f2b7 5356 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5357
2ad01556 5358 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5359 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5360
aeb5907d 5361 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5362
14f9c5c9
AS
5363 return ndefns;
5364}
5365
4eeaa230
DE
5366/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5367 in global scopes, returning the number of matches, and setting *RESULTS
5368 to a vector of (SYM,BLOCK) tuples.
5369 See ada_lookup_symbol_list_worker for further details. */
5370
5371int
5372ada_lookup_symbol_list (const char *name0, const struct block *block0,
5373 domain_enum domain, struct ada_symbol_info **results)
5374{
5375 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5376}
5377
5378/* Implementation of the la_iterate_over_symbols method. */
5379
5380static void
5381ada_iterate_over_symbols (const struct block *block,
5382 const char *name, domain_enum domain,
5383 symbol_found_callback_ftype *callback,
5384 void *data)
5385{
5386 int ndefs, i;
5387 struct ada_symbol_info *results;
5388
5389 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5390 for (i = 0; i < ndefs; ++i)
5391 {
5392 if (! (*callback) (results[i].sym, data))
5393 break;
5394 }
5395}
5396
f8eba3c6
TT
5397/* If NAME is the name of an entity, return a string that should
5398 be used to look that entity up in Ada units. This string should
5399 be deallocated after use using xfree.
5400
5401 NAME can have any form that the "break" or "print" commands might
5402 recognize. In other words, it does not have to be the "natural"
5403 name, or the "encoded" name. */
5404
5405char *
5406ada_name_for_lookup (const char *name)
5407{
5408 char *canon;
5409 int nlen = strlen (name);
5410
5411 if (name[0] == '<' && name[nlen - 1] == '>')
5412 {
5413 canon = xmalloc (nlen - 1);
5414 memcpy (canon, name + 1, nlen - 2);
5415 canon[nlen - 2] = '\0';
5416 }
5417 else
5418 canon = xstrdup (ada_encode (ada_fold_name (name)));
5419 return canon;
5420}
5421
4e5c77fe
JB
5422/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5423 to 1, but choosing the first symbol found if there are multiple
5424 choices.
5425
5e2336be
JB
5426 The result is stored in *INFO, which must be non-NULL.
5427 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5428
5429void
5430ada_lookup_encoded_symbol (const char *name, const struct block *block,
5431 domain_enum namespace,
5e2336be 5432 struct ada_symbol_info *info)
14f9c5c9 5433{
4c4b4cd2 5434 struct ada_symbol_info *candidates;
14f9c5c9
AS
5435 int n_candidates;
5436
5e2336be
JB
5437 gdb_assert (info != NULL);
5438 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5439
4eeaa230 5440 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5441 if (n_candidates == 0)
4e5c77fe 5442 return;
4c4b4cd2 5443
5e2336be
JB
5444 *info = candidates[0];
5445 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5446}
aeb5907d
JB
5447
5448/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5449 scope and in global scopes, or NULL if none. NAME is folded and
5450 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5451 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5452 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5453
aeb5907d
JB
5454struct symbol *
5455ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5456 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5457{
5e2336be 5458 struct ada_symbol_info info;
4e5c77fe 5459
aeb5907d
JB
5460 if (is_a_field_of_this != NULL)
5461 *is_a_field_of_this = 0;
5462
4e5c77fe 5463 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5464 block0, namespace, &info);
5465 return info.sym;
4c4b4cd2 5466}
14f9c5c9 5467
4c4b4cd2
PH
5468static struct symbol *
5469ada_lookup_symbol_nonlocal (const char *name,
76a01679 5470 const struct block *block,
21b556f4 5471 const domain_enum domain)
4c4b4cd2 5472{
94af9270 5473 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5474}
5475
5476
4c4b4cd2
PH
5477/* True iff STR is a possible encoded suffix of a normal Ada name
5478 that is to be ignored for matching purposes. Suffixes of parallel
5479 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5480 are given by any of the regular expressions:
4c4b4cd2 5481
babe1480
JB
5482 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5483 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5484 TKB [subprogram suffix for task bodies]
babe1480 5485 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5486 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5487
5488 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5489 match is performed. This sequence is used to differentiate homonyms,
5490 is an optional part of a valid name suffix. */
4c4b4cd2 5491
14f9c5c9 5492static int
d2e4a39e 5493is_name_suffix (const char *str)
14f9c5c9
AS
5494{
5495 int k;
4c4b4cd2
PH
5496 const char *matching;
5497 const int len = strlen (str);
5498
babe1480
JB
5499 /* Skip optional leading __[0-9]+. */
5500
4c4b4cd2
PH
5501 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5502 {
babe1480
JB
5503 str += 3;
5504 while (isdigit (str[0]))
5505 str += 1;
4c4b4cd2 5506 }
babe1480
JB
5507
5508 /* [.$][0-9]+ */
4c4b4cd2 5509
babe1480 5510 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5511 {
babe1480 5512 matching = str + 1;
4c4b4cd2
PH
5513 while (isdigit (matching[0]))
5514 matching += 1;
5515 if (matching[0] == '\0')
5516 return 1;
5517 }
5518
5519 /* ___[0-9]+ */
babe1480 5520
4c4b4cd2
PH
5521 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5522 {
5523 matching = str + 3;
5524 while (isdigit (matching[0]))
5525 matching += 1;
5526 if (matching[0] == '\0')
5527 return 1;
5528 }
5529
9ac7f98e
JB
5530 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5531
5532 if (strcmp (str, "TKB") == 0)
5533 return 1;
5534
529cad9c
PH
5535#if 0
5536 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5537 with a N at the end. Unfortunately, the compiler uses the same
5538 convention for other internal types it creates. So treating
529cad9c 5539 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5540 some regressions. For instance, consider the case of an enumerated
5541 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5542 name ends with N.
5543 Having a single character like this as a suffix carrying some
0963b4bd 5544 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5545 to be something like "_N" instead. In the meantime, do not do
5546 the following check. */
5547 /* Protected Object Subprograms */
5548 if (len == 1 && str [0] == 'N')
5549 return 1;
5550#endif
5551
5552 /* _E[0-9]+[bs]$ */
5553 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5554 {
5555 matching = str + 3;
5556 while (isdigit (matching[0]))
5557 matching += 1;
5558 if ((matching[0] == 'b' || matching[0] == 's')
5559 && matching [1] == '\0')
5560 return 1;
5561 }
5562
4c4b4cd2
PH
5563 /* ??? We should not modify STR directly, as we are doing below. This
5564 is fine in this case, but may become problematic later if we find
5565 that this alternative did not work, and want to try matching
5566 another one from the begining of STR. Since we modified it, we
5567 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5568 if (str[0] == 'X')
5569 {
5570 str += 1;
d2e4a39e 5571 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5572 {
5573 if (str[0] != 'n' && str[0] != 'b')
5574 return 0;
5575 str += 1;
5576 }
14f9c5c9 5577 }
babe1480 5578
14f9c5c9
AS
5579 if (str[0] == '\000')
5580 return 1;
babe1480 5581
d2e4a39e 5582 if (str[0] == '_')
14f9c5c9
AS
5583 {
5584 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5585 return 0;
d2e4a39e 5586 if (str[2] == '_')
4c4b4cd2 5587 {
61ee279c
PH
5588 if (strcmp (str + 3, "JM") == 0)
5589 return 1;
5590 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5591 the LJM suffix in favor of the JM one. But we will
5592 still accept LJM as a valid suffix for a reasonable
5593 amount of time, just to allow ourselves to debug programs
5594 compiled using an older version of GNAT. */
4c4b4cd2
PH
5595 if (strcmp (str + 3, "LJM") == 0)
5596 return 1;
5597 if (str[3] != 'X')
5598 return 0;
1265e4aa
JB
5599 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5600 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5601 return 1;
5602 if (str[4] == 'R' && str[5] != 'T')
5603 return 1;
5604 return 0;
5605 }
5606 if (!isdigit (str[2]))
5607 return 0;
5608 for (k = 3; str[k] != '\0'; k += 1)
5609 if (!isdigit (str[k]) && str[k] != '_')
5610 return 0;
14f9c5c9
AS
5611 return 1;
5612 }
4c4b4cd2 5613 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5614 {
4c4b4cd2
PH
5615 for (k = 2; str[k] != '\0'; k += 1)
5616 if (!isdigit (str[k]) && str[k] != '_')
5617 return 0;
14f9c5c9
AS
5618 return 1;
5619 }
5620 return 0;
5621}
d2e4a39e 5622
aeb5907d
JB
5623/* Return non-zero if the string starting at NAME and ending before
5624 NAME_END contains no capital letters. */
529cad9c
PH
5625
5626static int
5627is_valid_name_for_wild_match (const char *name0)
5628{
5629 const char *decoded_name = ada_decode (name0);
5630 int i;
5631
5823c3ef
JB
5632 /* If the decoded name starts with an angle bracket, it means that
5633 NAME0 does not follow the GNAT encoding format. It should then
5634 not be allowed as a possible wild match. */
5635 if (decoded_name[0] == '<')
5636 return 0;
5637
529cad9c
PH
5638 for (i=0; decoded_name[i] != '\0'; i++)
5639 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5640 return 0;
5641
5642 return 1;
5643}
5644
73589123
PH
5645/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5646 that could start a simple name. Assumes that *NAMEP points into
5647 the string beginning at NAME0. */
4c4b4cd2 5648
14f9c5c9 5649static int
73589123 5650advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5651{
73589123 5652 const char *name = *namep;
5b4ee69b 5653
5823c3ef 5654 while (1)
14f9c5c9 5655 {
aa27d0b3 5656 int t0, t1;
73589123
PH
5657
5658 t0 = *name;
5659 if (t0 == '_')
5660 {
5661 t1 = name[1];
5662 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5663 {
5664 name += 1;
5665 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5666 break;
5667 else
5668 name += 1;
5669 }
aa27d0b3
JB
5670 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5671 || name[2] == target0))
73589123
PH
5672 {
5673 name += 2;
5674 break;
5675 }
5676 else
5677 return 0;
5678 }
5679 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5680 name += 1;
5681 else
5823c3ef 5682 return 0;
73589123
PH
5683 }
5684
5685 *namep = name;
5686 return 1;
5687}
5688
5689/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5690 informational suffixes of NAME (i.e., for which is_name_suffix is
5691 true). Assumes that PATN is a lower-cased Ada simple name. */
5692
5693static int
5694wild_match (const char *name, const char *patn)
5695{
22e048c9 5696 const char *p;
73589123
PH
5697 const char *name0 = name;
5698
5699 while (1)
5700 {
5701 const char *match = name;
5702
5703 if (*name == *patn)
5704 {
5705 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5706 if (*p != *name)
5707 break;
5708 if (*p == '\0' && is_name_suffix (name))
5709 return match != name0 && !is_valid_name_for_wild_match (name0);
5710
5711 if (name[-1] == '_')
5712 name -= 1;
5713 }
5714 if (!advance_wild_match (&name, name0, *patn))
5715 return 1;
96d887e8 5716 }
96d887e8
PH
5717}
5718
40658b94
PH
5719/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5720 informational suffix. */
5721
c4d840bd
PH
5722static int
5723full_match (const char *sym_name, const char *search_name)
5724{
40658b94 5725 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5726}
5727
5728
96d887e8
PH
5729/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5730 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5731 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5732 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5733
5734static void
5735ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5736 const struct block *block, const char *name,
96d887e8 5737 domain_enum domain, struct objfile *objfile,
2570f2b7 5738 int wild)
96d887e8 5739{
8157b174 5740 struct block_iterator iter;
96d887e8
PH
5741 int name_len = strlen (name);
5742 /* A matching argument symbol, if any. */
5743 struct symbol *arg_sym;
5744 /* Set true when we find a matching non-argument symbol. */
5745 int found_sym;
5746 struct symbol *sym;
5747
5748 arg_sym = NULL;
5749 found_sym = 0;
5750 if (wild)
5751 {
8157b174
TT
5752 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5753 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5754 {
5eeb2539
AR
5755 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5756 SYMBOL_DOMAIN (sym), domain)
73589123 5757 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5758 {
2a2d4dc3
AS
5759 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5760 continue;
5761 else if (SYMBOL_IS_ARGUMENT (sym))
5762 arg_sym = sym;
5763 else
5764 {
76a01679
JB
5765 found_sym = 1;
5766 add_defn_to_vec (obstackp,
5767 fixup_symbol_section (sym, objfile),
2570f2b7 5768 block);
76a01679
JB
5769 }
5770 }
5771 }
96d887e8
PH
5772 }
5773 else
5774 {
8157b174
TT
5775 for (sym = block_iter_match_first (block, name, full_match, &iter);
5776 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5777 {
5eeb2539
AR
5778 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5779 SYMBOL_DOMAIN (sym), domain))
76a01679 5780 {
c4d840bd
PH
5781 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5782 {
5783 if (SYMBOL_IS_ARGUMENT (sym))
5784 arg_sym = sym;
5785 else
2a2d4dc3 5786 {
c4d840bd
PH
5787 found_sym = 1;
5788 add_defn_to_vec (obstackp,
5789 fixup_symbol_section (sym, objfile),
5790 block);
2a2d4dc3 5791 }
c4d840bd 5792 }
76a01679
JB
5793 }
5794 }
96d887e8
PH
5795 }
5796
5797 if (!found_sym && arg_sym != NULL)
5798 {
76a01679
JB
5799 add_defn_to_vec (obstackp,
5800 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5801 block);
96d887e8
PH
5802 }
5803
5804 if (!wild)
5805 {
5806 arg_sym = NULL;
5807 found_sym = 0;
5808
5809 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5810 {
5eeb2539
AR
5811 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5812 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5813 {
5814 int cmp;
5815
5816 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5817 if (cmp == 0)
5818 {
5819 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5820 if (cmp == 0)
5821 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5822 name_len);
5823 }
5824
5825 if (cmp == 0
5826 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5827 {
2a2d4dc3
AS
5828 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5829 {
5830 if (SYMBOL_IS_ARGUMENT (sym))
5831 arg_sym = sym;
5832 else
5833 {
5834 found_sym = 1;
5835 add_defn_to_vec (obstackp,
5836 fixup_symbol_section (sym, objfile),
5837 block);
5838 }
5839 }
76a01679
JB
5840 }
5841 }
76a01679 5842 }
96d887e8
PH
5843
5844 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5845 They aren't parameters, right? */
5846 if (!found_sym && arg_sym != NULL)
5847 {
5848 add_defn_to_vec (obstackp,
76a01679 5849 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5850 block);
96d887e8
PH
5851 }
5852 }
5853}
5854\f
41d27058
JB
5855
5856 /* Symbol Completion */
5857
5858/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5859 name in a form that's appropriate for the completion. The result
5860 does not need to be deallocated, but is only good until the next call.
5861
5862 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5863 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5864 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5865 in its encoded form. */
5866
5867static const char *
5868symbol_completion_match (const char *sym_name,
5869 const char *text, int text_len,
6ea35997 5870 int wild_match_p, int encoded_p)
41d27058 5871{
41d27058
JB
5872 const int verbatim_match = (text[0] == '<');
5873 int match = 0;
5874
5875 if (verbatim_match)
5876 {
5877 /* Strip the leading angle bracket. */
5878 text = text + 1;
5879 text_len--;
5880 }
5881
5882 /* First, test against the fully qualified name of the symbol. */
5883
5884 if (strncmp (sym_name, text, text_len) == 0)
5885 match = 1;
5886
6ea35997 5887 if (match && !encoded_p)
41d27058
JB
5888 {
5889 /* One needed check before declaring a positive match is to verify
5890 that iff we are doing a verbatim match, the decoded version
5891 of the symbol name starts with '<'. Otherwise, this symbol name
5892 is not a suitable completion. */
5893 const char *sym_name_copy = sym_name;
5894 int has_angle_bracket;
5895
5896 sym_name = ada_decode (sym_name);
5897 has_angle_bracket = (sym_name[0] == '<');
5898 match = (has_angle_bracket == verbatim_match);
5899 sym_name = sym_name_copy;
5900 }
5901
5902 if (match && !verbatim_match)
5903 {
5904 /* When doing non-verbatim match, another check that needs to
5905 be done is to verify that the potentially matching symbol name
5906 does not include capital letters, because the ada-mode would
5907 not be able to understand these symbol names without the
5908 angle bracket notation. */
5909 const char *tmp;
5910
5911 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5912 if (*tmp != '\0')
5913 match = 0;
5914 }
5915
5916 /* Second: Try wild matching... */
5917
e701b3c0 5918 if (!match && wild_match_p)
41d27058
JB
5919 {
5920 /* Since we are doing wild matching, this means that TEXT
5921 may represent an unqualified symbol name. We therefore must
5922 also compare TEXT against the unqualified name of the symbol. */
5923 sym_name = ada_unqualified_name (ada_decode (sym_name));
5924
5925 if (strncmp (sym_name, text, text_len) == 0)
5926 match = 1;
5927 }
5928
5929 /* Finally: If we found a mach, prepare the result to return. */
5930
5931 if (!match)
5932 return NULL;
5933
5934 if (verbatim_match)
5935 sym_name = add_angle_brackets (sym_name);
5936
6ea35997 5937 if (!encoded_p)
41d27058
JB
5938 sym_name = ada_decode (sym_name);
5939
5940 return sym_name;
5941}
5942
5943/* A companion function to ada_make_symbol_completion_list().
5944 Check if SYM_NAME represents a symbol which name would be suitable
5945 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5946 it is appended at the end of the given string vector SV.
5947
5948 ORIG_TEXT is the string original string from the user command
5949 that needs to be completed. WORD is the entire command on which
5950 completion should be performed. These two parameters are used to
5951 determine which part of the symbol name should be added to the
5952 completion vector.
c0af1706 5953 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5954 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5955 encoded formed (in which case the completion should also be
5956 encoded). */
5957
5958static void
d6565258 5959symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5960 const char *sym_name,
5961 const char *text, int text_len,
5962 const char *orig_text, const char *word,
cb8e9b97 5963 int wild_match_p, int encoded_p)
41d27058
JB
5964{
5965 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5966 wild_match_p, encoded_p);
41d27058
JB
5967 char *completion;
5968
5969 if (match == NULL)
5970 return;
5971
5972 /* We found a match, so add the appropriate completion to the given
5973 string vector. */
5974
5975 if (word == orig_text)
5976 {
5977 completion = xmalloc (strlen (match) + 5);
5978 strcpy (completion, match);
5979 }
5980 else if (word > orig_text)
5981 {
5982 /* Return some portion of sym_name. */
5983 completion = xmalloc (strlen (match) + 5);
5984 strcpy (completion, match + (word - orig_text));
5985 }
5986 else
5987 {
5988 /* Return some of ORIG_TEXT plus sym_name. */
5989 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5990 strncpy (completion, word, orig_text - word);
5991 completion[orig_text - word] = '\0';
5992 strcat (completion, match);
5993 }
5994
d6565258 5995 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5996}
5997
ccefe4c4 5998/* An object of this type is passed as the user_data argument to the
bb4142cf 5999 expand_symtabs_matching method. */
ccefe4c4
TT
6000struct add_partial_datum
6001{
6002 VEC(char_ptr) **completions;
6f937416 6003 const char *text;
ccefe4c4 6004 int text_len;
6f937416
PA
6005 const char *text0;
6006 const char *word;
ccefe4c4
TT
6007 int wild_match;
6008 int encoded;
6009};
6010
bb4142cf
DE
6011/* A callback for expand_symtabs_matching. */
6012
7b08b9eb 6013static int
bb4142cf 6014ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6015{
6016 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6017
6018 return symbol_completion_match (name, data->text, data->text_len,
6019 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6020}
6021
49c4e619
TT
6022/* Return a list of possible symbol names completing TEXT0. WORD is
6023 the entire command on which completion is made. */
41d27058 6024
49c4e619 6025static VEC (char_ptr) *
6f937416
PA
6026ada_make_symbol_completion_list (const char *text0, const char *word,
6027 enum type_code code)
41d27058
JB
6028{
6029 char *text;
6030 int text_len;
b1ed564a
JB
6031 int wild_match_p;
6032 int encoded_p;
2ba95b9b 6033 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6034 struct symbol *sym;
6035 struct symtab *s;
41d27058
JB
6036 struct minimal_symbol *msymbol;
6037 struct objfile *objfile;
6038 struct block *b, *surrounding_static_block = 0;
6039 int i;
8157b174 6040 struct block_iterator iter;
b8fea896 6041 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6042
2f68a895
TT
6043 gdb_assert (code == TYPE_CODE_UNDEF);
6044
41d27058
JB
6045 if (text0[0] == '<')
6046 {
6047 text = xstrdup (text0);
6048 make_cleanup (xfree, text);
6049 text_len = strlen (text);
b1ed564a
JB
6050 wild_match_p = 0;
6051 encoded_p = 1;
41d27058
JB
6052 }
6053 else
6054 {
6055 text = xstrdup (ada_encode (text0));
6056 make_cleanup (xfree, text);
6057 text_len = strlen (text);
6058 for (i = 0; i < text_len; i++)
6059 text[i] = tolower (text[i]);
6060
b1ed564a 6061 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6062 /* If the name contains a ".", then the user is entering a fully
6063 qualified entity name, and the match must not be done in wild
6064 mode. Similarly, if the user wants to complete what looks like
6065 an encoded name, the match must not be done in wild mode. */
b1ed564a 6066 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6067 }
6068
6069 /* First, look at the partial symtab symbols. */
41d27058 6070 {
ccefe4c4
TT
6071 struct add_partial_datum data;
6072
6073 data.completions = &completions;
6074 data.text = text;
6075 data.text_len = text_len;
6076 data.text0 = text0;
6077 data.word = word;
b1ed564a
JB
6078 data.wild_match = wild_match_p;
6079 data.encoded = encoded_p;
bb4142cf
DE
6080 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6081 &data);
41d27058
JB
6082 }
6083
6084 /* At this point scan through the misc symbol vectors and add each
6085 symbol you find to the list. Eventually we want to ignore
6086 anything that isn't a text symbol (everything else will be
6087 handled by the psymtab code above). */
6088
6089 ALL_MSYMBOLS (objfile, msymbol)
6090 {
6091 QUIT;
d6565258 6092 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6093 text, text_len, text0, word, wild_match_p,
6094 encoded_p);
41d27058
JB
6095 }
6096
6097 /* Search upwards from currently selected frame (so that we can
6098 complete on local vars. */
6099
6100 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6101 {
6102 if (!BLOCK_SUPERBLOCK (b))
6103 surrounding_static_block = b; /* For elmin of dups */
6104
6105 ALL_BLOCK_SYMBOLS (b, iter, sym)
6106 {
d6565258 6107 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6108 text, text_len, text0, word,
b1ed564a 6109 wild_match_p, encoded_p);
41d27058
JB
6110 }
6111 }
6112
6113 /* Go through the symtabs and check the externs and statics for
6114 symbols which match. */
6115
6116 ALL_SYMTABS (objfile, s)
6117 {
6118 QUIT;
6119 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6120 ALL_BLOCK_SYMBOLS (b, iter, sym)
6121 {
d6565258 6122 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6123 text, text_len, text0, word,
b1ed564a 6124 wild_match_p, encoded_p);
41d27058
JB
6125 }
6126 }
6127
6128 ALL_SYMTABS (objfile, s)
6129 {
6130 QUIT;
6131 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6132 /* Don't do this block twice. */
6133 if (b == surrounding_static_block)
6134 continue;
6135 ALL_BLOCK_SYMBOLS (b, iter, sym)
6136 {
d6565258 6137 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6138 text, text_len, text0, word,
b1ed564a 6139 wild_match_p, encoded_p);
41d27058
JB
6140 }
6141 }
6142
b8fea896 6143 do_cleanups (old_chain);
49c4e619 6144 return completions;
41d27058
JB
6145}
6146
963a6417 6147 /* Field Access */
96d887e8 6148
73fb9985
JB
6149/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6150 for tagged types. */
6151
6152static int
6153ada_is_dispatch_table_ptr_type (struct type *type)
6154{
0d5cff50 6155 const char *name;
73fb9985
JB
6156
6157 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6158 return 0;
6159
6160 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6161 if (name == NULL)
6162 return 0;
6163
6164 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6165}
6166
ac4a2da4
JG
6167/* Return non-zero if TYPE is an interface tag. */
6168
6169static int
6170ada_is_interface_tag (struct type *type)
6171{
6172 const char *name = TYPE_NAME (type);
6173
6174 if (name == NULL)
6175 return 0;
6176
6177 return (strcmp (name, "ada__tags__interface_tag") == 0);
6178}
6179
963a6417
PH
6180/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6181 to be invisible to users. */
96d887e8 6182
963a6417
PH
6183int
6184ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6185{
963a6417
PH
6186 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6187 return 1;
ffde82bf 6188
73fb9985
JB
6189 /* Check the name of that field. */
6190 {
6191 const char *name = TYPE_FIELD_NAME (type, field_num);
6192
6193 /* Anonymous field names should not be printed.
6194 brobecker/2007-02-20: I don't think this can actually happen
6195 but we don't want to print the value of annonymous fields anyway. */
6196 if (name == NULL)
6197 return 1;
6198
ffde82bf
JB
6199 /* Normally, fields whose name start with an underscore ("_")
6200 are fields that have been internally generated by the compiler,
6201 and thus should not be printed. The "_parent" field is special,
6202 however: This is a field internally generated by the compiler
6203 for tagged types, and it contains the components inherited from
6204 the parent type. This field should not be printed as is, but
6205 should not be ignored either. */
73fb9985
JB
6206 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6207 return 1;
6208 }
6209
ac4a2da4
JG
6210 /* If this is the dispatch table of a tagged type or an interface tag,
6211 then ignore. */
73fb9985 6212 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6213 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6214 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6215 return 1;
6216
6217 /* Not a special field, so it should not be ignored. */
6218 return 0;
963a6417 6219}
96d887e8 6220
963a6417 6221/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6222 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6223
963a6417
PH
6224int
6225ada_is_tagged_type (struct type *type, int refok)
6226{
6227 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6228}
96d887e8 6229
963a6417 6230/* True iff TYPE represents the type of X'Tag */
96d887e8 6231
963a6417
PH
6232int
6233ada_is_tag_type (struct type *type)
6234{
6235 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6236 return 0;
6237 else
96d887e8 6238 {
963a6417 6239 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6240
963a6417
PH
6241 return (name != NULL
6242 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6243 }
96d887e8
PH
6244}
6245
963a6417 6246/* The type of the tag on VAL. */
76a01679 6247
963a6417
PH
6248struct type *
6249ada_tag_type (struct value *val)
96d887e8 6250{
df407dfe 6251 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6252}
96d887e8 6253
b50d69b5
JG
6254/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6255 retired at Ada 05). */
6256
6257static int
6258is_ada95_tag (struct value *tag)
6259{
6260 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6261}
6262
963a6417 6263/* The value of the tag on VAL. */
96d887e8 6264
963a6417
PH
6265struct value *
6266ada_value_tag (struct value *val)
6267{
03ee6b2e 6268 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6269}
6270
963a6417
PH
6271/* The value of the tag on the object of type TYPE whose contents are
6272 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6273 ADDRESS. */
96d887e8 6274
963a6417 6275static struct value *
10a2c479 6276value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6277 const gdb_byte *valaddr,
963a6417 6278 CORE_ADDR address)
96d887e8 6279{
b5385fc0 6280 int tag_byte_offset;
963a6417 6281 struct type *tag_type;
5b4ee69b 6282
963a6417 6283 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6284 NULL, NULL, NULL))
96d887e8 6285 {
fc1a4b47 6286 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6287 ? NULL
6288 : valaddr + tag_byte_offset);
963a6417 6289 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6290
963a6417 6291 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6292 }
963a6417
PH
6293 return NULL;
6294}
96d887e8 6295
963a6417
PH
6296static struct type *
6297type_from_tag (struct value *tag)
6298{
6299 const char *type_name = ada_tag_name (tag);
5b4ee69b 6300
963a6417
PH
6301 if (type_name != NULL)
6302 return ada_find_any_type (ada_encode (type_name));
6303 return NULL;
6304}
96d887e8 6305
b50d69b5
JG
6306/* Given a value OBJ of a tagged type, return a value of this
6307 type at the base address of the object. The base address, as
6308 defined in Ada.Tags, it is the address of the primary tag of
6309 the object, and therefore where the field values of its full
6310 view can be fetched. */
6311
6312struct value *
6313ada_tag_value_at_base_address (struct value *obj)
6314{
6315 volatile struct gdb_exception e;
6316 struct value *val;
6317 LONGEST offset_to_top = 0;
6318 struct type *ptr_type, *obj_type;
6319 struct value *tag;
6320 CORE_ADDR base_address;
6321
6322 obj_type = value_type (obj);
6323
6324 /* It is the responsability of the caller to deref pointers. */
6325
6326 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6327 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6328 return obj;
6329
6330 tag = ada_value_tag (obj);
6331 if (!tag)
6332 return obj;
6333
6334 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6335
6336 if (is_ada95_tag (tag))
6337 return obj;
6338
6339 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6340 ptr_type = lookup_pointer_type (ptr_type);
6341 val = value_cast (ptr_type, tag);
6342 if (!val)
6343 return obj;
6344
6345 /* It is perfectly possible that an exception be raised while
6346 trying to determine the base address, just like for the tag;
6347 see ada_tag_name for more details. We do not print the error
6348 message for the same reason. */
6349
6350 TRY_CATCH (e, RETURN_MASK_ERROR)
6351 {
6352 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6353 }
6354
6355 if (e.reason < 0)
6356 return obj;
6357
6358 /* If offset is null, nothing to do. */
6359
6360 if (offset_to_top == 0)
6361 return obj;
6362
6363 /* -1 is a special case in Ada.Tags; however, what should be done
6364 is not quite clear from the documentation. So do nothing for
6365 now. */
6366
6367 if (offset_to_top == -1)
6368 return obj;
6369
6370 base_address = value_address (obj) - offset_to_top;
6371 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6372
6373 /* Make sure that we have a proper tag at the new address.
6374 Otherwise, offset_to_top is bogus (which can happen when
6375 the object is not initialized yet). */
6376
6377 if (!tag)
6378 return obj;
6379
6380 obj_type = type_from_tag (tag);
6381
6382 if (!obj_type)
6383 return obj;
6384
6385 return value_from_contents_and_address (obj_type, NULL, base_address);
6386}
6387
1b611343
JB
6388/* Return the "ada__tags__type_specific_data" type. */
6389
6390static struct type *
6391ada_get_tsd_type (struct inferior *inf)
963a6417 6392{
1b611343 6393 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6394
1b611343
JB
6395 if (data->tsd_type == 0)
6396 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6397 return data->tsd_type;
6398}
529cad9c 6399
1b611343
JB
6400/* Return the TSD (type-specific data) associated to the given TAG.
6401 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6402
1b611343 6403 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6404
1b611343
JB
6405static struct value *
6406ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6407{
4c4b4cd2 6408 struct value *val;
1b611343 6409 struct type *type;
5b4ee69b 6410
1b611343
JB
6411 /* First option: The TSD is simply stored as a field of our TAG.
6412 Only older versions of GNAT would use this format, but we have
6413 to test it first, because there are no visible markers for
6414 the current approach except the absence of that field. */
529cad9c 6415
1b611343
JB
6416 val = ada_value_struct_elt (tag, "tsd", 1);
6417 if (val)
6418 return val;
e802dbe0 6419
1b611343
JB
6420 /* Try the second representation for the dispatch table (in which
6421 there is no explicit 'tsd' field in the referent of the tag pointer,
6422 and instead the tsd pointer is stored just before the dispatch
6423 table. */
e802dbe0 6424
1b611343
JB
6425 type = ada_get_tsd_type (current_inferior());
6426 if (type == NULL)
6427 return NULL;
6428 type = lookup_pointer_type (lookup_pointer_type (type));
6429 val = value_cast (type, tag);
6430 if (val == NULL)
6431 return NULL;
6432 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6433}
6434
1b611343
JB
6435/* Given the TSD of a tag (type-specific data), return a string
6436 containing the name of the associated type.
