]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix another path length problem opening files on Win32 systems.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
3666a048 3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
dda83cd7 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
dda83cd7 122 struct type *, int,
699bd4cf 123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
dda83cd7 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
4c4b4cd2 130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
a121b7c1 140static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 141 int, int);
4c4b4cd2 142
d2e4a39e 143static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 144
b4ba55a1 145static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 146 const char *);
b4ba55a1 147
d2e4a39e 148static int is_dynamic_field (struct type *, int);
14f9c5c9 149
10a2c479 150static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 151 const gdb_byte *,
dda83cd7 152 CORE_ADDR, struct value *);
4c4b4cd2
PH
153
154static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 155
28c85d6c 156static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 157
d2e4a39e 158static struct type *to_static_fixed_type (struct type *);
f192137b 159static struct type *static_unwrap_type (struct type *type);
14f9c5c9 160
d2e4a39e 161static struct value *unwrap_value (struct value *);
14f9c5c9 162
ad82864c 163static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 164
ad82864c 165static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 166
ad82864c
JB
167static long decode_packed_array_bitsize (struct type *);
168
169static struct value *decode_constrained_packed_array (struct value *);
170
ad82864c 171static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 172
d2e4a39e 173static struct value *value_subscript_packed (struct value *, int,
dda83cd7 174 struct value **);
14f9c5c9 175
4c4b4cd2 176static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 177 struct type *);
14f9c5c9 178
d2e4a39e 179static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 180
d2e4a39e 181static int equiv_types (struct type *, struct type *);
14f9c5c9 182
d2e4a39e 183static int is_name_suffix (const char *);
14f9c5c9 184
59c8a30b 185static int advance_wild_match (const char **, const char *, char);
73589123 186
b5ec771e 187static bool wild_match (const char *name, const char *patn);
14f9c5c9 188
d2e4a39e 189static struct value *ada_coerce_ref (struct value *);
14f9c5c9 190
4c4b4cd2
PH
191static LONGEST pos_atr (struct value *);
192
3cb382c9 193static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 194
53a47a3e
TT
195static struct value *val_atr (struct type *, LONGEST);
196
d2e4a39e 197static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 198
4c4b4cd2 199static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 200 domain_enum);
14f9c5c9 201
108d56a4 202static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 203 struct type *);
4c4b4cd2 204
0d5cff50 205static int find_struct_field (const char *, struct type *, int,
dda83cd7 206 struct type **, int *, int *, int *, int *);
4c4b4cd2 207
d12307c1 208static int ada_resolve_function (struct block_symbol *, int,
dda83cd7
SM
209 struct value **, int, const char *,
210 struct type *, int);
4c4b4cd2 211
4c4b4cd2
PH
212static int ada_is_direct_array_type (struct type *);
213
52ce6436
PH
214static struct value *ada_index_struct_field (int, struct value *, int,
215 struct type *);
216
217static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
218 struct expression *,
219 int *, enum noside);
52ce6436 220
cf608cc4 221static void aggregate_assign_from_choices (struct value *, struct value *,
52ce6436 222 struct expression *,
cf608cc4
TT
223 int *, std::vector<LONGEST> &,
224 LONGEST, LONGEST);
52ce6436
PH
225
226static void aggregate_assign_positional (struct value *, struct value *,
227 struct expression *,
cf608cc4 228 int *, std::vector<LONGEST> &,
52ce6436
PH
229 LONGEST, LONGEST);
230
231
232static void aggregate_assign_others (struct value *, struct value *,
233 struct expression *,
cf608cc4
TT
234 int *, std::vector<LONGEST> &,
235 LONGEST, LONGEST);
52ce6436
PH
236
237
cf608cc4 238static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
239
240
241static struct value *ada_evaluate_subexp (struct type *, struct expression *,
242 int *, enum noside);
243
244static void ada_forward_operator_length (struct expression *, int, int *,
245 int *);
852dff6c
JB
246
247static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
248
249static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
250 (const lookup_name_info &lookup_name);
251
4c4b4cd2
PH
252\f
253
ee01b665
JB
254/* The result of a symbol lookup to be stored in our symbol cache. */
255
256struct cache_entry
257{
258 /* The name used to perform the lookup. */
259 const char *name;
260 /* The namespace used during the lookup. */
fe978cb0 261 domain_enum domain;
ee01b665
JB
262 /* The symbol returned by the lookup, or NULL if no matching symbol
263 was found. */
264 struct symbol *sym;
265 /* The block where the symbol was found, or NULL if no matching
266 symbol was found. */
267 const struct block *block;
268 /* A pointer to the next entry with the same hash. */
269 struct cache_entry *next;
270};
271
272/* The Ada symbol cache, used to store the result of Ada-mode symbol
273 lookups in the course of executing the user's commands.
274
275 The cache is implemented using a simple, fixed-sized hash.
276 The size is fixed on the grounds that there are not likely to be
277 all that many symbols looked up during any given session, regardless
278 of the size of the symbol table. If we decide to go to a resizable
279 table, let's just use the stuff from libiberty instead. */
280
281#define HASH_SIZE 1009
282
283struct ada_symbol_cache
284{
285 /* An obstack used to store the entries in our cache. */
286 struct obstack cache_space;
287
288 /* The root of the hash table used to implement our symbol cache. */
289 struct cache_entry *root[HASH_SIZE];
290};
291
292static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 293
4c4b4cd2 294/* Maximum-sized dynamic type. */
14f9c5c9
AS
295static unsigned int varsize_limit;
296
67cb5b2d 297static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
298#ifdef VMS
299 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
300#else
14f9c5c9 301 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 302#endif
14f9c5c9 303
4c4b4cd2 304/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 305static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 306 = "__gnat_ada_main_program_name";
14f9c5c9 307
4c4b4cd2
PH
308/* Limit on the number of warnings to raise per expression evaluation. */
309static int warning_limit = 2;
310
311/* Number of warning messages issued; reset to 0 by cleanups after
312 expression evaluation. */
313static int warnings_issued = 0;
314
27087b7f 315static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
316 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
317};
318
27087b7f 319static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
320 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
321};
322
c6044dd1
JB
323/* Maintenance-related settings for this module. */
324
325static struct cmd_list_element *maint_set_ada_cmdlist;
326static struct cmd_list_element *maint_show_ada_cmdlist;
327
c6044dd1
JB
328/* The "maintenance ada set/show ignore-descriptive-type" value. */
329
491144b5 330static bool ada_ignore_descriptive_types_p = false;
c6044dd1 331
e802dbe0
JB
332 /* Inferior-specific data. */
333
334/* Per-inferior data for this module. */
335
336struct ada_inferior_data
337{
338 /* The ada__tags__type_specific_data type, which is used when decoding
339 tagged types. With older versions of GNAT, this type was directly
340 accessible through a component ("tsd") in the object tag. But this
341 is no longer the case, so we cache it for each inferior. */
f37b313d 342 struct type *tsd_type = nullptr;
3eecfa55
JB
343
344 /* The exception_support_info data. This data is used to determine
345 how to implement support for Ada exception catchpoints in a given
346 inferior. */
f37b313d 347 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
348};
349
350/* Our key to this module's inferior data. */
f37b313d 351static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
352
353/* Return our inferior data for the given inferior (INF).
354
355 This function always returns a valid pointer to an allocated
356 ada_inferior_data structure. If INF's inferior data has not
357 been previously set, this functions creates a new one with all
358 fields set to zero, sets INF's inferior to it, and then returns
359 a pointer to that newly allocated ada_inferior_data. */
360
361static struct ada_inferior_data *
362get_ada_inferior_data (struct inferior *inf)
363{
364 struct ada_inferior_data *data;
365
f37b313d 366 data = ada_inferior_data.get (inf);
e802dbe0 367 if (data == NULL)
f37b313d 368 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
369
370 return data;
371}
372
373/* Perform all necessary cleanups regarding our module's inferior data
374 that is required after the inferior INF just exited. */
375
376static void
377ada_inferior_exit (struct inferior *inf)
378{
f37b313d 379 ada_inferior_data.clear (inf);
e802dbe0
JB
380}
381
ee01b665
JB
382
383 /* program-space-specific data. */
384
385/* This module's per-program-space data. */
386struct ada_pspace_data
387{
f37b313d
TT
388 ~ada_pspace_data ()
389 {
390 if (sym_cache != NULL)
391 ada_free_symbol_cache (sym_cache);
392 }
393
ee01b665 394 /* The Ada symbol cache. */
f37b313d 395 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
396};
397
398/* Key to our per-program-space data. */
f37b313d 399static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
400
401/* Return this module's data for the given program space (PSPACE).
402 If not is found, add a zero'ed one now.
403
404 This function always returns a valid object. */
405
406static struct ada_pspace_data *
407get_ada_pspace_data (struct program_space *pspace)
408{
409 struct ada_pspace_data *data;
410
f37b313d 411 data = ada_pspace_data_handle.get (pspace);
ee01b665 412 if (data == NULL)
f37b313d 413 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
414
415 return data;
416}
417
dda83cd7 418 /* Utilities */
4c4b4cd2 419
720d1a40 420/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 421 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
422
423 Normally, we really expect a typedef type to only have 1 typedef layer.
424 In other words, we really expect the target type of a typedef type to be
425 a non-typedef type. This is particularly true for Ada units, because
426 the language does not have a typedef vs not-typedef distinction.
427 In that respect, the Ada compiler has been trying to eliminate as many
428 typedef definitions in the debugging information, since they generally
429 do not bring any extra information (we still use typedef under certain
430 circumstances related mostly to the GNAT encoding).
431
432 Unfortunately, we have seen situations where the debugging information
433 generated by the compiler leads to such multiple typedef layers. For
434 instance, consider the following example with stabs:
435
436 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
437 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
438
439 This is an error in the debugging information which causes type
440 pck__float_array___XUP to be defined twice, and the second time,
441 it is defined as a typedef of a typedef.
442
443 This is on the fringe of legality as far as debugging information is
444 concerned, and certainly unexpected. But it is easy to handle these
445 situations correctly, so we can afford to be lenient in this case. */
446
447static struct type *
448ada_typedef_target_type (struct type *type)
449{
78134374 450 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
451 type = TYPE_TARGET_TYPE (type);
452 return type;
453}
454
41d27058
JB
455/* Given DECODED_NAME a string holding a symbol name in its
456 decoded form (ie using the Ada dotted notation), returns
457 its unqualified name. */
458
459static const char *
460ada_unqualified_name (const char *decoded_name)
461{
2b0f535a
JB
462 const char *result;
463
464 /* If the decoded name starts with '<', it means that the encoded
465 name does not follow standard naming conventions, and thus that
466 it is not your typical Ada symbol name. Trying to unqualify it
467 is therefore pointless and possibly erroneous. */
468 if (decoded_name[0] == '<')
469 return decoded_name;
470
471 result = strrchr (decoded_name, '.');
41d27058
JB
472 if (result != NULL)
473 result++; /* Skip the dot... */
474 else
475 result = decoded_name;
476
477 return result;
478}
479
39e7af3e 480/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 481
39e7af3e 482static std::string
41d27058
JB
483add_angle_brackets (const char *str)
484{
39e7af3e 485 return string_printf ("<%s>", str);
41d27058 486}
96d887e8 487
de93309a
SM
488/* Assuming V points to an array of S objects, make sure that it contains at
489 least M objects, updating V and S as necessary. */
490
491#define GROW_VECT(v, s, m) \
492 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
493
f27cf670 494/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 495 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 496 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 497
de93309a 498static void *
f27cf670 499grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 500{
d2e4a39e
AS
501 if (*size < min_size)
502 {
503 *size *= 2;
504 if (*size < min_size)
dda83cd7 505 *size = min_size;
f27cf670 506 vect = xrealloc (vect, *size * element_size);
d2e4a39e 507 }
f27cf670 508 return vect;
14f9c5c9
AS
509}
510
511/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 512 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
513
514static int
ebf56fd3 515field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
516{
517 int len = strlen (target);
5b4ee69b 518
d2e4a39e 519 return
4c4b4cd2
PH
520 (strncmp (field_name, target, len) == 0
521 && (field_name[len] == '\0'
dda83cd7
SM
522 || (startswith (field_name + len, "___")
523 && strcmp (field_name + strlen (field_name) - 6,
524 "___XVN") != 0)));
14f9c5c9
AS
525}
526
527
872c8b51
JB
528/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
529 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
530 and return its index. This function also handles fields whose name
531 have ___ suffixes because the compiler sometimes alters their name
532 by adding such a suffix to represent fields with certain constraints.
533 If the field could not be found, return a negative number if
534 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
535
536int
537ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 538 int maybe_missing)
4c4b4cd2
PH
539{
540 int fieldno;
872c8b51
JB
541 struct type *struct_type = check_typedef ((struct type *) type);
542
1f704f76 543 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 544 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
545 return fieldno;
546
547 if (!maybe_missing)
323e0a4a 548 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 549 field_name, struct_type->name ());
4c4b4cd2
PH
550
551 return -1;
552}
553
554/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
555
556int
d2e4a39e 557ada_name_prefix_len (const char *name)
14f9c5c9
AS
558{
559 if (name == NULL)
560 return 0;
d2e4a39e 561 else
14f9c5c9 562 {
d2e4a39e 563 const char *p = strstr (name, "___");
5b4ee69b 564
14f9c5c9 565 if (p == NULL)
dda83cd7 566 return strlen (name);
14f9c5c9 567 else
dda83cd7 568 return p - name;
14f9c5c9
AS
569 }
570}
571
4c4b4cd2
PH
572/* Return non-zero if SUFFIX is a suffix of STR.
573 Return zero if STR is null. */
574
14f9c5c9 575static int
d2e4a39e 576is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
577{
578 int len1, len2;
5b4ee69b 579
14f9c5c9
AS
580 if (str == NULL)
581 return 0;
582 len1 = strlen (str);
583 len2 = strlen (suffix);
4c4b4cd2 584 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
585}
586
4c4b4cd2
PH
587/* The contents of value VAL, treated as a value of type TYPE. The
588 result is an lval in memory if VAL is. */
14f9c5c9 589
d2e4a39e 590static struct value *
4c4b4cd2 591coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 592{
61ee279c 593 type = ada_check_typedef (type);
df407dfe 594 if (value_type (val) == type)
4c4b4cd2 595 return val;
d2e4a39e 596 else
14f9c5c9 597 {
4c4b4cd2
PH
598 struct value *result;
599
600 /* Make sure that the object size is not unreasonable before
dda83cd7 601 trying to allocate some memory for it. */
c1b5a1a6 602 ada_ensure_varsize_limit (type);
4c4b4cd2 603
41e8491f 604 if (value_lazy (val)
dda83cd7 605 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
41e8491f
JK
606 result = allocate_value_lazy (type);
607 else
608 {
609 result = allocate_value (type);
9a0dc9e3 610 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 611 }
74bcbdf3 612 set_value_component_location (result, val);
9bbda503
AC
613 set_value_bitsize (result, value_bitsize (val));
614 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
615 if (VALUE_LVAL (result) == lval_memory)
616 set_value_address (result, value_address (val));
14f9c5c9
AS
617 return result;
618 }
619}
620
fc1a4b47
AC
621static const gdb_byte *
622cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
623{
624 if (valaddr == NULL)
625 return NULL;
626 else
627 return valaddr + offset;
628}
629
630static CORE_ADDR
ebf56fd3 631cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
632{
633 if (address == 0)
634 return 0;
d2e4a39e 635 else
14f9c5c9
AS
636 return address + offset;
637}
638
4c4b4cd2
PH
639/* Issue a warning (as for the definition of warning in utils.c, but
640 with exactly one argument rather than ...), unless the limit on the
641 number of warnings has passed during the evaluation of the current
642 expression. */
a2249542 643
77109804
AC
644/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
645 provided by "complaint". */
a0b31db1 646static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 647
14f9c5c9 648static void
a2249542 649lim_warning (const char *format, ...)