6437
6438 The returned value is good until the next call. May return NULL
6439 if we are unable to determine the tag name. */
6440
6441static char *
6442ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6443{
529cad9c
PH
6444 static char name[1024];
6445 char *p;
1b611343 6446 struct value *val;
529cad9c 6447
1b611343 6448 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6449 if (val == NULL)
1b611343 6450 return NULL;
4c4b4cd2
PH
6451 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6452 for (p = name; *p != '\0'; p += 1)
6453 if (isalpha (*p))
6454 *p = tolower (*p);
1b611343 6455 return name;
4c4b4cd2
PH
6456}
6457
6458/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6459 a C string.
6460
6461 Return NULL if the TAG is not an Ada tag, or if we were unable to
6462 determine the name of that tag. The result is good until the next
6463 call. */
4c4b4cd2
PH
6464
6465const char *
6466ada_tag_name (struct value *tag)
6467{
1b611343
JB
6468 volatile struct gdb_exception e;
6469 char *name = NULL;
5b4ee69b 6470
df407dfe 6471 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6472 return NULL;
1b611343
JB
6473
6474 /* It is perfectly possible that an exception be raised while trying
6475 to determine the TAG's name, even under normal circumstances:
6476 The associated variable may be uninitialized or corrupted, for
6477 instance. We do not let any exception propagate past this point.
6478 instead we return NULL.
6479
6480 We also do not print the error message either (which often is very
6481 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6482 the caller print a more meaningful message if necessary. */
6483 TRY_CATCH (e, RETURN_MASK_ERROR)
6484 {
6485 struct value *tsd = ada_get_tsd_from_tag (tag);
6486
6487 if (tsd != NULL)
6488 name = ada_tag_name_from_tsd (tsd);
6489 }
6490
6491 return name;
4c4b4cd2
PH
6492}
6493
6494/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6495
d2e4a39e 6496struct type *
ebf56fd3 6497ada_parent_type (struct type *type)
14f9c5c9
AS
6498{
6499 int i;
6500
61ee279c 6501 type = ada_check_typedef (type);
14f9c5c9
AS
6502
6503 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6504 return NULL;
6505
6506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6507 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6508 {
6509 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6510
6511 /* If the _parent field is a pointer, then dereference it. */
6512 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6513 parent_type = TYPE_TARGET_TYPE (parent_type);
6514 /* If there is a parallel XVS type, get the actual base type. */
6515 parent_type = ada_get_base_type (parent_type);
6516
6517 return ada_check_typedef (parent_type);
6518 }
14f9c5c9
AS
6519
6520 return NULL;
6521}
6522
4c4b4cd2
PH
6523/* True iff field number FIELD_NUM of structure type TYPE contains the
6524 parent-type (inherited) fields of a derived type. Assumes TYPE is
6525 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6526
6527int
ebf56fd3 6528ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6529{
61ee279c 6530 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6531
4c4b4cd2
PH
6532 return (name != NULL
6533 && (strncmp (name, "PARENT", 6) == 0
6534 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6535}
6536
4c4b4cd2 6537/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6538 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6539 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6540 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6541 structures. */
14f9c5c9
AS
6542
6543int
ebf56fd3 6544ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6545{
d2e4a39e 6546 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6547
d2e4a39e 6548 return (name != NULL
4c4b4cd2
PH
6549 && (strncmp (name, "PARENT", 6) == 0
6550 || strcmp (name, "REP") == 0
6551 || strncmp (name, "_parent", 7) == 0
6552 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6553}
6554
4c4b4cd2
PH
6555/* True iff field number FIELD_NUM of structure or union type TYPE
6556 is a variant wrapper. Assumes TYPE is a structure type with at least
6557 FIELD_NUM+1 fields. */
14f9c5c9
AS
6558
6559int
ebf56fd3 6560ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6561{
d2e4a39e 6562 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6563
14f9c5c9 6564 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6565 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6566 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6567 == TYPE_CODE_UNION)));
14f9c5c9
AS
6568}
6569
6570/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6571 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6572 returns the type of the controlling discriminant for the variant.
6573 May return NULL if the type could not be found. */
14f9c5c9 6574
d2e4a39e 6575struct type *
ebf56fd3 6576ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6577{
d2e4a39e 6578 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6579
7c964f07 6580 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6581}
6582
4c4b4cd2 6583/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6584 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6585 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6586
6587int
ebf56fd3 6588ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6589{
d2e4a39e 6590 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6591
14f9c5c9
AS
6592 return (name != NULL && name[0] == 'O');
6593}
6594
6595/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6596 returns the name of the discriminant controlling the variant.
6597 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6598
d2e4a39e 6599char *
ebf56fd3 6600ada_variant_discrim_name (struct type *type0)
14f9c5c9 6601{
d2e4a39e 6602 static char *result = NULL;
14f9c5c9 6603 static size_t result_len = 0;
d2e4a39e
AS
6604 struct type *type;
6605 const char *name;
6606 const char *discrim_end;
6607 const char *discrim_start;
14f9c5c9
AS
6608
6609 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6610 type = TYPE_TARGET_TYPE (type0);
6611 else
6612 type = type0;
6613
6614 name = ada_type_name (type);
6615
6616 if (name == NULL || name[0] == '\000')
6617 return "";
6618
6619 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6620 discrim_end -= 1)
6621 {
4c4b4cd2
PH
6622 if (strncmp (discrim_end, "___XVN", 6) == 0)
6623 break;
14f9c5c9
AS
6624 }
6625 if (discrim_end == name)
6626 return "";
6627
d2e4a39e 6628 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6629 discrim_start -= 1)
6630 {
d2e4a39e 6631 if (discrim_start == name + 1)
4c4b4cd2 6632 return "";
76a01679 6633 if ((discrim_start > name + 3
4c4b4cd2
PH
6634 && strncmp (discrim_start - 3, "___", 3) == 0)
6635 || discrim_start[-1] == '.')
6636 break;
14f9c5c9
AS
6637 }
6638
6639 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6640 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6641 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6642 return result;
6643}
6644
4c4b4cd2
PH
6645/* Scan STR for a subtype-encoded number, beginning at position K.
6646 Put the position of the character just past the number scanned in
6647 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6648 Return 1 if there was a valid number at the given position, and 0
6649 otherwise. A "subtype-encoded" number consists of the absolute value
6650 in decimal, followed by the letter 'm' to indicate a negative number.
6651 Assumes 0m does not occur. */
14f9c5c9
AS
6652
6653int
d2e4a39e 6654ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6655{
6656 ULONGEST RU;
6657
d2e4a39e 6658 if (!isdigit (str[k]))
14f9c5c9
AS
6659 return 0;
6660
4c4b4cd2 6661 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6662 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6663 LONGEST. */
14f9c5c9
AS
6664 RU = 0;
6665 while (isdigit (str[k]))
6666 {
d2e4a39e 6667 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6668 k += 1;
6669 }
6670
d2e4a39e 6671 if (str[k] == 'm')
14f9c5c9
AS
6672 {
6673 if (R != NULL)
4c4b4cd2 6674 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6675 k += 1;
6676 }
6677 else if (R != NULL)
6678 *R = (LONGEST) RU;
6679
4c4b4cd2 6680 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6681 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6682 number representable as a LONGEST (although either would probably work
6683 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6684 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6685
6686 if (new_k != NULL)
6687 *new_k = k;
6688 return 1;
6689}
6690
4c4b4cd2
PH
6691/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6692 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6693 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6694
d2e4a39e 6695int
ebf56fd3 6696ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6697{
d2e4a39e 6698 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6699 int p;
6700
6701 p = 0;
6702 while (1)
6703 {
d2e4a39e 6704 switch (name[p])
4c4b4cd2
PH
6705 {
6706 case '\0':
6707 return 0;
6708 case 'S':
6709 {
6710 LONGEST W;
5b4ee69b 6711
4c4b4cd2
PH
6712 if (!ada_scan_number (name, p + 1, &W, &p))
6713 return 0;
6714 if (val == W)
6715 return 1;
6716 break;
6717 }
6718 case 'R':
6719 {
6720 LONGEST L, U;
5b4ee69b 6721
4c4b4cd2
PH
6722 if (!ada_scan_number (name, p + 1, &L, &p)
6723 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6724 return 0;
6725 if (val >= L && val <= U)
6726 return 1;
6727 break;
6728 }
6729 case 'O':
6730 return 1;
6731 default:
6732 return 0;
6733 }
6734 }
6735}
6736
0963b4bd 6737/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6738
6739/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6740 ARG_TYPE, extract and return the value of one of its (non-static)
6741 fields. FIELDNO says which field. Differs from value_primitive_field
6742 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6743
4c4b4cd2 6744static struct value *
d2e4a39e 6745ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6746 struct type *arg_type)
14f9c5c9 6747{
14f9c5c9
AS
6748 struct type *type;
6749
61ee279c 6750 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6751 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6752
4c4b4cd2 6753 /* Handle packed fields. */
14f9c5c9
AS
6754
6755 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6756 {
6757 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6758 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6759
0fd88904 6760 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6761 offset + bit_pos / 8,
6762 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6763 }
6764 else
6765 return value_primitive_field (arg1, offset, fieldno, arg_type);
6766}
6767
52ce6436
PH
6768/* Find field with name NAME in object of type TYPE. If found,
6769 set the following for each argument that is non-null:
6770 - *FIELD_TYPE_P to the field's type;
6771 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6772 an object of that type;
6773 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6774 - *BIT_SIZE_P to its size in bits if the field is packed, and
6775 0 otherwise;
6776 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6777 fields up to but not including the desired field, or by the total
6778 number of fields if not found. A NULL value of NAME never
6779 matches; the function just counts visible fields in this case.
6780
0963b4bd 6781 Returns 1 if found, 0 otherwise. */
52ce6436 6782
4c4b4cd2 6783static int
0d5cff50 6784find_struct_field (const char *name, struct type *type, int offset,
76a01679 6785 struct type **field_type_p,
52ce6436
PH
6786 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6787 int *index_p)
4c4b4cd2
PH
6788{
6789 int i;
6790
61ee279c 6791 type = ada_check_typedef (type);
76a01679 6792
52ce6436
PH
6793 if (field_type_p != NULL)
6794 *field_type_p = NULL;
6795 if (byte_offset_p != NULL)
d5d6fca5 6796 *byte_offset_p = 0;
52ce6436
PH
6797 if (bit_offset_p != NULL)
6798 *bit_offset_p = 0;
6799 if (bit_size_p != NULL)
6800 *bit_size_p = 0;
6801
6802 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6803 {
6804 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6805 int fld_offset = offset + bit_pos / 8;
0d5cff50 6806 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6807
4c4b4cd2
PH
6808 if (t_field_name == NULL)
6809 continue;
6810
52ce6436 6811 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6812 {
6813 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6814
52ce6436
PH
6815 if (field_type_p != NULL)
6816 *field_type_p = TYPE_FIELD_TYPE (type, i);
6817 if (byte_offset_p != NULL)
6818 *byte_offset_p = fld_offset;
6819 if (bit_offset_p != NULL)
6820 *bit_offset_p = bit_pos % 8;
6821 if (bit_size_p != NULL)
6822 *bit_size_p = bit_size;
76a01679
JB
6823 return 1;
6824 }
4c4b4cd2
PH
6825 else if (ada_is_wrapper_field (type, i))
6826 {
52ce6436
PH
6827 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6828 field_type_p, byte_offset_p, bit_offset_p,
6829 bit_size_p, index_p))
76a01679
JB
6830 return 1;
6831 }
4c4b4cd2
PH
6832 else if (ada_is_variant_part (type, i))
6833 {
52ce6436
PH
6834 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6835 fixed type?? */
4c4b4cd2 6836 int j;
52ce6436
PH
6837 struct type *field_type
6838 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6839
52ce6436 6840 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6841 {
76a01679
JB
6842 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6843 fld_offset
6844 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6845 field_type_p, byte_offset_p,
52ce6436 6846 bit_offset_p, bit_size_p, index_p))
76a01679 6847 return 1;
4c4b4cd2
PH
6848 }
6849 }
52ce6436
PH
6850 else if (index_p != NULL)
6851 *index_p += 1;
4c4b4cd2
PH
6852 }
6853 return 0;
6854}
6855
0963b4bd 6856/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6857
52ce6436
PH
6858static int
6859num_visible_fields (struct type *type)
6860{
6861 int n;
5b4ee69b 6862
52ce6436
PH
6863 n = 0;
6864 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6865 return n;
6866}
14f9c5c9 6867
4c4b4cd2 6868/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6869 and search in it assuming it has (class) type TYPE.
6870 If found, return value, else return NULL.
6871
4c4b4cd2 6872 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6873
4c4b4cd2 6874static struct value *
d2e4a39e 6875ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6876 struct type *type)
14f9c5c9
AS
6877{
6878 int i;
14f9c5c9 6879
5b4ee69b 6880 type = ada_check_typedef (type);
52ce6436 6881 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6882 {
0d5cff50 6883 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6884
6885 if (t_field_name == NULL)
4c4b4cd2 6886 continue;
14f9c5c9
AS
6887
6888 else if (field_name_match (t_field_name, name))
4c4b4cd2 6889 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6890
6891 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6892 {
0963b4bd 6893 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6894 ada_search_struct_field (name, arg,
6895 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6896 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6897
4c4b4cd2
PH
6898 if (v != NULL)
6899 return v;
6900 }
14f9c5c9
AS
6901
6902 else if (ada_is_variant_part (type, i))
4c4b4cd2 6903 {
0963b4bd 6904 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6905 int j;
5b4ee69b
MS
6906 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6907 i));
4c4b4cd2
PH
6908 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6909
52ce6436 6910 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6911 {
0963b4bd
MS
6912 struct value *v = ada_search_struct_field /* Force line
6913 break. */
06d5cf63
JB
6914 (name, arg,
6915 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6916 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6917
4c4b4cd2
PH
6918 if (v != NULL)
6919 return v;
6920 }
6921 }
14f9c5c9
AS
6922 }
6923 return NULL;
6924}
d2e4a39e 6925
52ce6436
PH
6926static struct value *ada_index_struct_field_1 (int *, struct value *,
6927 int, struct type *);
6928
6929
6930/* Return field #INDEX in ARG, where the index is that returned by
6931 * find_struct_field through its INDEX_P argument. Adjust the address
6932 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6933 * If found, return value, else return NULL. */
52ce6436
PH
6934
6935static struct value *
6936ada_index_struct_field (int index, struct value *arg, int offset,
6937 struct type *type)
6938{
6939 return ada_index_struct_field_1 (&index, arg, offset, type);
6940}
6941
6942
6943/* Auxiliary function for ada_index_struct_field. Like
6944 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6945 * *INDEX_P. */
52ce6436
PH
6946
6947static struct value *
6948ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6949 struct type *type)
6950{
6951 int i;
6952 type = ada_check_typedef (type);
6953
6954 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6955 {
6956 if (TYPE_FIELD_NAME (type, i) == NULL)
6957 continue;
6958 else if (ada_is_wrapper_field (type, i))
6959 {
0963b4bd 6960 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6961 ada_index_struct_field_1 (index_p, arg,
6962 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6963 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6964
52ce6436
PH
6965 if (v != NULL)
6966 return v;
6967 }
6968
6969 else if (ada_is_variant_part (type, i))
6970 {
6971 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6972 find_struct_field. */
52ce6436
PH
6973 error (_("Cannot assign this kind of variant record"));
6974 }
6975 else if (*index_p == 0)
6976 return ada_value_primitive_field (arg, offset, i, type);
6977 else
6978 *index_p -= 1;
6979 }
6980 return NULL;
6981}
6982
4c4b4cd2
PH
6983/* Given ARG, a value of type (pointer or reference to a)*
6984 structure/union, extract the component named NAME from the ultimate
6985 target structure/union and return it as a value with its
f5938064 6986 appropriate type.
14f9c5c9 6987
4c4b4cd2
PH
6988 The routine searches for NAME among all members of the structure itself
6989 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6990 (e.g., '_parent').
6991
03ee6b2e
PH
6992 If NO_ERR, then simply return NULL in case of error, rather than
6993 calling error. */
14f9c5c9 6994
d2e4a39e 6995struct value *
03ee6b2e 6996ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6997{
4c4b4cd2 6998 struct type *t, *t1;
d2e4a39e 6999 struct value *v;
14f9c5c9 7000
4c4b4cd2 7001 v = NULL;
df407dfe 7002 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7003 if (TYPE_CODE (t) == TYPE_CODE_REF)
7004 {
7005 t1 = TYPE_TARGET_TYPE (t);
7006 if (t1 == NULL)
03ee6b2e 7007 goto BadValue;
61ee279c 7008 t1 = ada_check_typedef (t1);
4c4b4cd2 7009 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7010 {
994b9211 7011 arg = coerce_ref (arg);
76a01679
JB
7012 t = t1;
7013 }
4c4b4cd2 7014 }
14f9c5c9 7015
4c4b4cd2
PH
7016 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7017 {
7018 t1 = TYPE_TARGET_TYPE (t);
7019 if (t1 == NULL)
03ee6b2e 7020 goto BadValue;
61ee279c 7021 t1 = ada_check_typedef (t1);
4c4b4cd2 7022 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7023 {
7024 arg = value_ind (arg);
7025 t = t1;
7026 }
4c4b4cd2 7027 else
76a01679 7028 break;
4c4b4cd2 7029 }
14f9c5c9 7030
4c4b4cd2 7031 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7032 goto BadValue;
14f9c5c9 7033
4c4b4cd2
PH
7034 if (t1 == t)
7035 v = ada_search_struct_field (name, arg, 0, t);
7036 else
7037 {
7038 int bit_offset, bit_size, byte_offset;
7039 struct type *field_type;
7040 CORE_ADDR address;
7041
76a01679 7042 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7043 address = value_address (ada_value_ind (arg));
4c4b4cd2 7044 else
b50d69b5 7045 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7046
1ed6ede0 7047 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7048 if (find_struct_field (name, t1, 0,
7049 &field_type, &byte_offset, &bit_offset,
52ce6436 7050 &bit_size, NULL))
76a01679
JB
7051 {
7052 if (bit_size != 0)
7053 {
714e53ab
PH
7054 if (TYPE_CODE (t) == TYPE_CODE_REF)
7055 arg = ada_coerce_ref (arg);
7056 else
7057 arg = ada_value_ind (arg);
76a01679
JB
7058 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7059 bit_offset, bit_size,
7060 field_type);
7061 }
7062 else
f5938064 7063 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7064 }
7065 }
7066
03ee6b2e
PH
7067 if (v != NULL || no_err)
7068 return v;
7069 else
323e0a4a 7070 error (_("There is no member named %s."), name);
14f9c5c9 7071
03ee6b2e
PH
7072 BadValue:
7073 if (no_err)
7074 return NULL;
7075 else
0963b4bd
MS
7076 error (_("Attempt to extract a component of "
7077 "a value that is not a record."));
14f9c5c9
AS
7078}
7079
7080/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7081 If DISPP is non-null, add its byte displacement from the beginning of a
7082 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7083 work for packed fields).
7084
7085 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7086 followed by "___".
14f9c5c9 7087
0963b4bd 7088 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7089 be a (pointer or reference)+ to a struct or union, and the
7090 ultimate target type will be searched.
14f9c5c9
AS
7091
7092 Looks recursively into variant clauses and parent types.
7093
4c4b4cd2
PH
7094 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7095 TYPE is not a type of the right kind. */
14f9c5c9 7096
4c4b4cd2 7097static struct type *
76a01679
JB
7098ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7099 int noerr, int *dispp)
14f9c5c9
AS
7100{
7101 int i;
7102
7103 if (name == NULL)
7104 goto BadName;
7105
76a01679 7106 if (refok && type != NULL)
4c4b4cd2
PH
7107 while (1)
7108 {
61ee279c 7109 type = ada_check_typedef (type);
76a01679
JB
7110 if (TYPE_CODE (type) != TYPE_CODE_PTR
7111 && TYPE_CODE (type) != TYPE_CODE_REF)
7112 break;
7113 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7114 }
14f9c5c9 7115
76a01679 7116 if (type == NULL
1265e4aa
JB
7117 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7118 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7119 {
4c4b4cd2 7120 if (noerr)
76a01679 7121 return NULL;
4c4b4cd2 7122 else
76a01679
JB
7123 {
7124 target_terminal_ours ();
7125 gdb_flush (gdb_stdout);
323e0a4a
AC
7126 if (type == NULL)
7127 error (_("Type (null) is not a structure or union type"));
7128 else
7129 {
7130 /* XXX: type_sprint */
7131 fprintf_unfiltered (gdb_stderr, _("Type "));
7132 type_print (type, "", gdb_stderr, -1);
7133 error (_(" is not a structure or union type"));
7134 }
76a01679 7135 }
14f9c5c9
AS
7136 }
7137
7138 type = to_static_fixed_type (type);
7139
7140 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7141 {
0d5cff50 7142 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7143 struct type *t;
7144 int disp;
d2e4a39e 7145
14f9c5c9 7146 if (t_field_name == NULL)
4c4b4cd2 7147 continue;
14f9c5c9
AS
7148
7149 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7150 {
7151 if (dispp != NULL)
7152 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7153 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7154 }
14f9c5c9
AS
7155
7156 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7157 {
7158 disp = 0;
7159 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7160 0, 1, &disp);
7161 if (t != NULL)
7162 {
7163 if (dispp != NULL)
7164 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7165 return t;
7166 }
7167 }
14f9c5c9
AS
7168
7169 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7170 {
7171 int j;
5b4ee69b
MS
7172 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7173 i));
4c4b4cd2
PH
7174
7175 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7176 {
b1f33ddd
JB
7177 /* FIXME pnh 2008/01/26: We check for a field that is
7178 NOT wrapped in a struct, since the compiler sometimes
7179 generates these for unchecked variant types. Revisit
0963b4bd 7180 if the compiler changes this practice. */
0d5cff50 7181 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7182 disp = 0;
b1f33ddd
JB
7183 if (v_field_name != NULL
7184 && field_name_match (v_field_name, name))
7185 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7186 else
0963b4bd
MS
7187 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7188 j),
b1f33ddd
JB
7189 name, 0, 1, &disp);
7190
4c4b4cd2
PH
7191 if (t != NULL)
7192 {
7193 if (dispp != NULL)
7194 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7195 return t;
7196 }
7197 }
7198 }
14f9c5c9
AS
7199
7200 }
7201
7202BadName:
d2e4a39e 7203 if (!noerr)
14f9c5c9
AS
7204 {
7205 target_terminal_ours ();
7206 gdb_flush (gdb_stdout);
323e0a4a
AC
7207 if (name == NULL)
7208 {
7209 /* XXX: type_sprint */
7210 fprintf_unfiltered (gdb_stderr, _("Type "));
7211 type_print (type, "", gdb_stderr, -1);
7212 error (_(" has no component named <null>"));
7213 }
7214 else
7215 {
7216 /* XXX: type_sprint */
7217 fprintf_unfiltered (gdb_stderr, _("Type "));
7218 type_print (type, "", gdb_stderr, -1);
7219 error (_(" has no component named %s"), name);
7220 }
14f9c5c9
AS
7221 }
7222
7223 return NULL;
7224}
7225
b1f33ddd
JB
7226/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7227 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7228 represents an unchecked union (that is, the variant part of a
0963b4bd 7229 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7230
7231static int
7232is_unchecked_variant (struct type *var_type, struct type *outer_type)
7233{
7234 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7235
b1f33ddd
JB
7236 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7237 == NULL);
7238}
7239
7240
14f9c5c9
AS
7241/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7242 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7243 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7244 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7245
d2e4a39e 7246int
ebf56fd3 7247ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7248 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7249{
7250 int others_clause;
7251 int i;
d2e4a39e 7252 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7253 struct value *outer;
7254 struct value *discrim;
14f9c5c9
AS
7255 LONGEST discrim_val;
7256
0c281816
JB
7257 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7258 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7259 if (discrim == NULL)
14f9c5c9 7260 return -1;
0c281816 7261 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7262
7263 others_clause = -1;
7264 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7265 {
7266 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7267 others_clause = i;
14f9c5c9 7268 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7269 return i;
14f9c5c9
AS
7270 }
7271
7272 return others_clause;
7273}
d2e4a39e 7274\f
14f9c5c9
AS
7275
7276
4c4b4cd2 7277 /* Dynamic-Sized Records */
14f9c5c9
AS
7278
7279/* Strategy: The type ostensibly attached to a value with dynamic size
7280 (i.e., a size that is not statically recorded in the debugging
7281 data) does not accurately reflect the size or layout of the value.
7282 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7283 conventional types that are constructed on the fly. */
14f9c5c9
AS
7284
7285/* There is a subtle and tricky problem here. In general, we cannot
7286 determine the size of dynamic records without its data. However,
7287 the 'struct value' data structure, which GDB uses to represent
7288 quantities in the inferior process (the target), requires the size
7289 of the type at the time of its allocation in order to reserve space
7290 for GDB's internal copy of the data. That's why the
7291 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7292 rather than struct value*s.
14f9c5c9
AS
7293
7294 However, GDB's internal history variables ($1, $2, etc.) are
7295 struct value*s containing internal copies of the data that are not, in
7296 general, the same as the data at their corresponding addresses in
7297 the target. Fortunately, the types we give to these values are all
7298 conventional, fixed-size types (as per the strategy described
7299 above), so that we don't usually have to perform the
7300 'to_fixed_xxx_type' conversions to look at their values.
7301 Unfortunately, there is one exception: if one of the internal
7302 history variables is an array whose elements are unconstrained
7303 records, then we will need to create distinct fixed types for each
7304 element selected. */
7305
7306/* The upshot of all of this is that many routines take a (type, host
7307 address, target address) triple as arguments to represent a value.
7308 The host address, if non-null, is supposed to contain an internal
7309 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7310 target at the target address. */
14f9c5c9
AS
7311
7312/* Assuming that VAL0 represents a pointer value, the result of
7313 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7314 dynamic-sized types. */
14f9c5c9 7315
d2e4a39e
AS
7316struct value *
7317ada_value_ind (struct value *val0)
14f9c5c9 7318{
c48db5ca 7319 struct value *val = value_ind (val0);
5b4ee69b 7320
b50d69b5
JG
7321 if (ada_is_tagged_type (value_type (val), 0))
7322 val = ada_tag_value_at_base_address (val);
7323
4c4b4cd2 7324 return ada_to_fixed_value (val);
14f9c5c9
AS
7325}
7326
7327/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7328 qualifiers on VAL0. */
7329
d2e4a39e
AS
7330static struct value *
7331ada_coerce_ref (struct value *val0)
7332{
df407dfe 7333 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7334 {
7335 struct value *val = val0;
5b4ee69b 7336
994b9211 7337 val = coerce_ref (val);
b50d69b5
JG
7338
7339 if (ada_is_tagged_type (value_type (val), 0))
7340 val = ada_tag_value_at_base_address (val);
7341
4c4b4cd2 7342 return ada_to_fixed_value (val);
d2e4a39e
AS
7343 }
7344 else
14f9c5c9
AS
7345 return val0;
7346}
7347
7348/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7349 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7350
7351static unsigned int
ebf56fd3 7352align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7353{
7354 return (off + alignment - 1) & ~(alignment - 1);
7355}
7356
4c4b4cd2 7357/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7358
7359static unsigned int
ebf56fd3 7360field_alignment (struct type *type, int f)
14f9c5c9 7361{
d2e4a39e 7362 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7363 int len;
14f9c5c9
AS
7364 int align_offset;
7365
64a1bf19
JB
7366 /* The field name should never be null, unless the debugging information
7367 is somehow malformed. In this case, we assume the field does not
7368 require any alignment. */
7369 if (name == NULL)
7370 return 1;
7371
7372 len = strlen (name);
7373
4c4b4cd2
PH
7374 if (!isdigit (name[len - 1]))
7375 return 1;
14f9c5c9 7376
d2e4a39e 7377 if (isdigit (name[len - 2]))
14f9c5c9
AS
7378 align_offset = len - 2;
7379 else
7380 align_offset = len - 1;
7381
4c4b4cd2 7382 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7383 return TARGET_CHAR_BIT;
7384
4c4b4cd2
PH
7385 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7386}
7387
852dff6c 7388/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7389
852dff6c
JB
7390static struct symbol *
7391ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7392{
7393 struct symbol *sym;
7394
7395 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7396 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7397 return sym;
7398
7399 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7400 return sym;
14f9c5c9
AS
7401}
7402
dddfab26
UW
7403/* Find a type named NAME. Ignores ambiguity. This routine will look
7404 solely for types defined by debug info, it will not search the GDB
7405 primitive types. */
4c4b4cd2 7406
852dff6c 7407static struct type *
ebf56fd3 7408ada_find_any_type (const char *name)
14f9c5c9 7409{
852dff6c 7410 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7411
14f9c5c9 7412 if (sym != NULL)
dddfab26 7413 return SYMBOL_TYPE (sym);
14f9c5c9 7414
dddfab26 7415 return NULL;
14f9c5c9
AS
7416}
7417
739593e0
JB
7418/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7419 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7420 symbol, in which case it is returned. Otherwise, this looks for
7421 symbols whose name is that of NAME_SYM suffixed with "___XR".
7422 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7423
7424struct symbol *
270140bd 7425ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7426{
739593e0 7427 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7428 struct symbol *sym;
7429
739593e0
JB
7430 if (strstr (name, "___XR") != NULL)
7431 return name_sym;
7432
aeb5907d
JB
7433 sym = find_old_style_renaming_symbol (name, block);
7434
7435 if (sym != NULL)
7436 return sym;
7437
0963b4bd 7438 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7439 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7440 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7441 return sym;
7442 else
7443 return NULL;
7444}
7445
7446static struct symbol *
270140bd 7447find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7448{
7f0df278 7449 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7450 char *rename;
7451
7452 if (function_sym != NULL)
7453 {
7454 /* If the symbol is defined inside a function, NAME is not fully
7455 qualified. This means we need to prepend the function name
7456 as well as adding the ``___XR'' suffix to build the name of
7457 the associated renaming symbol. */
0d5cff50 7458 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7459 /* Function names sometimes contain suffixes used
7460 for instance to qualify nested subprograms. When building
7461 the XR type name, we need to make sure that this suffix is
7462 not included. So do not include any suffix in the function
7463 name length below. */
69fadcdf 7464 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7465 const int rename_len = function_name_len + 2 /* "__" */
7466 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7467
529cad9c 7468 /* Strip the suffix if necessary. */
69fadcdf
JB
7469 ada_remove_trailing_digits (function_name, &function_name_len);
7470 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7471 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7472
4c4b4cd2
PH
7473 /* Library-level functions are a special case, as GNAT adds
7474 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7475 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7476 have this prefix, so we need to skip this prefix if present. */
7477 if (function_name_len > 5 /* "_ada_" */
7478 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7479 {
7480 function_name += 5;
7481 function_name_len -= 5;
7482 }
4c4b4cd2
PH
7483
7484 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7485 strncpy (rename, function_name, function_name_len);
7486 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7487 "__%s___XR", name);
4c4b4cd2
PH
7488 }
7489 else
7490 {
7491 const int rename_len = strlen (name) + 6;
5b4ee69b 7492
4c4b4cd2 7493 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7494 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7495 }
7496
852dff6c 7497 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7498}
7499
14f9c5c9 7500/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7501 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7502 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7503 otherwise return 0. */
7504
14f9c5c9 7505int
d2e4a39e 7506ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7507{
7508 if (type1 == NULL)
7509 return 1;
7510 else if (type0 == NULL)
7511 return 0;
7512 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7513 return 1;
7514 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7515 return 0;
4c4b4cd2
PH
7516 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7517 return 1;
ad82864c 7518 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7519 return 1;
4c4b4cd2
PH
7520 else if (ada_is_array_descriptor_type (type0)
7521 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7522 return 1;
aeb5907d
JB
7523 else
7524 {
7525 const char *type0_name = type_name_no_tag (type0);
7526 const char *type1_name = type_name_no_tag (type1);
7527
7528 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7529 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7530 return 1;
7531 }
14f9c5c9
AS
7532 return 0;
7533}
7534
7535/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7536 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7537
0d5cff50 7538const char *
d2e4a39e 7539ada_type_name (struct type *type)
14f9c5c9 7540{
d2e4a39e 7541 if (type == NULL)
14f9c5c9
AS
7542 return NULL;
7543 else if (TYPE_NAME (type) != NULL)
7544 return TYPE_NAME (type);
7545 else
7546 return TYPE_TAG_NAME (type);
7547}
7548
b4ba55a1
JB
7549/* Search the list of "descriptive" types associated to TYPE for a type
7550 whose name is NAME. */
7551
7552static struct type *
7553find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7554{
7555 struct type *result;
7556
c6044dd1
JB
7557 if (ada_ignore_descriptive_types_p)
7558 return NULL;
7559
b4ba55a1
JB
7560 /* If there no descriptive-type info, then there is no parallel type
7561 to be found. */
7562 if (!HAVE_GNAT_AUX_INFO (type))
7563 return NULL;
7564
7565 result = TYPE_DESCRIPTIVE_TYPE (type);
7566 while (result != NULL)
7567 {
0d5cff50 7568 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7569
7570 if (result_name == NULL)
7571 {
7572 warning (_("unexpected null name on descriptive type"));
7573 return NULL;
7574 }
7575
7576 /* If the names match, stop. */
7577 if (strcmp (result_name, name) == 0)
7578 break;
7579
7580 /* Otherwise, look at the next item on the list, if any. */
7581 if (HAVE_GNAT_AUX_INFO (result))
7582 result = TYPE_DESCRIPTIVE_TYPE (result);
7583 else
7584 result = NULL;
7585 }
7586
7587 /* If we didn't find a match, see whether this is a packed array. With
7588 older compilers, the descriptive type information is either absent or
7589 irrelevant when it comes to packed arrays so the above lookup fails.