14f9c5c9 650{
a2249542 651 va_list args;
a2249542 652
5b4ee69b 653 va_start (args, format);
4c4b4cd2
PH
654 warnings_issued += 1;
655 if (warnings_issued <= warning_limit)
a2249542
MK
656 vwarning (format, args);
657
658 va_end (args);
4c4b4cd2
PH
659}
660
714e53ab
PH
661/* Issue an error if the size of an object of type T is unreasonable,
662 i.e. if it would be a bad idea to allocate a value of this type in
663 GDB. */
664
c1b5a1a6
JB
665void
666ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
667{
668 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 669 error (_("object size is larger than varsize-limit"));
714e53ab
PH
670}
671
0963b4bd 672/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 673static LONGEST
c3e5cd34 674max_of_size (int size)
4c4b4cd2 675{
76a01679 676 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 677
76a01679 678 return top_bit | (top_bit - 1);
4c4b4cd2
PH
679}
680
0963b4bd 681/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 682static LONGEST
c3e5cd34 683min_of_size (int size)
4c4b4cd2 684{
c3e5cd34 685 return -max_of_size (size) - 1;
4c4b4cd2
PH
686}
687
0963b4bd 688/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 689static ULONGEST
c3e5cd34 690umax_of_size (int size)
4c4b4cd2 691{
76a01679 692 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 693
76a01679 694 return top_bit | (top_bit - 1);
4c4b4cd2
PH
695}
696
0963b4bd 697/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
698static LONGEST
699max_of_type (struct type *t)
4c4b4cd2 700{
c6d940a9 701 if (t->is_unsigned ())
c3e5cd34
PH
702 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
703 else
704 return max_of_size (TYPE_LENGTH (t));
705}
706
0963b4bd 707/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
708static LONGEST
709min_of_type (struct type *t)
710{
c6d940a9 711 if (t->is_unsigned ())
c3e5cd34
PH
712 return 0;
713 else
714 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
715}
716
717/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
718LONGEST
719ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 720{
b249d2c2 721 type = resolve_dynamic_type (type, {}, 0);
78134374 722 switch (type->code ())
4c4b4cd2
PH
723 {
724 case TYPE_CODE_RANGE:
d1fd641e
SM
725 {
726 const dynamic_prop &high = type->bounds ()->high;
727
728 if (high.kind () == PROP_CONST)
729 return high.const_val ();
730 else
731 {
732 gdb_assert (high.kind () == PROP_UNDEFINED);
733
734 /* This happens when trying to evaluate a type's dynamic bound
735 without a live target. There is nothing relevant for us to
736 return here, so return 0. */
737 return 0;
738 }
739 }
4c4b4cd2 740 case TYPE_CODE_ENUM:
1f704f76 741 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
742 case TYPE_CODE_BOOL:
743 return 1;
744 case TYPE_CODE_CHAR:
76a01679 745 case TYPE_CODE_INT:
690cc4eb 746 return max_of_type (type);
4c4b4cd2 747 default:
43bbcdc2 748 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
749 }
750}
751
14e75d8e 752/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
753LONGEST
754ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 755{
b249d2c2 756 type = resolve_dynamic_type (type, {}, 0);
78134374 757 switch (type->code ())
4c4b4cd2
PH
758 {
759 case TYPE_CODE_RANGE:
d1fd641e
SM
760 {
761 const dynamic_prop &low = type->bounds ()->low;
762
763 if (low.kind () == PROP_CONST)
764 return low.const_val ();
765 else
766 {
767 gdb_assert (low.kind () == PROP_UNDEFINED);
768
769 /* This happens when trying to evaluate a type's dynamic bound
770 without a live target. There is nothing relevant for us to
771 return here, so return 0. */
772 return 0;
773 }
774 }
4c4b4cd2 775 case TYPE_CODE_ENUM:
14e75d8e 776 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
777 case TYPE_CODE_BOOL:
778 return 0;
779 case TYPE_CODE_CHAR:
76a01679 780 case TYPE_CODE_INT:
690cc4eb 781 return min_of_type (type);
4c4b4cd2 782 default:
43bbcdc2 783 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
784 }
785}
786
787/* The identity on non-range types. For range types, the underlying
76a01679 788 non-range scalar type. */
4c4b4cd2
PH
789
790static struct type *
18af8284 791get_base_type (struct type *type)
4c4b4cd2 792{
78134374 793 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 794 {
76a01679 795 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 796 return type;
4c4b4cd2
PH
797 type = TYPE_TARGET_TYPE (type);
798 }
799 return type;
14f9c5c9 800}
41246937
JB
801
802/* Return a decoded version of the given VALUE. This means returning
803 a value whose type is obtained by applying all the GNAT-specific
85102364 804 encodings, making the resulting type a static but standard description
41246937
JB
805 of the initial type. */
806
807struct value *
808ada_get_decoded_value (struct value *value)
809{
810 struct type *type = ada_check_typedef (value_type (value));
811
812 if (ada_is_array_descriptor_type (type)
813 || (ada_is_constrained_packed_array_type (type)
dda83cd7 814 && type->code () != TYPE_CODE_PTR))
41246937 815 {
78134374 816 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 817 value = ada_coerce_to_simple_array_ptr (value);
41246937 818 else
dda83cd7 819 value = ada_coerce_to_simple_array (value);
41246937
JB
820 }
821 else
822 value = ada_to_fixed_value (value);
823
824 return value;
825}
826
827/* Same as ada_get_decoded_value, but with the given TYPE.
828 Because there is no associated actual value for this type,
829 the resulting type might be a best-effort approximation in
830 the case of dynamic types. */
831
832struct type *
833ada_get_decoded_type (struct type *type)
834{
835 type = to_static_fixed_type (type);
836 if (ada_is_constrained_packed_array_type (type))
837 type = ada_coerce_to_simple_array_type (type);
838 return type;
839}
840
4c4b4cd2 841\f
76a01679 842
dda83cd7 843 /* Language Selection */
14f9c5c9
AS
844
845/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 846 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 847
de93309a 848static enum language
ccefe4c4 849ada_update_initial_language (enum language lang)
14f9c5c9 850{
cafb3438 851 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 852 return language_ada;
14f9c5c9
AS
853
854 return lang;
855}
96d887e8
PH
856
857/* If the main procedure is written in Ada, then return its name.
858 The result is good until the next call. Return NULL if the main
859 procedure doesn't appear to be in Ada. */
860
861char *
862ada_main_name (void)
863{
3b7344d5 864 struct bound_minimal_symbol msym;
e83e4e24 865 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 866
96d887e8
PH
867 /* For Ada, the name of the main procedure is stored in a specific
868 string constant, generated by the binder. Look for that symbol,
869 extract its address, and then read that string. If we didn't find
870 that string, then most probably the main procedure is not written
871 in Ada. */
872 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
873
3b7344d5 874 if (msym.minsym != NULL)
96d887e8 875 {
66920317 876 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 877 if (main_program_name_addr == 0)
dda83cd7 878 error (_("Invalid address for Ada main program name."));
96d887e8 879
66920317 880 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 881 return main_program_name.get ();
96d887e8
PH
882 }
883
884 /* The main procedure doesn't seem to be in Ada. */
885 return NULL;
886}
14f9c5c9 887\f
dda83cd7 888 /* Symbols */
d2e4a39e 889
4c4b4cd2
PH
890/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
891 of NULLs. */
14f9c5c9 892
d2e4a39e
AS
893const struct ada_opname_map ada_opname_table[] = {
894 {"Oadd", "\"+\"", BINOP_ADD},
895 {"Osubtract", "\"-\"", BINOP_SUB},
896 {"Omultiply", "\"*\"", BINOP_MUL},
897 {"Odivide", "\"/\"", BINOP_DIV},
898 {"Omod", "\"mod\"", BINOP_MOD},
899 {"Orem", "\"rem\"", BINOP_REM},
900 {"Oexpon", "\"**\"", BINOP_EXP},
901 {"Olt", "\"<\"", BINOP_LESS},
902 {"Ole", "\"<=\"", BINOP_LEQ},
903 {"Ogt", "\">\"", BINOP_GTR},
904 {"Oge", "\">=\"", BINOP_GEQ},
905 {"Oeq", "\"=\"", BINOP_EQUAL},
906 {"One", "\"/=\"", BINOP_NOTEQUAL},
907 {"Oand", "\"and\"", BINOP_BITWISE_AND},
908 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
909 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
910 {"Oconcat", "\"&\"", BINOP_CONCAT},
911 {"Oabs", "\"abs\"", UNOP_ABS},
912 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
913 {"Oadd", "\"+\"", UNOP_PLUS},
914 {"Osubtract", "\"-\"", UNOP_NEG},
915 {NULL, NULL}
14f9c5c9
AS
916};
917
5c4258f4 918/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 919 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 920 Otherwise, return the empty string in that case. */
4c4b4cd2 921
5c4258f4 922static std::string
b5ec771e 923ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 924{
4c4b4cd2 925 if (decoded == NULL)
5c4258f4 926 return {};
14f9c5c9 927
5c4258f4
TT
928 std::string encoding_buffer;
929 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 930 {
cdc7bb92 931 if (*p == '.')
5c4258f4 932 encoding_buffer.append ("__");
14f9c5c9 933 else if (*p == '"')
dda83cd7
SM
934 {
935 const struct ada_opname_map *mapping;
936
937 for (mapping = ada_opname_table;
938 mapping->encoded != NULL
939 && !startswith (p, mapping->decoded); mapping += 1)
940 ;
941 if (mapping->encoded == NULL)
b5ec771e
PA
942 {
943 if (throw_errors)
944 error (_("invalid Ada operator name: %s"), p);
945 else
5c4258f4 946 return {};
b5ec771e 947 }
5c4258f4 948 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
949 break;
950 }
d2e4a39e 951 else
5c4258f4 952 encoding_buffer.push_back (*p);
14f9c5c9
AS
953 }
954
4c4b4cd2 955 return encoding_buffer;
14f9c5c9
AS
956}
957
5c4258f4 958/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 959
5c4258f4 960std::string
b5ec771e
PA
961ada_encode (const char *decoded)
962{
963 return ada_encode_1 (decoded, true);
964}
965
14f9c5c9 966/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
967 quotes, unfolded, but with the quotes stripped away. Result good
968 to next call. */
969
de93309a 970static char *
e0802d59 971ada_fold_name (gdb::string_view name)
14f9c5c9 972{
d2e4a39e 973 static char *fold_buffer = NULL;
14f9c5c9
AS
974 static size_t fold_buffer_size = 0;
975
e0802d59 976 int len = name.size ();
d2e4a39e 977 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
978
979 if (name[0] == '\'')
980 {
e0802d59 981 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 982 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
983 }
984 else
985 {
986 int i;
5b4ee69b 987
2ccee230 988 for (i = 0; i < len; i += 1)
dda83cd7 989 fold_buffer[i] = tolower (name[i]);
2ccee230 990 fold_buffer[i] = '\0';
14f9c5c9
AS
991 }
992
993 return fold_buffer;
994}
995
529cad9c
PH
996/* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998static int
999is_lower_alphanum (const char c)
1000{
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002}
1003
c90092fe
JB
1004/* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
29480c32
JB
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
c90092fe 1011
29480c32
JB
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016static void
1017ada_remove_trailing_digits (const char *encoded, int *len)
1018{
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
5b4ee69b 1022
29480c32 1023 while (i > 0 && isdigit (encoded[i]))
dda83cd7 1024 i--;
29480c32 1025 if (i >= 0 && encoded[i] == '.')
dda83cd7 1026 *len = i;
29480c32 1027 else if (i >= 0 && encoded[i] == '$')
dda83cd7 1028 *len = i;
61012eef 1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 1030 *len = i - 2;
61012eef 1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 1032 *len = i - 1;
29480c32
JB
1033 }
1034}
1035
1036/* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039static void
1040ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041{
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
0963b4bd 1047 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056}
1057
1058/* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1060 replaced by ENCODED. */
14f9c5c9 1061
f945dedf 1062std::string
4c4b4cd2 1063ada_decode (const char *encoded)
14f9c5c9
AS
1064{
1065 int i, j;
1066 int len0;
d2e4a39e 1067 const char *p;
14f9c5c9 1068 int at_start_name;
f945dedf 1069 std::string decoded;
d2e4a39e 1070
0d81f350
JG
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
29480c32
JB
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
61012eef 1079 if (startswith (encoded, "_ada_"))
4c4b4cd2 1080 encoded += 5;
14f9c5c9 1081
29480c32
JB
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
4c4b4cd2 1085 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1086 goto Suppress;
1087
4c4b4cd2 1088 len0 = strlen (encoded);
4c4b4cd2 1089
29480c32
JB
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1092
4c4b4cd2
PH
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1099 {
1100 if (p[3] == 'X')
dda83cd7 1101 len0 = p - encoded;
14f9c5c9 1102 else
dda83cd7 1103 goto Suppress;
14f9c5c9 1104 }
4c4b4cd2 1105
29480c32
JB
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
61012eef 1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1111 len0 -= 3;
76a01679 1112
a10967fa
JB
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
61012eef 1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1118 len0 -= 2;
1119
29480c32
JB
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
61012eef 1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1124 len0 -= 1;
1125
4c4b4cd2 1126 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1127
f945dedf 1128 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1129
29480c32
JB
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
4c4b4cd2 1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1133 {
4c4b4cd2
PH
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
4c4b4cd2 1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1139 len0 = i - 1;
4c4b4cd2 1140 else if (encoded[i] == '$')
dda83cd7 1141 len0 = i;
d2e4a39e 1142 }
14f9c5c9 1143
29480c32
JB
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
4c4b4cd2
PH
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
14f9c5c9
AS
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
29480c32 1153 /* Is this a symbol function? */
4c4b4cd2 1154 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
14f9c5c9
AS
1175 at_start_name = 0;
1176
529cad9c 1177 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1178 into "." (just below). */
529cad9c 1179
61012eef 1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1181 i += 2;
529cad9c 1182
29480c32 1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
29480c32 1201
529cad9c
PH
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
529cad9c 1210
dda83cd7
SM
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
529cad9c
PH
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
529cad9c
PH
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1237 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1238
1239 if (i < len0 + 3
dda83cd7
SM
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
529cad9c 1253
4c4b4cd2 1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
cdc7bb92 1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
14f9c5c9 1277 else
dda83cd7
SM
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
14f9c5c9 1285 }
f945dedf 1286 decoded.resize (j);
14f9c5c9 1287
29480c32
JB
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
f945dedf 1291 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1292 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1293 goto Suppress;
1294
f945dedf 1295 return decoded;
14f9c5c9
AS
1296
1297Suppress:
4c4b4cd2 1298 if (encoded[0] == '<')
f945dedf 1299 decoded = encoded;
14f9c5c9 1300 else
f945dedf 1301 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1302 return decoded;
1303
1304}
1305
1306/* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311static struct htab *decoded_names_store;
1312
1313/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1318 GSYMBOL).