7590 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7591 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7592 return ada_find_any_type (name);
7593
7594 return result;
7595}
7596
7597/* Find a parallel type to TYPE with the specified NAME, using the
7598 descriptive type taken from the debugging information, if available,
7599 and otherwise using the (slower) name-based method. */
7600
7601static struct type *
7602ada_find_parallel_type_with_name (struct type *type, const char *name)
7603{
7604 struct type *result = NULL;
7605
7606 if (HAVE_GNAT_AUX_INFO (type))
7607 result = find_parallel_type_by_descriptive_type (type, name);
7608 else
7609 result = ada_find_any_type (name);
7610
7611 return result;
7612}
7613
7614/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7615 SUFFIX to the name of TYPE. */
14f9c5c9 7616
d2e4a39e 7617struct type *
ebf56fd3 7618ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7619{
0d5cff50
DE
7620 char *name;
7621 const char *typename = ada_type_name (type);
14f9c5c9 7622 int len;
d2e4a39e 7623
14f9c5c9
AS
7624 if (typename == NULL)
7625 return NULL;
7626
7627 len = strlen (typename);
7628
b4ba55a1 7629 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7630
7631 strcpy (name, typename);
7632 strcpy (name + len, suffix);
7633
b4ba55a1 7634 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7635}
7636
14f9c5c9 7637/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7638 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7639
d2e4a39e
AS
7640static struct type *
7641dynamic_template_type (struct type *type)
14f9c5c9 7642{
61ee279c 7643 type = ada_check_typedef (type);
14f9c5c9
AS
7644
7645 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7646 || ada_type_name (type) == NULL)
14f9c5c9 7647 return NULL;
d2e4a39e 7648 else
14f9c5c9
AS
7649 {
7650 int len = strlen (ada_type_name (type));
5b4ee69b 7651
4c4b4cd2
PH
7652 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7653 return type;
14f9c5c9 7654 else
4c4b4cd2 7655 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7656 }
7657}
7658
7659/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7660 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7661
d2e4a39e
AS
7662static int
7663is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7664{
7665 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7666
d2e4a39e 7667 return name != NULL
14f9c5c9
AS
7668 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7669 && strstr (name, "___XVL") != NULL;
7670}
7671
4c4b4cd2
PH
7672/* The index of the variant field of TYPE, or -1 if TYPE does not
7673 represent a variant record type. */
14f9c5c9 7674
d2e4a39e 7675static int
4c4b4cd2 7676variant_field_index (struct type *type)
14f9c5c9
AS
7677{
7678 int f;
7679
4c4b4cd2
PH
7680 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7681 return -1;
7682
7683 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7684 {
7685 if (ada_is_variant_part (type, f))
7686 return f;
7687 }
7688 return -1;
14f9c5c9
AS
7689}
7690
4c4b4cd2
PH
7691/* A record type with no fields. */
7692
d2e4a39e 7693static struct type *
e9bb382b 7694empty_record (struct type *template)
14f9c5c9 7695{
e9bb382b 7696 struct type *type = alloc_type_copy (template);
5b4ee69b 7697
14f9c5c9
AS
7698 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7699 TYPE_NFIELDS (type) = 0;
7700 TYPE_FIELDS (type) = NULL;
b1f33ddd 7701 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7702 TYPE_NAME (type) = "<empty>";
7703 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7704 TYPE_LENGTH (type) = 0;
7705 return type;
7706}
7707
7708/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7709 the value of type TYPE at VALADDR or ADDRESS (see comments at
7710 the beginning of this section) VAL according to GNAT conventions.
7711 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7712 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7713 an outer-level type (i.e., as opposed to a branch of a variant.) A
7714 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7715 of the variant.
14f9c5c9 7716
4c4b4cd2
PH
7717 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7718 length are not statically known are discarded. As a consequence,
7719 VALADDR, ADDRESS and DVAL0 are ignored.
7720
7721 NOTE: Limitations: For now, we assume that dynamic fields and
7722 variants occupy whole numbers of bytes. However, they need not be
7723 byte-aligned. */
7724
7725struct type *
10a2c479 7726ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7727 const gdb_byte *valaddr,
4c4b4cd2
PH
7728 CORE_ADDR address, struct value *dval0,
7729 int keep_dynamic_fields)
14f9c5c9 7730{
d2e4a39e
AS
7731 struct value *mark = value_mark ();
7732 struct value *dval;
7733 struct type *rtype;
14f9c5c9 7734 int nfields, bit_len;
4c4b4cd2 7735 int variant_field;
14f9c5c9 7736 long off;
d94e4f4f 7737 int fld_bit_len;
14f9c5c9
AS
7738 int f;
7739
4c4b4cd2
PH
7740 /* Compute the number of fields in this record type that are going
7741 to be processed: unless keep_dynamic_fields, this includes only
7742 fields whose position and length are static will be processed. */
7743 if (keep_dynamic_fields)
7744 nfields = TYPE_NFIELDS (type);
7745 else
7746 {
7747 nfields = 0;
76a01679 7748 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7749 && !ada_is_variant_part (type, nfields)
7750 && !is_dynamic_field (type, nfields))
7751 nfields++;
7752 }
7753
e9bb382b 7754 rtype = alloc_type_copy (type);
14f9c5c9
AS
7755 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7756 INIT_CPLUS_SPECIFIC (rtype);
7757 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7758 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7759 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7760 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7761 TYPE_NAME (rtype) = ada_type_name (type);
7762 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7763 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7764
d2e4a39e
AS
7765 off = 0;
7766 bit_len = 0;
4c4b4cd2
PH
7767 variant_field = -1;
7768
14f9c5c9
AS
7769 for (f = 0; f < nfields; f += 1)
7770 {
6c038f32
PH
7771 off = align_value (off, field_alignment (type, f))
7772 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7773 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7774 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7775
d2e4a39e 7776 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7777 {
7778 variant_field = f;
d94e4f4f 7779 fld_bit_len = 0;
4c4b4cd2 7780 }
14f9c5c9 7781 else if (is_dynamic_field (type, f))
4c4b4cd2 7782 {
284614f0
JB
7783 const gdb_byte *field_valaddr = valaddr;
7784 CORE_ADDR field_address = address;
7785 struct type *field_type =
7786 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7787
4c4b4cd2 7788 if (dval0 == NULL)
b5304971
JG
7789 {
7790 /* rtype's length is computed based on the run-time
7791 value of discriminants. If the discriminants are not
7792 initialized, the type size may be completely bogus and
0963b4bd 7793 GDB may fail to allocate a value for it. So check the
b5304971
JG
7794 size first before creating the value. */
7795 check_size (rtype);
7796 dval = value_from_contents_and_address (rtype, valaddr, address);
7797 }
4c4b4cd2
PH
7798 else
7799 dval = dval0;
7800
284614f0
JB
7801 /* If the type referenced by this field is an aligner type, we need
7802 to unwrap that aligner type, because its size might not be set.
7803 Keeping the aligner type would cause us to compute the wrong
7804 size for this field, impacting the offset of the all the fields
7805 that follow this one. */
7806 if (ada_is_aligner_type (field_type))
7807 {
7808 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7809
7810 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7811 field_address = cond_offset_target (field_address, field_offset);
7812 field_type = ada_aligned_type (field_type);
7813 }
7814
7815 field_valaddr = cond_offset_host (field_valaddr,
7816 off / TARGET_CHAR_BIT);
7817 field_address = cond_offset_target (field_address,
7818 off / TARGET_CHAR_BIT);
7819
7820 /* Get the fixed type of the field. Note that, in this case,
7821 we do not want to get the real type out of the tag: if
7822 the current field is the parent part of a tagged record,
7823 we will get the tag of the object. Clearly wrong: the real
7824 type of the parent is not the real type of the child. We
7825 would end up in an infinite loop. */
7826 field_type = ada_get_base_type (field_type);
7827 field_type = ada_to_fixed_type (field_type, field_valaddr,
7828 field_address, dval, 0);
27f2a97b
JB
7829 /* If the field size is already larger than the maximum
7830 object size, then the record itself will necessarily
7831 be larger than the maximum object size. We need to make
7832 this check now, because the size might be so ridiculously
7833 large (due to an uninitialized variable in the inferior)
7834 that it would cause an overflow when adding it to the
7835 record size. */
7836 check_size (field_type);
284614f0
JB
7837
7838 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7839 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7840 /* The multiplication can potentially overflow. But because
7841 the field length has been size-checked just above, and
7842 assuming that the maximum size is a reasonable value,
7843 an overflow should not happen in practice. So rather than
7844 adding overflow recovery code to this already complex code,
7845 we just assume that it's not going to happen. */
d94e4f4f 7846 fld_bit_len =
4c4b4cd2
PH
7847 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7848 }
14f9c5c9 7849 else
4c4b4cd2 7850 {
5ded5331
JB
7851 /* Note: If this field's type is a typedef, it is important
7852 to preserve the typedef layer.
7853
7854 Otherwise, we might be transforming a typedef to a fat
7855 pointer (encoding a pointer to an unconstrained array),
7856 into a basic fat pointer (encoding an unconstrained
7857 array). As both types are implemented using the same
7858 structure, the typedef is the only clue which allows us
7859 to distinguish between the two options. Stripping it
7860 would prevent us from printing this field appropriately. */
7861 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7862 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7863 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7864 fld_bit_len =
4c4b4cd2
PH
7865 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7866 else
5ded5331
JB
7867 {
7868 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7869
7870 /* We need to be careful of typedefs when computing
7871 the length of our field. If this is a typedef,
7872 get the length of the target type, not the length
7873 of the typedef. */
7874 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7875 field_type = ada_typedef_target_type (field_type);
7876
7877 fld_bit_len =
7878 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7879 }
4c4b4cd2 7880 }
14f9c5c9 7881 if (off + fld_bit_len > bit_len)
4c4b4cd2 7882 bit_len = off + fld_bit_len;
d94e4f4f 7883 off += fld_bit_len;
4c4b4cd2
PH
7884 TYPE_LENGTH (rtype) =
7885 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7886 }
4c4b4cd2
PH
7887
7888 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7889 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7890 the record. This can happen in the presence of representation
7891 clauses. */
7892 if (variant_field >= 0)
7893 {
7894 struct type *branch_type;
7895
7896 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7897
7898 if (dval0 == NULL)
7899 dval = value_from_contents_and_address (rtype, valaddr, address);
7900 else
7901 dval = dval0;
7902
7903 branch_type =
7904 to_fixed_variant_branch_type
7905 (TYPE_FIELD_TYPE (type, variant_field),
7906 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7907 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7908 if (branch_type == NULL)
7909 {
7910 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7911 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7912 TYPE_NFIELDS (rtype) -= 1;
7913 }
7914 else
7915 {
7916 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7917 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7918 fld_bit_len =
7919 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7920 TARGET_CHAR_BIT;
7921 if (off + fld_bit_len > bit_len)
7922 bit_len = off + fld_bit_len;
7923 TYPE_LENGTH (rtype) =
7924 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7925 }
7926 }
7927
714e53ab
PH
7928 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7929 should contain the alignment of that record, which should be a strictly
7930 positive value. If null or negative, then something is wrong, most
7931 probably in the debug info. In that case, we don't round up the size
0963b4bd 7932 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7933 the current RTYPE length might be good enough for our purposes. */
7934 if (TYPE_LENGTH (type) <= 0)
7935 {
323e0a4a
AC
7936 if (TYPE_NAME (rtype))
7937 warning (_("Invalid type size for `%s' detected: %d."),
7938 TYPE_NAME (rtype), TYPE_LENGTH (type));
7939 else
7940 warning (_("Invalid type size for <unnamed> detected: %d."),
7941 TYPE_LENGTH (type));
714e53ab
PH
7942 }
7943 else
7944 {
7945 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7946 TYPE_LENGTH (type));
7947 }
14f9c5c9
AS
7948
7949 value_free_to_mark (mark);
d2e4a39e 7950 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7951 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7952 return rtype;
7953}
7954
4c4b4cd2
PH
7955/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7956 of 1. */
14f9c5c9 7957
d2e4a39e 7958static struct type *
fc1a4b47 7959template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7960 CORE_ADDR address, struct value *dval0)
7961{
7962 return ada_template_to_fixed_record_type_1 (type, valaddr,
7963 address, dval0, 1);
7964}
7965
7966/* An ordinary record type in which ___XVL-convention fields and
7967 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7968 static approximations, containing all possible fields. Uses
7969 no runtime values. Useless for use in values, but that's OK,
7970 since the results are used only for type determinations. Works on both
7971 structs and unions. Representation note: to save space, we memorize
7972 the result of this function in the TYPE_TARGET_TYPE of the
7973 template type. */
7974
7975static struct type *
7976template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7977{
7978 struct type *type;
7979 int nfields;
7980 int f;
7981
4c4b4cd2
PH
7982 if (TYPE_TARGET_TYPE (type0) != NULL)
7983 return TYPE_TARGET_TYPE (type0);
7984
7985 nfields = TYPE_NFIELDS (type0);
7986 type = type0;
14f9c5c9
AS
7987
7988 for (f = 0; f < nfields; f += 1)
7989 {
61ee279c 7990 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7991 struct type *new_type;
14f9c5c9 7992
4c4b4cd2
PH
7993 if (is_dynamic_field (type0, f))
7994 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7995 else
f192137b 7996 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7997 if (type == type0 && new_type != field_type)
7998 {
e9bb382b 7999 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8000 TYPE_CODE (type) = TYPE_CODE (type0);
8001 INIT_CPLUS_SPECIFIC (type);
8002 TYPE_NFIELDS (type) = nfields;
8003 TYPE_FIELDS (type) = (struct field *)
8004 TYPE_ALLOC (type, nfields * sizeof (struct field));
8005 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8006 sizeof (struct field) * nfields);
8007 TYPE_NAME (type) = ada_type_name (type0);
8008 TYPE_TAG_NAME (type) = NULL;
876cecd0 8009 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8010 TYPE_LENGTH (type) = 0;
8011 }
8012 TYPE_FIELD_TYPE (type, f) = new_type;
8013 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8014 }
14f9c5c9
AS
8015 return type;
8016}
8017
4c4b4cd2 8018/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8019 whose address in memory is ADDRESS, returns a revision of TYPE,
8020 which should be a non-dynamic-sized record, in which the variant
8021 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8022 for discriminant values in DVAL0, which can be NULL if the record
8023 contains the necessary discriminant values. */
8024
d2e4a39e 8025static struct type *
fc1a4b47 8026to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8027 CORE_ADDR address, struct value *dval0)
14f9c5c9 8028{
d2e4a39e 8029 struct value *mark = value_mark ();
4c4b4cd2 8030 struct value *dval;
d2e4a39e 8031 struct type *rtype;
14f9c5c9
AS
8032 struct type *branch_type;
8033 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8034 int variant_field = variant_field_index (type);
14f9c5c9 8035
4c4b4cd2 8036 if (variant_field == -1)
14f9c5c9
AS
8037 return type;
8038
4c4b4cd2
PH
8039 if (dval0 == NULL)
8040 dval = value_from_contents_and_address (type, valaddr, address);
8041 else
8042 dval = dval0;
8043
e9bb382b 8044 rtype = alloc_type_copy (type);
14f9c5c9 8045 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8046 INIT_CPLUS_SPECIFIC (rtype);
8047 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8048 TYPE_FIELDS (rtype) =
8049 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8050 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8051 sizeof (struct field) * nfields);
14f9c5c9
AS
8052 TYPE_NAME (rtype) = ada_type_name (type);
8053 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8054 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8055 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8056
4c4b4cd2
PH
8057 branch_type = to_fixed_variant_branch_type
8058 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8059 cond_offset_host (valaddr,
4c4b4cd2
PH
8060 TYPE_FIELD_BITPOS (type, variant_field)
8061 / TARGET_CHAR_BIT),
d2e4a39e 8062 cond_offset_target (address,
4c4b4cd2
PH
8063 TYPE_FIELD_BITPOS (type, variant_field)
8064 / TARGET_CHAR_BIT), dval);
d2e4a39e 8065 if (branch_type == NULL)
14f9c5c9 8066 {
4c4b4cd2 8067 int f;
5b4ee69b 8068
4c4b4cd2
PH
8069 for (f = variant_field + 1; f < nfields; f += 1)
8070 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8071 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8072 }
8073 else
8074 {
4c4b4cd2
PH
8075 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8076 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8077 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8078 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8079 }
4c4b4cd2 8080 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8081
4c4b4cd2 8082 value_free_to_mark (mark);
14f9c5c9
AS
8083 return rtype;
8084}
8085
8086/* An ordinary record type (with fixed-length fields) that describes
8087 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8088 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8089 should be in DVAL, a record value; it may be NULL if the object
8090 at ADDR itself contains any necessary discriminant values.
8091 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8092 values from the record are needed. Except in the case that DVAL,
8093 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8094 unchecked) is replaced by a particular branch of the variant.
8095
8096 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8097 is questionable and may be removed. It can arise during the
8098 processing of an unconstrained-array-of-record type where all the
8099 variant branches have exactly the same size. This is because in
8100 such cases, the compiler does not bother to use the XVS convention
8101 when encoding the record. I am currently dubious of this
8102 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8103
d2e4a39e 8104static struct type *
fc1a4b47 8105to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8106 CORE_ADDR address, struct value *dval)
14f9c5c9 8107{
d2e4a39e 8108 struct type *templ_type;
14f9c5c9 8109
876cecd0 8110 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8111 return type0;
8112
d2e4a39e 8113 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8114
8115 if (templ_type != NULL)
8116 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8117 else if (variant_field_index (type0) >= 0)
8118 {
8119 if (dval == NULL && valaddr == NULL && address == 0)
8120 return type0;
8121 return to_record_with_fixed_variant_part (type0, valaddr, address,
8122 dval);
8123 }
14f9c5c9
AS
8124 else
8125 {
876cecd0 8126 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8127 return type0;
8128 }
8129
8130}
8131
8132/* An ordinary record type (with fixed-length fields) that describes
8133 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8134 union type. Any necessary discriminants' values should be in DVAL,
8135 a record value. That is, this routine selects the appropriate
8136 branch of the union at ADDR according to the discriminant value
b1f33ddd 8137 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8138 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8139
d2e4a39e 8140static struct type *
fc1a4b47 8141to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8142 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8143{
8144 int which;
d2e4a39e
AS
8145 struct type *templ_type;
8146 struct type *var_type;
14f9c5c9
AS
8147
8148 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8149 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8150 else
14f9c5c9
AS
8151 var_type = var_type0;
8152
8153 templ_type = ada_find_parallel_type (var_type, "___XVU");
8154
8155 if (templ_type != NULL)
8156 var_type = templ_type;
8157
b1f33ddd
JB
8158 if (is_unchecked_variant (var_type, value_type (dval)))
8159 return var_type0;
d2e4a39e
AS
8160 which =
8161 ada_which_variant_applies (var_type,
0fd88904 8162 value_type (dval), value_contents (dval));
14f9c5c9
AS
8163
8164 if (which < 0)
e9bb382b 8165 return empty_record (var_type);
14f9c5c9 8166 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8167 return to_fixed_record_type
d2e4a39e
AS
8168 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8169 valaddr, address, dval);
4c4b4cd2 8170 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8171 return
8172 to_fixed_record_type
8173 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8174 else
8175 return TYPE_FIELD_TYPE (var_type, which);
8176}
8177
8178/* Assuming that TYPE0 is an array type describing the type of a value
8179 at ADDR, and that DVAL describes a record containing any
8180 discriminants used in TYPE0, returns a type for the value that
8181 contains no dynamic components (that is, no components whose sizes
8182 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8183 true, gives an error message if the resulting type's size is over
4c4b4cd2 8184 varsize_limit. */
14f9c5c9 8185
d2e4a39e
AS
8186static struct type *
8187to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8188 int ignore_too_big)
14f9c5c9 8189{
d2e4a39e
AS
8190 struct type *index_type_desc;
8191 struct type *result;
ad82864c 8192 int constrained_packed_array_p;
14f9c5c9 8193
b0dd7688 8194 type0 = ada_check_typedef (type0);
284614f0 8195 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8196 return type0;
14f9c5c9 8197
ad82864c
JB
8198 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8199 if (constrained_packed_array_p)
8200 type0 = decode_constrained_packed_array_type (type0);
284614f0 8201
14f9c5c9 8202 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8203 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8204 if (index_type_desc == NULL)
8205 {
61ee279c 8206 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8207
14f9c5c9 8208 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8209 depend on the contents of the array in properly constructed
8210 debugging data. */
529cad9c
PH
8211 /* Create a fixed version of the array element type.
8212 We're not providing the address of an element here,
e1d5a0d2 8213 and thus the actual object value cannot be inspected to do
529cad9c
PH
8214 the conversion. This should not be a problem, since arrays of
8215 unconstrained objects are not allowed. In particular, all
8216 the elements of an array of a tagged type should all be of
8217 the same type specified in the debugging info. No need to
8218 consult the object tag. */
1ed6ede0 8219 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8220
284614f0
JB
8221 /* Make sure we always create a new array type when dealing with
8222 packed array types, since we're going to fix-up the array
8223 type length and element bitsize a little further down. */
ad82864c 8224 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8225 result = type0;
14f9c5c9 8226 else
e9bb382b 8227 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8228 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8229 }
8230 else
8231 {
8232 int i;
8233 struct type *elt_type0;
8234
8235 elt_type0 = type0;
8236 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8237 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8238
8239 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8240 depend on the contents of the array in properly constructed
8241 debugging data. */
529cad9c
PH
8242 /* Create a fixed version of the array element type.
8243 We're not providing the address of an element here,
e1d5a0d2 8244 and thus the actual object value cannot be inspected to do
529cad9c
PH
8245 the conversion. This should not be a problem, since arrays of
8246 unconstrained objects are not allowed. In particular, all
8247 the elements of an array of a tagged type should all be of
8248 the same type specified in the debugging info. No need to
8249 consult the object tag. */
1ed6ede0
JB
8250 result =
8251 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8252
8253 elt_type0 = type0;
14f9c5c9 8254 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8255 {
8256 struct type *range_type =
28c85d6c 8257 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8258
e9bb382b 8259 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8260 result, range_type);
1ce677a4 8261 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8262 }
d2e4a39e 8263 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8264 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8265 }
8266
2e6fda7d
JB
8267 /* We want to preserve the type name. This can be useful when
8268 trying to get the type name of a value that has already been
8269 printed (for instance, if the user did "print VAR; whatis $". */
8270 TYPE_NAME (result) = TYPE_NAME (type0);
8271
ad82864c 8272 if (constrained_packed_array_p)
284614f0
JB
8273 {
8274 /* So far, the resulting type has been created as if the original
8275 type was a regular (non-packed) array type. As a result, the
8276 bitsize of the array elements needs to be set again, and the array
8277 length needs to be recomputed based on that bitsize. */
8278 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8279 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8280
8281 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8282 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8283 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8284 TYPE_LENGTH (result)++;
8285 }
8286
876cecd0 8287 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8288 return result;
d2e4a39e 8289}
14f9c5c9
AS
8290
8291
8292/* A standard type (containing no dynamically sized components)
8293 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8294 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8295 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8296 ADDRESS or in VALADDR contains these discriminants.
8297
1ed6ede0
JB
8298 If CHECK_TAG is not null, in the case of tagged types, this function
8299 attempts to locate the object's tag and use it to compute the actual
8300 type. However, when ADDRESS is null, we cannot use it to determine the
8301 location of the tag, and therefore compute the tagged type's actual type.
8302 So we return the tagged type without consulting the tag. */
529cad9c 8303
f192137b
JB
8304static struct type *
8305ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8306 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8307{
61ee279c 8308 type = ada_check_typedef (type);
d2e4a39e
AS
8309 switch (TYPE_CODE (type))
8310 {
8311 default:
14f9c5c9 8312 return type;
d2e4a39e 8313 case TYPE_CODE_STRUCT:
4c4b4cd2 8314 {
76a01679 8315 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8316 struct type *fixed_record_type =
8317 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8318
529cad9c
PH
8319 /* If STATIC_TYPE is a tagged type and we know the object's address,
8320 then we can determine its tag, and compute the object's actual
0963b4bd 8321 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8322 type (the parent part of the record may have dynamic fields
8323 and the way the location of _tag is expressed may depend on
8324 them). */
529cad9c 8325
1ed6ede0 8326 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8327 {
b50d69b5
JG
8328 struct value *tag =
8329 value_tag_from_contents_and_address
8330 (fixed_record_type,
8331 valaddr,
8332 address);
8333 struct type *real_type = type_from_tag (tag);
8334 struct value *obj =
8335 value_from_contents_and_address (fixed_record_type,
8336 valaddr,
8337 address);
76a01679 8338 if (real_type != NULL)
b50d69b5
JG
8339 return to_fixed_record_type
8340 (real_type, NULL,
8341 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8342 }
4af88198
JB
8343
8344 /* Check to see if there is a parallel ___XVZ variable.
8345 If there is, then it provides the actual size of our type. */
8346 else if (ada_type_name (fixed_record_type) != NULL)
8347 {
0d5cff50 8348 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8349 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8350 int xvz_found = 0;
8351 LONGEST size;
8352
88c15c34 8353 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8354 size = get_int_var_value (xvz_name, &xvz_found);
8355 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8356 {
8357 fixed_record_type = copy_type (fixed_record_type);
8358 TYPE_LENGTH (fixed_record_type) = size;
8359
8360 /* The FIXED_RECORD_TYPE may have be a stub. We have
8361 observed this when the debugging info is STABS, and
8362 apparently it is something that is hard to fix.
8363
8364 In practice, we don't need the actual type definition
8365 at all, because the presence of the XVZ variable allows us
8366 to assume that there must be a XVS type as well, which we
8367 should be able to use later, when we need the actual type
8368 definition.
8369
8370 In the meantime, pretend that the "fixed" type we are
8371 returning is NOT a stub, because this can cause trouble
8372 when using this type to create new types targeting it.
8373 Indeed, the associated creation routines often check
8374 whether the target type is a stub and will try to replace
0963b4bd 8375 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8376 might cause the new type to have the wrong size too.
8377 Consider the case of an array, for instance, where the size
8378 of the array is computed from the number of elements in
8379 our array multiplied by the size of its element. */
8380 TYPE_STUB (fixed_record_type) = 0;
8381 }
8382 }
1ed6ede0 8383 return fixed_record_type;
4c4b4cd2 8384 }
d2e4a39e 8385 case TYPE_CODE_ARRAY:
4c4b4cd2 8386 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8387 case TYPE_CODE_UNION:
8388 if (dval == NULL)
4c4b4cd2 8389 return type;
d2e4a39e 8390 else
4c4b4cd2 8391 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8392 }
14f9c5c9
AS
8393}
8394
f192137b
JB
8395/* The same as ada_to_fixed_type_1, except that it preserves the type
8396 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8397
8398 The typedef layer needs be preserved in order to differentiate between
8399 arrays and array pointers when both types are implemented using the same
8400 fat pointer. In the array pointer case, the pointer is encoded as
8401 a typedef of the pointer type. For instance, considering:
8402
8403 type String_Access is access String;
8404 S1 : String_Access := null;
8405
8406 To the debugger, S1 is defined as a typedef of type String. But
8407 to the user, it is a pointer. So if the user tries to print S1,
8408 we should not dereference the array, but print the array address
8409 instead.
8410
8411 If we didn't preserve the typedef layer, we would lose the fact that
8412 the type is to be presented as a pointer (needs de-reference before
8413 being printed). And we would also use the source-level type name. */
f192137b
JB
8414
8415struct type *
8416ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8417 CORE_ADDR address, struct value *dval, int check_tag)
8418
8419{
8420 struct type *fixed_type =
8421 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8422
96dbd2c1
JB
8423 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8424 then preserve the typedef layer.
8425
8426 Implementation note: We can only check the main-type portion of
8427 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8428 from TYPE now returns a type that has the same instance flags
8429 as TYPE. For instance, if TYPE is a "typedef const", and its
8430 target type is a "struct", then the typedef elimination will return
8431 a "const" version of the target type. See check_typedef for more
8432 details about how the typedef layer elimination is done.
8433
8434 brobecker/2010-11-19: It seems to me that the only case where it is
8435 useful to preserve the typedef layer is when dealing with fat pointers.
8436 Perhaps, we could add a check for that and preserve the typedef layer
8437 only in that situation. But this seems unecessary so far, probably
8438 because we call check_typedef/ada_check_typedef pretty much everywhere.
8439 */
f192137b 8440 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8441 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8442 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8443 return type;
8444
8445 return fixed_type;
8446}
8447
14f9c5c9 8448/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8449 TYPE0, but based on no runtime data. */
14f9c5c9 8450
d2e4a39e
AS
8451static struct type *
8452to_static_fixed_type (struct type *type0)
14f9c5c9 8453{
d2e4a39e 8454 struct type *type;
14f9c5c9
AS
8455
8456 if (type0 == NULL)
8457 return NULL;
8458
876cecd0 8459 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8460 return type0;
8461
61ee279c 8462 type0 = ada_check_typedef (type0);
d2e4a39e 8463
14f9c5c9
AS
8464 switch (TYPE_CODE (type0))
8465 {
8466 default:
8467 return type0;
8468 case TYPE_CODE_STRUCT:
8469 type = dynamic_template_type (type0);
d2e4a39e 8470 if (type != NULL)
4c4b4cd2
PH
8471 return template_to_static_fixed_type (type);
8472 else
8473 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8474 case TYPE_CODE_UNION:
8475 type = ada_find_parallel_type (type0, "___XVU");
8476 if (type != NULL)
4c4b4cd2
PH
8477 return template_to_static_fixed_type (type);
8478 else
8479 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8480 }
8481}
8482
4c4b4cd2
PH
8483/* A static approximation of TYPE with all type wrappers removed. */
8484
d2e4a39e
AS
8485static struct type *
8486static_unwrap_type (struct type *type)
14f9c5c9
AS
8487{
8488 if (ada_is_aligner_type (type))
8489 {
61ee279c 8490 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8491 if (ada_type_name (type1) == NULL)
4c4b4cd2 8492 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8493
8494 return static_unwrap_type (type1);
8495 }
d2e4a39e 8496 else
14f9c5c9 8497 {
d2e4a39e 8498 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8499
d2e4a39e 8500 if (raw_real_type == type)
4c4b4cd2 8501 return type;
14f9c5c9 8502 else
4c4b4cd2 8503 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8504 }
8505}
8506
8507/* In some cases, incomplete and private types require
4c4b4cd2 8508 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8509 type Foo;
8510 type FooP is access Foo;
8511 V: FooP;
8512 type Foo is array ...;
4c4b4cd2 8513 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8514 cross-references to such types, we instead substitute for FooP a
8515 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8516 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8517
8518/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8519 exists, otherwise TYPE. */
8520
d2e4a39e 8521struct type *
61ee279c 8522ada_check_typedef (struct type *type)
14f9c5c9 8523{
727e3d2e
JB
8524 if (type == NULL)
8525 return NULL;
8526
720d1a40
JB
8527 /* If our type is a typedef type of a fat pointer, then we're done.