4c4b4cd2
PH
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1321 when a decoded name is cached in it. */
4c4b4cd2 1322
45e6c716 1323const char *
f85f34ed 1324ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1325{
f85f34ed
TT
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
615b3f62 1328 &gsymbol->language_specific.demangled_name;
5b4ee69b 1329
f85f34ed 1330 if (!gsymbol->ada_mangled)
4c4b4cd2 1331 {
4d4eaa30 1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1333 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1334
f85f34ed 1335 gsymbol->ada_mangled = 1;
5b4ee69b 1336
f85f34ed 1337 if (obstack != NULL)
f945dedf 1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1339 else
dda83cd7 1340 {
f85f34ed
TT
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
dda83cd7
SM
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
5b4ee69b 1348
dda83cd7
SM
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
4c4b4cd2 1353 }
14f9c5c9 1354
4c4b4cd2
PH
1355 return *resultp;
1356}
76a01679 1357
2c0b251b 1358static char *
76a01679 1359ada_la_decode (const char *encoded, int options)
4c4b4cd2 1360{
f945dedf 1361 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1362}
1363
14f9c5c9 1364\f
d2e4a39e 1365
dda83cd7 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
85102364 1375 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1f704f76 1398 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
940da03e
SM
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
dda83cd7 1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
28c85d6c
JB
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1413 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
5d14b6e5 1419 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1420 }
1421}
1422
4c4b4cd2
PH
1423/* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
14f9c5c9
AS
1425
1426/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1427 level of indirection, if needed. */
1428
d2e4a39e
AS
1429static struct type *
1430desc_base_type (struct type *type)
14f9c5c9
AS
1431{
1432 if (type == NULL)
1433 return NULL;
61ee279c 1434 type = ada_check_typedef (type);
78134374 1435 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1436 type = ada_typedef_target_type (type);
1437
1265e4aa 1438 if (type != NULL
78134374 1439 && (type->code () == TYPE_CODE_PTR
dda83cd7 1440 || type->code () == TYPE_CODE_REF))
61ee279c 1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1442 else
1443 return type;
1444}
1445
4c4b4cd2
PH
1446/* True iff TYPE indicates a "thin" array pointer type. */
1447
14f9c5c9 1448static int
d2e4a39e 1449is_thin_pntr (struct type *type)
14f9c5c9 1450{
d2e4a39e 1451 return
14f9c5c9
AS
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454}
1455
4c4b4cd2
PH
1456/* The descriptor type for thin pointer type TYPE. */
1457
d2e4a39e
AS
1458static struct type *
1459thin_descriptor_type (struct type *type)
14f9c5c9 1460{
d2e4a39e 1461 struct type *base_type = desc_base_type (type);
5b4ee69b 1462
14f9c5c9
AS
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
d2e4a39e 1467 else
14f9c5c9 1468 {
d2e4a39e 1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1470
14f9c5c9 1471 if (alt_type == NULL)
dda83cd7 1472 return base_type;
14f9c5c9 1473 else
dda83cd7 1474 return alt_type;
14f9c5c9
AS
1475 }
1476}
1477
4c4b4cd2
PH
1478/* A pointer to the array data for thin-pointer value VAL. */
1479
d2e4a39e
AS
1480static struct value *
1481thin_data_pntr (struct value *val)
14f9c5c9 1482{
828292f2 1483 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1485
556bdfd4
UW
1486 data_type = lookup_pointer_type (data_type);
1487
78134374 1488 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1489 return value_cast (data_type, value_copy (val));
d2e4a39e 1490 else
42ae5230 1491 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1492}
1493
4c4b4cd2
PH
1494/* True iff TYPE indicates a "thick" array pointer type. */
1495
14f9c5c9 1496static int
d2e4a39e 1497is_thick_pntr (struct type *type)
14f9c5c9
AS
1498{
1499 type = desc_base_type (type);
78134374 1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1502}
1503
4c4b4cd2
PH
1504/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1506
d2e4a39e
AS
1507static struct type *
1508desc_bounds_type (struct type *type)
14f9c5c9 1509{
d2e4a39e 1510 struct type *r;
14f9c5c9
AS
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
dda83cd7 1520 return NULL;
14f9c5c9
AS
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
dda83cd7 1523 return ada_check_typedef (r);
14f9c5c9 1524 }
78134374 1525 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
dda83cd7 1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1530 }
1531 return NULL;
1532}
1533
1534/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
d2e4a39e
AS
1537static struct value *
1538desc_bounds (struct value *arr)
14f9c5c9 1539{
df407dfe 1540 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1541
d2e4a39e 1542 if (is_thin_pntr (type))
14f9c5c9 1543 {
d2e4a39e 1544 struct type *bounds_type =
dda83cd7 1545 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1546 LONGEST addr;
1547
4cdfadb1 1548 if (bounds_type == NULL)
dda83cd7 1549 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1550
1551 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1554 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1555 addr = value_as_long (arr);
d2e4a39e 1556 else
dda83cd7 1557 addr = value_address (arr);
14f9c5c9 1558
d2e4a39e 1559 return
dda83cd7
SM
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1562 }
1563
1564 else if (is_thick_pntr (type))
05e522ef
JB
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
78134374 1571 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
e46d3488 1575 if (target_type->is_stub ())
05e522ef
JB
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
14f9c5c9
AS
1585 else
1586 return NULL;
1587}
1588
4c4b4cd2
PH
1589/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
14f9c5c9 1592static int
d2e4a39e 1593fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1594{
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596}
1597
1598/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1599 size of the field containing the address of the bounds data. */
1600
14f9c5c9 1601static int
d2e4a39e 1602fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1603{
1604 type = desc_base_type (type);
1605
d2e4a39e 1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
940da03e 1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1610}
1611
4c4b4cd2 1612/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
4c4b4cd2 1616
d2e4a39e 1617static struct type *
556bdfd4 1618desc_data_target_type (struct type *type)
14f9c5c9
AS
1619{
1620 type = desc_base_type (type);
1621
4c4b4cd2 1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1623 if (is_thin_pntr (type))
940da03e 1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1625 else if (is_thick_pntr (type))
556bdfd4
UW
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
78134374 1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1632 }
1633
1634 return NULL;
14f9c5c9
AS
1635}
1636
1637/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
4c4b4cd2 1639
d2e4a39e
AS
1640static struct value *
1641desc_data (struct value *arr)
14f9c5c9 1642{
df407dfe 1643 struct type *type = value_type (arr);
5b4ee69b 1644
14f9c5c9
AS
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
d2e4a39e 1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
dda83cd7 1649 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1650 else
1651 return NULL;
1652}
1653
1654
1655/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1656 position of the field containing the address of the data. */
1657
14f9c5c9 1658static int
d2e4a39e 1659fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1660{
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662}
1663
1664/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1665 size of the field containing the address of the data. */
1666
14f9c5c9 1667static int
d2e4a39e 1668fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1669{
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1674 else
940da03e 1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1676}
1677
4c4b4cd2 1678/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
d2e4a39e
AS
1682static struct value *
1683desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1684{
250106a7
TT
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
dda83cd7 1689 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1690}
1691
1692/* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
14f9c5c9 1696static int
d2e4a39e 1697desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1698{
d2e4a39e 1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
76a01679 1706static int
d2e4a39e 1707desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1708{
1709 type = desc_base_type (type);
1710
d2e4a39e
AS
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
940da03e 1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1715}
1716
1717/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
d2e4a39e
AS
1720static struct type *
1721desc_index_type (struct type *type, int i)
14f9c5c9
AS
1722{
1723 type = desc_base_type (type);
1724
78134374 1725 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
d2e4a39e 1731 else
14f9c5c9
AS
1732 return NULL;
1733}
1734
4c4b4cd2
PH
1735/* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
14f9c5c9 1738static int
d2e4a39e 1739desc_arity (struct type *type)
14f9c5c9
AS
1740{
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1f704f76 1744 return type->num_fields () / 2;
14f9c5c9
AS
1745 return 0;
1746}
1747
4c4b4cd2
PH
1748/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
76a01679
JB
1752static int
1753ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1754{
1755 if (type == NULL)
1756 return 0;
61ee279c 1757 type = ada_check_typedef (type);
78134374 1758 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1759 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1760}
1761
52ce6436 1762/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1763 * to one. */
52ce6436 1764
2c0b251b 1765static int
52ce6436
PH
1766ada_is_array_type (struct type *type)
1767{
78134374
SM
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773}
1774
4c4b4cd2 1775/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1776
14f9c5c9 1777int
4c4b4cd2 1778ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1779{
1780 if (type == NULL)
1781 return 0;
61ee279c 1782 type = ada_check_typedef (type);
78134374
SM
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1787}
1788
4c4b4cd2
PH
1789/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
14f9c5c9 1791int
4c4b4cd2 1792ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1793{
556bdfd4 1794 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1795
1796 if (type == NULL)
1797 return 0;
61ee279c 1798 type = ada_check_typedef (type);
556bdfd4 1799 return (data_type != NULL
78134374 1800 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1801 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1802}
1803
1804/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1805 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1806 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1807 is still needed. */
1808
14f9c5c9 1809int
ebf56fd3 1810ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1811{
d2e4a39e 1812 return
14f9c5c9 1813 type != NULL
78134374 1814 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1817 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1818}
1819
1820
4c4b4cd2 1821/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1822 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1824 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1827 a descriptor. */
de93309a
SM
1828
1829static struct type *
d2e4a39e 1830ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1831{
ad82864c
JB
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1834
df407dfe
AC
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
d2e4a39e
AS
1837
1838 if (!bounds)
ad82864c
JB
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
14f9c5c9
AS
1849 else
1850 {
d2e4a39e 1851 struct type *elt_type;
14f9c5c9 1852 int arity;
d2e4a39e 1853 struct value *descriptor;
14f9c5c9 1854
df407dfe
AC
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
14f9c5c9 1857
d2e4a39e 1858 if (elt_type == NULL || arity == 0)
dda83cd7 1859 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1860
1861 descriptor = desc_bounds (arr);
d2e4a39e 1862 if (value_as_long (descriptor) == 0)
dda83cd7 1863 return NULL;
d2e4a39e 1864 while (arity > 0)
dda83cd7
SM
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
dda83cd7 1875 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1878 {
1879 /* We need to store the element packed bitsize, as well as
dda83cd7 1880 recompute the array size, because it was previously
e67ad678
JB
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
dda83cd7 1888 zero, and does not need to be recomputed. */
e67ad678
JB
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
dda83cd7 1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
dda83cd7 1897 }
14f9c5c9
AS
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901}
1902
1903/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
d2e4a39e
AS
1908struct value *
1909ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1910{
df407dfe 1911 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1912 {
d2e4a39e 1913 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1914
14f9c5c9 1915 if (arrType == NULL)
dda83cd7 1916 return NULL;
14f9c5c9
AS
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
ad82864c
JB
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1921 else
1922 return arr;
1923}
1924
1925/* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1927 be ARR itself if it already is in the proper form). */
1928
720d1a40 1929struct value *
d2e4a39e 1930ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1931{
df407dfe 1932 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1933 {
d2e4a39e 1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1935
14f9c5c9 1936 if (arrVal == NULL)
dda83cd7 1937 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1939 return value_ind (arrVal);
1940 }
ad82864c
JB
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
d2e4a39e 1943 else
14f9c5c9
AS
1944 return arr;
1945}
1946
1947/* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1949 packing). For other types, is the identity. */
1950
d2e4a39e
AS
1951struct type *
1952ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1953{
ad82864c
JB
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
17280b9f
UW
1956
1957 if (ada_is_array_descriptor_type (type))
556bdfd4 1958 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1959
1960 return type;
14f9c5c9
AS
1961}
1962
4c4b4cd2
PH
1963/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
ad82864c 1965static int
57567375 1966ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1967{
1968 if (type == NULL)
1969 return 0;
4c4b4cd2 1970 type = desc_base_type (type);
61ee279c 1971 type = ada_check_typedef (type);
d2e4a39e 1972 return
14f9c5c9
AS
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975}
1976
ad82864c
JB
1977/* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980int
1981ada_is_constrained_packed_array_type (struct type *type)
1982{
57567375 1983 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1984 && !ada_is_array_descriptor_type (type);
1985}
1986
1987/* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990static int
1991ada_is_unconstrained_packed_array_type (struct type *type)
1992{
57567375
TT
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
ad82864c
JB
2013}
2014
c9a28cbe
TT
2015/* Return true if TYPE is a (Gnat-encoded) constrained packed array
2016 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2017
2018static bool
2019ada_is_any_packed_array_type (struct type *type)
2020{
2021 return (ada_is_constrained_packed_array_type (type)
2022 || (type->code () == TYPE_CODE_ARRAY
2023 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2024}
2025
ad82864c
JB
2026/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2027 return the size of its elements in bits. */
2028
2029static long
2030decode_packed_array_bitsize (struct type *type)
2031{
0d5cff50
DE
2032 const char *raw_name;
2033 const char *tail;
ad82864c
JB
2034 long bits;
2035
720d1a40
JB
2036 /* Access to arrays implemented as fat pointers are encoded as a typedef
2037 of the fat pointer type. We need the name of the fat pointer type
2038 to do the decoding, so strip the typedef layer. */
78134374 2039 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2040 type = ada_typedef_target_type (type);
2041
2042 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2043 if (!raw_name)
2044 raw_name = ada_type_name (desc_base_type (type));
2045
2046 if (!raw_name)
2047 return 0;
2048
2049 tail = strstr (raw_name, "___XP");
57567375
TT
2050 if (tail == nullptr)
2051 {
2052 gdb_assert (is_thick_pntr (type));
2053 /* The structure's first field is a pointer to an array, so this
2054 fetches the array type. */
2055 type = TYPE_TARGET_TYPE (type->field (0).type ());
2056 /* Now we can see if the array elements are packed. */
2057 return TYPE_FIELD_BITSIZE (type, 0);
2058 }
ad82864c
JB
2059
2060 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2061 {
2062 lim_warning
2063 (_("could not understand bit size information on packed array"));
2064 return 0;
2065 }
2066
2067 return bits;
2068}
2069
14f9c5c9
AS
2070/* Given that TYPE is a standard GDB array type with all bounds filled
2071 in, and that the element size of its ultimate scalar constituents
2072 (that is, either its elements, or, if it is an array of arrays, its
2073 elements' elements, etc.) is *ELT_BITS, return an identical type,
2074 but with the bit sizes of its elements (and those of any
2075 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2076 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2077 in bits.
2078
2079 Note that, for arrays whose index type has an XA encoding where
2080 a bound references a record discriminant, getting that discriminant,
2081 and therefore the actual value of that bound, is not possible
2082 because none of the given parameters gives us access to the record.
2083 This function assumes that it is OK in the context where it is being
2084 used to return an array whose bounds are still dynamic and where
2085 the length is arbitrary. */
4c4b4cd2 2086
d2e4a39e 2087static struct type *
ad82864c 2088constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2089{
d2e4a39e
AS
2090 struct type *new_elt_type;
2091 struct type *new_type;
99b1c762
JB
2092 struct type *index_type_desc;
2093 struct type *index_type;
14f9c5c9
AS
2094 LONGEST low_bound, high_bound;
2095
61ee279c 2096 type = ada_check_typedef (type);
78134374 2097 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2098 return type;
2099
99b1c762
JB
2100 index_type_desc = ada_find_parallel_type (type, "___XA");
2101 if (index_type_desc)
940da03e 2102 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2103 NULL);
2104 else
3d967001 2105 index_type = type->index_type ();
99b1c762 2106
e9bb382b 2107 new_type = alloc_type_copy (type);
ad82864c
JB
2108 new_elt_type =
2109 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2110 elt_bits);
99b1c762 2111 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2112 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2113 new_type->set_name (ada_type_name (type));
14f9c5c9 2114
78134374 2115 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2116 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2117 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2118 low_bound = high_bound = 0;
2119 if (high_bound < low_bound)
2120 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2121 else
14f9c5c9
AS
2122 {
2123 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2124 TYPE_LENGTH (new_type) =
dda83cd7 2125 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2126 }
2127
9cdd0d12 2128 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2129 return new_type;
2130}
2131
ad82864c
JB
2132/* The array type encoded by TYPE, where
2133 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2134
d2e4a39e 2135static struct type *
ad82864c 2136decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2137{
0d5cff50 2138 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2139 char *name;
0d5cff50 2140 const char *tail;
d2e4a39e 2141 struct type *shadow_type;
14f9c5c9 2142 long bits;
14f9c5c9 2143
727e3d2e
JB
2144 if (!raw_name)
2145 raw_name = ada_type_name (desc_base_type (type));
2146
2147 if (!raw_name)
2148 return NULL;
2149
2150 name = (char *) alloca (strlen (raw_name) + 1);
2151 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2152 type = desc_base_type (type);
2153
14f9c5c9
AS
2154 memcpy (name, raw_name, tail - raw_name);
2155 name[tail - raw_name] = '\000';
2156
b4ba55a1
JB
2157 shadow_type = ada_find_parallel_type_with_name (type, name);
2158
2159 if (shadow_type == NULL)
14f9c5c9 2160 {
323e0a4a 2161 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2162 return NULL;
2163 }
f168693b 2164 shadow_type = check_typedef (shadow_type);
14f9c5c9 2165
78134374 2166 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2167 {
0963b4bd
MS
2168 lim_warning (_("could not understand bounds "
2169 "information on packed array"));
14f9c5c9
AS
2170 return NULL;
2171 }
d2e4a39e 2172
ad82864c
JB
2173 bits = decode_packed_array_bitsize (type);
2174 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2175}
2176
a7400e44
TT
2177/* Helper function for decode_constrained_packed_array. Set the field
2178 bitsize on a series of packed arrays. Returns the number of
2179 elements in TYPE. */
2180
2181static LONGEST
2182recursively_update_array_bitsize (struct type *type)
2183{
2184 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2185
2186 LONGEST low, high;
1f8d2881 2187 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2188 || low > high)
2189 return 0;
2190 LONGEST our_len = high - low + 1;
2191
2192 struct type *elt_type = TYPE_TARGET_TYPE (type);
2193 if (elt_type->code () == TYPE_CODE_ARRAY)
2194 {
2195 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2196 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2197 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2198
2199 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2200 / HOST_CHAR_BIT);
2201 }
2202
2203 return our_len;
2204}
2205
ad82864c
JB
2206/* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
4c4b4cd2 2210 type length is set appropriately. */
14f9c5c9 2211
d2e4a39e 2212static struct value *
ad82864c 2213decode_constrained_packed_array (struct value *arr)
14f9c5c9 2214{
4c4b4cd2 2215 struct type *type;
14f9c5c9 2216
11aa919a
PMR
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
78134374 2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2226 arr = value_ind (arr);
4c4b4cd2 2227
ad82864c 2228 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2229 if (type == NULL)
2230 {
323e0a4a 2231 error (_("can't unpack array"));
14f9c5c9
AS
2232 return NULL;
2233 }
61ee279c 2234
a7400e44
TT
2235 /* Decoding the packed array type could not correctly set the field
2236 bitsizes for any dimension except the innermost, because the
2237 bounds may be variable and were not passed to that function. So,
2238 we further resolve the array bounds here and then update the
2239 sizes. */
2240 const gdb_byte *valaddr = value_contents_for_printing (arr);
2241 CORE_ADDR address = value_address (arr);
2242 gdb::array_view<const gdb_byte> view
2243 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2244 type = resolve_dynamic_type (type, view, address);
2245 recursively_update_array_bitsize (type);
2246
d5a22e77 2247 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2248 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2249 {
2250 /* This is a (right-justified) modular type representing a packed
2251 array with no wrapper. In order to interpret the value through
2252 the (left-justified) packed array type we just built, we must
2253 first left-justify it. */
2254 int bit_size, bit_pos;
2255 ULONGEST mod;
2256
df407dfe 2257 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2258 bit_size = 0;
2259 while (mod > 0)
2260 {
2261 bit_size += 1;
2262 mod >>= 1;
2263 }
df407dfe 2264 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2265 arr = ada_value_primitive_packed_val (arr, NULL,
2266 bit_pos / HOST_CHAR_BIT,
2267 bit_pos % HOST_CHAR_BIT,
2268 bit_size,
2269 type);
2270 }
2271
4c4b4cd2 2272 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2273}
2274
2275
2276/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2277 given in IND. ARR must be a simple array. */
14f9c5c9 2278
d2e4a39e
AS
2279static struct value *
2280value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2281{
2282 int i;
2283 int bits, elt_off, bit_off;
2284 long elt_total_bit_offset;
d2e4a39e
AS
2285 struct type *elt_type;
2286 struct value *v;
14f9c5c9
AS
2287
2288 bits = 0;
2289 elt_total_bit_offset = 0;
df407dfe 2290 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2291 for (i = 0; i < arity; i += 1)
14f9c5c9 2292 {
78134374 2293 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2294 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2295 error
2296 (_("attempt to do packed indexing of "
0963b4bd 2297 "something other than a packed array"));
14f9c5c9 2298 else
dda83cd7
SM
2299 {
2300 struct type *range_type = elt_type->index_type ();
2301 LONGEST lowerbound, upperbound;
2302 LONGEST idx;
2303
1f8d2881 2304 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2305 {
2306 lim_warning (_("don't know bounds of array"));
2307 lowerbound = upperbound = 0;
2308 }
2309
2310 idx = pos_atr (ind[i]);
2311 if (idx < lowerbound || idx > upperbound)
2312 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2313 (long) idx);
dda83cd7
SM
2314 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2315 elt_total_bit_offset += (idx - lowerbound) * bits;
2316 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2317 }
14f9c5c9
AS
2318 }
2319 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2320 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2321
2322 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2323 bits, elt_type);
14f9c5c9
AS
2324 return v;
2325}
2326
4c4b4cd2 2327/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2328
2329static int
d2e4a39e 2330has_negatives (struct type *type)
14f9c5c9 2331{
78134374 2332 switch (type->code ())
d2e4a39e
AS
2333 {
2334 default:
2335 return 0;
2336 case TYPE_CODE_INT:
c6d940a9 2337 return !type->is_unsigned ();
d2e4a39e 2338 case TYPE_CODE_RANGE:
5537ddd0 2339 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2340 }
14f9c5c9 2341}
d2e4a39e 2342
f93fca70 2343/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2344 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2345 the unpacked buffer.
14f9c5c9 2346
5b639dea
JB
2347 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2348 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2349
f93fca70
JB
2350 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2351 zero otherwise.
14f9c5c9 2352
f93fca70 2353 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2354
f93fca70
JB
2355 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2356
2357static void
2358ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2359 gdb_byte *unpacked, int unpacked_len,
2360 int is_big_endian, int is_signed_type,
2361 int is_scalar)
2362{
a1c95e6b
JB
2363 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2364 int src_idx; /* Index into the source area */
2365 int src_bytes_left; /* Number of source bytes left to process. */
2366 int srcBitsLeft; /* Number of source bits left to move */
2367 int unusedLS; /* Number of bits in next significant
dda83cd7 2368 byte of source that are unused */
a1c95e6b 2369
a1c95e6b
JB
2370 int unpacked_idx; /* Index into the unpacked buffer */
2371 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2372
4c4b4cd2 2373 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2374 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2375 unsigned char sign;
a1c95e6b 2376
4c4b4cd2
PH
2377 /* Transmit bytes from least to most significant; delta is the direction
2378 the indices move. */
f93fca70 2379 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2380
5b639dea
JB
2381 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2382 bits from SRC. .*/
2383 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2384 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2385 bit_size, unpacked_len);
2386
14f9c5c9 2387 srcBitsLeft = bit_size;
086ca51f 2388 src_bytes_left = src_len;
f93fca70 2389 unpacked_bytes_left = unpacked_len;
14f9c5c9 2390 sign = 0;
f93fca70
JB
2391
2392 if (is_big_endian)
14f9c5c9 2393 {
086ca51f 2394 src_idx = src_len - 1;
f93fca70
JB
2395 if (is_signed_type
2396 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2397 sign = ~0;
d2e4a39e
AS
2398
2399 unusedLS =
dda83cd7
SM
2400 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2401 % HOST_CHAR_BIT;
14f9c5c9 2402
f93fca70
JB
2403 if (is_scalar)
2404 {
dda83cd7
SM
2405 accumSize = 0;
2406 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2407 }
2408 else
2409 {
dda83cd7
SM
2410 /* Non-scalar values must be aligned at a byte boundary... */
2411 accumSize =
2412 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2413 /* ... And are placed at the beginning (most-significant) bytes
2414 of the target. */
2415 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2416 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2417 }
14f9c5c9 2418 }
d2e4a39e 2419 else
14f9c5c9
AS
2420 {
2421 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2422
086ca51f 2423 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2424 unusedLS = bit_offset;
2425 accumSize = 0;
2426
f93fca70 2427 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2428 sign = ~0;
14f9c5c9 2429 }
d2e4a39e 2430
14f9c5c9 2431 accum = 0;
086ca51f 2432 while (src_bytes_left > 0)
14f9c5c9
AS
2433 {
2434 /* Mask for removing bits of the next source byte that are not
dda83cd7 2435 part of the value. */
d2e4a39e 2436 unsigned int unusedMSMask =
dda83cd7
SM
2437 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2438 1;
4c4b4cd2 2439 /* Sign-extend bits for this byte. */
14f9c5c9 2440 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2441
d2e4a39e 2442 accum |=
dda83cd7 2443 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2444 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2445 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2446 {
2447 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2448 accumSize -= HOST_CHAR_BIT;
2449 accum >>= HOST_CHAR_BIT;
2450 unpacked_bytes_left -= 1;
2451 unpacked_idx += delta;
2452 }
14f9c5c9
AS
2453 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2454 unusedLS = 0;
086ca51f
JB
2455 src_bytes_left -= 1;
2456 src_idx += delta;
14f9c5c9 2457 }
086ca51f 2458 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2459 {
2460 accum |= sign << accumSize;
db297a65 2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2462 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2463 if (accumSize < 0)
2464 accumSize = 0;
14f9c5c9 2465 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2466 unpacked_bytes_left -= 1;
2467 unpacked_idx += delta;
14f9c5c9 2468 }
f93fca70
JB
2469}
2470
2471/* Create a new value of type TYPE from the contents of OBJ starting
2472 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2473 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2474 assigning through the result will set the field fetched from.
2475 VALADDR is ignored unless OBJ is NULL, in which case,
2476 VALADDR+OFFSET must address the start of storage containing the
2477 packed value. The value returned in this case is never an lval.
2478 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2479
2480struct value *
2481ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2482 long offset, int bit_offset, int bit_size,
dda83cd7 2483 struct type *type)
f93fca70
JB
2484{
2485 struct value *v;
bfb1c796 2486 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2487 gdb_byte *unpacked;
220475ed 2488 const int is_scalar = is_scalar_type (type);
d5a22e77 2489 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2490 gdb::byte_vector staging;
f93fca70
JB
2491
2492 type = ada_check_typedef (type);
2493
d0a9e810 2494 if (obj == NULL)
bfb1c796 2495 src = valaddr + offset;
d0a9e810 2496 else
bfb1c796 2497 src = value_contents (obj) + offset;
d0a9e810
JB
2498
2499 if (is_dynamic_type (type))
2500 {
2501 /* The length of TYPE might by dynamic, so we need to resolve
2502 TYPE in order to know its actual size, which we then use
2503 to create the contents buffer of the value we return.
2504 The difficulty is that the data containing our object is
2505 packed, and therefore maybe not at a byte boundary. So, what
2506 we do, is unpack the data into a byte-aligned buffer, and then
2507 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2508 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2509 staging.resize (staging_len);
d0a9e810
JB
2510
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2512 staging.data (), staging.size (),
d0a9e810
JB
2513 is_big_endian, has_negatives (type),
2514 is_scalar);
b249d2c2 2515 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2516 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2517 {
2518 /* This happens when the length of the object is dynamic,
2519 and is actually smaller than the space reserved for it.
2520 For instance, in an array of variant records, the bit_size
2521 we're given is the array stride, which is constant and
2522 normally equal to the maximum size of its element.
2523 But, in reality, each element only actually spans a portion
2524 of that stride. */
2525 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2526 }
d0a9e810
JB
2527 }
2528
f93fca70
JB
2529 if (obj == NULL)
2530 {
2531 v = allocate_value (type);
bfb1c796 2532 src = valaddr + offset;
f93fca70
JB
2533 }
2534 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2535 {
0cafa88c 2536 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2537 gdb_byte *buf;
0cafa88c 2538
f93fca70 2539 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2540 buf = (gdb_byte *) alloca (src_len);
2541 read_memory (value_address (v), buf, src_len);
2542 src = buf;
f93fca70
JB
2543 }
2544 else
2545 {
2546 v = allocate_value (type);
bfb1c796 2547 src = value_contents (obj) + offset;
f93fca70
JB
2548 }
2549
2550 if (obj != NULL)
2551 {
2552 long new_offset = offset;
2553
2554 set_value_component_location (v, obj);
2555 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2556 set_value_bitsize (v, bit_size);
2557 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2558 {
f93fca70 2559 ++new_offset;
dda83cd7
SM
2560 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2561 }
f93fca70
JB
2562 set_value_offset (v, new_offset);
2563
2564 /* Also set the parent value. This is needed when trying to
2565 assign a new value (in inferior memory). */
2566 set_value_parent (v, obj);
2567 }
2568 else
2569 set_value_bitsize (v, bit_size);
bfb1c796 2570 unpacked = value_contents_writeable (v);
f93fca70
JB
2571
2572 if (bit_size == 0)
2573 {
2574 memset (unpacked, 0, TYPE_LENGTH (type));
2575 return v;
2576 }
2577
d5722aa2 2578 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2579 {
d0a9e810
JB
2580 /* Small short-cut: If we've unpacked the data into a buffer
2581 of the same size as TYPE's length, then we can reuse that,
2582 instead of doing the unpacking again. */
d5722aa2 2583 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2584 }
d0a9e810
JB
2585 else
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 unpacked, TYPE_LENGTH (type),
2588 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2589
14f9c5c9
AS
2590 return v;
2591}
d2e4a39e 2592
14f9c5c9
AS
2593/* Store the contents of FROMVAL into the location of TOVAL.
2594 Return a new value with the location of TOVAL and contents of
2595 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2596 floating-point or non-scalar types. */
14f9c5c9 2597
d2e4a39e
AS
2598static struct value *
2599ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2600{
df407dfe
AC
2601 struct type *type = value_type (toval);
2602 int bits = value_bitsize (toval);
14f9c5c9 2603
52ce6436
PH
2604 toval = ada_coerce_ref (toval);
2605 fromval = ada_coerce_ref (fromval);
2606
2607 if (ada_is_direct_array_type (value_type (toval)))
2608 toval = ada_coerce_to_simple_array (toval);
2609 if (ada_is_direct_array_type (value_type (fromval)))
2610 fromval = ada_coerce_to_simple_array (fromval);
2611
88e3b34b 2612 if (!deprecated_value_modifiable (toval))
323e0a4a 2613 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2614
d2e4a39e 2615 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2616 && bits > 0
78134374 2617 && (type->code () == TYPE_CODE_FLT
dda83cd7 2618 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2619 {
df407dfe
AC
2620 int len = (value_bitpos (toval)
2621 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2622 int from_size;
224c3ddb 2623 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2624 struct value *val;
42ae5230 2625 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2626
78134374 2627 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2628 fromval = value_cast (type, fromval);
14f9c5c9 2629
52ce6436 2630 read_memory (to_addr, buffer, len);
aced2898
PH
2631 from_size = value_bitsize (fromval);
2632 if (from_size == 0)
2633 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2634
d5a22e77 2635 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2636 ULONGEST from_offset = 0;
2637 if (is_big_endian && is_scalar_type (value_type (fromval)))
2638 from_offset = from_size - bits;
2639 copy_bitwise (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_offset,
2641 bits, is_big_endian);
972daa01 2642 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2643
14f9c5c9 2644 val = value_copy (toval);
0fd88904 2645 memcpy (value_contents_raw (val), value_contents (fromval),
dda83cd7 2646 TYPE_LENGTH (type));
04624583 2647 deprecated_set_value_type (val, type);
d2e4a39e 2648
14f9c5c9
AS
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653}
2654
2655
7c512744
JB
2656/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 COMPONENT, and not the inferior's memory. The current contents
2660 of COMPONENT are ignored.