8528 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8529 what allows us to distinguish between fat pointers that represent
8530 array types, and fat pointers that represent array access types
8531 (in both cases, the compiler implements them as fat pointers). */
8532 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8533 && is_thick_pntr (ada_typedef_target_type (type)))
8534 return type;
8535
14f9c5c9
AS
8536 CHECK_TYPEDEF (type);
8537 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8538 || !TYPE_STUB (type)
14f9c5c9
AS
8539 || TYPE_TAG_NAME (type) == NULL)
8540 return type;
d2e4a39e 8541 else
14f9c5c9 8542 {
0d5cff50 8543 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8544 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8545
05e522ef
JB
8546 if (type1 == NULL)
8547 return type;
8548
8549 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8550 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8551 types, only for the typedef-to-array types). If that's the case,
8552 strip the typedef layer. */
8553 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8554 type1 = ada_check_typedef (type1);
8555
8556 return type1;
14f9c5c9
AS
8557 }
8558}
8559
8560/* A value representing the data at VALADDR/ADDRESS as described by
8561 type TYPE0, but with a standard (static-sized) type that correctly
8562 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8563 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8564 creation of struct values]. */
14f9c5c9 8565
4c4b4cd2
PH
8566static struct value *
8567ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8568 struct value *val0)
14f9c5c9 8569{
1ed6ede0 8570 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8571
14f9c5c9
AS
8572 if (type == type0 && val0 != NULL)
8573 return val0;
d2e4a39e 8574 else
4c4b4cd2
PH
8575 return value_from_contents_and_address (type, 0, address);
8576}
8577
8578/* A value representing VAL, but with a standard (static-sized) type
8579 that correctly describes it. Does not necessarily create a new
8580 value. */
8581
0c3acc09 8582struct value *
4c4b4cd2
PH
8583ada_to_fixed_value (struct value *val)
8584{
c48db5ca
JB
8585 val = unwrap_value (val);
8586 val = ada_to_fixed_value_create (value_type (val),
8587 value_address (val),
8588 val);
8589 return val;
14f9c5c9 8590}
d2e4a39e 8591\f
14f9c5c9 8592
14f9c5c9
AS
8593/* Attributes */
8594
4c4b4cd2
PH
8595/* Table mapping attribute numbers to names.
8596 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8597
d2e4a39e 8598static const char *attribute_names[] = {
14f9c5c9
AS
8599 "<?>",
8600
d2e4a39e 8601 "first",
14f9c5c9
AS
8602 "last",
8603 "length",
8604 "image",
14f9c5c9
AS
8605 "max",
8606 "min",
4c4b4cd2
PH
8607 "modulus",
8608 "pos",
8609 "size",
8610 "tag",
14f9c5c9 8611 "val",
14f9c5c9
AS
8612 0
8613};
8614
d2e4a39e 8615const char *
4c4b4cd2 8616ada_attribute_name (enum exp_opcode n)
14f9c5c9 8617{
4c4b4cd2
PH
8618 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8619 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8620 else
8621 return attribute_names[0];
8622}
8623
4c4b4cd2 8624/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8625
4c4b4cd2
PH
8626static LONGEST
8627pos_atr (struct value *arg)
14f9c5c9 8628{
24209737
PH
8629 struct value *val = coerce_ref (arg);
8630 struct type *type = value_type (val);
14f9c5c9 8631
d2e4a39e 8632 if (!discrete_type_p (type))
323e0a4a 8633 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8634
8635 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8636 {
8637 int i;
24209737 8638 LONGEST v = value_as_long (val);
14f9c5c9 8639
d2e4a39e 8640 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8641 {
14e75d8e 8642 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8643 return i;
8644 }
323e0a4a 8645 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8646 }
8647 else
24209737 8648 return value_as_long (val);
4c4b4cd2
PH
8649}
8650
8651static struct value *
3cb382c9 8652value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8653{
3cb382c9 8654 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8655}
8656
4c4b4cd2 8657/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8658
d2e4a39e
AS
8659static struct value *
8660value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8661{
d2e4a39e 8662 if (!discrete_type_p (type))
323e0a4a 8663 error (_("'VAL only defined on discrete types"));
df407dfe 8664 if (!integer_type_p (value_type (arg)))
323e0a4a 8665 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8666
8667 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8668 {
8669 long pos = value_as_long (arg);
5b4ee69b 8670
14f9c5c9 8671 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8672 error (_("argument to 'VAL out of range"));
14e75d8e 8673 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8674 }
8675 else
8676 return value_from_longest (type, value_as_long (arg));
8677}
14f9c5c9 8678\f
d2e4a39e 8679
4c4b4cd2 8680 /* Evaluation */
14f9c5c9 8681
4c4b4cd2
PH
8682/* True if TYPE appears to be an Ada character type.
8683 [At the moment, this is true only for Character and Wide_Character;
8684 It is a heuristic test that could stand improvement]. */
14f9c5c9 8685
d2e4a39e
AS
8686int
8687ada_is_character_type (struct type *type)
14f9c5c9 8688{
7b9f71f2
JB
8689 const char *name;
8690
8691 /* If the type code says it's a character, then assume it really is,
8692 and don't check any further. */
8693 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8694 return 1;
8695
8696 /* Otherwise, assume it's a character type iff it is a discrete type
8697 with a known character type name. */
8698 name = ada_type_name (type);
8699 return (name != NULL
8700 && (TYPE_CODE (type) == TYPE_CODE_INT
8701 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8702 && (strcmp (name, "character") == 0
8703 || strcmp (name, "wide_character") == 0
5a517ebd 8704 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8705 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8706}
8707
4c4b4cd2 8708/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8709
8710int
ebf56fd3 8711ada_is_string_type (struct type *type)
14f9c5c9 8712{
61ee279c 8713 type = ada_check_typedef (type);
d2e4a39e 8714 if (type != NULL
14f9c5c9 8715 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8716 && (ada_is_simple_array_type (type)
8717 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8718 && ada_array_arity (type) == 1)
8719 {
8720 struct type *elttype = ada_array_element_type (type, 1);
8721
8722 return ada_is_character_type (elttype);
8723 }
d2e4a39e 8724 else
14f9c5c9
AS
8725 return 0;
8726}
8727
5bf03f13
JB
8728/* The compiler sometimes provides a parallel XVS type for a given
8729 PAD type. Normally, it is safe to follow the PAD type directly,
8730 but older versions of the compiler have a bug that causes the offset
8731 of its "F" field to be wrong. Following that field in that case
8732 would lead to incorrect results, but this can be worked around
8733 by ignoring the PAD type and using the associated XVS type instead.
8734
8735 Set to True if the debugger should trust the contents of PAD types.
8736 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8737static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8738
8739/* True if TYPE is a struct type introduced by the compiler to force the
8740 alignment of a value. Such types have a single field with a
4c4b4cd2 8741 distinctive name. */
14f9c5c9
AS
8742
8743int
ebf56fd3 8744ada_is_aligner_type (struct type *type)
14f9c5c9 8745{
61ee279c 8746 type = ada_check_typedef (type);
714e53ab 8747
5bf03f13 8748 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8749 return 0;
8750
14f9c5c9 8751 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8752 && TYPE_NFIELDS (type) == 1
8753 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8754}
8755
8756/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8757 the parallel type. */
14f9c5c9 8758
d2e4a39e
AS
8759struct type *
8760ada_get_base_type (struct type *raw_type)
14f9c5c9 8761{
d2e4a39e
AS
8762 struct type *real_type_namer;
8763 struct type *raw_real_type;
14f9c5c9
AS
8764
8765 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8766 return raw_type;
8767
284614f0
JB
8768 if (ada_is_aligner_type (raw_type))
8769 /* The encoding specifies that we should always use the aligner type.
8770 So, even if this aligner type has an associated XVS type, we should
8771 simply ignore it.
8772
8773 According to the compiler gurus, an XVS type parallel to an aligner
8774 type may exist because of a stabs limitation. In stabs, aligner
8775 types are empty because the field has a variable-sized type, and
8776 thus cannot actually be used as an aligner type. As a result,
8777 we need the associated parallel XVS type to decode the type.
8778 Since the policy in the compiler is to not change the internal
8779 representation based on the debugging info format, we sometimes
8780 end up having a redundant XVS type parallel to the aligner type. */
8781 return raw_type;
8782
14f9c5c9 8783 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8784 if (real_type_namer == NULL
14f9c5c9
AS
8785 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8786 || TYPE_NFIELDS (real_type_namer) != 1)
8787 return raw_type;
8788
f80d3ff2
JB
8789 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8790 {
8791 /* This is an older encoding form where the base type needs to be
8792 looked up by name. We prefer the newer enconding because it is
8793 more efficient. */
8794 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8795 if (raw_real_type == NULL)
8796 return raw_type;
8797 else
8798 return raw_real_type;
8799 }
8800
8801 /* The field in our XVS type is a reference to the base type. */
8802 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8803}
14f9c5c9 8804
4c4b4cd2 8805/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8806
d2e4a39e
AS
8807struct type *
8808ada_aligned_type (struct type *type)
14f9c5c9
AS
8809{
8810 if (ada_is_aligner_type (type))
8811 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8812 else
8813 return ada_get_base_type (type);
8814}
8815
8816
8817/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8818 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8819
fc1a4b47
AC
8820const gdb_byte *
8821ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8822{
d2e4a39e 8823 if (ada_is_aligner_type (type))
14f9c5c9 8824 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8825 valaddr +
8826 TYPE_FIELD_BITPOS (type,
8827 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8828 else
8829 return valaddr;
8830}
8831
4c4b4cd2
PH
8832
8833
14f9c5c9 8834/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8835 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8836const char *
8837ada_enum_name (const char *name)
14f9c5c9 8838{
4c4b4cd2
PH
8839 static char *result;
8840 static size_t result_len = 0;
d2e4a39e 8841 char *tmp;
14f9c5c9 8842
4c4b4cd2
PH
8843 /* First, unqualify the enumeration name:
8844 1. Search for the last '.' character. If we find one, then skip
177b42fe 8845 all the preceding characters, the unqualified name starts
76a01679 8846 right after that dot.
4c4b4cd2 8847 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8848 translates dots into "__". Search forward for double underscores,
8849 but stop searching when we hit an overloading suffix, which is
8850 of the form "__" followed by digits. */
4c4b4cd2 8851
c3e5cd34
PH
8852 tmp = strrchr (name, '.');
8853 if (tmp != NULL)
4c4b4cd2
PH
8854 name = tmp + 1;
8855 else
14f9c5c9 8856 {
4c4b4cd2
PH
8857 while ((tmp = strstr (name, "__")) != NULL)
8858 {
8859 if (isdigit (tmp[2]))
8860 break;
8861 else
8862 name = tmp + 2;
8863 }
14f9c5c9
AS
8864 }
8865
8866 if (name[0] == 'Q')
8867 {
14f9c5c9 8868 int v;
5b4ee69b 8869
14f9c5c9 8870 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8871 {
8872 if (sscanf (name + 2, "%x", &v) != 1)
8873 return name;
8874 }
14f9c5c9 8875 else
4c4b4cd2 8876 return name;
14f9c5c9 8877
4c4b4cd2 8878 GROW_VECT (result, result_len, 16);
14f9c5c9 8879 if (isascii (v) && isprint (v))
88c15c34 8880 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8881 else if (name[1] == 'U')
88c15c34 8882 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8883 else
88c15c34 8884 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8885
8886 return result;
8887 }
d2e4a39e 8888 else
4c4b4cd2 8889 {
c3e5cd34
PH
8890 tmp = strstr (name, "__");
8891 if (tmp == NULL)
8892 tmp = strstr (name, "$");
8893 if (tmp != NULL)
4c4b4cd2
PH
8894 {
8895 GROW_VECT (result, result_len, tmp - name + 1);
8896 strncpy (result, name, tmp - name);
8897 result[tmp - name] = '\0';
8898 return result;
8899 }
8900
8901 return name;
8902 }
14f9c5c9
AS
8903}
8904
14f9c5c9
AS
8905/* Evaluate the subexpression of EXP starting at *POS as for
8906 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8907 expression. */
14f9c5c9 8908
d2e4a39e
AS
8909static struct value *
8910evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8911{
4b27a620 8912 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8913}
8914
8915/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8916 value it wraps. */
14f9c5c9 8917
d2e4a39e
AS
8918static struct value *
8919unwrap_value (struct value *val)
14f9c5c9 8920{
df407dfe 8921 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8922
14f9c5c9
AS
8923 if (ada_is_aligner_type (type))
8924 {
de4d072f 8925 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8926 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8927
14f9c5c9 8928 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8929 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8930
8931 return unwrap_value (v);
8932 }
d2e4a39e 8933 else
14f9c5c9 8934 {
d2e4a39e 8935 struct type *raw_real_type =
61ee279c 8936 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8937
5bf03f13
JB
8938 /* If there is no parallel XVS or XVE type, then the value is
8939 already unwrapped. Return it without further modification. */
8940 if ((type == raw_real_type)
8941 && ada_find_parallel_type (type, "___XVE") == NULL)
8942 return val;
14f9c5c9 8943
d2e4a39e 8944 return
4c4b4cd2
PH
8945 coerce_unspec_val_to_type
8946 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8947 value_address (val),
1ed6ede0 8948 NULL, 1));
14f9c5c9
AS
8949 }
8950}
d2e4a39e
AS
8951
8952static struct value *
8953cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8954{
8955 LONGEST val;
8956
df407dfe 8957 if (type == value_type (arg))
14f9c5c9 8958 return arg;
df407dfe 8959 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8960 val = ada_float_to_fixed (type,
df407dfe 8961 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8962 value_as_long (arg)));
d2e4a39e 8963 else
14f9c5c9 8964 {
a53b7a21 8965 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8966
14f9c5c9
AS
8967 val = ada_float_to_fixed (type, argd);
8968 }
8969
8970 return value_from_longest (type, val);
8971}
8972
d2e4a39e 8973static struct value *
a53b7a21 8974cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8975{
df407dfe 8976 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8977 value_as_long (arg));
5b4ee69b 8978
a53b7a21 8979 return value_from_double (type, val);
14f9c5c9
AS
8980}
8981
d99dcf51
JB
8982/* Given two array types T1 and T2, return nonzero iff both arrays
8983 contain the same number of elements. */
8984
8985static int
8986ada_same_array_size_p (struct type *t1, struct type *t2)
8987{
8988 LONGEST lo1, hi1, lo2, hi2;
8989
8990 /* Get the array bounds in order to verify that the size of
8991 the two arrays match. */
8992 if (!get_array_bounds (t1, &lo1, &hi1)
8993 || !get_array_bounds (t2, &lo2, &hi2))
8994 error (_("unable to determine array bounds"));
8995
8996 /* To make things easier for size comparison, normalize a bit
8997 the case of empty arrays by making sure that the difference
8998 between upper bound and lower bound is always -1. */
8999 if (lo1 > hi1)
9000 hi1 = lo1 - 1;
9001 if (lo2 > hi2)
9002 hi2 = lo2 - 1;
9003
9004 return (hi1 - lo1 == hi2 - lo2);
9005}
9006
9007/* Assuming that VAL is an array of integrals, and TYPE represents
9008 an array with the same number of elements, but with wider integral
9009 elements, return an array "casted" to TYPE. In practice, this
9010 means that the returned array is built by casting each element
9011 of the original array into TYPE's (wider) element type. */
9012
9013static struct value *
9014ada_promote_array_of_integrals (struct type *type, struct value *val)
9015{
9016 struct type *elt_type = TYPE_TARGET_TYPE (type);
9017 LONGEST lo, hi;
9018 struct value *res;
9019 LONGEST i;
9020
9021 /* Verify that both val and type are arrays of scalars, and
9022 that the size of val's elements is smaller than the size
9023 of type's element. */
9024 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9025 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9026 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9027 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9028 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9029 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9030
9031 if (!get_array_bounds (type, &lo, &hi))
9032 error (_("unable to determine array bounds"));
9033
9034 res = allocate_value (type);
9035
9036 /* Promote each array element. */
9037 for (i = 0; i < hi - lo + 1; i++)
9038 {
9039 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9040
9041 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9042 value_contents_all (elt), TYPE_LENGTH (elt_type));
9043 }
9044
9045 return res;
9046}
9047
4c4b4cd2
PH
9048/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9049 return the converted value. */
9050
d2e4a39e
AS
9051static struct value *
9052coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9053{
df407dfe 9054 struct type *type2 = value_type (val);
5b4ee69b 9055
14f9c5c9
AS
9056 if (type == type2)
9057 return val;
9058
61ee279c
PH
9059 type2 = ada_check_typedef (type2);
9060 type = ada_check_typedef (type);
14f9c5c9 9061
d2e4a39e
AS
9062 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9063 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9064 {
9065 val = ada_value_ind (val);
df407dfe 9066 type2 = value_type (val);
14f9c5c9
AS
9067 }
9068
d2e4a39e 9069 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9070 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9071 {
d99dcf51
JB
9072 if (!ada_same_array_size_p (type, type2))
9073 error (_("cannot assign arrays of different length"));
9074
9075 if (is_integral_type (TYPE_TARGET_TYPE (type))
9076 && is_integral_type (TYPE_TARGET_TYPE (type2))
9077 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9078 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9079 {
9080 /* Allow implicit promotion of the array elements to
9081 a wider type. */
9082 return ada_promote_array_of_integrals (type, val);
9083 }
9084
9085 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9086 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9087 error (_("Incompatible types in assignment"));
04624583 9088 deprecated_set_value_type (val, type);
14f9c5c9 9089 }
d2e4a39e 9090 return val;
14f9c5c9
AS
9091}
9092
4c4b4cd2
PH
9093static struct value *
9094ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9095{
9096 struct value *val;
9097 struct type *type1, *type2;
9098 LONGEST v, v1, v2;
9099
994b9211
AC
9100 arg1 = coerce_ref (arg1);
9101 arg2 = coerce_ref (arg2);
18af8284
JB
9102 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9103 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9104
76a01679
JB
9105 if (TYPE_CODE (type1) != TYPE_CODE_INT
9106 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9107 return value_binop (arg1, arg2, op);
9108
76a01679 9109 switch (op)
4c4b4cd2
PH
9110 {
9111 case BINOP_MOD:
9112 case BINOP_DIV:
9113 case BINOP_REM:
9114 break;
9115 default:
9116 return value_binop (arg1, arg2, op);
9117 }
9118
9119 v2 = value_as_long (arg2);
9120 if (v2 == 0)
323e0a4a 9121 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9122
9123 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9124 return value_binop (arg1, arg2, op);
9125
9126 v1 = value_as_long (arg1);
9127 switch (op)
9128 {
9129 case BINOP_DIV:
9130 v = v1 / v2;
76a01679
JB
9131 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9132 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9133 break;
9134 case BINOP_REM:
9135 v = v1 % v2;
76a01679
JB
9136 if (v * v1 < 0)
9137 v -= v2;
4c4b4cd2
PH
9138 break;
9139 default:
9140 /* Should not reach this point. */
9141 v = 0;
9142 }
9143
9144 val = allocate_value (type1);
990a07ab 9145 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9146 TYPE_LENGTH (value_type (val)),
9147 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9148 return val;
9149}
9150
9151static int
9152ada_value_equal (struct value *arg1, struct value *arg2)
9153{
df407dfe
AC
9154 if (ada_is_direct_array_type (value_type (arg1))
9155 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9156 {
f58b38bf
JB
9157 /* Automatically dereference any array reference before
9158 we attempt to perform the comparison. */
9159 arg1 = ada_coerce_ref (arg1);
9160 arg2 = ada_coerce_ref (arg2);
9161
4c4b4cd2
PH
9162 arg1 = ada_coerce_to_simple_array (arg1);
9163 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9164 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9165 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9166 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9167 /* FIXME: The following works only for types whose
76a01679
JB
9168 representations use all bits (no padding or undefined bits)
9169 and do not have user-defined equality. */
9170 return
df407dfe 9171 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9172 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9173 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9174 }
9175 return value_equal (arg1, arg2);
9176}
9177
52ce6436
PH
9178/* Total number of component associations in the aggregate starting at
9179 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9180 OP_AGGREGATE. */
52ce6436
PH
9181
9182static int
9183num_component_specs (struct expression *exp, int pc)
9184{
9185 int n, m, i;
5b4ee69b 9186
52ce6436
PH
9187 m = exp->elts[pc + 1].longconst;
9188 pc += 3;
9189 n = 0;
9190 for (i = 0; i < m; i += 1)
9191 {
9192 switch (exp->elts[pc].opcode)
9193 {
9194 default:
9195 n += 1;
9196 break;
9197 case OP_CHOICES:
9198 n += exp->elts[pc + 1].longconst;
9199 break;
9200 }
9201 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9202 }
9203 return n;
9204}
9205
9206/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9207 component of LHS (a simple array or a record), updating *POS past
9208 the expression, assuming that LHS is contained in CONTAINER. Does
9209 not modify the inferior's memory, nor does it modify LHS (unless
9210 LHS == CONTAINER). */
9211
9212static void
9213assign_component (struct value *container, struct value *lhs, LONGEST index,
9214 struct expression *exp, int *pos)
9215{
9216 struct value *mark = value_mark ();
9217 struct value *elt;
5b4ee69b 9218
52ce6436
PH
9219 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9220 {
22601c15
UW
9221 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9222 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9223
52ce6436
PH
9224 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9225 }
9226 else
9227 {
9228 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9229 elt = ada_to_fixed_value (elt);
52ce6436
PH
9230 }
9231
9232 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9233 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9234 else
9235 value_assign_to_component (container, elt,
9236 ada_evaluate_subexp (NULL, exp, pos,
9237 EVAL_NORMAL));
9238
9239 value_free_to_mark (mark);
9240}
9241
9242/* Assuming that LHS represents an lvalue having a record or array
9243 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9244 of that aggregate's value to LHS, advancing *POS past the
9245 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9246 lvalue containing LHS (possibly LHS itself). Does not modify
9247 the inferior's memory, nor does it modify the contents of
0963b4bd 9248 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9249
9250static struct value *
9251assign_aggregate (struct value *container,
9252 struct value *lhs, struct expression *exp,
9253 int *pos, enum noside noside)
9254{
9255 struct type *lhs_type;
9256 int n = exp->elts[*pos+1].longconst;
9257 LONGEST low_index, high_index;
9258 int num_specs;
9259 LONGEST *indices;
9260 int max_indices, num_indices;
52ce6436 9261 int i;
52ce6436
PH
9262
9263 *pos += 3;
9264 if (noside != EVAL_NORMAL)
9265 {
52ce6436
PH
9266 for (i = 0; i < n; i += 1)
9267 ada_evaluate_subexp (NULL, exp, pos, noside);
9268 return container;
9269 }
9270
9271 container = ada_coerce_ref (container);
9272 if (ada_is_direct_array_type (value_type (container)))
9273 container = ada_coerce_to_simple_array (container);
9274 lhs = ada_coerce_ref (lhs);
9275 if (!deprecated_value_modifiable (lhs))
9276 error (_("Left operand of assignment is not a modifiable lvalue."));
9277
9278 lhs_type = value_type (lhs);
9279 if (ada_is_direct_array_type (lhs_type))
9280 {
9281 lhs = ada_coerce_to_simple_array (lhs);
9282 lhs_type = value_type (lhs);
9283 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9284 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9285 }
9286 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9287 {
9288 low_index = 0;
9289 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9290 }
9291 else
9292 error (_("Left-hand side must be array or record."));
9293
9294 num_specs = num_component_specs (exp, *pos - 3);
9295 max_indices = 4 * num_specs + 4;
9296 indices = alloca (max_indices * sizeof (indices[0]));
9297 indices[0] = indices[1] = low_index - 1;
9298 indices[2] = indices[3] = high_index + 1;
9299 num_indices = 4;
9300
9301 for (i = 0; i < n; i += 1)
9302 {
9303 switch (exp->elts[*pos].opcode)
9304 {
1fbf5ada
JB
9305 case OP_CHOICES:
9306 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9307 &num_indices, max_indices,
9308 low_index, high_index);
9309 break;
9310 case OP_POSITIONAL:
9311 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9312 &num_indices, max_indices,
9313 low_index, high_index);
1fbf5ada
JB
9314 break;
9315 case OP_OTHERS:
9316 if (i != n-1)
9317 error (_("Misplaced 'others' clause"));
9318 aggregate_assign_others (container, lhs, exp, pos, indices,
9319 num_indices, low_index, high_index);
9320 break;
9321 default:
9322 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9323 }
9324 }
9325
9326 return container;
9327}
9328
9329/* Assign into the component of LHS indexed by the OP_POSITIONAL
9330 construct at *POS, updating *POS past the construct, given that
9331 the positions are relative to lower bound LOW, where HIGH is the
9332 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9333 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9334 assign_aggregate. */
52ce6436
PH
9335static void
9336aggregate_assign_positional (struct value *container,
9337 struct value *lhs, struct expression *exp,
9338 int *pos, LONGEST *indices, int *num_indices,
9339 int max_indices, LONGEST low, LONGEST high)
9340{
9341 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9342
9343 if (ind - 1 == high)
e1d5a0d2 9344 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9345 if (ind <= high)
9346 {
9347 add_component_interval (ind, ind, indices, num_indices, max_indices);
9348 *pos += 3;
9349 assign_component (container, lhs, ind, exp, pos);
9350 }
9351 else
9352 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9353}
9354
9355/* Assign into the components of LHS indexed by the OP_CHOICES
9356 construct at *POS, updating *POS past the construct, given that
9357 the allowable indices are LOW..HIGH. Record the indices assigned
9358 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9359 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9360static void
9361aggregate_assign_from_choices (struct value *container,
9362 struct value *lhs, struct expression *exp,
9363 int *pos, LONGEST *indices, int *num_indices,
9364 int max_indices, LONGEST low, LONGEST high)
9365{
9366 int j;
9367 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9368 int choice_pos, expr_pc;
9369 int is_array = ada_is_direct_array_type (value_type (lhs));
9370
9371 choice_pos = *pos += 3;
9372
9373 for (j = 0; j < n_choices; j += 1)
9374 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9375 expr_pc = *pos;
9376 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9377
9378 for (j = 0; j < n_choices; j += 1)
9379 {
9380 LONGEST lower, upper;
9381 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9382
52ce6436
PH
9383 if (op == OP_DISCRETE_RANGE)
9384 {
9385 choice_pos += 1;
9386 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9387 EVAL_NORMAL));
9388 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9389 EVAL_NORMAL));
9390 }
9391 else if (is_array)
9392 {
9393 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9394 EVAL_NORMAL));
9395 upper = lower;
9396 }
9397 else
9398 {
9399 int ind;
0d5cff50 9400 const char *name;
5b4ee69b 9401
52ce6436
PH
9402 switch (op)
9403 {
9404 case OP_NAME:
9405 name = &exp->elts[choice_pos + 2].string;
9406 break;
9407 case OP_VAR_VALUE:
9408 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9409 break;
9410 default:
9411 error (_("Invalid record component association."));
9412 }
9413 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9414 ind = 0;
9415 if (! find_struct_field (name, value_type (lhs), 0,
9416 NULL, NULL, NULL, NULL, &ind))
9417 error (_("Unknown component name: %s."), name);
9418 lower = upper = ind;
9419 }
9420
9421 if (lower <= upper && (lower < low || upper > high))
9422 error (_("Index in component association out of bounds."));
9423
9424 add_component_interval (lower, upper, indices, num_indices,
9425 max_indices);
9426 while (lower <= upper)
9427 {
9428 int pos1;
5b4ee69b 9429
52ce6436
PH
9430 pos1 = expr_pc;
9431 assign_component (container, lhs, lower, exp, &pos1);
9432 lower += 1;
9433 }
9434 }
9435}
9436
9437/* Assign the value of the expression in the OP_OTHERS construct in
9438 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9439 have not been previously assigned. The index intervals already assigned
9440 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9441 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9442static void
9443aggregate_assign_others (struct value *container,
9444 struct value *lhs, struct expression *exp,
9445 int *pos, LONGEST *indices, int num_indices,
9446 LONGEST low, LONGEST high)
9447{
9448 int i;
5ce64950 9449 int expr_pc = *pos + 1;
52ce6436
PH
9450
9451 for (i = 0; i < num_indices - 2; i += 2)
9452 {
9453 LONGEST ind;
5b4ee69b 9454
52ce6436
PH
9455 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9456 {
5ce64950 9457 int localpos;
5b4ee69b 9458
5ce64950
MS
9459 localpos = expr_pc;
9460 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9461 }
9462 }
9463 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9464}
9465
9466/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9467 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9468 modifying *SIZE as needed. It is an error if *SIZE exceeds
9469 MAX_SIZE. The resulting intervals do not overlap. */
9470static void
9471add_component_interval (LONGEST low, LONGEST high,
9472 LONGEST* indices, int *size, int max_size)
9473{
9474 int i, j;
5b4ee69b 9475
52ce6436
PH
9476 for (i = 0; i < *size; i += 2) {
9477 if (high >= indices[i] && low <= indices[i + 1])
9478 {
9479 int kh;
5b4ee69b 9480
52ce6436
PH
9481 for (kh = i + 2; kh < *size; kh += 2)
9482 if (high < indices[kh])
9483 break;
9484 if (low < indices[i])
9485 indices[i] = low;
9486 indices[i + 1] = indices[kh - 1];
9487 if (high > indices[i + 1])
9488 indices[i + 1] = high;
9489 memcpy (indices + i + 2, indices + kh, *size - kh);
9490 *size -= kh - i - 2;
9491 return;
9492 }
9493 else if (high < indices[i])
9494 break;
9495 }
9496
9497 if (*size == max_size)
9498 error (_("Internal error: miscounted aggregate components."));
9499 *size += 2;
9500 for (j = *size-1; j >= i+2; j -= 1)
9501 indices[j] = indices[j - 2];
9502 indices[i] = low;
9503 indices[i + 1] = high;
9504}
9505
6e48bd2c
JB
9506/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9507 is different. */
9508
9509static struct value *
9510ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9511{
9512 if (type == ada_check_typedef (value_type (arg2)))
9513 return arg2;
9514
9515 if (ada_is_fixed_point_type (type))
9516 return (cast_to_fixed (type, arg2));
9517
9518 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9519 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9520
9521 return value_cast (type, arg2);
9522}
9523
284614f0
JB
9524/* Evaluating Ada expressions, and printing their result.
9525 ------------------------------------------------------
9526
21649b50
JB
9527 1. Introduction:
9528 ----------------
9529
284614f0
JB
9530 We usually evaluate an Ada expression in order to print its value.
9531 We also evaluate an expression in order to print its type, which
9532 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9533 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9534 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9535 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9536 similar.
9537
9538 Evaluating expressions is a little more complicated for Ada entities
9539 than it is for entities in languages such as C. The main reason for
9540 this is that Ada provides types whose definition might be dynamic.
9541 One example of such types is variant records. Or another example
9542 would be an array whose bounds can only be known at run time.
9543
9544 The following description is a general guide as to what should be
9545 done (and what should NOT be done) in order to evaluate an expression
9546 involving such types, and when. This does not cover how the semantic
9547 information is encoded by GNAT as this is covered separatly. For the
9548 document used as the reference for the GNAT encoding, see exp_dbug.ads
9549 in the GNAT sources.
9550
9551 Ideally, we should embed each part of this description next to its
9552 associated code. Unfortunately, the amount of code is so vast right
9553 now that it's hard to see whether the code handling a particular
9554 situation might be duplicated or not. One day, when the code is
9555 cleaned up, this guide might become redundant with the comments
9556 inserted in the code, and we might want to remove it.
9557
21649b50
JB
9558 2. ``Fixing'' an Entity, the Simple Case:
9559 -----------------------------------------
9560
284614f0
JB
9561 When evaluating Ada expressions, the tricky issue is that they may
9562 reference entities whose type contents and size are not statically
9563 known. Consider for instance a variant record:
9564
9565 type Rec (Empty : Boolean := True) is record
9566 case Empty is
9567 when True => null;
9568 when False => Value : Integer;
9569 end case;
9570 end record;
9571 Yes : Rec := (Empty => False, Value => 1);
9572 No : Rec := (empty => True);
9573
9574 The size and contents of that record depends on the value of the
9575 descriminant (Rec.Empty). At this point, neither the debugging
9576 information nor the associated type structure in GDB are able to
9577 express such dynamic types. So what the debugger does is to create
9578 "fixed" versions of the type that applies to the specific object.
9579 We also informally refer to this opperation as "fixing" an object,
9580 which means creating its associated fixed type.
9581
9582 Example: when printing the value of variable "Yes" above, its fixed
9583 type would look like this:
9584
9585 type Rec is record
9586 Empty : Boolean;
9587 Value : Integer;
9588 end record;
9589
9590 On the other hand, if we printed the value of "No", its fixed type
9591 would become:
9592
9593 type Rec is record
9594 Empty : Boolean;
9595 end record;
9596
9597 Things become a little more complicated when trying to fix an entity
9598 with a dynamic type that directly contains another dynamic type,
9599 such as an array of variant records, for instance. There are
9600 two possible cases: Arrays, and records.
9601
21649b50
JB
9602 3. ``Fixing'' Arrays:
9603 ---------------------
9604
9605 The type structure in GDB describes an array in terms of its bounds,
9606 and the type of its elements. By design, all elements in the array
9607 have the same type and we cannot represent an array of variant elements
9608 using the current type structure in GDB. When fixing an array,
9609 we cannot fix the array element, as we would potentially need one
9610 fixed type per element of the array. As a result, the best we can do
9611 when fixing an array is to produce an array whose bounds and size
9612 are correct (allowing us to read it from memory), but without having
9613 touched its element type. Fixing each element will be done later,
9614 when (if) necessary.
9615
9616 Arrays are a little simpler to handle than records, because the same
9617 amount of memory is allocated for each element of the array, even if
1b536f04 9618 the amount of space actually used by each element differs from element
21649b50 9619 to element. Consider for instance the following array of type Rec:
284614f0
JB
9620
9621 type Rec_Array is array (1 .. 2) of Rec;
9622
1b536f04
JB
9623 The actual amount of memory occupied by each element might be different
9624 from element to element, depending on the value of their discriminant.
21649b50 9625 But the amount of space reserved for each element in the array remains
1b536f04 9626 fixed regardless. So we simply need to compute that size using
21649b50
JB
9627 the debugging information available, from which we can then determine
9628 the array size (we multiply the number of elements of the array by
9629 the size of each element).
9630
9631 The simplest case is when we have an array of a constrained element
9632 type. For instance, consider the following type declarations:
9633
9634 type Bounded_String (Max_Size : Integer) is
9635 Length : Integer;
9636 Buffer : String (1 .. Max_Size);
9637 end record;
9638 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9639
9640 In this case, the compiler describes the array as an array of
9641 variable-size elements (identified by its XVS suffix) for which
9642 the size can be read in the parallel XVZ variable.
9643
9644 In the case of an array of an unconstrained element type, the compiler
9645 wraps the array element inside a private PAD type. This type should not
9646 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9647 that we also use the adjective "aligner" in our code to designate
9648 these wrapper types.
9649
1b536f04 9650 In some cases, the size allocated for each element is statically
21649b50
JB
9651 known. In that case, the PAD type already has the correct size,
9652 and the array element should remain unfixed.
9653
9654 But there are cases when this size is not statically known.
9655 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9656
9657 type Dynamic is array (1 .. Five) of Integer;
9658 type Wrapper (Has_Length : Boolean := False) is record
9659 Data : Dynamic;
9660 case Has_Length is
9661 when True => Length : Integer;
9662 when False => null;
9663 end case;
9664 end record;
9665 type Wrapper_Array is array (1 .. 2) of Wrapper;
9666
9667 Hello : Wrapper_Array := (others => (Has_Length => True,
9668 Data => (others => 17),
9669 Length => 1));
9670
9671
9672 The debugging info would describe variable Hello as being an
9673 array of a PAD type. The size of that PAD type is not statically
9674 known, but can be determined using a parallel XVZ variable.
9675 In that case, a copy of the PAD type with the correct size should
9676 be used for the fixed array.
9677
21649b50
JB
9678 3. ``Fixing'' record type objects:
9679 ----------------------------------
9680
9681 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9682 record types. In this case, in order to compute the associated
9683 fixed type, we need to determine the size and offset of each of
9684 its components. This, in turn, requires us to compute the fixed
9685 type of each of these components.
9686
9687 Consider for instance the example:
9688
9689 type Bounded_String (Max_Size : Natural) is record
9690 Str : String (1 .. Max_Size);
9691 Length : Natural;
9692 end record;
9693 My_String : Bounded_String (Max_Size => 10);
9694
9695 In that case, the position of field "Length" depends on the size
9696 of field Str, which itself depends on the value of the Max_Size
21649b50 9697 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9698 we need to fix the type of field Str. Therefore, fixing a variant
9699 record requires us to fix each of its components.
9700
9701 However, if a component does not have a dynamic size, the component
9702 should not be fixed. In particular, fields that use a PAD type
9703 should not fixed. Here is an example where this might happen
9704 (assuming type Rec above):
9705
9706 type Container (Big : Boolean) is record
9707 First : Rec;
9708 After : Integer;
9709 case Big is
9710 when True => Another : Integer;
9711 when False => null;
9712 end case;
9713 end record;
9714 My_Container : Container := (Big => False,
9715 First => (Empty => True),
9716 After => 42);
9717
9718 In that example, the compiler creates a PAD type for component First,
9719 whose size is constant, and then positions the component After just
9720 right after it. The offset of component After is therefore constant
9721 in this case.
9722
9723 The debugger computes the position of each field based on an algorithm
9724 that uses, among other things, the actual position and size of the field
21649b50
JB
9725 preceding it. Let's now imagine that the user is trying to print
9726 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9727 end up computing the offset of field After based on the size of the
9728 fixed version of field First. And since in our example First has
9729 only one actual field, the size of the fixed type is actually smaller
9730 than the amount of space allocated to that field, and thus we would
9731 compute the wrong offset of field After.
9732
21649b50
JB
9733 To make things more complicated, we need to watch out for dynamic
9734 components of variant records (identified by the ___XVL suffix in
9735 the component name). Even if the target type is a PAD type, the size
9736 of that type might not be statically known. So the PAD type needs
9737 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9738 we might end up with the wrong size for our component. This can be
9739 observed with the following type declarations:
284614f0
JB
9740
9741 type Octal is new Integer range 0 .. 7;
9742 type Octal_Array is array (Positive range <>) of Octal;
9743 pragma Pack (Octal_Array);
9744
9745 type Octal_Buffer (Size : Positive) is record
9746 Buffer : Octal_Array (1 .. Size);
9747 Length : Integer;
9748 end record;
9749
9750 In that case, Buffer is a PAD type whose size is unset and needs
9751 to be computed by fixing the unwrapped type.
9752
21649b50
JB
9753 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9754 ----------------------------------------------------------
9755
9756 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9757 thus far, be actually fixed?
9758
9759 The answer is: Only when referencing that element. For instance
9760 when selecting one component of a record, this specific component
9761 should be fixed at that point in time. Or when printing the value
9762 of a record, each component should be fixed before its value gets
9763 printed. Similarly for arrays, the element of the array should be
9764 fixed when printing each element of the array, or when extracting
9765 one element out of that array. On the other hand, fixing should
9766 not be performed on the elements when taking a slice of an array!
9767
9768 Note that one of the side-effects of miscomputing the offset and
9769 size of each field is that we end up also miscomputing the size
9770 of the containing type. This can have adverse results when computing
9771 the value of an entity. GDB fetches the value of an entity based
9772 on the size of its type, and thus a wrong size causes GDB to fetch
9773 the wrong amount of memory. In the case where the computed size is
9774 too small, GDB fetches too little data to print the value of our
9775 entiry. Results in this case as unpredicatble, as we usually read
9776 past the buffer containing the data =:-o. */
9777
9778/* Implement the evaluate_exp routine in the exp_descriptor structure
9779 for the Ada language. */
9780
52ce6436 9781static struct value *
ebf56fd3 9782ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9783 int *pos, enum noside noside)
14f9c5c9
AS
9784{
9785 enum exp_opcode op;
b5385fc0 9786 int tem;
14f9c5c9
AS
9787 int pc;
9788 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9789 struct type *type;
52ce6436 9790 int nargs, oplen;
d2e4a39e 9791 struct value **argvec;
14f9c5c9 9792
d2e4a39e
AS
9793 pc = *pos;
9794 *pos += 1;
14f9c5c9
AS
9795 op = exp->elts[pc].opcode;
9796
d2e4a39e 9797 switch (op)
14f9c5c9
AS
9798 {
9799 default:
9800 *pos -= 1;
6e48bd2c 9801 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9802
9803 if (noside == EVAL_NORMAL)
9804 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9805
9806 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9807 then we need to perform the conversion manually, because
9808 evaluate_subexp_standard doesn't do it. This conversion is
9809 necessary in Ada because the different kinds of float/fixed
9810 types in Ada have different representations.
9811
9812 Similarly, we need to perform the conversion from OP_LONG
9813 ourselves. */
9814 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9815 arg1 = ada_value_cast (expect_type, arg1, noside);
9816
9817 return arg1;
4c4b4cd2
PH
9818
9819 case OP_STRING:
9820 {
76a01679 9821 struct value *result;
5b4ee69b 9822
76a01679
JB
9823 *pos -= 1;
9824 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9825 /* The result type will have code OP_STRING, bashed there from
9826 OP_ARRAY. Bash it back. */
df407dfe
AC
9827 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9828 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9829 return result;
4c4b4cd2 9830 }
14f9c5c9
AS
9831
9832 case UNOP_CAST:
9833 (*pos) += 2;
9834 type = exp->elts[pc + 1].type;
9835 arg1 = evaluate_subexp (type, exp, pos, noside);
9836 if (noside == EVAL_SKIP)
4c4b4cd2 9837 goto nosideret;
6e48bd2c 9838 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9839 return arg1;
9840
4c4b4cd2
PH
9841 case UNOP_QUAL:
9842 (*pos) += 2;
9843 type = exp->elts[pc + 1].type;
9844 return ada_evaluate_subexp (type, exp, pos, noside);
9845
14f9c5c9
AS
9846 case BINOP_ASSIGN:
9847 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9848 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9849 {
9850 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9851 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9852 return arg1;
9853 return ada_value_assign (arg1, arg1);
9854 }
003f3813
JB
9855 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9856 except if the lhs of our assignment is a convenience variable.
9857 In the case of assigning to a convenience variable, the lhs
9858 should be exactly the result of the evaluation of the rhs. */
9859 type = value_type (arg1);
9860 if (VALUE_LVAL (arg1) == lval_internalvar)
9861 type = NULL;
9862 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9863 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9864 return arg1;
df407dfe
AC
9865 if (ada_is_fixed_point_type (value_type (arg1)))
9866 arg2 = cast_to_fixed (value_type (arg1), arg2);
9867 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9868 error
323e0a4a 9869 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9870 else
df407dfe 9871 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9872 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9873
9874 case BINOP_ADD:
9875 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9876 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9877 if (noside == EVAL_SKIP)
4c4b4cd2 9878 goto nosideret;
2ac8a782
JB
9879 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9880 return (value_from_longest
9881 (value_type (arg1),
9882 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9883 if ((ada_is_fixed_point_type (value_type (arg1))
9884 || ada_is_fixed_point_type (value_type (arg2)))
9885 && value_type (arg1) != value_type (arg2))
323e0a4a 9886 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9887 /* Do the addition, and cast the result to the type of the first
9888 argument. We cannot cast the result to a reference type, so if
9889 ARG1 is a reference type, find its underlying type. */
9890 type = value_type (arg1);
9891 while (TYPE_CODE (type) == TYPE_CODE_REF)
9892 type = TYPE_TARGET_TYPE (type);
f44316fa 9893 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9894 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9895
9896 case BINOP_SUB:
9897 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9898 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9899 if (noside == EVAL_SKIP)
4c4b4cd2 9900 goto nosideret;
2ac8a782
JB
9901 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9902 return (value_from_longest
9903 (value_type (arg1),
9904 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9905 if ((ada_is_fixed_point_type (value_type (arg1))
9906 || ada_is_fixed_point_type (value_type (arg2)))
9907 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9908 error (_("Operands of fixed-point subtraction "
9909 "must have the same type"));
b7789565
JB
9910 /* Do the substraction, and cast the result to the type of the first
9911 argument. We cannot cast the result to a reference type, so if
9912 ARG1 is a reference type, find its underlying type. */
9913 type = value_type (arg1);
9914 while (TYPE_CODE (type) == TYPE_CODE_REF)
9915 type = TYPE_TARGET_TYPE (type);
f44316fa 9916 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9917 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9918
9919 case BINOP_MUL:
9920 case BINOP_DIV:
e1578042
JB
9921 case BINOP_REM:
9922 case BINOP_MOD:
14f9c5c9
AS
9923 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9924 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9925 if (noside == EVAL_SKIP)
4c4b4cd2 9926 goto nosideret;
e1578042 9927 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9928 {
9929 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9930 return value_zero (value_type (arg1), not_lval);
9931 }
14f9c5c9 9932 else
4c4b4cd2 9933 {
a53b7a21 9934 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9935 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9936 arg1 = cast_from_fixed (type, arg1);
df407dfe 9937 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9938 arg2 = cast_from_fixed (type, arg2);
f44316fa 9939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9940 return ada_value_binop (arg1, arg2, op);
9941 }
9942
4c4b4cd2
PH
9943 case BINOP_EQUAL:
9944 case BINOP_NOTEQUAL:
14f9c5c9 9945 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9946 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9947 if (noside == EVAL_SKIP)
76a01679 9948 goto nosideret;
4c4b4cd2 9949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9950 tem = 0;
4c4b4cd2 9951 else
f44316fa
UW
9952 {
9953 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9954 tem = ada_value_equal (arg1, arg2);
9955 }
4c4b4cd2 9956 if (op == BINOP_NOTEQUAL)
76a01679 9957 tem = !tem;
fbb06eb1
UW
9958 type = language_bool_type (exp->language_defn, exp->gdbarch);
9959 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9960
9961 case UNOP_NEG:
9962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9963 if (noside == EVAL_SKIP)
9964 goto nosideret;
df407dfe
AC
9965 else if (ada_is_fixed_point_type (value_type (arg1)))
9966 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9967 else
f44316fa
UW
9968 {
9969 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9970 return value_neg (arg1);
9971 }
4c4b4cd2 9972
2330c6c6
JB
9973 case BINOP_LOGICAL_AND:
9974 case BINOP_LOGICAL_OR:
9975 case UNOP_LOGICAL_NOT:
000d5124
JB
9976 {
9977 struct value *val;
9978
9979 *pos -= 1;
9980 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9981 type = language_bool_type (exp->language_defn, exp->gdbarch);
9982 return value_cast (type, val);
000d5124 9983 }
2330c6c6
JB
9984
9985 case BINOP_BITWISE_AND:
9986 case BINOP_BITWISE_IOR:
9987 case BINOP_BITWISE_XOR:
000d5124
JB
9988 {
9989 struct value *val;
9990
9991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9992 *pos = pc;
9993 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9994
9995 return value_cast (value_type (arg1), val);
9996 }
2330c6c6 9997
14f9c5c9
AS
9998 case OP_VAR_VALUE:
9999 *pos -= 1;
6799def4 10000
14f9c5c9 10001 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10002 {
10003 *pos += 4;
10004 goto nosideret;
10005 }
10006 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10007 /* Only encountered when an unresolved symbol occurs in a
10008 context other than a function call, in which case, it is
52ce6436 10009 invalid. */
323e0a4a 10010 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10011 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 10012 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10013 {
0c1f74cf 10014 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10015 /* Check to see if this is a tagged type. We also need to handle
10016 the case where the type is a reference to a tagged type, but
10017 we have to be careful to exclude pointers to tagged types.
10018 The latter should be shown as usual (as a pointer), whereas
10019 a reference should mostly be transparent to the user. */
10020 if (ada_is_tagged_type (type, 0)
10021 || (TYPE_CODE(type) == TYPE_CODE_REF
10022 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
10023 {
10024 /* Tagged types are a little special in the fact that the real
10025 type is dynamic and can only be determined by inspecting the
10026 object's tag. This means that we need to get the object's
10027 value first (EVAL_NORMAL) and then extract the actual object
10028 type from its tag.
10029
10030 Note that we cannot skip the final step where we extract
10031 the object type from its tag, because the EVAL_NORMAL phase
10032 results in dynamic components being resolved into fixed ones.
10033 This can cause problems when trying to print the type
10034 description of tagged types whose parent has a dynamic size:
10035 We use the type name of the "_parent" component in order
10036 to print the name of the ancestor type in the type description.
10037 If that component had a dynamic size, the resolution into
10038 a fixed type would result in the loss of that type name,
10039 thus preventing us from printing the name of the ancestor
10040 type in the type description. */
10041 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
10042
10043 if (TYPE_CODE (type) != TYPE_CODE_REF)
10044 {
10045 struct type *actual_type;
10046
10047 actual_type = type_from_tag (ada_value_tag (arg1));
10048 if (actual_type == NULL)
10049 /* If, for some reason, we were unable to determine
10050 the actual type from the tag, then use the static
10051 approximation that we just computed as a fallback.
10052 This can happen if the debugging information is
10053 incomplete, for instance. */
10054 actual_type = type;
10055 return value_zero (actual_type, not_lval);
10056 }
10057 else
10058 {
10059 /* In the case of a ref, ada_coerce_ref takes care
10060 of determining the actual type. But the evaluation
10061 should return a ref as it should be valid to ask
10062 for its address; so rebuild a ref after coerce. */
10063 arg1 = ada_coerce_ref (arg1);
10064 return value_ref (arg1);
10065 }
0c1f74cf
JB
10066 }
10067
4c4b4cd2
PH
10068 *pos += 4;
10069 return value_zero
10070 (to_static_fixed_type
10071 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
10072 not_lval);
10073 }
d2e4a39e 10074 else
4c4b4cd2 10075 {
284614f0 10076 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
10077 return ada_to_fixed_value (arg1);
10078 }
10079
10080 case OP_FUNCALL:
10081 (*pos) += 2;
10082
10083 /* Allocate arg vector, including space for the function to be
10084 called in argvec[0] and a terminating NULL. */
10085 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10086 argvec =
10087 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10088
10089 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10090 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10091 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10092 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10093 else
10094 {
10095 for (tem = 0; tem <= nargs; tem += 1)
10096 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10097 argvec[tem] = 0;
10098
10099 if (noside == EVAL_SKIP)
10100 goto nosideret;
10101 }
10102
ad82864c
JB
10103 if (ada_is_constrained_packed_array_type
10104 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10105 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10106 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10107 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10108 /* This is a packed array that has already been fixed, and
10109 therefore already coerced to a simple array. Nothing further
10110 to do. */
10111 ;
df407dfe
AC
10112 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10113 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10114 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10115 argvec[0] = value_addr (argvec[0]);
10116
df407dfe 10117 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10118
10119 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10120 them. So, if this is an array typedef (encoding use for array
10121 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10123 type = ada_typedef_target_type (type);
10124
4c4b4cd2
PH
10125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10126 {
61ee279c 10127 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10128 {
10129 case TYPE_CODE_FUNC:
61ee279c 10130 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10131 break;
10132 case TYPE_CODE_ARRAY:
10133 break;
10134 case TYPE_CODE_STRUCT:
10135 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10136 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10137 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10138 break;
10139 default:
323e0a4a 10140 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10141 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10142 break;
10143 }
10144 }
10145
10146 switch (TYPE_CODE (type))
10147 {
10148 case TYPE_CODE_FUNC:
10149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10150 {
10151 struct type *rtype = TYPE_TARGET_TYPE (type);
10152
10153 if (TYPE_GNU_IFUNC (type))
10154 return allocate_value (TYPE_TARGET_TYPE (rtype));
10155 return allocate_value (rtype);
10156 }
4c4b4cd2 10157 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10158 case TYPE_CODE_INTERNAL_FUNCTION:
10159 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10160 /* We don't know anything about what the internal
10161 function might return, but we have to return
10162 something. */
10163 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10164 not_lval);
10165 else
10166 return call_internal_function (exp->gdbarch, exp->language_defn,
10167 argvec[0], nargs, argvec + 1);
10168
4c4b4cd2
PH
10169 case TYPE_CODE_STRUCT:
10170 {
10171 int arity;
10172
4c4b4cd2
PH
10173 arity = ada_array_arity (type);
10174 type = ada_array_element_type (type, nargs);
10175 if (type == NULL)
323e0a4a 10176 error (_("cannot subscript or call a record"));
4c4b4cd2 10177 if (arity != nargs)
323e0a4a 10178 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10179 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10180 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10181 return
10182 unwrap_value (ada_value_subscript
10183 (argvec[0], nargs, argvec + 1));
10184 }
10185 case TYPE_CODE_ARRAY:
10186 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10187 {
10188 type = ada_array_element_type (type, nargs);
10189 if (type == NULL)
323e0a4a 10190 error (_("element type of array unknown"));
4c4b4cd2 10191 else
0a07e705 10192 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10193 }
10194 return
10195 unwrap_value (ada_value_subscript
10196 (ada_coerce_to_simple_array (argvec[0]),
10197 nargs, argvec + 1));
10198 case TYPE_CODE_PTR: /* Pointer to array */
10199 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10200 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10201 {
10202 type = ada_array_element_type (type, nargs);
10203 if (type == NULL)
323e0a4a 10204 error (_("element type of array unknown"));
4c4b4cd2 10205 else
0a07e705 10206 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10207 }
10208 return
10209 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10210 nargs, argvec + 1));
10211
10212 default:
e1d5a0d2
PH
10213 error (_("Attempt to index or call something other than an "
10214 "array or function"));
4c4b4cd2
PH
10215 }
10216
10217 case TERNOP_SLICE:
10218 {
10219 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 struct value *low_bound_val =
10221 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10222 struct value *high_bound_val =
10223 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10224 LONGEST low_bound;
10225 LONGEST high_bound;
5b4ee69b 10226
994b9211
AC
10227 low_bound_val = coerce_ref (low_bound_val);
10228 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10229 low_bound = pos_atr (low_bound_val);
10230 high_bound = pos_atr (high_bound_val);
963a6417 10231
4c4b4cd2
PH
10232 if (noside == EVAL_SKIP)
10233 goto nosideret;
10234
4c4b4cd2
PH
10235 /* If this is a reference to an aligner type, then remove all
10236 the aligners. */
df407dfe
AC
10237 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10238 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10239 TYPE_TARGET_TYPE (value_type (array)) =
10240 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10241
ad82864c 10242 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10243 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10244
10245 /* If this is a reference to an array or an array lvalue,
10246 convert to a pointer. */
df407dfe
AC
10247 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10248 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10249 && VALUE_LVAL (array) == lval_memory))
10250 array = value_addr (array);
10251
1265e4aa 10252 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10253 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10254 (value_type (array))))
0b5d8877 10255 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10256
10257 array = ada_coerce_to_simple_array_ptr (array);
10258
714e53ab
PH
10259 /* If we have more than one level of pointer indirection,
10260 dereference the value until we get only one level. */
df407dfe
AC
10261 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10262 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10263 == TYPE_CODE_PTR))
10264 array = value_ind (array);
10265
10266 /* Make sure we really do have an array type before going further,
10267 to avoid a SEGV when trying to get the index type or the target
10268 type later down the road if the debug info generated by
10269 the compiler is incorrect or incomplete. */
df407dfe 10270 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10271 error (_("cannot take slice of non-array"));
714e53ab 10272
828292f2
JB
10273 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10274 == TYPE_CODE_PTR)
4c4b4cd2 10275 {
828292f2
JB
10276 struct type *type0 = ada_check_typedef (value_type (array));
10277
0b5d8877 10278 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10279 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10280 else
10281 {
10282 struct type *arr_type0 =
828292f2 10283 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10284
f5938064
JG
10285 return ada_value_slice_from_ptr (array, arr_type0,
10286 longest_to_int (low_bound),
10287 longest_to_int (high_bound));
4c4b4cd2
PH
10288 }
10289 }
10290 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10291 return array;
10292 else if (high_bound < low_bound)
df407dfe 10293 return empty_array (value_type (array), low_bound);
4c4b4cd2 10294 else
529cad9c
PH
10295 return ada_value_slice (array, longest_to_int (low_bound),
10296 longest_to_int (high_bound));
4c4b4cd2 10297 }
14f9c5c9 10298
4c4b4cd2
PH
10299 case UNOP_IN_RANGE:
10300 (*pos) += 2;
10301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10302 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10303
14f9c5c9 10304 if (noside == EVAL_SKIP)
4c4b4cd2 10305 goto nosideret;
14f9c5c9 10306
4c4b4cd2
PH
10307 switch (TYPE_CODE (type))
10308 {
10309 default:
e1d5a0d2
PH
10310 lim_warning (_("Membership test incompletely implemented; "
10311 "always returns true"));
fbb06eb1
UW
10312 type = language_bool_type (exp->language_defn, exp->gdbarch);
10313 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10314
10315 case TYPE_CODE_RANGE:
030b4912
UW
10316 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10317 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10318 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10319 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10320 type = language_bool_type (exp->language_defn, exp->gdbarch);
10321 return
10322 value_from_longest (type,
4c4b4cd2
PH
10323 (value_less (arg1, arg3)
10324 || value_equal (arg1, arg3))
10325 && (value_less (arg2, arg1)
10326 || value_equal (arg2, arg1)));
10327 }
10328
10329 case BINOP_IN_BOUNDS:
14f9c5c9 10330 (*pos) += 2;
4c4b4cd2
PH
10331 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10332 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10333
4c4b4cd2
PH
10334 if (noside == EVAL_SKIP)
10335 goto nosideret;
14f9c5c9 10336
4c4b4cd2 10337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10338 {
10339 type = language_bool_type (exp->language_defn, exp->gdbarch);
10340 return value_zero (type, not_lval);
10341 }
14f9c5c9 10342
4c4b4cd2 10343 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10344
1eea4ebd
UW
10345 type = ada_index_type (value_type (arg2), tem, "range");
10346 if (!type)
10347 type = value_type (arg1);
14f9c5c9 10348
1eea4ebd
UW
10349 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10350 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10351
f44316fa
UW
10352 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10353 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10354 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10355 return
fbb06eb1 10356 value_from_longest (type,
4c4b4cd2
PH
10357 (value_less (arg1, arg3)
10358 || value_equal (arg1, arg3))
10359 && (value_less (arg2, arg1)
10360 || value_equal (arg2, arg1)));
10361
10362 case TERNOP_IN_RANGE:
10363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10364 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10365 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10366
10367 if (noside == EVAL_SKIP)
10368 goto nosideret;
10369
f44316fa
UW
10370 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10371 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10372 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10373 return
fbb06eb1 10374 value_from_longest (type,
4c4b4cd2
PH
10375 (value_less (arg1, arg3)
10376 || value_equal (arg1, arg3))
10377 && (value_less (arg2, arg1)
10378 || value_equal (arg2, arg1)));
10379
10380 case OP_ATR_FIRST:
10381 case OP_ATR_LAST:
10382 case OP_ATR_LENGTH:
10383 {
76a01679 10384 struct type *type_arg;
5b4ee69b 10385
76a01679
JB
10386 if (exp->elts[*pos].opcode == OP_TYPE)
10387 {
10388 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10389 arg1 = NULL;
5bc23cb3 10390 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10391 }
10392 else
10393 {
10394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10395 type_arg = NULL;
10396 }
10397
10398 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10399 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10400 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10401 *pos += 4;
10402
10403 if (noside == EVAL_SKIP)
10404 goto nosideret;
10405
10406 if (type_arg == NULL)
10407 {
10408 arg1 = ada_coerce_ref (arg1);
10409
ad82864c 10410 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10411 arg1 = ada_coerce_to_simple_array (arg1);
10412
aa4fb036 10413 if (op == OP_ATR_LENGTH)
1eea4ebd 10414 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10415 else
10416 {
10417 type = ada_index_type (value_type (arg1), tem,
10418 ada_attribute_name (op));
10419 if (type == NULL)
10420 type = builtin_type (exp->gdbarch)->builtin_int;
10421 }
76a01679
JB
10422
10423 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10424 return allocate_value (type);
76a01679
JB
10425
10426 switch (op)
10427 {
10428 default: /* Should never happen. */
323e0a4a 10429 error (_("unexpected attribute encountered"));
76a01679 10430 case OP_ATR_FIRST:
1eea4ebd
UW
10431 return value_from_longest
10432 (type, ada_array_bound (arg1, tem, 0));
76a01679 10433 case OP_ATR_LAST:
1eea4ebd
UW
10434 return value_from_longest
10435 (type, ada_array_bound (arg1, tem, 1));
76a01679 10436 case OP_ATR_LENGTH:
1eea4ebd
UW
10437 return value_from_longest
10438 (type, ada_array_length (arg1, tem));
76a01679
JB
10439 }
10440 }
10441 else if (discrete_type_p (type_arg))
10442 {
10443 struct type *range_type;
0d5cff50 10444 const char *name = ada_type_name (type_arg);
5b4ee69b 10445
76a01679
JB
10446 range_type = NULL;
10447 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10448 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10449 if (range_type == NULL)
10450 range_type = type_arg;
10451 switch (op)
10452 {
10453 default:
323e0a4a 10454 error (_("unexpected attribute encountered"));
76a01679 10455 case OP_ATR_FIRST:
690cc4eb 10456 return value_from_longest
43bbcdc2 10457 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10458 case OP_ATR_LAST:
690cc4eb 10459 return value_from_longest
43bbcdc2 10460 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10461 case OP_ATR_LENGTH:
323e0a4a 10462 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10463 }
10464 }
10465 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10466 error (_("unimplemented type attribute"));
76a01679
JB
10467 else
10468 {
10469 LONGEST low, high;
10470
ad82864c
JB
10471 if (ada_is_constrained_packed_array_type (type_arg))
10472 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10473
aa4fb036 10474 if (op == OP_ATR_LENGTH)
1eea4ebd 10475 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10476 else
10477 {
10478 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10479 if (type == NULL)
10480 type = builtin_type (exp->gdbarch)->builtin_int;
10481 }
1eea4ebd 10482
76a01679
JB
10483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10484 return allocate_value (type);
10485
10486 switch (op)
10487 {
10488 default:
323e0a4a 10489 error (_("unexpected attribute encountered"));
76a01679 10490 case OP_ATR_FIRST:
1eea4ebd 10491 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10492 return value_from_longest (type, low);
10493 case OP_ATR_LAST:
1eea4ebd 10494 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10495 return value_from_longest (type, high);
10496 case OP_ATR_LENGTH:
1eea4ebd
UW
10497 low = ada_array_bound_from_type (type_arg, tem, 0);
10498 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10499 return value_from_longest (type, high - low + 1);
10500 }
10501 }
14f9c5c9
AS
10502 }
10503
4c4b4cd2
PH
10504 case OP_ATR_TAG:
10505 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10506 if (noside == EVAL_SKIP)
76a01679 10507 goto nosideret;
4c4b4cd2
PH
10508
10509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10510 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10511
10512 return ada_value_tag (arg1);
10513
10514 case OP_ATR_MIN:
10515 case OP_ATR_MAX:
10516 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10518 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10519 if (noside == EVAL_SKIP)
76a01679 10520 goto nosideret;
d2e4a39e 10521 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10522 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10523 else
f44316fa
UW
10524 {
10525 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10526 return value_binop (arg1, arg2,
10527 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10528 }
14f9c5c9 10529
4c4b4cd2
PH
10530 case OP_ATR_MODULUS:
10531 {
31dedfee 10532 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10533
5b4ee69b 10534 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10535 if (noside == EVAL_SKIP)
10536 goto nosideret;
4c4b4cd2 10537
76a01679 10538 if (!ada_is_modular_type (type_arg))
323e0a4a 10539 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10540
76a01679
JB
10541 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10542 ada_modulus (type_arg));
4c4b4cd2
PH
10543 }
10544
10545
10546 case OP_ATR_POS:
10547 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10549 if (noside == EVAL_SKIP)
76a01679 10550 goto nosideret;
3cb382c9
UW
10551 type = builtin_type (exp->gdbarch)->builtin_int;
10552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10553 return value_zero (type, not_lval);
14f9c5c9 10554 else
3cb382c9 10555 return value_pos_atr (type, arg1);
14f9c5c9 10556
4c4b4cd2
PH
10557 case OP_ATR_SIZE:
10558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10559 type = value_type (arg1);
10560
10561 /* If the argument is a reference, then dereference its type, since
10562 the user is really asking for the size of the actual object,
10563 not the size of the pointer. */
10564 if (TYPE_CODE (type) == TYPE_CODE_REF)
10565 type = TYPE_TARGET_TYPE (type);
10566
4c4b4cd2 10567 if (noside == EVAL_SKIP)
76a01679 10568 goto nosideret;
4c4b4cd2 10569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10570 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10571 else
22601c15 10572 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10573 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10574
10575 case OP_ATR_VAL:
10576 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10578 type = exp->elts[pc + 2].type;
14f9c5c9 10579 if (noside == EVAL_SKIP)
76a01679 10580 goto nosideret;
4c4b4cd2 10581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10582 return value_zero (type, not_lval);
4c4b4cd2 10583 else
76a01679 10584 return value_val_atr (type, arg1);
4c4b4cd2
PH
10585
10586 case BINOP_EXP:
10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10589 if (noside == EVAL_SKIP)
10590 goto nosideret;
10591 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10592 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10593 else
f44316fa
UW
10594 {
10595 /* For integer exponentiation operations,
10596 only promote the first argument. */
10597 if (is_integral_type (value_type (arg2)))
10598 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10599 else
10600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10601
10602 return value_binop (arg1, arg2, op);
10603 }
4c4b4cd2
PH
10604
10605 case UNOP_PLUS:
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10607 if (noside == EVAL_SKIP)
10608 goto nosideret;
10609 else
10610 return arg1;
10611
10612 case UNOP_ABS:
10613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10614 if (noside == EVAL_SKIP)
10615 goto nosideret;
f44316fa 10616 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10617 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10618 return value_neg (arg1);
14f9c5c9 10619 else
4c4b4cd2 10620 return arg1;
14f9c5c9
AS
10621
10622 case UNOP_IND:
6b0d7253 10623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10624 if (noside == EVAL_SKIP)
4c4b4cd2 10625 goto nosideret;
df407dfe 10626 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10627 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10628 {
10629 if (ada_is_array_descriptor_type (type))
10630 /* GDB allows dereferencing GNAT array descriptors. */
10631 {
10632 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10633
4c4b4cd2 10634 if (arrType == NULL)
323e0a4a 10635 error (_("Attempt to dereference null array pointer."));
00a4c844 10636 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10637 }
10638 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10639 || TYPE_CODE (type) == TYPE_CODE_REF
10640 /* In C you can dereference an array to get the 1st elt. */
10641 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10642 {
10643 type = to_static_fixed_type
10644 (ada_aligned_type
10645 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10646 check_size (type);
10647 return value_zero (type, lval_memory);
10648 }
4c4b4cd2 10649 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10650 {
10651 /* GDB allows dereferencing an int. */
10652 if (expect_type == NULL)
10653 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10654 lval_memory);
10655 else
10656 {
10657 expect_type =
10658 to_static_fixed_type (ada_aligned_type (expect_type));
10659 return value_zero (expect_type, lval_memory);
10660 }
10661 }
4c4b4cd2 10662 else
323e0a4a 10663 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10664 }
0963b4bd 10665 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10666 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10667
96967637
JB
10668 if (TYPE_CODE (type) == TYPE_CODE_INT)
10669 /* GDB allows dereferencing an int. If we were given
10670 the expect_type, then use that as the target type.