2661
2662 Although not part of the initial design, this function also works
2663 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2664 had a null address, and COMPONENT had an address which is equal to
2665 its offset inside CONTAINER. */
2666
52ce6436
PH
2667static void
2668value_assign_to_component (struct value *container, struct value *component,
2669 struct value *val)
2670{
2671 LONGEST offset_in_container =
42ae5230 2672 (LONGEST) (value_address (component) - value_address (container));
7c512744 2673 int bit_offset_in_container =
52ce6436
PH
2674 value_bitpos (component) - value_bitpos (container);
2675 int bits;
7c512744 2676
52ce6436
PH
2677 val = value_cast (value_type (component), val);
2678
2679 if (value_bitsize (component) == 0)
2680 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2681 else
2682 bits = value_bitsize (component);
2683
d5a22e77 2684 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2685 {
2686 int src_offset;
2687
2688 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2689 src_offset
2a62dfa9
JB
2690 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2691 else
2692 src_offset = 0;
a99bc3d2
JB
2693 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2694 value_bitpos (container) + bit_offset_in_container,
2695 value_contents (val), src_offset, bits, 1);
2a62dfa9 2696 }
52ce6436 2697 else
a99bc3d2
JB
2698 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2699 value_bitpos (container) + bit_offset_in_container,
2700 value_contents (val), 0, bits, 0);
7c512744
JB
2701}
2702
736ade86
XR
2703/* Determine if TYPE is an access to an unconstrained array. */
2704
d91e9ea8 2705bool
736ade86
XR
2706ada_is_access_to_unconstrained_array (struct type *type)
2707{
78134374 2708 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2709 && is_thick_pntr (ada_typedef_target_type (type)));
2710}
2711
4c4b4cd2
PH
2712/* The value of the element of array ARR at the ARITY indices given in IND.
2713 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2714 thereto. */
2715
d2e4a39e
AS
2716struct value *
2717ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2718{
2719 int k;
d2e4a39e
AS
2720 struct value *elt;
2721 struct type *elt_type;
14f9c5c9
AS
2722
2723 elt = ada_coerce_to_simple_array (arr);
2724
df407dfe 2725 elt_type = ada_check_typedef (value_type (elt));
78134374 2726 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2727 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2728 return value_subscript_packed (elt, arity, ind);
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
b9c50e9a
XR
2732 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2733
78134374 2734 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2735 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2736
2497b498 2737 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2738
2739 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2740 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2741 {
2742 /* The element is a typedef to an unconstrained array,
2743 except that the value_subscript call stripped the
2744 typedef layer. The typedef layer is GNAT's way to
2745 specify that the element is, at the source level, an
2746 access to the unconstrained array, rather than the
2747 unconstrained array. So, we need to restore that
2748 typedef layer, which we can do by forcing the element's
2749 type back to its original type. Otherwise, the returned
2750 value is going to be printed as the array, rather
2751 than as an access. Another symptom of the same issue
2752 would be that an expression trying to dereference the
2753 element would also be improperly rejected. */
2754 deprecated_set_value_type (elt, saved_elt_type);
2755 }
2756
2757 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2758 }
b9c50e9a 2759
14f9c5c9
AS
2760 return elt;
2761}
2762
deede10c
JB
2763/* Assuming ARR is a pointer to a GDB array, the value of the element
2764 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2765 Does not read the entire array into memory.
2766
2767 Note: Unlike what one would expect, this function is used instead of
2768 ada_value_subscript for basically all non-packed array types. The reason
2769 for this is that a side effect of doing our own pointer arithmetics instead
2770 of relying on value_subscript is that there is no implicit typedef peeling.
2771 This is important for arrays of array accesses, where it allows us to
2772 preserve the fact that the array's element is an array access, where the
2773 access part os encoded in a typedef layer. */
14f9c5c9 2774
2c0b251b 2775static struct value *
deede10c 2776ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2777{
2778 int k;
919e6dbe 2779 struct value *array_ind = ada_value_ind (arr);
deede10c 2780 struct type *type
919e6dbe
PMR
2781 = check_typedef (value_enclosing_type (array_ind));
2782
78134374 2783 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2784 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2785 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2786
2787 for (k = 0; k < arity; k += 1)
2788 {
2789 LONGEST lwb, upb;
14f9c5c9 2790
78134374 2791 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2792 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2793 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2794 value_copy (arr));
3d967001 2795 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2796 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801}
2802
0b5d8877 2803/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
0b5d8877 2807static struct value *
f5938064 2808ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2809 int low, int high)
0b5d8877 2810{
b0dd7688 2811 struct type *type0 = ada_check_typedef (type);
3d967001 2812 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2813 struct type *index_type
aa715135 2814 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2815 struct type *slice_type = create_array_type_with_stride
2816 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2817 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2818 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2819 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 2820 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
2821 CORE_ADDR base;
2822
6244c119
SM
2823 low_pos = discrete_position (base_index_type, low);
2824 base_low_pos = discrete_position (base_index_type, base_low);
2825
2826 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
2827 {
2828 warning (_("unable to get positions in slice, use bounds instead"));
2829 low_pos = low;
2830 base_low_pos = base_low;
2831 }
5b4ee69b 2832
7ff5b937
TT
2833 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2834 if (stride == 0)
2835 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2836
6244c119 2837 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 2838 return value_at_lazy (slice_type, base);
0b5d8877
PH
2839}
2840
2841
2842static struct value *
2843ada_value_slice (struct value *array, int low, int high)
2844{
b0dd7688 2845 struct type *type = ada_check_typedef (value_type (array));
3d967001 2846 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2847 struct type *index_type
3d967001 2848 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2849 struct type *slice_type = create_array_type_with_stride
2850 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2851 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2852 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
2853 gdb::optional<LONGEST> low_pos, high_pos;
2854
5b4ee69b 2855
6244c119
SM
2856 low_pos = discrete_position (base_index_type, low);
2857 high_pos = discrete_position (base_index_type, high);
2858
2859 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
2860 {
2861 warning (_("unable to get positions in slice, use bounds instead"));
2862 low_pos = low;
2863 high_pos = high;
2864 }
2865
2866 return value_cast (slice_type,
6244c119 2867 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
2868}
2869
14f9c5c9
AS
2870/* If type is a record type in the form of a standard GNAT array
2871 descriptor, returns the number of dimensions for type. If arr is a
2872 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2873 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2874
2875int
d2e4a39e 2876ada_array_arity (struct type *type)
14f9c5c9
AS
2877{
2878 int arity;
2879
2880 if (type == NULL)
2881 return 0;
2882
2883 type = desc_base_type (type);
2884
2885 arity = 0;
78134374 2886 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2887 return desc_arity (desc_bounds_type (type));
d2e4a39e 2888 else
78134374 2889 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2890 {
dda83cd7
SM
2891 arity += 1;
2892 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2893 }
d2e4a39e 2894
14f9c5c9
AS
2895 return arity;
2896}
2897
2898/* If TYPE is a record type in the form of a standard GNAT array
2899 descriptor or a simple array type, returns the element type for
2900 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2901 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2902
d2e4a39e
AS
2903struct type *
2904ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2905{
2906 type = desc_base_type (type);
2907
78134374 2908 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2909 {
2910 int k;
d2e4a39e 2911 struct type *p_array_type;
14f9c5c9 2912
556bdfd4 2913 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2914
2915 k = ada_array_arity (type);
2916 if (k == 0)
dda83cd7 2917 return NULL;
d2e4a39e 2918
4c4b4cd2 2919 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2920 if (nindices >= 0 && k > nindices)
dda83cd7 2921 k = nindices;
d2e4a39e 2922 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2923 {
2924 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2925 k -= 1;
2926 }
14f9c5c9
AS
2927 return p_array_type;
2928 }
78134374 2929 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2930 {
78134374 2931 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2932 {
2933 type = TYPE_TARGET_TYPE (type);
2934 nindices -= 1;
2935 }
14f9c5c9
AS
2936 return type;
2937 }
2938
2939 return NULL;
2940}
2941
4c4b4cd2 2942/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2943 Does not examine memory. Throws an error if N is invalid or TYPE
2944 is not an array type. NAME is the name of the Ada attribute being
2945 evaluated ('range, 'first, 'last, or 'length); it is used in building
2946 the error message. */
14f9c5c9 2947
1eea4ebd
UW
2948static struct type *
2949ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2950{
4c4b4cd2
PH
2951 struct type *result_type;
2952
14f9c5c9
AS
2953 type = desc_base_type (type);
2954
1eea4ebd
UW
2955 if (n < 0 || n > ada_array_arity (type))
2956 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2957
4c4b4cd2 2958 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2959 {
2960 int i;
2961
2962 for (i = 1; i < n; i += 1)
dda83cd7 2963 type = TYPE_TARGET_TYPE (type);
3d967001 2964 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2 2965 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2966 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2967 perhaps stabsread.c would make more sense. */
78134374 2968 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2969 result_type = NULL;
14f9c5c9 2970 }
d2e4a39e 2971 else
1eea4ebd
UW
2972 {
2973 result_type = desc_index_type (desc_bounds_type (type), n);
2974 if (result_type == NULL)
2975 error (_("attempt to take bound of something that is not an array"));
2976 }
2977
2978 return result_type;
14f9c5c9
AS
2979}
2980
2981/* Given that arr is an array type, returns the lower bound of the
2982 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2983 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2984 array-descriptor type. It works for other arrays with bounds supplied
2985 by run-time quantities other than discriminants. */
14f9c5c9 2986
abb68b3e 2987static LONGEST
fb5e3d5c 2988ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2989{
8a48ac95 2990 struct type *type, *index_type_desc, *index_type;
1ce677a4 2991 int i;
262452ec
JK
2992
2993 gdb_assert (which == 0 || which == 1);
14f9c5c9 2994
ad82864c
JB
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2997
4c4b4cd2 2998 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2999 return (LONGEST) - which;
14f9c5c9 3000
78134374 3001 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
3002 type = TYPE_TARGET_TYPE (arr_type);
3003 else
3004 type = arr_type;
3005
22c4c60c 3006 if (type->is_fixed_instance ())
bafffb51
JB
3007 {
3008 /* The array has already been fixed, so we do not need to
3009 check the parallel ___XA type again. That encoding has
3010 already been applied, so ignore it now. */
3011 index_type_desc = NULL;
3012 }
3013 else
3014 {
3015 index_type_desc = ada_find_parallel_type (type, "___XA");
3016 ada_fixup_array_indexes_type (index_type_desc);
3017 }
3018
262452ec 3019 if (index_type_desc != NULL)
940da03e 3020 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 3021 NULL);
262452ec 3022 else
8a48ac95
JB
3023 {
3024 struct type *elt_type = check_typedef (type);
3025
3026 for (i = 1; i < n; i++)
3027 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3028
3d967001 3029 index_type = elt_type->index_type ();
8a48ac95 3030 }
262452ec 3031
43bbcdc2
PH
3032 return
3033 (LONGEST) (which == 0
dda83cd7
SM
3034 ? ada_discrete_type_low_bound (index_type)
3035 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3036}
3037
3038/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3039 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3040 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3041 supplied by run-time quantities other than discriminants. */
14f9c5c9 3042
1eea4ebd 3043static LONGEST
4dc81987 3044ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3045{
eb479039
JB
3046 struct type *arr_type;
3047
78134374 3048 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3049 arr = value_ind (arr);
3050 arr_type = value_enclosing_type (arr);
14f9c5c9 3051
ad82864c
JB
3052 if (ada_is_constrained_packed_array_type (arr_type))
3053 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3054 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3055 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3056 else
1eea4ebd 3057 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3058}
3059
3060/* Given that arr is an array value, returns the length of the
3061 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3062 supplied by run-time quantities other than discriminants.
3063 Does not work for arrays indexed by enumeration types with representation
3064 clauses at the moment. */
14f9c5c9 3065
1eea4ebd 3066static LONGEST
d2e4a39e 3067ada_array_length (struct value *arr, int n)
14f9c5c9 3068{
aa715135
JG
3069 struct type *arr_type, *index_type;
3070 int low, high;
eb479039 3071
78134374 3072 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3073 arr = value_ind (arr);
3074 arr_type = value_enclosing_type (arr);
14f9c5c9 3075
ad82864c
JB
3076 if (ada_is_constrained_packed_array_type (arr_type))
3077 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3078
4c4b4cd2 3079 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3080 {
3081 low = ada_array_bound_from_type (arr_type, n, 0);
3082 high = ada_array_bound_from_type (arr_type, n, 1);
3083 }
14f9c5c9 3084 else
aa715135
JG
3085 {
3086 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3087 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3088 }
3089
f168693b 3090 arr_type = check_typedef (arr_type);
7150d33c 3091 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3092 if (index_type != NULL)
3093 {
3094 struct type *base_type;
78134374 3095 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3096 base_type = TYPE_TARGET_TYPE (index_type);
3097 else
3098 base_type = index_type;
3099
3100 low = pos_atr (value_from_longest (base_type, low));
3101 high = pos_atr (value_from_longest (base_type, high));
3102 }
3103 return high - low + 1;
4c4b4cd2
PH
3104}
3105
bff8c71f
TT
3106/* An array whose type is that of ARR_TYPE (an array type), with
3107 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3108 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3109
3110static struct value *
bff8c71f 3111empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3112{
b0dd7688 3113 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3114 struct type *index_type
3115 = create_static_range_type
dda83cd7 3116 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3117 high < low ? low - 1 : high);
b0dd7688 3118 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3119
0b5d8877 3120 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3121}
14f9c5c9 3122\f
d2e4a39e 3123
dda83cd7 3124 /* Name resolution */
14f9c5c9 3125
4c4b4cd2
PH
3126/* The "decoded" name for the user-definable Ada operator corresponding
3127 to OP. */
14f9c5c9 3128
d2e4a39e 3129static const char *
4c4b4cd2 3130ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3131{
3132 int i;
3133
4c4b4cd2 3134 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3135 {
3136 if (ada_opname_table[i].op == op)
dda83cd7 3137 return ada_opname_table[i].decoded;
14f9c5c9 3138 }
323e0a4a 3139 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3140}
3141
de93309a
SM
3142/* Returns true (non-zero) iff decoded name N0 should appear before N1
3143 in a listing of choices during disambiguation (see sort_choices, below).
3144 The idea is that overloadings of a subprogram name from the
3145 same package should sort in their source order. We settle for ordering
3146 such symbols by their trailing number (__N or $N). */
14f9c5c9 3147
de93309a
SM
3148static int
3149encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3150{
de93309a
SM
3151 if (N1 == NULL)
3152 return 0;
3153 else if (N0 == NULL)
3154 return 1;
3155 else
3156 {
3157 int k0, k1;
30b15541 3158
de93309a 3159 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3160 ;
de93309a 3161 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3162 ;
de93309a 3163 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3164 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3165 {
3166 int n0, n1;
3167
3168 n0 = k0;
3169 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3170 n0 -= 1;
3171 n1 = k1;
3172 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3173 n1 -= 1;
3174 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3175 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3176 }
de93309a
SM
3177 return (strcmp (N0, N1) < 0);
3178 }
14f9c5c9
AS
3179}
3180
de93309a
SM
3181/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3182 encoded names. */
14f9c5c9 3183
de93309a
SM
3184static void
3185sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3186{
14f9c5c9 3187 int i;
14f9c5c9 3188
de93309a 3189 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3190 {
de93309a
SM
3191 struct block_symbol sym = syms[i];
3192 int j;
3193
3194 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3195 {
3196 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3197 sym.symbol->linkage_name ()))
3198 break;
3199 syms[j + 1] = syms[j];
3200 }
de93309a
SM
3201 syms[j + 1] = sym;
3202 }
3203}
14f9c5c9 3204
de93309a
SM
3205/* Whether GDB should display formals and return types for functions in the
3206 overloads selection menu. */
3207static bool print_signatures = true;
4c4b4cd2 3208
de93309a
SM
3209/* Print the signature for SYM on STREAM according to the FLAGS options. For
3210 all but functions, the signature is just the name of the symbol. For
3211 functions, this is the name of the function, the list of types for formals
3212 and the return type (if any). */
4c4b4cd2 3213
de93309a
SM
3214static void
3215ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3216 const struct type_print_options *flags)
3217{
3218 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3219
987012b8 3220 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3221 if (!print_signatures
3222 || type == NULL
78134374 3223 || type->code () != TYPE_CODE_FUNC)
de93309a 3224 return;
4c4b4cd2 3225
1f704f76 3226 if (type->num_fields () > 0)
de93309a
SM
3227 {
3228 int i;
14f9c5c9 3229
de93309a 3230 fprintf_filtered (stream, " (");
1f704f76 3231 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3232 {
3233 if (i > 0)
3234 fprintf_filtered (stream, "; ");
940da03e 3235 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3236 flags);
3237 }
3238 fprintf_filtered (stream, ")");
3239 }
3240 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3241 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3242 {
3243 fprintf_filtered (stream, " return ");
3244 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3245 }
3246}
14f9c5c9 3247
de93309a
SM
3248/* Read and validate a set of numeric choices from the user in the
3249 range 0 .. N_CHOICES-1. Place the results in increasing
3250 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3251
de93309a
SM
3252 The user types choices as a sequence of numbers on one line
3253 separated by blanks, encoding them as follows:
14f9c5c9 3254
de93309a
SM
3255 + A choice of 0 means to cancel the selection, throwing an error.
3256 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3257 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3258
de93309a 3259 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3260
de93309a
SM
3261 ANNOTATION_SUFFIX, if present, is used to annotate the input
3262 prompts (for use with the -f switch). */
14f9c5c9 3263
de93309a
SM
3264static int
3265get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3266 int is_all_choice, const char *annotation_suffix)
de93309a 3267{
992a7040 3268 const char *args;
de93309a
SM
3269 const char *prompt;
3270 int n_chosen;
3271 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3272
de93309a
SM
3273 prompt = getenv ("PS2");
3274 if (prompt == NULL)
3275 prompt = "> ";
4c4b4cd2 3276
de93309a 3277 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3278
de93309a
SM
3279 if (args == NULL)
3280 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3281
de93309a 3282 n_chosen = 0;
4c4b4cd2 3283
de93309a
SM
3284 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3285 order, as given in args. Choices are validated. */
3286 while (1)
14f9c5c9 3287 {
de93309a
SM
3288 char *args2;
3289 int choice, j;
76a01679 3290
de93309a
SM
3291 args = skip_spaces (args);
3292 if (*args == '\0' && n_chosen == 0)
dda83cd7 3293 error_no_arg (_("one or more choice numbers"));
de93309a 3294 else if (*args == '\0')
dda83cd7 3295 break;
76a01679 3296
de93309a
SM
3297 choice = strtol (args, &args2, 10);
3298 if (args == args2 || choice < 0
dda83cd7
SM
3299 || choice > n_choices + first_choice - 1)
3300 error (_("Argument must be choice number"));
de93309a 3301 args = args2;
76a01679 3302
de93309a 3303 if (choice == 0)
dda83cd7 3304 error (_("cancelled"));
76a01679 3305
de93309a 3306 if (choice < first_choice)
dda83cd7
SM
3307 {
3308 n_chosen = n_choices;
3309 for (j = 0; j < n_choices; j += 1)
3310 choices[j] = j;
3311 break;
3312 }
de93309a 3313 choice -= first_choice;
76a01679 3314
de93309a 3315 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3316 {
3317 }
4c4b4cd2 3318
de93309a 3319 if (j < 0 || choice != choices[j])
dda83cd7
SM
3320 {
3321 int k;
4c4b4cd2 3322
dda83cd7
SM
3323 for (k = n_chosen - 1; k > j; k -= 1)
3324 choices[k + 1] = choices[k];
3325 choices[j + 1] = choice;
3326 n_chosen += 1;
3327 }
14f9c5c9
AS
3328 }
3329
de93309a
SM
3330 if (n_chosen > max_results)
3331 error (_("Select no more than %d of the above"), max_results);
3332
3333 return n_chosen;
14f9c5c9
AS
3334}
3335
de93309a
SM
3336/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3337 by asking the user (if necessary), returning the number selected,
3338 and setting the first elements of SYMS items. Error if no symbols
3339 selected. */
3340
3341/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3342 to be re-integrated one of these days. */
14f9c5c9
AS
3343
3344static int
de93309a 3345user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3346{
de93309a
SM
3347 int i;
3348 int *chosen = XALLOCAVEC (int , nsyms);
3349 int n_chosen;
3350 int first_choice = (max_results == 1) ? 1 : 2;
3351 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3352
de93309a
SM
3353 if (max_results < 1)
3354 error (_("Request to select 0 symbols!"));
3355 if (nsyms <= 1)
3356 return nsyms;
14f9c5c9 3357
de93309a
SM
3358 if (select_mode == multiple_symbols_cancel)
3359 error (_("\
3360canceled because the command is ambiguous\n\
3361See set/show multiple-symbol."));
14f9c5c9 3362
de93309a
SM
3363 /* If select_mode is "all", then return all possible symbols.
3364 Only do that if more than one symbol can be selected, of course.
3365 Otherwise, display the menu as usual. */
3366 if (select_mode == multiple_symbols_all && max_results > 1)
3367 return nsyms;
14f9c5c9 3368
de93309a
SM
3369 printf_filtered (_("[0] cancel\n"));
3370 if (max_results > 1)
3371 printf_filtered (_("[1] all\n"));
14f9c5c9 3372
de93309a 3373 sort_choices (syms, nsyms);
14f9c5c9 3374
de93309a
SM
3375 for (i = 0; i < nsyms; i += 1)
3376 {
3377 if (syms[i].symbol == NULL)
dda83cd7 3378 continue;
14f9c5c9 3379
de93309a 3380 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
dda83cd7
SM
3381 {
3382 struct symtab_and_line sal =
3383 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3384
de93309a
SM
3385 printf_filtered ("[%d] ", i + first_choice);
3386 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3387 &type_print_raw_options);
3388 if (sal.symtab == NULL)
3389 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3390 metadata_style.style ().ptr (), nullptr, sal.line);
3391 else
3392 printf_filtered
3393 (_(" at %ps:%d\n"),
3394 styled_string (file_name_style.style (),
3395 symtab_to_filename_for_display (sal.symtab)),
3396 sal.line);
dda83cd7
SM
3397 continue;
3398 }
76a01679 3399 else
dda83cd7
SM
3400 {
3401 int is_enumeral =
3402 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3403 && SYMBOL_TYPE (syms[i].symbol) != NULL
3404 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3405 struct symtab *symtab = NULL;
4c4b4cd2 3406
de93309a
SM
3407 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3408 symtab = symbol_symtab (syms[i].symbol);
3409
dda83cd7 3410 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3411 {
3412 printf_filtered ("[%d] ", i + first_choice);
3413 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3414 &type_print_raw_options);
3415 printf_filtered (_(" at %s:%d\n"),
3416 symtab_to_filename_for_display (symtab),
3417 SYMBOL_LINE (syms[i].symbol));
3418 }
dda83cd7
SM
3419 else if (is_enumeral
3420 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3421 {
3422 printf_filtered (("[%d] "), i + first_choice);
3423 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3424 gdb_stdout, -1, 0, &type_print_raw_options);
3425 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3426 syms[i].symbol->print_name ());
dda83cd7 3427 }
de93309a
SM
3428 else
3429 {
3430 printf_filtered ("[%d] ", i + first_choice);
3431 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3432 &type_print_raw_options);
3433
3434 if (symtab != NULL)
3435 printf_filtered (is_enumeral
3436 ? _(" in %s (enumeral)\n")
3437 : _(" at %s:?\n"),
3438 symtab_to_filename_for_display (symtab));
3439 else
3440 printf_filtered (is_enumeral
3441 ? _(" (enumeral)\n")
3442 : _(" at ?\n"));
3443 }
dda83cd7 3444 }
14f9c5c9 3445 }
14f9c5c9 3446
de93309a 3447 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3448 "overload-choice");
14f9c5c9 3449
de93309a
SM
3450 for (i = 0; i < n_chosen; i += 1)
3451 syms[i] = syms[chosen[i]];
14f9c5c9 3452
de93309a
SM
3453 return n_chosen;
3454}
14f9c5c9 3455
de93309a
SM
3456/* Resolve the operator of the subexpression beginning at
3457 position *POS of *EXPP. "Resolving" consists of replacing
3458 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3459 with their resolutions, replacing built-in operators with
3460 function calls to user-defined operators, where appropriate, and,
3461 when DEPROCEDURE_P is non-zero, converting function-valued variables
3462 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3463 are as in ada_resolve, above. */
14f9c5c9 3464
de93309a
SM
3465static struct value *
3466resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
dda83cd7 3467 struct type *context_type, int parse_completion,
de93309a 3468 innermost_block_tracker *tracker)
14f9c5c9 3469{
de93309a
SM
3470 int pc = *pos;
3471 int i;
3472 struct expression *exp; /* Convenience: == *expp. */
3473 enum exp_opcode op = (*expp)->elts[pc].opcode;
3474 struct value **argvec; /* Vector of operand types (alloca'ed). */
3475 int nargs; /* Number of operands. */
3476 int oplen;
14f9c5c9 3477
de93309a
SM
3478 argvec = NULL;
3479 nargs = 0;
3480 exp = expp->get ();
4c4b4cd2 3481
de93309a
SM
3482 /* Pass one: resolve operands, saving their types and updating *pos,
3483 if needed. */
3484 switch (op)
3485 {
3486 case OP_FUNCALL:
3487 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
dda83cd7
SM
3488 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3489 *pos += 7;
de93309a 3490 else
dda83cd7
SM
3491 {
3492 *pos += 3;
3493 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3494 }
de93309a
SM
3495 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3496 break;
14f9c5c9 3497
de93309a
SM
3498 case UNOP_ADDR:
3499 *pos += 1;
3500 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3501 break;
3502
3503 case UNOP_QUAL:
3504 *pos += 3;
3505 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3506 parse_completion, tracker);
3507 break;
3508
3509 case OP_ATR_MODULUS:
3510 case OP_ATR_SIZE:
3511 case OP_ATR_TAG:
3512 case OP_ATR_FIRST:
3513 case OP_ATR_LAST:
3514 case OP_ATR_LENGTH:
3515 case OP_ATR_POS:
3516 case OP_ATR_VAL:
3517 case OP_ATR_MIN:
3518 case OP_ATR_MAX:
3519 case TERNOP_IN_RANGE:
3520 case BINOP_IN_BOUNDS:
3521 case UNOP_IN_RANGE:
3522 case OP_AGGREGATE:
3523 case OP_OTHERS:
3524 case OP_CHOICES:
3525 case OP_POSITIONAL:
3526 case OP_DISCRETE_RANGE:
3527 case OP_NAME:
3528 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3529 *pos += oplen;
3530 break;
3531
3532 case BINOP_ASSIGN:
3533 {
dda83cd7
SM
3534 struct value *arg1;
3535
3536 *pos += 1;
3537 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3538 if (arg1 == NULL)
3539 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3540 else
3541 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
de93309a 3542 tracker);
dda83cd7 3543 break;
de93309a
SM
3544 }
3545
3546 case UNOP_CAST:
3547 *pos += 3;
3548 nargs = 1;
3549 break;
3550
3551 case BINOP_ADD:
3552 case BINOP_SUB:
3553 case BINOP_MUL:
3554 case BINOP_DIV:
3555 case BINOP_REM:
3556 case BINOP_MOD:
3557 case BINOP_EXP:
3558 case BINOP_CONCAT:
3559 case BINOP_LOGICAL_AND:
3560 case BINOP_LOGICAL_OR:
3561 case BINOP_BITWISE_AND:
3562 case BINOP_BITWISE_IOR:
3563 case BINOP_BITWISE_XOR:
3564
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571
3572 case BINOP_REPEAT:
3573 case BINOP_SUBSCRIPT:
3574 case BINOP_COMMA:
3575 *pos += 1;
3576 nargs = 2;
3577 break;
3578
3579 case UNOP_NEG:
3580 case UNOP_PLUS:
3581 case UNOP_LOGICAL_NOT:
3582 case UNOP_ABS:
3583 case UNOP_IND:
3584 *pos += 1;
3585 nargs = 1;
3586 break;
3587
3588 case OP_LONG:
3589 case OP_FLOAT:
3590 case OP_VAR_VALUE:
3591 case OP_VAR_MSYM_VALUE:
3592 *pos += 4;
3593 break;
3594
3595 case OP_TYPE:
3596 case OP_BOOL:
3597 case OP_LAST:
3598 case OP_INTERNALVAR:
3599 *pos += 3;
3600 break;
3601
3602 case UNOP_MEMVAL:
3603 *pos += 3;
3604 nargs = 1;
3605 break;
3606
3607 case OP_REGISTER:
3608 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3609 break;
3610
3611 case STRUCTOP_STRUCT:
3612 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3613 nargs = 1;
3614 break;
3615
3616 case TERNOP_SLICE:
3617 *pos += 1;
3618 nargs = 3;
3619 break;
3620
3621 case OP_STRING:
3622 break;
3623
3624 default:
3625 error (_("Unexpected operator during name resolution"));
14f9c5c9 3626 }
14f9c5c9 3627
de93309a
SM
3628 argvec = XALLOCAVEC (struct value *, nargs + 1);
3629 for (i = 0; i < nargs; i += 1)
3630 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3631 tracker);
3632 argvec[i] = NULL;
3633 exp = expp->get ();
4c4b4cd2 3634
de93309a
SM
3635 /* Pass two: perform any resolution on principal operator. */
3636 switch (op)
14f9c5c9 3637 {
de93309a
SM
3638 default:
3639 break;
5b4ee69b 3640
de93309a
SM
3641 case OP_VAR_VALUE:
3642 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
3643 {
3644 std::vector<struct block_symbol> candidates;
3645 int n_candidates;
3646
3647 n_candidates =
3648 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3649 exp->elts[pc + 1].block, VAR_DOMAIN,
3650 &candidates);
3651
3652 if (n_candidates > 1)
3653 {
3654 /* Types tend to get re-introduced locally, so if there
3655 are any local symbols that are not types, first filter
3656 out all types. */
3657 int j;
3658 for (j = 0; j < n_candidates; j += 1)
3659 switch (SYMBOL_CLASS (candidates[j].symbol))
3660 {
3661 case LOC_REGISTER:
3662 case LOC_ARG:
3663 case LOC_REF_ARG:
3664 case LOC_REGPARM_ADDR:
3665 case LOC_LOCAL:
3666 case LOC_COMPUTED:
3667 goto FoundNonType;
3668 default:
3669 break;
3670 }
3671 FoundNonType:
3672 if (j < n_candidates)