10671 Otherwise, assume that the target type is an int. */
10672 {
10673 if (expect_type != NULL)
10674 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10675 arg1));
10676 else
10677 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10678 (CORE_ADDR) value_as_address (arg1));
10679 }
6b0d7253 10680
4c4b4cd2
PH
10681 if (ada_is_array_descriptor_type (type))
10682 /* GDB allows dereferencing GNAT array descriptors. */
10683 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10684 else
4c4b4cd2 10685 return ada_value_ind (arg1);
14f9c5c9
AS
10686
10687 case STRUCTOP_STRUCT:
10688 tem = longest_to_int (exp->elts[pc + 1].longconst);
10689 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10691 if (noside == EVAL_SKIP)
4c4b4cd2 10692 goto nosideret;
14f9c5c9 10693 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10694 {
df407dfe 10695 struct type *type1 = value_type (arg1);
5b4ee69b 10696
76a01679
JB
10697 if (ada_is_tagged_type (type1, 1))
10698 {
10699 type = ada_lookup_struct_elt_type (type1,
10700 &exp->elts[pc + 2].string,
10701 1, 1, NULL);
10702 if (type == NULL)
10703 /* In this case, we assume that the field COULD exist
10704 in some extension of the type. Return an object of
10705 "type" void, which will match any formal
0963b4bd 10706 (see ada_type_match). */
30b15541
UW
10707 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10708 lval_memory);
76a01679
JB
10709 }
10710 else
10711 type =
10712 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10713 0, NULL);
10714
10715 return value_zero (ada_aligned_type (type), lval_memory);
10716 }
14f9c5c9 10717 else
284614f0
JB
10718 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10719 arg1 = unwrap_value (arg1);
10720 return ada_to_fixed_value (arg1);
10721
14f9c5c9 10722 case OP_TYPE:
4c4b4cd2
PH
10723 /* The value is not supposed to be used. This is here to make it
10724 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10725 (*pos) += 2;
10726 if (noside == EVAL_SKIP)
4c4b4cd2 10727 goto nosideret;
14f9c5c9 10728 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10729 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10730 else
323e0a4a 10731 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10732
10733 case OP_AGGREGATE:
10734 case OP_CHOICES:
10735 case OP_OTHERS:
10736 case OP_DISCRETE_RANGE:
10737 case OP_POSITIONAL:
10738 case OP_NAME:
10739 if (noside == EVAL_NORMAL)
10740 switch (op)
10741 {
10742 case OP_NAME:
10743 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10744 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10745 case OP_AGGREGATE:
10746 error (_("Aggregates only allowed on the right of an assignment"));
10747 default:
0963b4bd
MS
10748 internal_error (__FILE__, __LINE__,
10749 _("aggregate apparently mangled"));
52ce6436
PH
10750 }
10751
10752 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10753 *pos += oplen - 1;
10754 for (tem = 0; tem < nargs; tem += 1)
10755 ada_evaluate_subexp (NULL, exp, pos, noside);
10756 goto nosideret;
14f9c5c9
AS
10757 }
10758
10759nosideret:
22601c15 10760 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10761}
14f9c5c9 10762\f
d2e4a39e 10763
4c4b4cd2 10764 /* Fixed point */
14f9c5c9
AS
10765
10766/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10767 type name that encodes the 'small and 'delta information.
4c4b4cd2 10768 Otherwise, return NULL. */
14f9c5c9 10769
d2e4a39e 10770static const char *
ebf56fd3 10771fixed_type_info (struct type *type)
14f9c5c9 10772{
d2e4a39e 10773 const char *name = ada_type_name (type);
14f9c5c9
AS
10774 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10775
d2e4a39e
AS
10776 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10777 {
14f9c5c9 10778 const char *tail = strstr (name, "___XF_");
5b4ee69b 10779
14f9c5c9 10780 if (tail == NULL)
4c4b4cd2 10781 return NULL;
d2e4a39e 10782 else
4c4b4cd2 10783 return tail + 5;
14f9c5c9
AS
10784 }
10785 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10786 return fixed_type_info (TYPE_TARGET_TYPE (type));
10787 else
10788 return NULL;
10789}
10790
4c4b4cd2 10791/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10792
10793int
ebf56fd3 10794ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10795{
10796 return fixed_type_info (type) != NULL;
10797}
10798
4c4b4cd2
PH
10799/* Return non-zero iff TYPE represents a System.Address type. */
10800
10801int
10802ada_is_system_address_type (struct type *type)
10803{
10804 return (TYPE_NAME (type)
10805 && strcmp (TYPE_NAME (type), "system__address") == 0);
10806}
10807
14f9c5c9
AS
10808/* Assuming that TYPE is the representation of an Ada fixed-point
10809 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10810 delta cannot be determined. */
14f9c5c9
AS
10811
10812DOUBLEST
ebf56fd3 10813ada_delta (struct type *type)
14f9c5c9
AS
10814{
10815 const char *encoding = fixed_type_info (type);
facc390f 10816 DOUBLEST num, den;
14f9c5c9 10817
facc390f
JB
10818 /* Strictly speaking, num and den are encoded as integer. However,
10819 they may not fit into a long, and they will have to be converted
10820 to DOUBLEST anyway. So scan them as DOUBLEST. */
10821 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10822 &num, &den) < 2)
14f9c5c9 10823 return -1.0;
d2e4a39e 10824 else
facc390f 10825 return num / den;
14f9c5c9
AS
10826}
10827
10828/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10829 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10830
10831static DOUBLEST
ebf56fd3 10832scaling_factor (struct type *type)
14f9c5c9
AS
10833{
10834 const char *encoding = fixed_type_info (type);
facc390f 10835 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10836 int n;
d2e4a39e 10837
facc390f
JB
10838 /* Strictly speaking, num's and den's are encoded as integer. However,
10839 they may not fit into a long, and they will have to be converted
10840 to DOUBLEST anyway. So scan them as DOUBLEST. */
10841 n = sscanf (encoding,
10842 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10843 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10844 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10845
10846 if (n < 2)
10847 return 1.0;
10848 else if (n == 4)
facc390f 10849 return num1 / den1;
d2e4a39e 10850 else
facc390f 10851 return num0 / den0;
14f9c5c9
AS
10852}
10853
10854
10855/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10856 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10857
10858DOUBLEST
ebf56fd3 10859ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10860{
d2e4a39e 10861 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10862}
10863
4c4b4cd2
PH
10864/* The representation of a fixed-point value of type TYPE
10865 corresponding to the value X. */
14f9c5c9
AS
10866
10867LONGEST
ebf56fd3 10868ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10869{
10870 return (LONGEST) (x / scaling_factor (type) + 0.5);
10871}
10872
14f9c5c9 10873\f
d2e4a39e 10874
4c4b4cd2 10875 /* Range types */
14f9c5c9
AS
10876
10877/* Scan STR beginning at position K for a discriminant name, and
10878 return the value of that discriminant field of DVAL in *PX. If
10879 PNEW_K is not null, put the position of the character beyond the
10880 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10881 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10882
10883static int
07d8f827 10884scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10885 int *pnew_k)
14f9c5c9
AS
10886{
10887 static char *bound_buffer = NULL;
10888 static size_t bound_buffer_len = 0;
10889 char *bound;
10890 char *pend;
d2e4a39e 10891 struct value *bound_val;
14f9c5c9
AS
10892
10893 if (dval == NULL || str == NULL || str[k] == '\0')
10894 return 0;
10895
d2e4a39e 10896 pend = strstr (str + k, "__");
14f9c5c9
AS
10897 if (pend == NULL)
10898 {
d2e4a39e 10899 bound = str + k;
14f9c5c9
AS
10900 k += strlen (bound);
10901 }
d2e4a39e 10902 else
14f9c5c9 10903 {
d2e4a39e 10904 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10905 bound = bound_buffer;
d2e4a39e
AS
10906 strncpy (bound_buffer, str + k, pend - (str + k));
10907 bound[pend - (str + k)] = '\0';
10908 k = pend - str;
14f9c5c9 10909 }
d2e4a39e 10910
df407dfe 10911 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10912 if (bound_val == NULL)
10913 return 0;
10914
10915 *px = value_as_long (bound_val);
10916 if (pnew_k != NULL)
10917 *pnew_k = k;
10918 return 1;
10919}
10920
10921/* Value of variable named NAME in the current environment. If
10922 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10923 otherwise causes an error with message ERR_MSG. */
10924
d2e4a39e
AS
10925static struct value *
10926get_var_value (char *name, char *err_msg)
14f9c5c9 10927{
4c4b4cd2 10928 struct ada_symbol_info *syms;
14f9c5c9
AS
10929 int nsyms;
10930
4c4b4cd2 10931 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10932 &syms);
14f9c5c9
AS
10933
10934 if (nsyms != 1)
10935 {
10936 if (err_msg == NULL)
4c4b4cd2 10937 return 0;
14f9c5c9 10938 else
8a3fe4f8 10939 error (("%s"), err_msg);
14f9c5c9
AS
10940 }
10941
4c4b4cd2 10942 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10943}
d2e4a39e 10944
14f9c5c9 10945/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10946 no such variable found, returns 0, and sets *FLAG to 0. If
10947 successful, sets *FLAG to 1. */
10948
14f9c5c9 10949LONGEST
4c4b4cd2 10950get_int_var_value (char *name, int *flag)
14f9c5c9 10951{
4c4b4cd2 10952 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10953
14f9c5c9
AS
10954 if (var_val == 0)
10955 {
10956 if (flag != NULL)
4c4b4cd2 10957 *flag = 0;
14f9c5c9
AS
10958 return 0;
10959 }
10960 else
10961 {
10962 if (flag != NULL)
4c4b4cd2 10963 *flag = 1;
14f9c5c9
AS
10964 return value_as_long (var_val);
10965 }
10966}
d2e4a39e 10967
14f9c5c9
AS
10968
10969/* Return a range type whose base type is that of the range type named
10970 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10971 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10972 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10973 corresponding range type from debug information; fall back to using it
10974 if symbol lookup fails. If a new type must be created, allocate it
10975 like ORIG_TYPE was. The bounds information, in general, is encoded
10976 in NAME, the base type given in the named range type. */
14f9c5c9 10977
d2e4a39e 10978static struct type *
28c85d6c 10979to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10980{
0d5cff50 10981 const char *name;
14f9c5c9 10982 struct type *base_type;
d2e4a39e 10983 char *subtype_info;
14f9c5c9 10984
28c85d6c
JB
10985 gdb_assert (raw_type != NULL);
10986 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10987
1ce677a4 10988 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10989 base_type = TYPE_TARGET_TYPE (raw_type);
10990 else
10991 base_type = raw_type;
10992
28c85d6c 10993 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10994 subtype_info = strstr (name, "___XD");
10995 if (subtype_info == NULL)
690cc4eb 10996 {
43bbcdc2
PH
10997 LONGEST L = ada_discrete_type_low_bound (raw_type);
10998 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10999
690cc4eb
PH
11000 if (L < INT_MIN || U > INT_MAX)
11001 return raw_type;
11002 else
28c85d6c 11003 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
11004 ada_discrete_type_low_bound (raw_type),
11005 ada_discrete_type_high_bound (raw_type));
690cc4eb 11006 }
14f9c5c9
AS
11007 else
11008 {
11009 static char *name_buf = NULL;
11010 static size_t name_len = 0;
11011 int prefix_len = subtype_info - name;
11012 LONGEST L, U;
11013 struct type *type;
11014 char *bounds_str;
11015 int n;
11016
11017 GROW_VECT (name_buf, name_len, prefix_len + 5);
11018 strncpy (name_buf, name, prefix_len);
11019 name_buf[prefix_len] = '\0';
11020
11021 subtype_info += 5;
11022 bounds_str = strchr (subtype_info, '_');
11023 n = 1;
11024
d2e4a39e 11025 if (*subtype_info == 'L')
4c4b4cd2
PH
11026 {
11027 if (!ada_scan_number (bounds_str, n, &L, &n)
11028 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11029 return raw_type;
11030 if (bounds_str[n] == '_')
11031 n += 2;
0963b4bd 11032 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11033 n += 1;
11034 subtype_info += 1;
11035 }
d2e4a39e 11036 else
4c4b4cd2
PH
11037 {
11038 int ok;
5b4ee69b 11039
4c4b4cd2
PH
11040 strcpy (name_buf + prefix_len, "___L");
11041 L = get_int_var_value (name_buf, &ok);
11042 if (!ok)
11043 {
323e0a4a 11044 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11045 L = 1;
11046 }
11047 }
14f9c5c9 11048
d2e4a39e 11049 if (*subtype_info == 'U')
4c4b4cd2
PH
11050 {
11051 if (!ada_scan_number (bounds_str, n, &U, &n)
11052 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11053 return raw_type;
11054 }
d2e4a39e 11055 else
4c4b4cd2
PH
11056 {
11057 int ok;
5b4ee69b 11058
4c4b4cd2
PH
11059 strcpy (name_buf + prefix_len, "___U");
11060 U = get_int_var_value (name_buf, &ok);
11061 if (!ok)
11062 {
323e0a4a 11063 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11064 U = L;
11065 }
11066 }
14f9c5c9 11067
28c85d6c 11068 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 11069 TYPE_NAME (type) = name;
14f9c5c9
AS
11070 return type;
11071 }
11072}
11073
4c4b4cd2
PH
11074/* True iff NAME is the name of a range type. */
11075
14f9c5c9 11076int
d2e4a39e 11077ada_is_range_type_name (const char *name)
14f9c5c9
AS
11078{
11079 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11080}
14f9c5c9 11081\f
d2e4a39e 11082
4c4b4cd2
PH
11083 /* Modular types */
11084
11085/* True iff TYPE is an Ada modular type. */
14f9c5c9 11086
14f9c5c9 11087int
d2e4a39e 11088ada_is_modular_type (struct type *type)
14f9c5c9 11089{
18af8284 11090 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11091
11092 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11093 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11094 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11095}
11096
4c4b4cd2
PH
11097/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11098
61ee279c 11099ULONGEST
0056e4d5 11100ada_modulus (struct type *type)
14f9c5c9 11101{
43bbcdc2 11102 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11103}
d2e4a39e 11104\f
f7f9143b
JB
11105
11106/* Ada exception catchpoint support:
11107 ---------------------------------
11108
11109 We support 3 kinds of exception catchpoints:
11110 . catchpoints on Ada exceptions
11111 . catchpoints on unhandled Ada exceptions
11112 . catchpoints on failed assertions
11113
11114 Exceptions raised during failed assertions, or unhandled exceptions
11115 could perfectly be caught with the general catchpoint on Ada exceptions.
11116 However, we can easily differentiate these two special cases, and having
11117 the option to distinguish these two cases from the rest can be useful
11118 to zero-in on certain situations.
11119
11120 Exception catchpoints are a specialized form of breakpoint,
11121 since they rely on inserting breakpoints inside known routines
11122 of the GNAT runtime. The implementation therefore uses a standard
11123 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11124 of breakpoint_ops.
11125
0259addd
JB
11126 Support in the runtime for exception catchpoints have been changed
11127 a few times already, and these changes affect the implementation
11128 of these catchpoints. In order to be able to support several
11129 variants of the runtime, we use a sniffer that will determine
28010a5d 11130 the runtime variant used by the program being debugged. */
f7f9143b 11131
3d0b0fa3
JB
11132/* Ada's standard exceptions. */
11133
11134static char *standard_exc[] = {
11135 "constraint_error",
11136 "program_error",
11137 "storage_error",
11138 "tasking_error"
11139};
11140
0259addd
JB
11141typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11142
11143/* A structure that describes how to support exception catchpoints
11144 for a given executable. */
11145
11146struct exception_support_info
11147{
11148 /* The name of the symbol to break on in order to insert
11149 a catchpoint on exceptions. */
11150 const char *catch_exception_sym;
11151
11152 /* The name of the symbol to break on in order to insert
11153 a catchpoint on unhandled exceptions. */
11154 const char *catch_exception_unhandled_sym;
11155
11156 /* The name of the symbol to break on in order to insert
11157 a catchpoint on failed assertions. */
11158 const char *catch_assert_sym;
11159
11160 /* Assuming that the inferior just triggered an unhandled exception
11161 catchpoint, this function is responsible for returning the address
11162 in inferior memory where the name of that exception is stored.
11163 Return zero if the address could not be computed. */
11164 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11165};
11166
11167static CORE_ADDR ada_unhandled_exception_name_addr (void);
11168static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11169
11170/* The following exception support info structure describes how to
11171 implement exception catchpoints with the latest version of the
11172 Ada runtime (as of 2007-03-06). */
11173
11174static const struct exception_support_info default_exception_support_info =
11175{
11176 "__gnat_debug_raise_exception", /* catch_exception_sym */
11177 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11178 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11179 ada_unhandled_exception_name_addr
11180};
11181
11182/* The following exception support info structure describes how to
11183 implement exception catchpoints with a slightly older version
11184 of the Ada runtime. */
11185
11186static const struct exception_support_info exception_support_info_fallback =
11187{
11188 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11189 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11190 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11191 ada_unhandled_exception_name_addr_from_raise
11192};
11193
f17011e0
JB
11194/* Return nonzero if we can detect the exception support routines
11195 described in EINFO.
11196
11197 This function errors out if an abnormal situation is detected
11198 (for instance, if we find the exception support routines, but
11199 that support is found to be incomplete). */
11200
11201static int
11202ada_has_this_exception_support (const struct exception_support_info *einfo)
11203{
11204 struct symbol *sym;
11205
11206 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11207 that should be compiled with debugging information. As a result, we
11208 expect to find that symbol in the symtabs. */
11209
11210 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11211 if (sym == NULL)
a6af7abe
JB
11212 {
11213 /* Perhaps we did not find our symbol because the Ada runtime was
11214 compiled without debugging info, or simply stripped of it.
11215 It happens on some GNU/Linux distributions for instance, where
11216 users have to install a separate debug package in order to get
11217 the runtime's debugging info. In that situation, let the user
11218 know why we cannot insert an Ada exception catchpoint.
11219
11220 Note: Just for the purpose of inserting our Ada exception
11221 catchpoint, we could rely purely on the associated minimal symbol.
11222 But we would be operating in degraded mode anyway, since we are
11223 still lacking the debugging info needed later on to extract
11224 the name of the exception being raised (this name is printed in
11225 the catchpoint message, and is also used when trying to catch
11226 a specific exception). We do not handle this case for now. */
1c8e84b0
JB
11227 struct minimal_symbol *msym
11228 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11229
11230 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
a6af7abe
JB
11231 error (_("Your Ada runtime appears to be missing some debugging "
11232 "information.\nCannot insert Ada exception catchpoint "
11233 "in this configuration."));
11234
11235 return 0;
11236 }
f17011e0
JB
11237
11238 /* Make sure that the symbol we found corresponds to a function. */
11239
11240 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11241 error (_("Symbol \"%s\" is not a function (class = %d)"),
11242 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11243
11244 return 1;
11245}
11246
0259addd
JB
11247/* Inspect the Ada runtime and determine which exception info structure
11248 should be used to provide support for exception catchpoints.
11249
3eecfa55
JB
11250 This function will always set the per-inferior exception_info,
11251 or raise an error. */
0259addd
JB
11252
11253static void
11254ada_exception_support_info_sniffer (void)
11255{
3eecfa55 11256 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11257
11258 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11259 if (data->exception_info != NULL)
0259addd
JB
11260 return;
11261
11262 /* Check the latest (default) exception support info. */
f17011e0 11263 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11264 {
3eecfa55 11265 data->exception_info = &default_exception_support_info;
0259addd
JB
11266 return;
11267 }
11268
11269 /* Try our fallback exception suport info. */
f17011e0 11270 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11271 {
3eecfa55 11272 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11273 return;
11274 }
11275
11276 /* Sometimes, it is normal for us to not be able to find the routine
11277 we are looking for. This happens when the program is linked with
11278 the shared version of the GNAT runtime, and the program has not been
11279 started yet. Inform the user of these two possible causes if
11280 applicable. */
11281
ccefe4c4 11282 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11283 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11284
11285 /* If the symbol does not exist, then check that the program is
11286 already started, to make sure that shared libraries have been
11287 loaded. If it is not started, this may mean that the symbol is
11288 in a shared library. */
11289
11290 if (ptid_get_pid (inferior_ptid) == 0)
11291 error (_("Unable to insert catchpoint. Try to start the program first."));
11292
11293 /* At this point, we know that we are debugging an Ada program and
11294 that the inferior has been started, but we still are not able to
0963b4bd 11295 find the run-time symbols. That can mean that we are in
0259addd
JB
11296 configurable run time mode, or that a-except as been optimized
11297 out by the linker... In any case, at this point it is not worth
11298 supporting this feature. */
11299
7dda8cff 11300 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11301}
11302
f7f9143b
JB
11303/* True iff FRAME is very likely to be that of a function that is
11304 part of the runtime system. This is all very heuristic, but is
11305 intended to be used as advice as to what frames are uninteresting
11306 to most users. */
11307
11308static int
11309is_known_support_routine (struct frame_info *frame)
11310{
4ed6b5be 11311 struct symtab_and_line sal;
55b87a52 11312 char *func_name;
692465f1 11313 enum language func_lang;
f7f9143b 11314 int i;
f35a17b5 11315 const char *fullname;
f7f9143b 11316
4ed6b5be
JB
11317 /* If this code does not have any debugging information (no symtab),
11318 This cannot be any user code. */
f7f9143b 11319
4ed6b5be 11320 find_frame_sal (frame, &sal);
f7f9143b
JB
11321 if (sal.symtab == NULL)
11322 return 1;
11323
4ed6b5be
JB
11324 /* If there is a symtab, but the associated source file cannot be
11325 located, then assume this is not user code: Selecting a frame
11326 for which we cannot display the code would not be very helpful
11327 for the user. This should also take care of case such as VxWorks
11328 where the kernel has some debugging info provided for a few units. */
f7f9143b 11329
f35a17b5
JK
11330 fullname = symtab_to_fullname (sal.symtab);
11331 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11332 return 1;
11333
4ed6b5be
JB
11334 /* Check the unit filename againt the Ada runtime file naming.
11335 We also check the name of the objfile against the name of some
11336 known system libraries that sometimes come with debugging info
11337 too. */
11338
f7f9143b
JB
11339 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11340 {
11341 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11342 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11343 return 1;
4ed6b5be 11344 if (sal.symtab->objfile != NULL
4262abfb 11345 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11346 return 1;
f7f9143b
JB
11347 }
11348
4ed6b5be 11349 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11350
e9e07ba6 11351 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11352 if (func_name == NULL)
11353 return 1;
11354
11355 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11356 {
11357 re_comp (known_auxiliary_function_name_patterns[i]);
11358 if (re_exec (func_name))
55b87a52
KS
11359 {
11360 xfree (func_name);
11361 return 1;
11362 }
f7f9143b
JB
11363 }
11364
55b87a52 11365 xfree (func_name);
f7f9143b
JB
11366 return 0;
11367}
11368
11369/* Find the first frame that contains debugging information and that is not
11370 part of the Ada run-time, starting from FI and moving upward. */
11371
0ef643c8 11372void
f7f9143b
JB
11373ada_find_printable_frame (struct frame_info *fi)
11374{
11375 for (; fi != NULL; fi = get_prev_frame (fi))
11376 {
11377 if (!is_known_support_routine (fi))
11378 {
11379 select_frame (fi);
11380 break;
11381 }
11382 }
11383
11384}
11385
11386/* Assuming that the inferior just triggered an unhandled exception
11387 catchpoint, return the address in inferior memory where the name
11388 of the exception is stored.
11389
11390 Return zero if the address could not be computed. */
11391
11392static CORE_ADDR
11393ada_unhandled_exception_name_addr (void)
0259addd
JB
11394{
11395 return parse_and_eval_address ("e.full_name");
11396}
11397
11398/* Same as ada_unhandled_exception_name_addr, except that this function
11399 should be used when the inferior uses an older version of the runtime,
11400 where the exception name needs to be extracted from a specific frame
11401 several frames up in the callstack. */
11402
11403static CORE_ADDR
11404ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11405{
11406 int frame_level;
11407 struct frame_info *fi;
3eecfa55 11408 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11409 struct cleanup *old_chain;
f7f9143b
JB
11410
11411 /* To determine the name of this exception, we need to select
11412 the frame corresponding to RAISE_SYM_NAME. This frame is
11413 at least 3 levels up, so we simply skip the first 3 frames
11414 without checking the name of their associated function. */
11415 fi = get_current_frame ();
11416 for (frame_level = 0; frame_level < 3; frame_level += 1)
11417 if (fi != NULL)
11418 fi = get_prev_frame (fi);
11419
55b87a52 11420 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11421 while (fi != NULL)
11422 {
55b87a52 11423 char *func_name;
692465f1
JB
11424 enum language func_lang;
11425
e9e07ba6 11426 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11427 if (func_name != NULL)
11428 {
11429 make_cleanup (xfree, func_name);
11430
11431 if (strcmp (func_name,
11432 data->exception_info->catch_exception_sym) == 0)
11433 break; /* We found the frame we were looking for... */
11434 fi = get_prev_frame (fi);
11435 }
f7f9143b 11436 }
55b87a52 11437 do_cleanups (old_chain);
f7f9143b
JB
11438
11439 if (fi == NULL)
11440 return 0;
11441
11442 select_frame (fi);
11443 return parse_and_eval_address ("id.full_name");
11444}
11445
11446/* Assuming the inferior just triggered an Ada exception catchpoint
11447 (of any type), return the address in inferior memory where the name
11448 of the exception is stored, if applicable.
11449
11450 Return zero if the address could not be computed, or if not relevant. */
11451
11452static CORE_ADDR
761269c8 11453ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11454 struct breakpoint *b)
11455{
3eecfa55
JB
11456 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11457
f7f9143b
JB
11458 switch (ex)
11459 {
761269c8 11460 case ada_catch_exception:
f7f9143b
JB
11461 return (parse_and_eval_address ("e.full_name"));
11462 break;
11463
761269c8 11464 case ada_catch_exception_unhandled:
3eecfa55 11465 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11466 break;
11467
761269c8 11468 case ada_catch_assert:
f7f9143b
JB
11469 return 0; /* Exception name is not relevant in this case. */
11470 break;
11471
11472 default:
11473 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11474 break;
11475 }
11476
11477 return 0; /* Should never be reached. */
11478}
11479
11480/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11481 any error that ada_exception_name_addr_1 might cause to be thrown.