3673 {
3674 j = 0;
3675 while (j < n_candidates)
3676 {
3677 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3678 {
3679 candidates[j] = candidates[n_candidates - 1];
3680 n_candidates -= 1;
3681 }
3682 else
3683 j += 1;
3684 }
3685 }
3686 }
3687
3688 if (n_candidates == 0)
3689 error (_("No definition found for %s"),
3690 exp->elts[pc + 2].symbol->print_name ());
3691 else if (n_candidates == 1)
3692 i = 0;
3693 else if (deprocedure_p
3694 && !is_nonfunction (candidates.data (), n_candidates))
3695 {
3696 i = ada_resolve_function
3697 (candidates.data (), n_candidates, NULL, 0,
3698 exp->elts[pc + 2].symbol->linkage_name (),
3699 context_type, parse_completion);
3700 if (i < 0)
3701 error (_("Could not find a match for %s"),
3702 exp->elts[pc + 2].symbol->print_name ());
3703 }
3704 else
3705 {
3706 printf_filtered (_("Multiple matches for %s\n"),
3707 exp->elts[pc + 2].symbol->print_name ());
3708 user_select_syms (candidates.data (), n_candidates, 1);
3709 i = 0;
3710 }
3711
3712 exp->elts[pc + 1].block = candidates[i].block;
3713 exp->elts[pc + 2].symbol = candidates[i].symbol;
de93309a 3714 tracker->update (candidates[i]);
dda83cd7 3715 }
14f9c5c9 3716
de93309a 3717 if (deprocedure_p
dda83cd7
SM
3718 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3719 == TYPE_CODE_FUNC))
3720 {
3721 replace_operator_with_call (expp, pc, 0, 4,
3722 exp->elts[pc + 2].symbol,
3723 exp->elts[pc + 1].block);
3724 exp = expp->get ();
3725 }
de93309a
SM
3726 break;
3727
3728 case OP_FUNCALL:
3729 {
dda83cd7
SM
3730 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3731 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3732 {
de93309a 3733 std::vector<struct block_symbol> candidates;
dda83cd7
SM
3734 int n_candidates;
3735
3736 n_candidates =
3737 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3738 exp->elts[pc + 4].block, VAR_DOMAIN,
3739 &candidates);
3740
3741 if (n_candidates == 1)
3742 i = 0;
3743 else
3744 {
3745 i = ada_resolve_function
3746 (candidates.data (), n_candidates,
3747 argvec, nargs,
3748 exp->elts[pc + 5].symbol->linkage_name (),
3749 context_type, parse_completion);
3750 if (i < 0)
3751 error (_("Could not find a match for %s"),
3752 exp->elts[pc + 5].symbol->print_name ());
3753 }
3754
3755 exp->elts[pc + 4].block = candidates[i].block;
3756 exp->elts[pc + 5].symbol = candidates[i].symbol;
de93309a 3757 tracker->update (candidates[i]);
dda83cd7 3758 }
de93309a
SM
3759 }
3760 break;
3761 case BINOP_ADD:
3762 case BINOP_SUB:
3763 case BINOP_MUL:
3764 case BINOP_DIV:
3765 case BINOP_REM:
3766 case BINOP_MOD:
3767 case BINOP_CONCAT:
3768 case BINOP_BITWISE_AND:
3769 case BINOP_BITWISE_IOR:
3770 case BINOP_BITWISE_XOR:
3771 case BINOP_EQUAL:
3772 case BINOP_NOTEQUAL:
3773 case BINOP_LESS:
3774 case BINOP_GTR:
3775 case BINOP_LEQ:
3776 case BINOP_GEQ:
3777 case BINOP_EXP:
3778 case UNOP_NEG:
3779 case UNOP_PLUS:
3780 case UNOP_LOGICAL_NOT:
3781 case UNOP_ABS:
3782 if (possible_user_operator_p (op, argvec))
dda83cd7 3783 {
de93309a 3784 std::vector<struct block_symbol> candidates;
dda83cd7 3785 int n_candidates;
d72413e6 3786
dda83cd7
SM
3787 n_candidates =
3788 ada_lookup_symbol_list (ada_decoded_op_name (op),
de93309a 3789 NULL, VAR_DOMAIN,
dda83cd7 3790 &candidates);
d72413e6 3791
dda83cd7 3792 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
de93309a
SM
3793 nargs, ada_decoded_op_name (op), NULL,
3794 parse_completion);
dda83cd7
SM
3795 if (i < 0)
3796 break;
d72413e6 3797
de93309a
SM
3798 replace_operator_with_call (expp, pc, nargs, 1,
3799 candidates[i].symbol,
3800 candidates[i].block);
dda83cd7
SM
3801 exp = expp->get ();
3802 }
de93309a 3803 break;
d72413e6 3804
de93309a
SM
3805 case OP_TYPE:
3806 case OP_REGISTER:
3807 return NULL;
d72413e6 3808 }
d72413e6 3809
de93309a
SM
3810 *pos = pc;
3811 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3812 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3813 exp->elts[pc + 1].objfile,
3814 exp->elts[pc + 2].msymbol);
3815 else
3816 return evaluate_subexp_type (exp, pos);
3817}
14f9c5c9 3818
de93309a
SM
3819/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3820 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3821 a non-pointer. */
3822/* The term "match" here is rather loose. The match is heuristic and
3823 liberal. */
14f9c5c9 3824
de93309a
SM
3825static int
3826ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3827{
de93309a
SM
3828 ftype = ada_check_typedef (ftype);
3829 atype = ada_check_typedef (atype);
14f9c5c9 3830
78134374 3831 if (ftype->code () == TYPE_CODE_REF)
de93309a 3832 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3833 if (atype->code () == TYPE_CODE_REF)
de93309a 3834 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3835
78134374 3836 switch (ftype->code ())
14f9c5c9 3837 {
de93309a 3838 default:
78134374 3839 return ftype->code () == atype->code ();
de93309a 3840 case TYPE_CODE_PTR:
78134374 3841 if (atype->code () == TYPE_CODE_PTR)
dda83cd7
SM
3842 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3843 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3844 else
dda83cd7
SM
3845 return (may_deref
3846 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
de93309a
SM
3847 case TYPE_CODE_INT:
3848 case TYPE_CODE_ENUM:
3849 case TYPE_CODE_RANGE:
78134374 3850 switch (atype->code ())
dda83cd7
SM
3851 {
3852 case TYPE_CODE_INT:
3853 case TYPE_CODE_ENUM:
3854 case TYPE_CODE_RANGE:
3855 return 1;
3856 default:
3857 return 0;
3858 }
d2e4a39e 3859
de93309a 3860 case TYPE_CODE_ARRAY:
78134374 3861 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3862 || ada_is_array_descriptor_type (atype));
14f9c5c9 3863
de93309a
SM
3864 case TYPE_CODE_STRUCT:
3865 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3866 return (atype->code () == TYPE_CODE_ARRAY
3867 || ada_is_array_descriptor_type (atype));
de93309a 3868 else
dda83cd7
SM
3869 return (atype->code () == TYPE_CODE_STRUCT
3870 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3871
de93309a
SM
3872 case TYPE_CODE_UNION:
3873 case TYPE_CODE_FLT:
78134374 3874 return (atype->code () == ftype->code ());
de93309a 3875 }
14f9c5c9
AS
3876}
3877
de93309a
SM
3878/* Return non-zero if the formals of FUNC "sufficiently match" the
3879 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3880 may also be an enumeral, in which case it is treated as a 0-
3881 argument function. */
14f9c5c9 3882
de93309a
SM
3883static int
3884ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3885{
3886 int i;
3887 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3888
de93309a 3889 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3890 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3891 return (n_actuals == 0);
78134374 3892 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3893 return 0;
14f9c5c9 3894
1f704f76 3895 if (func_type->num_fields () != n_actuals)
de93309a 3896 return 0;
14f9c5c9 3897
de93309a
SM
3898 for (i = 0; i < n_actuals; i += 1)
3899 {
3900 if (actuals[i] == NULL)
dda83cd7 3901 return 0;
de93309a 3902 else
dda83cd7
SM
3903 {
3904 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3905 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3906
dda83cd7
SM
3907 if (!ada_type_match (ftype, atype, 1))
3908 return 0;
3909 }
de93309a
SM
3910 }
3911 return 1;
3912}
d2e4a39e 3913
de93309a
SM
3914/* False iff function type FUNC_TYPE definitely does not produce a value
3915 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3916 FUNC_TYPE is not a valid function type with a non-null return type
3917 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3918
de93309a
SM
3919static int
3920return_match (struct type *func_type, struct type *context_type)
3921{
3922 struct type *return_type;
d2e4a39e 3923
de93309a
SM
3924 if (func_type == NULL)
3925 return 1;
14f9c5c9 3926
78134374 3927 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3928 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3929 else
3930 return_type = get_base_type (func_type);
3931 if (return_type == NULL)
3932 return 1;
76a01679 3933
de93309a 3934 context_type = get_base_type (context_type);
14f9c5c9 3935
78134374 3936 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3937 return context_type == NULL || return_type == context_type;
3938 else if (context_type == NULL)
78134374 3939 return return_type->code () != TYPE_CODE_VOID;
de93309a 3940 else
78134374 3941 return return_type->code () == context_type->code ();
de93309a 3942}
14f9c5c9 3943
14f9c5c9 3944
de93309a
SM
3945/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3946 function (if any) that matches the types of the NARGS arguments in
3947 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3948 that returns that type, then eliminate matches that don't. If
3949 CONTEXT_TYPE is void and there is at least one match that does not
3950 return void, eliminate all matches that do.
14f9c5c9 3951
de93309a
SM
3952 Asks the user if there is more than one match remaining. Returns -1
3953 if there is no such symbol or none is selected. NAME is used
3954 solely for messages. May re-arrange and modify SYMS in
3955 the process; the index returned is for the modified vector. */
14f9c5c9 3956
de93309a
SM
3957static int
3958ada_resolve_function (struct block_symbol syms[],
dda83cd7
SM
3959 int nsyms, struct value **args, int nargs,
3960 const char *name, struct type *context_type,
de93309a
SM
3961 int parse_completion)
3962{
3963 int fallback;
3964 int k;
3965 int m; /* Number of hits */
14f9c5c9 3966
de93309a
SM
3967 m = 0;
3968 /* In the first pass of the loop, we only accept functions matching
3969 context_type. If none are found, we add a second pass of the loop
3970 where every function is accepted. */
3971 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3972 {
3973 for (k = 0; k < nsyms; k += 1)
dda83cd7
SM
3974 {
3975 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3976
dda83cd7
SM
3977 if (ada_args_match (syms[k].symbol, args, nargs)
3978 && (fallback || return_match (type, context_type)))
3979 {
3980 syms[m] = syms[k];
3981 m += 1;
3982 }
3983 }
14f9c5c9
AS
3984 }
3985
de93309a
SM
3986 /* If we got multiple matches, ask the user which one to use. Don't do this
3987 interactive thing during completion, though, as the purpose of the
3988 completion is providing a list of all possible matches. Prompting the
3989 user to filter it down would be completely unexpected in this case. */
3990 if (m == 0)
3991 return -1;
3992 else if (m > 1 && !parse_completion)
3993 {
3994 printf_filtered (_("Multiple matches for %s\n"), name);
3995 user_select_syms (syms, m, 1);
3996 return 0;
3997 }
3998 return 0;
14f9c5c9
AS
3999}
4000
4c4b4cd2
PH
4001/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4002 on the function identified by SYM and BLOCK, and taking NARGS
4003 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4004
4005static void
e9d9f57e 4006replace_operator_with_call (expression_up *expp, int pc, int nargs,
dda83cd7
SM
4007 int oplen, struct symbol *sym,
4008 const struct block *block)
14f9c5c9 4009{
00158a68
TT
4010 /* We want to add 6 more elements (3 for funcall, 4 for function
4011 symbol, -OPLEN for operator being replaced) to the
4012 expression. */
e9d9f57e 4013 struct expression *exp = expp->get ();
00158a68 4014 int save_nelts = exp->nelts;
f51f9f1d
TV
4015 int extra_elts = 7 - oplen;
4016 exp->nelts += extra_elts;
14f9c5c9 4017
f51f9f1d
TV
4018 if (extra_elts > 0)
4019 exp->resize (exp->nelts);
00158a68
TT
4020 memmove (exp->elts + pc + 7, exp->elts + pc + oplen,
4021 EXP_ELEM_TO_BYTES (save_nelts - pc - oplen));
f51f9f1d
TV
4022 if (extra_elts < 0)
4023 exp->resize (exp->nelts);
14f9c5c9 4024
00158a68
TT
4025 exp->elts[pc].opcode = exp->elts[pc + 2].opcode = OP_FUNCALL;
4026 exp->elts[pc + 1].longconst = (LONGEST) nargs;
14f9c5c9 4027
00158a68
TT
4028 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
4029 exp->elts[pc + 4].block = block;
4030 exp->elts[pc + 5].symbol = sym;
d2e4a39e 4031}
14f9c5c9
AS
4032
4033/* Type-class predicates */
4034
4c4b4cd2
PH
4035/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4036 or FLOAT). */
14f9c5c9
AS
4037
4038static int
d2e4a39e 4039numeric_type_p (struct type *type)
14f9c5c9
AS
4040{
4041 if (type == NULL)
4042 return 0;
d2e4a39e
AS
4043 else
4044 {
78134374 4045 switch (type->code ())
dda83cd7
SM
4046 {
4047 case TYPE_CODE_INT:
4048 case TYPE_CODE_FLT:
4049 return 1;
4050 case TYPE_CODE_RANGE:
4051 return (type == TYPE_TARGET_TYPE (type)
4052 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4053 default:
4054 return 0;
4055 }
d2e4a39e 4056 }
14f9c5c9
AS
4057}
4058
4c4b4cd2 4059/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4060
4061static int
d2e4a39e 4062integer_type_p (struct type *type)
14f9c5c9
AS
4063{
4064 if (type == NULL)
4065 return 0;
d2e4a39e
AS
4066 else
4067 {
78134374 4068 switch (type->code ())
dda83cd7
SM
4069 {
4070 case TYPE_CODE_INT:
4071 return 1;
4072 case TYPE_CODE_RANGE:
4073 return (type == TYPE_TARGET_TYPE (type)
4074 || integer_type_p (TYPE_TARGET_TYPE (type)));
4075 default:
4076 return 0;
4077 }
d2e4a39e 4078 }
14f9c5c9
AS
4079}
4080
4c4b4cd2 4081/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4082
4083static int
d2e4a39e 4084scalar_type_p (struct type *type)
14f9c5c9
AS
4085{
4086 if (type == NULL)
4087 return 0;
d2e4a39e
AS
4088 else
4089 {
78134374 4090 switch (type->code ())
dda83cd7
SM
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_RANGE:
4094 case TYPE_CODE_ENUM:
4095 case TYPE_CODE_FLT:
4096 return 1;
4097 default:
4098 return 0;
4099 }
d2e4a39e 4100 }
14f9c5c9
AS
4101}
4102
4c4b4cd2 4103/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4104
4105static int
d2e4a39e 4106discrete_type_p (struct type *type)
14f9c5c9
AS
4107{
4108 if (type == NULL)
4109 return 0;
d2e4a39e
AS
4110 else
4111 {
78134374 4112 switch (type->code ())
dda83cd7
SM
4113 {
4114 case TYPE_CODE_INT:
4115 case TYPE_CODE_RANGE:
4116 case TYPE_CODE_ENUM:
4117 case TYPE_CODE_BOOL:
4118 return 1;
4119 default:
4120 return 0;
4121 }
d2e4a39e 4122 }
14f9c5c9
AS
4123}
4124
4c4b4cd2
PH
4125/* Returns non-zero if OP with operands in the vector ARGS could be
4126 a user-defined function. Errs on the side of pre-defined operators
4127 (i.e., result 0). */
14f9c5c9
AS
4128
4129static int
d2e4a39e 4130possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4131{
76a01679 4132 struct type *type0 =
df407dfe 4133 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4134 struct type *type1 =
df407dfe 4135 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4136
4c4b4cd2
PH
4137 if (type0 == NULL)
4138 return 0;
4139
14f9c5c9
AS
4140 switch (op)
4141 {
4142 default:
4143 return 0;
4144
4145 case BINOP_ADD:
4146 case BINOP_SUB:
4147 case BINOP_MUL:
4148 case BINOP_DIV:
d2e4a39e 4149 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4150
4151 case BINOP_REM:
4152 case BINOP_MOD:
4153 case BINOP_BITWISE_AND:
4154 case BINOP_BITWISE_IOR:
4155 case BINOP_BITWISE_XOR:
d2e4a39e 4156 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4157
4158 case BINOP_EQUAL:
4159 case BINOP_NOTEQUAL:
4160 case BINOP_LESS:
4161 case BINOP_GTR:
4162 case BINOP_LEQ:
4163 case BINOP_GEQ:
d2e4a39e 4164 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4165
4166 case BINOP_CONCAT:
ee90b9ab 4167 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4168
4169 case BINOP_EXP:
d2e4a39e 4170 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4171
4172 case UNOP_NEG:
4173 case UNOP_PLUS:
4174 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4175 case UNOP_ABS:
4176 return (!numeric_type_p (type0));
14f9c5c9
AS
4177
4178 }
4179}
4180\f
dda83cd7 4181 /* Renaming */
14f9c5c9 4182
aeb5907d
JB
4183/* NOTES:
4184
4185 1. In the following, we assume that a renaming type's name may
4186 have an ___XD suffix. It would be nice if this went away at some
4187 point.