11482 When an error is intercepted, a warning with the error message is printed,
11483 and zero is returned. */
11484
11485static CORE_ADDR
761269c8 11486ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11487 struct breakpoint *b)
11488{
bfd189b1 11489 volatile struct gdb_exception e;
f7f9143b
JB
11490 CORE_ADDR result = 0;
11491
11492 TRY_CATCH (e, RETURN_MASK_ERROR)
11493 {
11494 result = ada_exception_name_addr_1 (ex, b);
11495 }
11496
11497 if (e.reason < 0)
11498 {
11499 warning (_("failed to get exception name: %s"), e.message);
11500 return 0;
11501 }
11502
11503 return result;
11504}
11505
28010a5d
PA
11506static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11507
11508/* Ada catchpoints.
11509
11510 In the case of catchpoints on Ada exceptions, the catchpoint will
11511 stop the target on every exception the program throws. When a user
11512 specifies the name of a specific exception, we translate this
11513 request into a condition expression (in text form), and then parse
11514 it into an expression stored in each of the catchpoint's locations.
11515 We then use this condition to check whether the exception that was
11516 raised is the one the user is interested in. If not, then the
11517 target is resumed again. We store the name of the requested
11518 exception, in order to be able to re-set the condition expression
11519 when symbols change. */
11520
11521/* An instance of this type is used to represent an Ada catchpoint
11522 breakpoint location. It includes a "struct bp_location" as a kind
11523 of base class; users downcast to "struct bp_location *" when
11524 needed. */
11525
11526struct ada_catchpoint_location
11527{
11528 /* The base class. */
11529 struct bp_location base;
11530
11531 /* The condition that checks whether the exception that was raised
11532 is the specific exception the user specified on catchpoint
11533 creation. */
11534 struct expression *excep_cond_expr;
11535};
11536
11537/* Implement the DTOR method in the bp_location_ops structure for all
11538 Ada exception catchpoint kinds. */
11539
11540static void
11541ada_catchpoint_location_dtor (struct bp_location *bl)
11542{
11543 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11544
11545 xfree (al->excep_cond_expr);
11546}
11547
11548/* The vtable to be used in Ada catchpoint locations. */
11549
11550static const struct bp_location_ops ada_catchpoint_location_ops =
11551{
11552 ada_catchpoint_location_dtor
11553};
11554
11555/* An instance of this type is used to represent an Ada catchpoint.
11556 It includes a "struct breakpoint" as a kind of base class; users
11557 downcast to "struct breakpoint *" when needed. */
11558
11559struct ada_catchpoint
11560{
11561 /* The base class. */
11562 struct breakpoint base;
11563
11564 /* The name of the specific exception the user specified. */
11565 char *excep_string;
11566};
11567
11568/* Parse the exception condition string in the context of each of the
11569 catchpoint's locations, and store them for later evaluation. */
11570
11571static void
11572create_excep_cond_exprs (struct ada_catchpoint *c)
11573{
11574 struct cleanup *old_chain;
11575 struct bp_location *bl;
11576 char *cond_string;
11577
11578 /* Nothing to do if there's no specific exception to catch. */
11579 if (c->excep_string == NULL)
11580 return;
11581
11582 /* Same if there are no locations... */
11583 if (c->base.loc == NULL)
11584 return;
11585
11586 /* Compute the condition expression in text form, from the specific
11587 expection we want to catch. */
11588 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11589 old_chain = make_cleanup (xfree, cond_string);
11590
11591 /* Iterate over all the catchpoint's locations, and parse an
11592 expression for each. */
11593 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11594 {
11595 struct ada_catchpoint_location *ada_loc
11596 = (struct ada_catchpoint_location *) bl;
11597 struct expression *exp = NULL;
11598
11599 if (!bl->shlib_disabled)
11600 {
11601 volatile struct gdb_exception e;
bbc13ae3 11602 const char *s;
28010a5d
PA
11603
11604 s = cond_string;
11605 TRY_CATCH (e, RETURN_MASK_ERROR)
11606 {
1bb9788d
TT
11607 exp = parse_exp_1 (&s, bl->address,
11608 block_for_pc (bl->address), 0);
28010a5d
PA
11609 }
11610 if (e.reason < 0)
849f2b52
JB
11611 {
11612 warning (_("failed to reevaluate internal exception condition "
11613 "for catchpoint %d: %s"),
11614 c->base.number, e.message);
11615 /* There is a bug in GCC on sparc-solaris when building with
11616 optimization which causes EXP to change unexpectedly
11617 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11618 The problem should be fixed starting with GCC 4.9.
11619 In the meantime, work around it by forcing EXP back
11620 to NULL. */
11621 exp = NULL;
11622 }
28010a5d
PA
11623 }
11624
11625 ada_loc->excep_cond_expr = exp;
11626 }
11627
11628 do_cleanups (old_chain);
11629}
11630
11631/* Implement the DTOR method in the breakpoint_ops structure for all
11632 exception catchpoint kinds. */
11633
11634static void
761269c8 11635dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11636{
11637 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11638
11639 xfree (c->excep_string);
348d480f 11640
2060206e 11641 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11642}
11643
11644/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11645 structure for all exception catchpoint kinds. */
11646
11647static struct bp_location *
761269c8 11648allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11649 struct breakpoint *self)
11650{
11651 struct ada_catchpoint_location *loc;
11652
11653 loc = XNEW (struct ada_catchpoint_location);
11654 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11655 loc->excep_cond_expr = NULL;
11656 return &loc->base;
11657}
11658
11659/* Implement the RE_SET method in the breakpoint_ops structure for all
11660 exception catchpoint kinds. */
11661
11662static void
761269c8 11663re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11664{
11665 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11666
11667 /* Call the base class's method. This updates the catchpoint's
11668 locations. */
2060206e 11669 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11670
11671 /* Reparse the exception conditional expressions. One for each
11672 location. */
11673 create_excep_cond_exprs (c);
11674}
11675
11676/* Returns true if we should stop for this breakpoint hit. If the
11677 user specified a specific exception, we only want to cause a stop
11678 if the program thrown that exception. */
11679
11680static int
11681should_stop_exception (const struct bp_location *bl)
11682{
11683 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11684 const struct ada_catchpoint_location *ada_loc
11685 = (const struct ada_catchpoint_location *) bl;
11686 volatile struct gdb_exception ex;
11687 int stop;
11688
11689 /* With no specific exception, should always stop. */
11690 if (c->excep_string == NULL)
11691 return 1;
11692
11693 if (ada_loc->excep_cond_expr == NULL)
11694 {
11695 /* We will have a NULL expression if back when we were creating
11696 the expressions, this location's had failed to parse. */
11697 return 1;
11698 }
11699
11700 stop = 1;
11701 TRY_CATCH (ex, RETURN_MASK_ALL)
11702 {
11703 struct value *mark;
11704
11705 mark = value_mark ();
11706 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11707 value_free_to_mark (mark);
11708 }
11709 if (ex.reason < 0)
11710 exception_fprintf (gdb_stderr, ex,
11711 _("Error in testing exception condition:\n"));
11712 return stop;
11713}
11714
11715/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11716 for all exception catchpoint kinds. */
11717
11718static void
761269c8 11719check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11720{
11721 bs->stop = should_stop_exception (bs->bp_location_at);
11722}
11723
f7f9143b
JB
11724/* Implement the PRINT_IT method in the breakpoint_ops structure
11725 for all exception catchpoint kinds. */
11726
11727static enum print_stop_action
761269c8 11728print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11729{
79a45e25 11730 struct ui_out *uiout = current_uiout;
348d480f
PA
11731 struct breakpoint *b = bs->breakpoint_at;
11732
956a9fb9 11733 annotate_catchpoint (b->number);
f7f9143b 11734
956a9fb9 11735 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11736 {
956a9fb9
JB
11737 ui_out_field_string (uiout, "reason",
11738 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11739 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11740 }
11741
00eb2c4a
JB
11742 ui_out_text (uiout,
11743 b->disposition == disp_del ? "\nTemporary catchpoint "
11744 : "\nCatchpoint ");
956a9fb9
JB
11745 ui_out_field_int (uiout, "bkptno", b->number);
11746 ui_out_text (uiout, ", ");
f7f9143b 11747
f7f9143b
JB
11748 switch (ex)
11749 {
761269c8
JB
11750 case ada_catch_exception:
11751 case ada_catch_exception_unhandled:
956a9fb9
JB
11752 {
11753 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11754 char exception_name[256];
11755
11756 if (addr != 0)
11757 {
c714b426
PA
11758 read_memory (addr, (gdb_byte *) exception_name,
11759 sizeof (exception_name) - 1);
956a9fb9
JB
11760 exception_name [sizeof (exception_name) - 1] = '\0';
11761 }
11762 else
11763 {
11764 /* For some reason, we were unable to read the exception
11765 name. This could happen if the Runtime was compiled
11766 without debugging info, for instance. In that case,
11767 just replace the exception name by the generic string
11768 "exception" - it will read as "an exception" in the
11769 notification we are about to print. */
967cff16 11770 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11771 }
11772 /* In the case of unhandled exception breakpoints, we print
11773 the exception name as "unhandled EXCEPTION_NAME", to make
11774 it clearer to the user which kind of catchpoint just got
11775 hit. We used ui_out_text to make sure that this extra
11776 info does not pollute the exception name in the MI case. */
761269c8 11777 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11778 ui_out_text (uiout, "unhandled ");
11779 ui_out_field_string (uiout, "exception-name", exception_name);
11780 }
11781 break;
761269c8 11782 case ada_catch_assert:
956a9fb9
JB
11783 /* In this case, the name of the exception is not really
11784 important. Just print "failed assertion" to make it clearer
11785 that his program just hit an assertion-failure catchpoint.
11786 We used ui_out_text because this info does not belong in
11787 the MI output. */
11788 ui_out_text (uiout, "failed assertion");
11789 break;
f7f9143b 11790 }
956a9fb9
JB
11791 ui_out_text (uiout, " at ");
11792 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11793
11794 return PRINT_SRC_AND_LOC;
11795}
11796
11797/* Implement the PRINT_ONE method in the breakpoint_ops structure
11798 for all exception catchpoint kinds. */
11799
11800static void
761269c8 11801print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11802 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11803{
79a45e25 11804 struct ui_out *uiout = current_uiout;
28010a5d 11805 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11806 struct value_print_options opts;
11807
11808 get_user_print_options (&opts);
11809 if (opts.addressprint)
f7f9143b
JB
11810 {
11811 annotate_field (4);
5af949e3 11812 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11813 }
11814
11815 annotate_field (5);
a6d9a66e 11816 *last_loc = b->loc;
f7f9143b
JB
11817 switch (ex)
11818 {
761269c8 11819 case ada_catch_exception:
28010a5d 11820 if (c->excep_string != NULL)
f7f9143b 11821 {
28010a5d
PA
11822 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11823
f7f9143b
JB
11824 ui_out_field_string (uiout, "what", msg);
11825 xfree (msg);
11826 }
11827 else
11828 ui_out_field_string (uiout, "what", "all Ada exceptions");
11829
11830 break;
11831
761269c8 11832 case ada_catch_exception_unhandled:
f7f9143b
JB
11833 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11834 break;
11835
761269c8 11836 case ada_catch_assert:
f7f9143b
JB
11837 ui_out_field_string (uiout, "what", "failed Ada assertions");
11838 break;
11839
11840 default:
11841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11842 break;
11843 }
11844}
11845
11846/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11847 for all exception catchpoint kinds. */
11848
11849static void
761269c8 11850print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11851 struct breakpoint *b)
11852{
28010a5d 11853 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11854 struct ui_out *uiout = current_uiout;
28010a5d 11855
00eb2c4a
JB
11856 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11857 : _("Catchpoint "));
11858 ui_out_field_int (uiout, "bkptno", b->number);
11859 ui_out_text (uiout, ": ");
11860
f7f9143b
JB
11861 switch (ex)
11862 {
761269c8 11863 case ada_catch_exception:
28010a5d 11864 if (c->excep_string != NULL)
00eb2c4a
JB
11865 {
11866 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11867 struct cleanup *old_chain = make_cleanup (xfree, info);
11868
11869 ui_out_text (uiout, info);
11870 do_cleanups (old_chain);
11871 }
f7f9143b 11872 else
00eb2c4a 11873 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11874 break;
11875
761269c8 11876 case ada_catch_exception_unhandled:
00eb2c4a 11877 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11878 break;
11879
761269c8 11880 case ada_catch_assert:
00eb2c4a 11881 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11882 break;
11883
11884 default:
11885 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11886 break;
11887 }
11888}
11889
6149aea9
PA
11890/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11891 for all exception catchpoint kinds. */
11892
11893static void
761269c8 11894print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
11895 struct breakpoint *b, struct ui_file *fp)
11896{
28010a5d
PA
11897 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11898
6149aea9
PA
11899 switch (ex)
11900 {
761269c8 11901 case ada_catch_exception:
6149aea9 11902 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11903 if (c->excep_string != NULL)
11904 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11905 break;
11906
761269c8 11907 case ada_catch_exception_unhandled:
78076abc 11908 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11909 break;
11910
761269c8 11911 case ada_catch_assert:
6149aea9
PA
11912 fprintf_filtered (fp, "catch assert");
11913 break;
11914
11915 default:
11916 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11917 }
d9b3f62e 11918 print_recreate_thread (b, fp);
6149aea9
PA
11919}
11920
f7f9143b
JB
11921/* Virtual table for "catch exception" breakpoints. */
11922
28010a5d
PA
11923static void
11924dtor_catch_exception (struct breakpoint *b)
11925{
761269c8 11926 dtor_exception (ada_catch_exception, b);
28010a5d
PA
11927}
11928
11929static struct bp_location *
11930allocate_location_catch_exception (struct breakpoint *self)
11931{
761269c8 11932 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
11933}
11934
11935static void
11936re_set_catch_exception (struct breakpoint *b)
11937{
761269c8 11938 re_set_exception (ada_catch_exception, b);
28010a5d
PA
11939}
11940
11941static void
11942check_status_catch_exception (bpstat bs)
11943{
761269c8 11944 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
11945}
11946
f7f9143b 11947static enum print_stop_action
348d480f 11948print_it_catch_exception (bpstat bs)
f7f9143b 11949{
761269c8 11950 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
11951}
11952
11953static void
a6d9a66e 11954print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11955{
761269c8 11956 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
11957}
11958
11959static void
11960print_mention_catch_exception (struct breakpoint *b)
11961{
761269c8 11962 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
11963}
11964
6149aea9
PA
11965static void
11966print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11967{
761269c8 11968 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
11969}
11970
2060206e 11971static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11972
11973/* Virtual table for "catch exception unhandled" breakpoints. */
11974
28010a5d
PA
11975static void
11976dtor_catch_exception_unhandled (struct breakpoint *b)
11977{
761269c8 11978 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
11979}
11980
11981static struct bp_location *
11982allocate_location_catch_exception_unhandled (struct breakpoint *self)
11983{
761269c8 11984 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
11985}
11986
11987static void
11988re_set_catch_exception_unhandled (struct breakpoint *b)
11989{
761269c8 11990 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
11991}
11992
11993static void
11994check_status_catch_exception_unhandled (bpstat bs)
11995{
761269c8 11996 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
11997}
11998
f7f9143b 11999static enum print_stop_action
348d480f 12000print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12001{
761269c8 12002 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12003}
12004
12005static void
a6d9a66e
UW
12006print_one_catch_exception_unhandled (struct breakpoint *b,
12007 struct bp_location **last_loc)
f7f9143b 12008{
761269c8 12009 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12010}
12011
12012static void
12013print_mention_catch_exception_unhandled (struct breakpoint *b)
12014{
761269c8 12015 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12016}
12017
6149aea9
PA
12018static void
12019print_recreate_catch_exception_unhandled (struct breakpoint *b,
12020 struct ui_file *fp)
12021{
761269c8 12022 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12023}
12024
2060206e 12025static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12026
12027/* Virtual table for "catch assert" breakpoints. */
12028
28010a5d
PA
12029static void
12030dtor_catch_assert (struct breakpoint *b)
12031{
761269c8 12032 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12033}
12034
12035static struct bp_location *
12036allocate_location_catch_assert (struct breakpoint *self)
12037{
761269c8 12038 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12039}
12040
12041static void
12042re_set_catch_assert (struct breakpoint *b)
12043{
761269c8 12044 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12045}
12046
12047static void
12048check_status_catch_assert (bpstat bs)
12049{
761269c8 12050 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12051}
12052
f7f9143b 12053static enum print_stop_action
348d480f 12054print_it_catch_assert (bpstat bs)
f7f9143b 12055{
761269c8 12056 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12057}
12058
12059static void
a6d9a66e 12060print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12061{
761269c8 12062 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12063}
12064
12065static void
12066print_mention_catch_assert (struct breakpoint *b)
12067{
761269c8 12068 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12069}
12070
6149aea9
PA
12071static void
12072print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12073{
761269c8 12074 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12075}
12076
2060206e 12077static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12078
f7f9143b
JB
12079/* Return a newly allocated copy of the first space-separated token
12080 in ARGSP, and then adjust ARGSP to point immediately after that
12081 token.
12082
12083 Return NULL if ARGPS does not contain any more tokens. */
12084
12085static char *
12086ada_get_next_arg (char **argsp)
12087{
12088 char *args = *argsp;
12089 char *end;
12090 char *result;
12091
0fcd72ba 12092 args = skip_spaces (args);
f7f9143b
JB
12093 if (args[0] == '\0')
12094 return NULL; /* No more arguments. */
12095
12096 /* Find the end of the current argument. */
12097
0fcd72ba 12098 end = skip_to_space (args);
f7f9143b
JB
12099
12100 /* Adjust ARGSP to point to the start of the next argument. */
12101
12102 *argsp = end;
12103
12104 /* Make a copy of the current argument and return it. */
12105
12106 result = xmalloc (end - args + 1);
12107 strncpy (result, args, end - args);
12108 result[end - args] = '\0';
12109
12110 return result;
12111}
12112
12113/* Split the arguments specified in a "catch exception" command.
12114 Set EX to the appropriate catchpoint type.
28010a5d 12115 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12116 specified by the user.
12117 If a condition is found at the end of the arguments, the condition
12118 expression is stored in COND_STRING (memory must be deallocated
12119 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12120
12121static void
12122catch_ada_exception_command_split (char *args,
761269c8 12123 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12124 char **excep_string,
12125 char **cond_string)
f7f9143b
JB
12126{
12127 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12128 char *exception_name;
5845583d 12129 char *cond = NULL;
f7f9143b
JB
12130
12131 exception_name = ada_get_next_arg (&args);
5845583d
JB
12132 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12133 {
12134 /* This is not an exception name; this is the start of a condition
12135 expression for a catchpoint on all exceptions. So, "un-get"
12136 this token, and set exception_name to NULL. */
12137 xfree (exception_name);
12138 exception_name = NULL;
12139 args -= 2;
12140 }
f7f9143b
JB
12141 make_cleanup (xfree, exception_name);
12142
5845583d 12143 /* Check to see if we have a condition. */
f7f9143b 12144
0fcd72ba 12145 args = skip_spaces (args);
5845583d
JB
12146 if (strncmp (args, "if", 2) == 0
12147 && (isspace (args[2]) || args[2] == '\0'))
12148 {
12149 args += 2;
12150 args = skip_spaces (args);
12151
12152 if (args[0] == '\0')
12153 error (_("Condition missing after `if' keyword"));
12154 cond = xstrdup (args);
12155 make_cleanup (xfree, cond);
12156
12157 args += strlen (args);
12158 }
12159
12160 /* Check that we do not have any more arguments. Anything else
12161 is unexpected. */
f7f9143b
JB
12162
12163 if (args[0] != '\0')
12164 error (_("Junk at end of expression"));
12165
12166 discard_cleanups (old_chain);
12167
12168 if (exception_name == NULL)
12169 {
12170 /* Catch all exceptions. */
761269c8 12171 *ex = ada_catch_exception;
28010a5d 12172 *excep_string = NULL;
f7f9143b
JB
12173 }
12174 else if (strcmp (exception_name, "unhandled") == 0)
12175 {
12176 /* Catch unhandled exceptions. */
761269c8 12177 *ex = ada_catch_exception_unhandled;
28010a5d 12178 *excep_string = NULL;
f7f9143b
JB
12179 }
12180 else
12181 {
12182 /* Catch a specific exception. */
761269c8 12183 *ex = ada_catch_exception;
28010a5d 12184 *excep_string = exception_name;
f7f9143b 12185 }
5845583d 12186 *cond_string = cond;
f7f9143b
JB
12187}
12188
12189/* Return the name of the symbol on which we should break in order to
12190 implement a catchpoint of the EX kind. */
12191
12192static const char *
761269c8 12193ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12194{
3eecfa55
JB
12195 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12196
12197 gdb_assert (data->exception_info != NULL);
0259addd 12198
f7f9143b
JB
12199 switch (ex)
12200 {
761269c8 12201 case ada_catch_exception:
3eecfa55 12202 return (data->exception_info->catch_exception_sym);
f7f9143b 12203 break;
761269c8 12204 case ada_catch_exception_unhandled:
3eecfa55 12205 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12206 break;
761269c8 12207 case ada_catch_assert:
3eecfa55 12208 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12209 break;
12210 default:
12211 internal_error (__FILE__, __LINE__,
12212 _("unexpected catchpoint kind (%d)"), ex);
12213 }
12214}
12215
12216/* Return the breakpoint ops "virtual table" used for catchpoints
12217 of the EX kind. */
12218
c0a91b2b 12219static const struct breakpoint_ops *
761269c8 12220ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12221{
12222 switch (ex)
12223 {
761269c8 12224 case ada_catch_exception:
f7f9143b
JB
12225 return (&catch_exception_breakpoint_ops);
12226 break;
761269c8 12227 case ada_catch_exception_unhandled:
f7f9143b
JB
12228 return (&catch_exception_unhandled_breakpoint_ops);
12229 break;
761269c8 12230 case ada_catch_assert:
f7f9143b
JB
12231 return (&catch_assert_breakpoint_ops);
12232 break;
12233 default:
12234 internal_error (__FILE__, __LINE__,
12235 _("unexpected catchpoint kind (%d)"), ex);
12236 }
12237}
12238
12239/* Return the condition that will be used to match the current exception
12240 being raised with the exception that the user wants to catch. This
12241 assumes that this condition is used when the inferior just triggered
12242 an exception catchpoint.
12243
12244 The string returned is a newly allocated string that needs to be
12245 deallocated later. */
12246
12247static char *
28010a5d 12248ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12249{
3d0b0fa3
JB
12250 int i;
12251
0963b4bd 12252 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12253 runtime units that have been compiled without debugging info; if
28010a5d 12254 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12255 exception (e.g. "constraint_error") then, during the evaluation
12256 of the condition expression, the symbol lookup on this name would
0963b4bd 12257 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12258 may then be set only on user-defined exceptions which have the
12259 same not-fully-qualified name (e.g. my_package.constraint_error).
12260
12261 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12262 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12263 exception constraint_error" is rewritten into "catch exception
12264 standard.constraint_error".
12265
12266 If an exception named contraint_error is defined in another package of
12267 the inferior program, then the only way to specify this exception as a
12268 breakpoint condition is to use its fully-qualified named:
12269 e.g. my_package.constraint_error. */
12270
12271 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12272 {
28010a5d 12273 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12274 {
12275 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12276 excep_string);
3d0b0fa3
JB
12277 }
12278 }
28010a5d 12279 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12280}
12281
12282/* Return the symtab_and_line that should be used to insert an exception
12283 catchpoint of the TYPE kind.
12284
28010a5d
PA
12285 EXCEP_STRING should contain the name of a specific exception that
12286 the catchpoint should catch, or NULL otherwise.
f7f9143b 12287
28010a5d
PA
12288 ADDR_STRING returns the name of the function where the real
12289 breakpoint that implements the catchpoints is set, depending on the
12290 type of catchpoint we need to create. */
f7f9143b
JB
12291
12292static struct symtab_and_line
761269c8 12293ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12294 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12295{
12296 const char *sym_name;
12297 struct symbol *sym;
f7f9143b 12298
0259addd
JB
12299 /* First, find out which exception support info to use. */
12300 ada_exception_support_info_sniffer ();
12301
12302 /* Then lookup the function on which we will break in order to catch
f7f9143b 12303 the Ada exceptions requested by the user. */
f7f9143b
JB
12304 sym_name = ada_exception_sym_name (ex);
12305 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12306
f17011e0
JB
12307 /* We can assume that SYM is not NULL at this stage. If the symbol
12308 did not exist, ada_exception_support_info_sniffer would have
12309 raised an exception.
f7f9143b 12310
f17011e0
JB
12311 Also, ada_exception_support_info_sniffer should have already
12312 verified that SYM is a function symbol. */
12313 gdb_assert (sym != NULL);
12314 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12315
12316 /* Set ADDR_STRING. */
f7f9143b
JB
12317 *addr_string = xstrdup (sym_name);
12318
f7f9143b 12319 /* Set OPS. */
4b9eee8c 12320 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12321
f17011e0 12322 return find_function_start_sal (sym, 1);
f7f9143b
JB
12323}
12324
b4a5b78b 12325/* Create an Ada exception catchpoint.
f7f9143b 12326
b4a5b78b 12327 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12328
2df4d1d5
JB
12329 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12330 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12331 of the exception to which this catchpoint applies. When not NULL,
12332 the string must be allocated on the heap, and its deallocation
12333 is no longer the responsibility of the caller.
12334
12335 COND_STRING, if not NULL, is the catchpoint condition. This string
12336 must be allocated on the heap, and its deallocation is no longer
12337 the responsibility of the caller.
f7f9143b 12338
b4a5b78b
JB
12339 TEMPFLAG, if nonzero, means that the underlying breakpoint
12340 should be temporary.
28010a5d 12341
b4a5b78b 12342 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12343
349774ef 12344void
28010a5d 12345create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12346 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12347 char *excep_string,
5845583d 12348 char *cond_string,
28010a5d 12349 int tempflag,
349774ef 12350 int disabled,
28010a5d
PA
12351 int from_tty)
12352{
12353 struct ada_catchpoint *c;
b4a5b78b
JB
12354 char *addr_string = NULL;
12355 const struct breakpoint_ops *ops = NULL;
12356 struct symtab_and_line sal
12357 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12358
12359 c = XNEW (struct ada_catchpoint);
12360 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12361 ops, tempflag, disabled, from_tty);
28010a5d
PA
12362 c->excep_string = excep_string;
12363 create_excep_cond_exprs (c);
5845583d
JB
12364 if (cond_string != NULL)
12365 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12366 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12367}
12368
9ac4176b
PA
12369/* Implement the "catch exception" command. */
12370
12371static void
12372catch_ada_exception_command (char *arg, int from_tty,
12373 struct cmd_list_element *command)
12374{
12375 struct gdbarch *gdbarch = get_current_arch ();
12376 int tempflag;
761269c8 12377 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12378 char *excep_string = NULL;
5845583d 12379 char *cond_string = NULL;
9ac4176b
PA
12380
12381 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12382
12383 if (!arg)
12384 arg = "";
b4a5b78b
JB
12385 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12386 &cond_string);
12387 create_ada_exception_catchpoint (gdbarch, ex_kind,
12388 excep_string, cond_string,
349774ef
JB
12389 tempflag, 1 /* enabled */,
12390 from_tty);
9ac4176b
PA
12391}
12392
b4a5b78b 12393/* Split the arguments specified in a "catch assert" command.
5845583d 12394
b4a5b78b
JB
12395 ARGS contains the command's arguments (or the empty string if
12396 no arguments were passed).
5845583d
JB
12397
12398 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12399 (the memory needs to be deallocated after use). */
5845583d 12400
b4a5b78b
JB
12401static void
12402catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12403{
5845583d 12404 args = skip_spaces (args);
f7f9143b 12405
5845583d
JB
12406 /* Check whether a condition was provided. */
12407 if (strncmp (args, "if", 2) == 0
12408 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12409 {
5845583d 12410 args += 2;
0fcd72ba 12411 args = skip_spaces (args);
5845583d
JB
12412 if (args[0] == '\0')
12413 error (_("condition missing after `if' keyword"));
12414 *cond_string = xstrdup (args);
f7f9143b
JB
12415 }
12416
5845583d
JB
12417 /* Otherwise, there should be no other argument at the end of
12418 the command. */
12419 else if (args[0] != '\0')
12420 error (_("Junk at end of arguments."));
f7f9143b
JB
12421}
12422
9ac4176b
PA
12423/* Implement the "catch assert" command. */
12424
12425static void
12426catch_assert_command (char *arg, int from_tty,
12427 struct cmd_list_element *command)
12428{
12429 struct gdbarch *gdbarch = get_current_arch ();
12430 int tempflag;
5845583d 12431 char *cond_string = NULL;
9ac4176b
PA
12432
12433 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12434
12435 if (!arg)
12436 arg = "";
b4a5b78b 12437 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12438 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12439 NULL, cond_string,
349774ef
JB
12440 tempflag, 1 /* enabled */,
12441 from_tty);
9ac4176b 12442}
778865d3
JB
12443
12444/* Return non-zero if the symbol SYM is an Ada exception object. */
12445
12446static int
12447ada_is_exception_sym (struct symbol *sym)
12448{
12449 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12450
12451 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12452 && SYMBOL_CLASS (sym) != LOC_BLOCK
12453 && SYMBOL_CLASS (sym) != LOC_CONST
12454 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12455 && type_name != NULL && strcmp (type_name, "exception") == 0);
12456}
12457
12458/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12459 Ada exception object. This matches all exceptions except the ones
12460 defined by the Ada language. */
12461
12462static int
12463ada_is_non_standard_exception_sym (struct symbol *sym)
12464{
12465 int i;
12466
12467 if (!ada_is_exception_sym (sym))
12468 return 0;
12469
12470 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12471 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12472 return 0; /* A standard exception. */
12473
12474 /* Numeric_Error is also a standard exception, so exclude it.
12475 See the STANDARD_EXC description for more details as to why
12476 this exception is not listed in that array. */
12477 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12478 return 0;
12479
12480 return 1;
12481}
12482
12483/* A helper function for qsort, comparing two struct ada_exc_info
12484 objects.
12485
12486 The comparison is determined first by exception name, and then
12487 by exception address. */
12488
12489static int
12490compare_ada_exception_info (const void *a, const void *b)
12491{
12492 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12493 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12494 int result;
12495
12496 result = strcmp (exc_a->name, exc_b->name);
12497 if (result != 0)
12498 return result;
12499
12500 if (exc_a->addr < exc_b->addr)
12501 return -1;
12502 if (exc_a->addr > exc_b->addr)
12503 return 1;
12504
12505 return 0;
12506}
12507
12508/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12509 routine, but keeping the first SKIP elements untouched.
12510
12511 All duplicates are also removed. */
12512
12513static void
12514sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12515 int skip)
12516{
12517 struct ada_exc_info *to_sort
12518 = VEC_address (ada_exc_info, *exceptions) + skip;
12519 int to_sort_len
12520 = VEC_length (ada_exc_info, *exceptions) - skip;
12521 int i, j;
12522
12523 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12524 compare_ada_exception_info);
12525
12526 for (i = 1, j = 1; i < to_sort_len; i++)
12527 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12528 to_sort[j++] = to_sort[i];
12529 to_sort_len = j;
12530 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12531}
12532
12533/* A function intended as the "name_matcher" callback in the struct
12534 quick_symbol_functions' expand_symtabs_matching method.
12535
12536 SEARCH_NAME is the symbol's search name.
12537
12538 If USER_DATA is not NULL, it is a pointer to a regext_t object
12539 used to match the symbol (by natural name). Otherwise, when USER_DATA
12540 is null, no filtering is performed, and all symbols are a positive
12541 match. */
12542
12543static int
12544ada_exc_search_name_matches (const char *search_name, void *user_data)
12545{
12546 regex_t *preg = user_data;
12547
12548 if (preg == NULL)
12549 return 1;
12550
12551 /* In Ada, the symbol "search name" is a linkage name, whereas
12552 the regular expression used to do the matching refers to
12553 the natural name. So match against the decoded name. */
12554 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12555}
12556
12557/* Add all exceptions defined by the Ada standard whose name match
12558 a regular expression.
12559
12560 If PREG is not NULL, then this regexp_t object is used to
12561 perform the symbol name matching. Otherwise, no name-based
12562 filtering is performed.
12563
12564 EXCEPTIONS is a vector of exceptions to which matching exceptions
12565 gets pushed. */
12566
12567static void
12568ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12569{
12570 int i;
12571
12572 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12573 {
12574 if (preg == NULL
12575 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12576 {
12577 struct bound_minimal_symbol msymbol
12578 = ada_lookup_simple_minsym (standard_exc[i]);
12579
12580 if (msymbol.minsym != NULL)
12581 {
12582 struct ada_exc_info info
12583 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12584
12585 VEC_safe_push (ada_exc_info, *exceptions, &info);
12586 }
12587 }
12588 }
12589}
12590
12591/* Add all Ada exceptions defined locally and accessible from the given
12592 FRAME.
12593
12594 If PREG is not NULL, then this regexp_t object is used to
12595 perform the symbol name matching. Otherwise, no name-based
12596 filtering is performed.
12597
12598 EXCEPTIONS is a vector of exceptions to which matching exceptions
12599 gets pushed. */
12600
12601static void
12602ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12603 VEC(ada_exc_info) **exceptions)
12604{
12605 struct block *block = get_frame_block (frame, 0);
12606
12607 while (block != 0)
12608 {
12609 struct block_iterator iter;
12610 struct symbol *sym;
12611
12612 ALL_BLOCK_SYMBOLS (block, iter, sym)
12613 {
12614 switch (SYMBOL_CLASS (sym))
12615 {
12616 case LOC_TYPEDEF:
12617 case LOC_BLOCK:
12618 case LOC_CONST:
12619 break;
12620 default:
12621 if (ada_is_exception_sym (sym))
12622 {
12623 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12624 SYMBOL_VALUE_ADDRESS (sym)};
12625
12626 VEC_safe_push (ada_exc_info, *exceptions, &info);
12627 }
12628 }
12629 }
12630 if (BLOCK_FUNCTION (block) != NULL)
12631 break;
12632 block = BLOCK_SUPERBLOCK (block);
12633 }
12634}
12635
12636/* Add all exceptions defined globally whose name name match
12637 a regular expression, excluding standard exceptions.
12638
12639 The reason we exclude standard exceptions is that they need
12640 to be handled separately: Standard exceptions are defined inside
12641 a runtime unit which is normally not compiled with debugging info,
12642 and thus usually do not show up in our symbol search. However,
12643 if the unit was in fact built with debugging info, we need to
12644 exclude them because they would duplicate the entry we found
12645 during the special loop that specifically searches for those
12646 standard exceptions.
12647
12648 If PREG is not NULL, then this regexp_t object is used to
12649 perform the symbol name matching. Otherwise, no name-based
12650 filtering is performed.
12651
12652 EXCEPTIONS is a vector of exceptions to which matching exceptions
12653 gets pushed. */
12654
12655static void
12656ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12657{
12658 struct objfile *objfile;
12659 struct symtab *s;
12660
bb4142cf
DE
12661 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12662 VARIABLES_DOMAIN, preg);
778865d3
JB
12663
12664 ALL_PRIMARY_SYMTABS (objfile, s)
12665 {
12666 struct blockvector *bv = BLOCKVECTOR (s);
12667 int i;
12668
12669 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12670 {
12671 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12672 struct block_iterator iter;
12673 struct symbol *sym;
12674
12675 ALL_BLOCK_SYMBOLS (b, iter, sym)
12676 if (ada_is_non_standard_exception_sym (sym)
12677 && (preg == NULL
12678 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12679 0, NULL, 0) == 0))
12680 {
12681 struct ada_exc_info info
12682 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12683
12684 VEC_safe_push (ada_exc_info, *exceptions, &info);
12685 }
12686 }
12687 }
12688}
12689
12690/* Implements ada_exceptions_list with the regular expression passed
12691 as a regex_t, rather than a string.
12692
12693 If not NULL, PREG is used to filter out exceptions whose names
12694 do not match. Otherwise, all exceptions are listed. */
12695
12696static VEC(ada_exc_info) *
12697ada_exceptions_list_1 (regex_t *preg)
12698{
12699 VEC(ada_exc_info) *result = NULL;
12700 struct cleanup *old_chain
12701 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12702 int prev_len;
12703
12704 /* First, list the known standard exceptions. These exceptions
12705 need to be handled separately, as they are usually defined in
12706 runtime units that have been compiled without debugging info. */
12707
12708 ada_add_standard_exceptions (preg, &result);
12709
12710 /* Next, find all exceptions whose scope is local and accessible
12711 from the currently selected frame. */
12712
12713 if (has_stack_frames ())
12714 {
12715 prev_len = VEC_length (ada_exc_info, result);
12716 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12717 &result);
12718 if (VEC_length (ada_exc_info, result) > prev_len)
12719 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12720 }
12721
12722 /* Add all exceptions whose scope is global. */
12723
12724 prev_len = VEC_length (ada_exc_info, result);
12725 ada_add_global_exceptions (preg, &result);
12726 if (VEC_length (ada_exc_info, result) > prev_len)
12727 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12728
12729 discard_cleanups (old_chain);
12730 return result;
12731}
12732
12733/* Return a vector of ada_exc_info.
12734
12735 If REGEXP is NULL, all exceptions are included in the result.
12736 Otherwise, it should contain a valid regular expression,
12737 and only the exceptions whose names match that regular expression
12738 are included in the result.
12739
12740 The exceptions are sorted in the following order:
12741 - Standard exceptions (defined by the Ada language), in
12742 alphabetical order;
12743 - Exceptions only visible from the current frame, in
12744 alphabetical order;
12745 - Exceptions whose scope is global, in alphabetical order. */
12746
12747VEC(ada_exc_info) *
12748ada_exceptions_list (const char *regexp)
12749{
12750 VEC(ada_exc_info) *result = NULL;
12751 struct cleanup *old_chain = NULL;
12752 regex_t reg;
12753
12754 if (regexp != NULL)
12755 old_chain = compile_rx_or_error (&reg, regexp,
12756 _("invalid regular expression"));
12757
12758 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12759
12760 if (old_chain != NULL)
12761 do_cleanups (old_chain);
12762 return result;
12763}
12764
12765/* Implement the "info exceptions" command. */
12766
12767static void
12768info_exceptions_command (char *regexp, int from_tty)
12769{
12770 VEC(ada_exc_info) *exceptions;
12771 struct cleanup *cleanup;
12772 struct gdbarch *gdbarch = get_current_arch ();
12773 int ix;
12774 struct ada_exc_info *info;
12775
12776 exceptions = ada_exceptions_list (regexp);
12777 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12778
12779 if (regexp != NULL)
12780 printf_filtered
12781 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12782 else
12783 printf_filtered (_("All defined Ada exceptions:\n"));
12784
12785 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12786 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12787
12788 do_cleanups (cleanup);
12789}
12790
4c4b4cd2
PH
12791 /* Operators */
12792/* Information about operators given special treatment in functions
12793 below. */
12794/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12795
12796#define ADA_OPERATORS \
12797 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12798 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12799 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12800 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12801 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12802 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12803 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12804 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12805 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12806 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12807 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12808 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12809 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12810 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12811 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12812 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12813 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12814 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12815 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12816
12817static void
554794dc
SDJ
12818ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12819 int *argsp)
4c4b4cd2
PH
12820{
12821 switch (exp->elts[pc - 1].opcode)
12822 {
76a01679 12823 default:
4c4b4cd2
PH
12824 operator_length_standard (exp, pc, oplenp, argsp);
12825 break;
12826
12827#define OP_DEFN(op, len, args, binop) \
12828 case op: *oplenp = len; *argsp = args; break;
12829 ADA_OPERATORS;
12830#undef OP_DEFN
52ce6436
PH
12831
12832 case OP_AGGREGATE:
12833 *oplenp = 3;
12834 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12835 break;
12836
12837 case OP_CHOICES:
12838 *oplenp = 3;
12839 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12840 break;
4c4b4cd2
PH
12841 }
12842}
12843
c0201579
JK
12844/* Implementation of the exp_descriptor method operator_check. */
12845
12846static int
12847ada_operator_check (struct expression *exp, int pos,
12848 int (*objfile_func) (struct objfile *objfile, void *data),
12849 void *data)
12850{
12851 const union exp_element *const elts = exp->elts;
12852 struct type *type = NULL;
12853
12854 switch (elts[pos].opcode)
12855 {
12856 case UNOP_IN_RANGE:
12857 case UNOP_QUAL:
12858 type = elts[pos + 1].type;
12859 break;
12860
12861 default:
12862 return operator_check_standard (exp, pos, objfile_func, data);
12863 }
12864
12865 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12866
12867 if (type && TYPE_OBJFILE (type)
12868 && (*objfile_func) (TYPE_OBJFILE (type), data))
12869 return 1;
12870
12871 return 0;
12872}
12873
4c4b4cd2
PH
12874static char *
12875ada_op_name (enum exp_opcode opcode)
12876{
12877 switch (opcode)
12878 {
76a01679 12879 default:
4c4b4cd2 12880 return op_name_standard (opcode);
52ce6436 12881
4c4b4cd2
PH
12882#define OP_DEFN(op, len, args, binop) case op: return #op;
12883 ADA_OPERATORS;
12884#undef OP_DEFN
52ce6436
PH
12885
12886 case OP_AGGREGATE:
12887 return "OP_AGGREGATE";
12888 case OP_CHOICES:
12889 return "OP_CHOICES";
12890 case OP_NAME:
12891 return "OP_NAME";
4c4b4cd2
PH
12892 }
12893}
12894
12895/* As for operator_length, but assumes PC is pointing at the first
12896 element of the operator, and gives meaningful results only for the
52ce6436 12897 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12898
12899static void
76a01679
JB
12900ada_forward_operator_length (struct expression *exp, int pc,
12901 int *oplenp, int *argsp)
4c4b4cd2 12902{
76a01679 12903 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12904 {
12905 default:
12906 *oplenp = *argsp = 0;
12907 break;
52ce6436 12908
4c4b4cd2
PH
12909#define OP_DEFN(op, len, args, binop) \
12910 case op: *oplenp = len; *argsp = args; break;
12911 ADA_OPERATORS;
12912#undef OP_DEFN
52ce6436
PH
12913
12914 case OP_AGGREGATE:
12915 *oplenp = 3;
12916 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12917 break;
12918
12919 case OP_CHOICES:
12920 *oplenp = 3;
12921 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12922 break;
12923
12924 case OP_STRING:
12925 case OP_NAME:
12926 {
12927 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12928
52ce6436
PH
12929 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12930 *argsp = 0;
12931 break;
12932 }
4c4b4cd2
PH
12933 }
12934}
12935
12936static int
12937ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12938{
12939 enum exp_opcode op = exp->elts[elt].opcode;
12940 int oplen, nargs;
12941 int pc = elt;
12942 int i;
76a01679 12943
4c4b4cd2
PH
12944 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12945
76a01679 12946 switch (op)
4c4b4cd2 12947 {
76a01679 12948 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12949 case OP_ATR_FIRST:
12950 case OP_ATR_LAST:
12951 case OP_ATR_LENGTH:
12952 case OP_ATR_IMAGE:
12953 case OP_ATR_MAX:
12954 case OP_ATR_MIN:
12955 case OP_ATR_MODULUS:
12956 case OP_ATR_POS:
12957 case OP_ATR_SIZE:
12958 case OP_ATR_TAG:
12959 case OP_ATR_VAL:
12960 break;
12961
12962 case UNOP_IN_RANGE:
12963 case UNOP_QUAL:
323e0a4a
AC
12964 /* XXX: gdb_sprint_host_address, type_sprint */
12965 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12966 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12967 fprintf_filtered (stream, " (");
12968 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12969 fprintf_filtered (stream, ")");
12970 break;
12971 case BINOP_IN_BOUNDS:
52ce6436
PH
12972 fprintf_filtered (stream, " (%d)",
12973 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12974 break;
12975 case TERNOP_IN_RANGE:
12976 break;
12977
52ce6436
PH
12978 case OP_AGGREGATE:
12979 case OP_OTHERS:
12980 case OP_DISCRETE_RANGE:
12981 case OP_POSITIONAL:
12982 case OP_CHOICES:
12983 break;
12984
12985 case OP_NAME:
12986 case OP_STRING:
12987 {
12988 char *name = &exp->elts[elt + 2].string;
12989 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12990
52ce6436
PH
12991 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12992 break;
12993 }
12994
4c4b4cd2
PH
12995 default:
12996 return dump_subexp_body_standard (exp, stream, elt);
12997 }
12998
12999 elt += oplen;
13000 for (i = 0; i < nargs; i += 1)
13001 elt = dump_subexp (exp, stream, elt);
13002
13003 return elt;
13004}
13005
13006/* The Ada extension of print_subexp (q.v.). */
13007
76a01679
JB
13008static void
13009ada_print_subexp (struct expression *exp, int *pos,
13010 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13011{
52ce6436 13012 int oplen, nargs, i;
4c4b4cd2
PH
13013 int pc = *pos;
13014 enum exp_opcode op = exp->elts[pc].opcode;
13015
13016 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13017
52ce6436 13018 *pos += oplen;
4c4b4cd2
PH
13019 switch (op)
13020 {
13021 default:
52ce6436 13022 *pos -= oplen;
4c4b4cd2
PH
13023 print_subexp_standard (exp, pos, stream, prec);
13024 return;
13025
13026 case OP_VAR_VALUE:
4c4b4cd2
PH
13027 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13028 return;
13029
13030 case BINOP_IN_BOUNDS:
323e0a4a 13031 /* XXX: sprint_subexp */
4c4b4cd2 13032 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13033 fputs_filtered (" in ", stream);
4c4b4cd2 13034 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13035 fputs_filtered ("'range", stream);
4c4b4cd2 13036 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13037 fprintf_filtered (stream, "(%ld)",
13038 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13039 return;
13040
13041 case TERNOP_IN_RANGE:
4c4b4cd2 13042 if (prec >= PREC_EQUAL)
76a01679 13043 fputs_filtered ("(", stream);
323e0a4a 13044 /* XXX: sprint_subexp */
4c4b4cd2 13045 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13046 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13047 print_subexp (exp, pos, stream, PREC_EQUAL);
13048 fputs_filtered (" .. ", stream);
13049 print_subexp (exp, pos, stream, PREC_EQUAL);
13050 if (prec >= PREC_EQUAL)
76a01679
JB
13051 fputs_filtered (")", stream);
13052 return;
4c4b4cd2
PH
13053
13054 case OP_ATR_FIRST:
13055 case OP_ATR_LAST:
13056 case OP_ATR_LENGTH:
13057 case OP_ATR_IMAGE:
13058 case OP_ATR_MAX:
13059 case OP_ATR_MIN:
13060 case OP_ATR_MODULUS:
13061 case OP_ATR_POS:
13062 case OP_ATR_SIZE:
13063 case OP_ATR_TAG:
13064 case OP_ATR_VAL:
4c4b4cd2 13065 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13066 {
13067 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13068 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13069 &type_print_raw_options);
76a01679
JB
13070 *pos += 3;
13071 }
4c4b4cd2 13072 else
76a01679 13073 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13074 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13075 if (nargs > 1)
76a01679
JB
13076 {
13077 int tem;
5b4ee69b 13078
76a01679
JB
13079 for (tem = 1; tem < nargs; tem += 1)
13080 {
13081 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13082 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13083 }
13084 fputs_filtered (")", stream);
13085 }
4c4b4cd2 13086 return;
14f9c5c9 13087
4c4b4cd2 13088 case UNOP_QUAL:
4c4b4cd2
PH
13089 type_print (exp->elts[pc + 1].type, "", stream, 0);
13090 fputs_filtered ("'(", stream);
13091 print_subexp (exp, pos, stream, PREC_PREFIX);
13092 fputs_filtered (")", stream);
13093 return;
14f9c5c9 13094
4c4b4cd2 13095 case UNOP_IN_RANGE:
323e0a4a 13096 /* XXX: sprint_subexp */
4c4b4cd2 13097 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13098 fputs_filtered (" in ", stream);
79d43c61
TT
13099 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13100 &type_print_raw_options);
4c4b4cd2 13101 return;
52ce6436
PH
13102
13103 case OP_DISCRETE_RANGE:
13104 print_subexp (exp, pos, stream, PREC_SUFFIX);
13105 fputs_filtered ("..", stream);
13106 print_subexp (exp, pos, stream, PREC_SUFFIX);
13107 return;
13108
13109 case OP_OTHERS:
13110 fputs_filtered ("others => ", stream);
13111 print_subexp (exp, pos, stream, PREC_SUFFIX);
13112 return;
13113
13114 case OP_CHOICES:
13115 for (i = 0; i < nargs-1; i += 1)
13116 {
13117 if (i > 0)
13118 fputs_filtered ("|", stream);
13119 print_subexp (exp, pos, stream, PREC_SUFFIX);
13120 }
13121 fputs_filtered (" => ", stream);
13122 print_subexp (exp, pos, stream, PREC_SUFFIX);
13123 return;
13124
13125 case OP_POSITIONAL:
13126 print_subexp (exp, pos, stream, PREC_SUFFIX);
13127 return;
13128
13129 case OP_AGGREGATE:
13130 fputs_filtered ("(", stream);
13131 for (i = 0; i < nargs; i += 1)
13132 {
13133 if (i > 0)
13134 fputs_filtered (", ", stream);
13135 print_subexp (exp, pos, stream, PREC_SUFFIX);
13136 }
13137 fputs_filtered (")", stream);
13138 return;
4c4b4cd2
PH
13139 }
13140}
14f9c5c9
AS
13141
13142/* Table mapping opcodes into strings for printing operators
13143 and precedences of the operators. */
13144
d2e4a39e
AS
13145static const struct op_print ada_op_print_tab[] = {
13146 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13147 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13148 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13149 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13150 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13151 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13152 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13153 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13154 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13155 {">=", BINOP_GEQ, PREC_ORDER, 0},
13156 {">", BINOP_GTR, PREC_ORDER, 0},
13157 {"<", BINOP_LESS, PREC_ORDER, 0},
13158 {">>", BINOP_RSH, PREC_SHIFT, 0},
13159 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13160 {"+", BINOP_ADD, PREC_ADD, 0},
13161 {"-", BINOP_SUB, PREC_ADD, 0},
13162 {"&", BINOP_CONCAT, PREC_ADD, 0},
13163 {"*", BINOP_MUL, PREC_MUL, 0},
13164 {"/", BINOP_DIV, PREC_MUL, 0},
13165 {"rem", BINOP_REM, PREC_MUL, 0},
13166 {"mod", BINOP_MOD, PREC_MUL, 0},
13167 {"**", BINOP_EXP, PREC_REPEAT, 0},
13168 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13169 {"-", UNOP_NEG, PREC_PREFIX, 0},
13170 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13171 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13172 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13173 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13174 {".all", UNOP_IND, PREC_SUFFIX, 1},
13175 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13176 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13177 {NULL, 0, 0, 0}
14f9c5c9
AS
13178};
13179\f
72d5681a
PH
13180enum ada_primitive_types {
13181 ada_primitive_type_int,
13182 ada_primitive_type_long,
13183 ada_primitive_type_short,
13184 ada_primitive_type_char,
13185 ada_primitive_type_float,
13186 ada_primitive_type_double,
13187 ada_primitive_type_void,
13188 ada_primitive_type_long_long,
13189 ada_primitive_type_long_double,
13190 ada_primitive_type_natural,
13191 ada_primitive_type_positive,
13192 ada_primitive_type_system_address,
13193 nr_ada_primitive_types
13194};
6c038f32
PH
13195
13196static void
d4a9a881 13197ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13198 struct language_arch_info *lai)
13199{
d4a9a881 13200 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13201
72d5681a 13202 lai->primitive_type_vector
d4a9a881 13203 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13204 struct type *);
e9bb382b
UW
13205
13206 lai->primitive_type_vector [ada_primitive_type_int]
13207 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13208 0, "integer");
13209 lai->primitive_type_vector [ada_primitive_type_long]
13210 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13211 0, "long_integer");
13212 lai->primitive_type_vector [ada_primitive_type_short]
13213 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13214 0, "short_integer");
13215 lai->string_char_type
13216 = lai->primitive_type_vector [ada_primitive_type_char]
13217 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13218 lai->primitive_type_vector [ada_primitive_type_float]
13219 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13220 "float", NULL);
13221 lai->primitive_type_vector [ada_primitive_type_double]
13222 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13223 "long_float", NULL);
13224 lai->primitive_type_vector [ada_primitive_type_long_long]
13225 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13226 0, "long_long_integer");
13227 lai->primitive_type_vector [ada_primitive_type_long_double]
13228 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13229 "long_long_float", NULL);
13230 lai->primitive_type_vector [ada_primitive_type_natural]
13231 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13232 0, "natural");
13233 lai->primitive_type_vector [ada_primitive_type_positive]
13234 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13235 0, "positive");
13236 lai->primitive_type_vector [ada_primitive_type_void]
13237 = builtin->builtin_void;
13238
13239 lai->primitive_type_vector [ada_primitive_type_system_address]
13240 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13241 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13242 = "system__address";
fbb06eb1 13243
47e729a8 13244 lai->bool_type_symbol = NULL;
fbb06eb1 13245 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13246}
6c038f32
PH
13247\f
13248 /* Language vector */
13249
13250/* Not really used, but needed in the ada_language_defn. */
13251
13252static void
6c7a06a3 13253emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13254{
6c7a06a3 13255 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13256}
13257
13258static int
13259parse (void)
13260{
13261 warnings_issued = 0;
13262 return ada_parse ();
13263}
13264
13265static const struct exp_descriptor ada_exp_descriptor = {
13266 ada_print_subexp,
13267 ada_operator_length,
c0201579 13268 ada_operator_check,
6c038f32
PH
13269 ada_op_name,
13270 ada_dump_subexp_body,
13271 ada_evaluate_subexp
13272};
13273
1a119f36 13274/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13275 for Ada. */
13276
1a119f36
JB
13277static symbol_name_cmp_ftype
13278ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13279{
13280 if (should_use_wild_match (lookup_name))
13281 return wild_match;
13282 else
13283 return compare_names;
13284}
13285
a5ee536b
JB
13286/* Implement the "la_read_var_value" language_defn method for Ada. */
13287
13288static struct value *
13289ada_read_var_value (struct symbol *var, struct frame_info *frame)
13290{
13291 struct block *frame_block = NULL;
13292 struct symbol *renaming_sym = NULL;
13293
13294 /* The only case where default_read_var_value is not sufficient
13295 is when VAR is a renaming... */
13296 if (frame)
13297 frame_block = get_frame_block (frame, NULL);
13298 if (frame_block)
13299 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13300 if (renaming_sym != NULL)
13301 return ada_read_renaming_var_value (renaming_sym, frame_block);
13302
13303 /* This is a typical case where we expect the default_read_var_value
13304 function to work. */
13305 return default_read_var_value (var, frame);
13306}
13307
6c038f32
PH
13308const struct language_defn ada_language_defn = {
13309 "ada", /* Language name */
6abde28f 13310 "Ada",
6c038f32 13311 language_ada,
6c038f32 13312 range_check_off,
6c038f32
PH
13313 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13314 that's not quite what this means. */
6c038f32 13315 array_row_major,
9a044a89 13316 macro_expansion_no,
6c038f32
PH
13317 &ada_exp_descriptor,
13318 parse,
13319 ada_error,
13320 resolve,
13321 ada_printchar, /* Print a character constant */
13322 ada_printstr, /* Function to print string constant */
13323 emit_char, /* Function to print single char (not used) */
6c038f32 13324 ada_print_type, /* Print a type using appropriate syntax */
be942545 13325 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13326 ada_val_print, /* Print a value using appropriate syntax */
13327 ada_value_print, /* Print a top-level value */
a5ee536b 13328 ada_read_var_value, /* la_read_var_value */
6c038f32 13329 NULL, /* Language specific skip_trampoline */
2b2d9e11 13330 NULL, /* name_of_this */
6c038f32
PH
13331 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13332 basic_lookup_transparent_type, /* lookup_transparent_type */
13333 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13334 NULL, /* Language specific
13335 class_name_from_physname */
6c038f32
PH
13336 ada_op_print_tab, /* expression operators for printing */
13337 0, /* c-style arrays */
13338 1, /* String lower bound */
6c038f32 13339 ada_get_gdb_completer_word_break_characters,
41d27058 13340 ada_make_symbol_completion_list,
72d5681a 13341 ada_language_arch_info,
e79af960 13342 ada_print_array_index,
41f1b697 13343 default_pass_by_reference,
ae6a3a4c 13344 c_get_string,
1a119f36 13345 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13346 ada_iterate_over_symbols,
a53b64ea 13347 &ada_varobj_ops,
6c038f32
PH
13348 LANG_MAGIC
13349};
13350
2c0b251b
PA
13351/* Provide a prototype to silence -Wmissing-prototypes. */
13352extern initialize_file_ftype _initialize_ada_language;
13353
5bf03f13
JB
13354/* Command-list for the "set/show ada" prefix command. */
13355static struct cmd_list_element *set_ada_list;
13356static struct cmd_list_element *show_ada_list;
13357
13358/* Implement the "set ada" prefix command. */
13359
13360static void
13361set_ada_command (char *arg, int from_tty)
13362{
13363 printf_unfiltered (_(\
13364"\"set ada\" must be followed by the name of a setting.\n"));
13365 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13366}
13367
13368/* Implement the "show ada" prefix command. */
13369
13370static void
13371show_ada_command (char *args, int from_tty)
13372{
13373 cmd_show_list (show_ada_list, from_tty, "");
13374}
13375
2060206e
PA
13376static void
13377initialize_ada_catchpoint_ops (void)
13378{
13379 struct breakpoint_ops *ops;
13380
13381 initialize_breakpoint_ops ();
13382
13383 ops = &catch_exception_breakpoint_ops;
13384 *ops = bkpt_breakpoint_ops;
13385 ops->dtor = dtor_catch_exception;
13386 ops->allocate_location = allocate_location_catch_exception;
13387 ops->re_set = re_set_catch_exception;
13388 ops->check_status = check_status_catch_exception;
13389 ops->print_it = print_it_catch_exception;
13390 ops->print_one = print_one_catch_exception;
13391 ops->print_mention = print_mention_catch_exception;
13392 ops->print_recreate = print_recreate_catch_exception;
13393
13394 ops = &catch_exception_unhandled_breakpoint_ops;
13395 *ops = bkpt_breakpoint_ops;
13396 ops->dtor = dtor_catch_exception_unhandled;
13397 ops->allocate_location = allocate_location_catch_exception_unhandled;
13398 ops->re_set = re_set_catch_exception_unhandled;
13399 ops->check_status = check_status_catch_exception_unhandled;
13400 ops->print_it = print_it_catch_exception_unhandled;
13401 ops->print_one = print_one_catch_exception_unhandled;
13402 ops->print_mention = print_mention_catch_exception_unhandled;
13403 ops->print_recreate = print_recreate_catch_exception_unhandled;
13404
13405 ops = &catch_assert_breakpoint_ops;
13406 *ops = bkpt_breakpoint_ops;
13407 ops->dtor = dtor_catch_assert;
13408 ops->allocate_location = allocate_location_catch_assert;
13409 ops->re_set = re_set_catch_assert;
13410 ops->check_status = check_status_catch_assert;
13411 ops->print_it = print_it_catch_assert;
13412 ops->print_one = print_one_catch_assert;
13413 ops->print_mention = print_mention_catch_assert;
13414 ops->print_recreate = print_recreate_catch_assert;
13415}
13416
3d9434b5
JB
13417/* This module's 'new_objfile' observer. */
13418
13419static void
13420ada_new_objfile_observer (struct objfile *objfile)
13421{
13422 ada_clear_symbol_cache ();
13423}
13424
13425/* This module's 'free_objfile' observer. */
13426
13427static void
13428ada_free_objfile_observer (struct objfile *objfile)
13429{
13430 ada_clear_symbol_cache ();
13431}
13432
d2e4a39e 13433void
6c038f32 13434_initialize_ada_language (void)
14f9c5c9 13435{
6c038f32
PH
13436 add_language (&ada_language_defn);
13437
2060206e
PA
13438 initialize_ada_catchpoint_ops ();
13439
5bf03f13
JB
13440 add_prefix_cmd ("ada", no_class, set_ada_command,
13441 _("Prefix command for changing Ada-specfic settings"),
13442 &set_ada_list, "set ada ", 0, &setlist);
13443
13444 add_prefix_cmd ("ada", no_class, show_ada_command,
13445 _("Generic command for showing Ada-specific settings."),
13446 &show_ada_list, "show ada ", 0, &showlist);
13447
13448 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13449 &trust_pad_over_xvs, _("\
13450Enable or disable an optimization trusting PAD types over XVS types"), _("\
13451Show whether an optimization trusting PAD types over XVS types is activated"),
13452 _("\
13453This is related to the encoding used by the GNAT compiler. The debugger\n\
13454should normally trust the contents of PAD types, but certain older versions\n\
13455of GNAT have a bug that sometimes causes the information in the PAD type\n\
13456to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13457work around this bug. It is always safe to turn this option \"off\", but\n\
13458this incurs a slight performance penalty, so it is recommended to NOT change\n\
13459this option to \"off\" unless necessary."),
13460 NULL, NULL, &set_ada_list, &show_ada_list);
13461
9ac4176b
PA
13462 add_catch_command ("exception", _("\
13463Catch Ada exceptions, when raised.\n\
13464With an argument, catch only exceptions with the given name."),
13465 catch_ada_exception_command,
13466 NULL,
13467 CATCH_PERMANENT,
13468 CATCH_TEMPORARY);
13469 add_catch_command ("assert", _("\
13470Catch failed Ada assertions, when raised.\n\
13471With an argument, catch only exceptions with the given name."),
13472 catch_assert_command,
13473 NULL,
13474 CATCH_PERMANENT,
13475 CATCH_TEMPORARY);
13476
6c038f32 13477 varsize_limit = 65536;
6c038f32 13478
778865d3
JB
13479 add_info ("exceptions", info_exceptions_command,
13480 _("\
13481List all Ada exception names.\n\
13482If a regular expression is passed as an argument, only those matching\n\
13483the regular expression are listed."));
13484
c6044dd1
JB
13485 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13486 _("Set Ada maintenance-related variables."),
13487 &maint_set_ada_cmdlist, "maintenance set ada ",
13488 0/*allow-unknown*/, &maintenance_set_cmdlist);
13489
13490 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13491 _("Show Ada maintenance-related variables"),
13492 &maint_show_ada_cmdlist, "maintenance show ada ",
13493 0/*allow-unknown*/, &maintenance_show_cmdlist);
13494
13495 add_setshow_boolean_cmd
13496 ("ignore-descriptive-types", class_maintenance,
13497 &ada_ignore_descriptive_types_p,
13498 _("Set whether descriptive types generated by GNAT should be ignored."),
13499 _("Show whether descriptive types generated by GNAT should be ignored."),
13500 _("\
13501When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13502DWARF attribute."),
13503 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13504
6c038f32 13505 obstack_init (&symbol_list_obstack);
9dee8cc6 13506 obstack_init (&cache_space);
6c038f32
PH
13507
13508 decoded_names_store = htab_create_alloc
13509 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13510 NULL, xcalloc, xfree);
6b69afc4 13511
3d9434b5
JB
13512 /* The ada-lang observers. */
13513 observer_attach_new_objfile (ada_new_objfile_observer);
13514 observer_attach_free_objfile (ada_free_objfile_observer);
13515
e802dbe0
JB
13516 /* Setup per-inferior data. */
13517 observer_attach_inferior_exit (ada_inferior_exit);
13518 ada_inferior_data
8e260fc0 13519 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 13520}