4188 2. We handle both the (old) purely type-based representation of
4189 renamings and the (new) variable-based encoding. At some point,
4190 it is devoutly to be hoped that the former goes away
4191 (FIXME: hilfinger-2007-07-09).
4192 3. Subprogram renamings are not implemented, although the XRS
4193 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4194
4195/* If SYM encodes a renaming,
4196
4197 <renaming> renames <renamed entity>,
4198
4199 sets *LEN to the length of the renamed entity's name,
4200 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4201 the string describing the subcomponent selected from the renamed
0963b4bd 4202 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4203 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4204 are undefined). Otherwise, returns a value indicating the category
4205 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4206 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4207 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4208 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4209 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4210 may be NULL, in which case they are not assigned.
4211
4212 [Currently, however, GCC does not generate subprogram renamings.] */
4213
4214enum ada_renaming_category
4215ada_parse_renaming (struct symbol *sym,
4216 const char **renamed_entity, int *len,
4217 const char **renaming_expr)
4218{
4219 enum ada_renaming_category kind;
4220 const char *info;
4221 const char *suffix;
4222
4223 if (sym == NULL)
4224 return ADA_NOT_RENAMING;
4225 switch (SYMBOL_CLASS (sym))
14f9c5c9 4226 {
aeb5907d
JB
4227 default:
4228 return ADA_NOT_RENAMING;
aeb5907d
JB
4229 case LOC_LOCAL:
4230 case LOC_STATIC:
4231 case LOC_COMPUTED:
4232 case LOC_OPTIMIZED_OUT:
987012b8 4233 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4234 if (info == NULL)
4235 return ADA_NOT_RENAMING;
4236 switch (info[5])
4237 {
4238 case '_':
4239 kind = ADA_OBJECT_RENAMING;
4240 info += 6;
4241 break;
4242 case 'E':
4243 kind = ADA_EXCEPTION_RENAMING;
4244 info += 7;
4245 break;
4246 case 'P':
4247 kind = ADA_PACKAGE_RENAMING;
4248 info += 7;
4249 break;
4250 case 'S':
4251 kind = ADA_SUBPROGRAM_RENAMING;
4252 info += 7;
4253 break;
4254 default:
4255 return ADA_NOT_RENAMING;
4256 }
14f9c5c9 4257 }
4c4b4cd2 4258
de93309a
SM
4259 if (renamed_entity != NULL)
4260 *renamed_entity = info;
4261 suffix = strstr (info, "___XE");
4262 if (suffix == NULL || suffix == info)
4263 return ADA_NOT_RENAMING;
4264 if (len != NULL)
4265 *len = strlen (info) - strlen (suffix);
4266 suffix += 5;
4267 if (renaming_expr != NULL)
4268 *renaming_expr = suffix;
4269 return kind;
4270}
4271
4272/* Compute the value of the given RENAMING_SYM, which is expected to
4273 be a symbol encoding a renaming expression. BLOCK is the block
4274 used to evaluate the renaming. */
4275
4276static struct value *
4277ada_read_renaming_var_value (struct symbol *renaming_sym,
4278 const struct block *block)
4279{
4280 const char *sym_name;
4281
987012b8 4282 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4283 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4284 return evaluate_expression (expr.get ());
4285}
4286\f
4287
dda83cd7 4288 /* Evaluation: Function Calls */
de93309a
SM
4289
4290/* Return an lvalue containing the value VAL. This is the identity on
4291 lvalues, and otherwise has the side-effect of allocating memory
4292 in the inferior where a copy of the value contents is copied. */
4293
4294static struct value *
4295ensure_lval (struct value *val)
4296{
4297 if (VALUE_LVAL (val) == not_lval
4298 || VALUE_LVAL (val) == lval_internalvar)
4299 {
4300 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4301 const CORE_ADDR addr =
dda83cd7 4302 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4303
4304 VALUE_LVAL (val) = lval_memory;
4305 set_value_address (val, addr);
4306 write_memory (addr, value_contents (val), len);
4307 }
4308
4309 return val;
4310}
4311
4312/* Given ARG, a value of type (pointer or reference to a)*
4313 structure/union, extract the component named NAME from the ultimate
4314 target structure/union and return it as a value with its
4315 appropriate type.
4316
4317 The routine searches for NAME among all members of the structure itself
4318 and (recursively) among all members of any wrapper members
4319 (e.g., '_parent').
4320
4321 If NO_ERR, then simply return NULL in case of error, rather than
4322 calling error. */
4323
4324static struct value *
4325ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4326{
4327 struct type *t, *t1;
4328 struct value *v;
4329 int check_tag;
4330
4331 v = NULL;
4332 t1 = t = ada_check_typedef (value_type (arg));
78134374 4333 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4334 {
4335 t1 = TYPE_TARGET_TYPE (t);
4336 if (t1 == NULL)
4337 goto BadValue;
4338 t1 = ada_check_typedef (t1);
78134374 4339 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4340 {
4341 arg = coerce_ref (arg);
4342 t = t1;
4343 }
de93309a
SM
4344 }
4345
78134374 4346 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4347 {
4348 t1 = TYPE_TARGET_TYPE (t);
4349 if (t1 == NULL)
4350 goto BadValue;
4351 t1 = ada_check_typedef (t1);
78134374 4352 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4353 {
4354 arg = value_ind (arg);
4355 t = t1;
4356 }
de93309a 4357 else
dda83cd7 4358 break;
de93309a 4359 }
aeb5907d 4360
78134374 4361 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4362 goto BadValue;
52ce6436 4363
de93309a
SM
4364 if (t1 == t)
4365 v = ada_search_struct_field (name, arg, 0, t);
4366 else
4367 {
4368 int bit_offset, bit_size, byte_offset;
4369 struct type *field_type;
4370 CORE_ADDR address;
a5ee536b 4371
78134374 4372 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4373 address = value_address (ada_value_ind (arg));
4374 else
4375 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4376
de93309a 4377 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4378 the case where the type is a reference to a tagged type, but
4379 we have to be careful to exclude pointers to tagged types.
4380 The latter should be shown as usual (as a pointer), whereas
4381 a reference should mostly be transparent to the user. */
14f9c5c9 4382
de93309a 4383 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4384 || (t1->code () == TYPE_CODE_REF
4385 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4386 {
4387 /* We first try to find the searched field in the current type.
de93309a 4388 If not found then let's look in the fixed type. */
14f9c5c9 4389
dda83cd7
SM
4390 if (!find_struct_field (name, t1, 0,
4391 &field_type, &byte_offset, &bit_offset,
4392 &bit_size, NULL))
de93309a
SM
4393 check_tag = 1;
4394 else
4395 check_tag = 0;
dda83cd7 4396 }
de93309a
SM
4397 else
4398 check_tag = 0;
c3e5cd34 4399
de93309a
SM
4400 /* Convert to fixed type in all cases, so that we have proper
4401 offsets to each field in unconstrained record types. */
4402 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4403 address, NULL, check_tag);
4404
24aa1b02
TT
4405 /* Resolve the dynamic type as well. */
4406 arg = value_from_contents_and_address (t1, nullptr, address);
4407 t1 = value_type (arg);
4408
de93309a 4409 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4410 &field_type, &byte_offset, &bit_offset,
4411 &bit_size, NULL))
4412 {
4413 if (bit_size != 0)
4414 {
4415 if (t->code () == TYPE_CODE_REF)
4416 arg = ada_coerce_ref (arg);
4417 else
4418 arg = ada_value_ind (arg);
4419 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4420 bit_offset, bit_size,
4421 field_type);
4422 }
4423 else
4424 v = value_at_lazy (field_type, address + byte_offset);
4425 }
c3e5cd34 4426 }
14f9c5c9 4427
de93309a
SM
4428 if (v != NULL || no_err)
4429 return v;
4430 else
4431 error (_("There is no member named %s."), name);
4432
4433 BadValue:
4434 if (no_err)
4435 return NULL;
4436 else
4437 error (_("Attempt to extract a component of "
4438 "a value that is not a record."));
14f9c5c9
AS
4439}
4440
4441/* Return the value ACTUAL, converted to be an appropriate value for a
4442 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4443 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4444 values not residing in memory, updating it as needed. */
14f9c5c9 4445
a93c0eb6 4446struct value *
40bc484c 4447ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4448{
df407dfe 4449 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4450 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4451 struct type *formal_target =
78134374 4452 formal_type->code () == TYPE_CODE_PTR
61ee279c 4453 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4454 struct type *actual_target =
78134374 4455 actual_type->code () == TYPE_CODE_PTR
61ee279c 4456 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4457
4c4b4cd2 4458 if (ada_is_array_descriptor_type (formal_target)
78134374 4459 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4460 return make_array_descriptor (formal_type, actual);
78134374
SM
4461 else if (formal_type->code () == TYPE_CODE_PTR
4462 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4463 {
a84a8a0d 4464 struct value *result;
5b4ee69b 4465
78134374 4466 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4467 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4468 result = desc_data (actual);
78134374 4469 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4470 {
4471 if (VALUE_LVAL (actual) != lval_memory)
4472 {
4473 struct value *val;
4474
4475 actual_type = ada_check_typedef (value_type (actual));
4476 val = allocate_value (actual_type);
4477 memcpy ((char *) value_contents_raw (val),
4478 (char *) value_contents (actual),
4479 TYPE_LENGTH (actual_type));
4480 actual = ensure_lval (val);
4481 }
4482 result = value_addr (actual);
4483 }
a84a8a0d
JB
4484 else
4485 return actual;
b1af9e97 4486 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4487 }
78134374 4488 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4489 return ada_value_ind (actual);
8344af1e
JB
4490 else if (ada_is_aligner_type (formal_type))
4491 {
4492 /* We need to turn this parameter into an aligner type
4493 as well. */
4494 struct value *aligner = allocate_value (formal_type);
4495 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4496
4497 value_assign_to_component (aligner, component, actual);
4498 return aligner;
4499 }
14f9c5c9
AS
4500
4501 return actual;
4502}
4503
438c98a1
JB
4504/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4505 type TYPE. This is usually an inefficient no-op except on some targets
4506 (such as AVR) where the representation of a pointer and an address
4507 differs. */
4508
4509static CORE_ADDR
4510value_pointer (struct value *value, struct type *type)
4511{
4512 struct gdbarch *gdbarch = get_type_arch (type);
4513 unsigned len = TYPE_LENGTH (type);
224c3ddb 4514 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4515 CORE_ADDR addr;
4516
4517 addr = value_address (value);
4518 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4519 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4520 return addr;
4521}
4522
14f9c5c9 4523
4c4b4cd2
PH
4524/* Push a descriptor of type TYPE for array value ARR on the stack at
4525 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4526 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4527 to-descriptor type rather than a descriptor type), a struct value *
4528 representing a pointer to this descriptor. */
14f9c5c9 4529
d2e4a39e 4530static struct value *
40bc484c 4531make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4532{
d2e4a39e
AS
4533 struct type *bounds_type = desc_bounds_type (type);
4534 struct type *desc_type = desc_base_type (type);
4535 struct value *descriptor = allocate_value (desc_type);
4536 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4537 int i;
d2e4a39e 4538
0963b4bd
MS
4539 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4540 i > 0; i -= 1)
14f9c5c9 4541 {
19f220c3
JK
4542 modify_field (value_type (bounds), value_contents_writeable (bounds),
4543 ada_array_bound (arr, i, 0),
4544 desc_bound_bitpos (bounds_type, i, 0),
4545 desc_bound_bitsize (bounds_type, i, 0));
4546 modify_field (value_type (bounds), value_contents_writeable (bounds),
4547 ada_array_bound (arr, i, 1),
4548 desc_bound_bitpos (bounds_type, i, 1),
4549 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4550 }
d2e4a39e 4551
40bc484c 4552 bounds = ensure_lval (bounds);
d2e4a39e 4553
19f220c3
JK
4554 modify_field (value_type (descriptor),
4555 value_contents_writeable (descriptor),
4556 value_pointer (ensure_lval (arr),
940da03e 4557 desc_type->field (0).type ()),
19f220c3
JK
4558 fat_pntr_data_bitpos (desc_type),
4559 fat_pntr_data_bitsize (desc_type));
4560
4561 modify_field (value_type (descriptor),
4562 value_contents_writeable (descriptor),
4563 value_pointer (bounds,
940da03e 4564 desc_type->field (1).type ()),
19f220c3
JK
4565 fat_pntr_bounds_bitpos (desc_type),
4566 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4567
40bc484c 4568 descriptor = ensure_lval (descriptor);
14f9c5c9 4569
78134374 4570 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4571 return value_addr (descriptor);
4572 else
4573 return descriptor;
4574}
14f9c5c9 4575\f
dda83cd7 4576 /* Symbol Cache Module */
3d9434b5 4577
3d9434b5 4578/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4579 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4580 on the type of entity being printed, the cache can make it as much
4581 as an order of magnitude faster than without it.
4582
4583 The descriptive type DWARF extension has significantly reduced
4584 the need for this cache, at least when DWARF is being used. However,
4585 even in this case, some expensive name-based symbol searches are still
4586 sometimes necessary - to find an XVZ variable, mostly. */
4587
ee01b665 4588/* Initialize the contents of SYM_CACHE. */
3d9434b5 4589
ee01b665
JB
4590static void
4591ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4592{
4593 obstack_init (&sym_cache->cache_space);
4594 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4595}
3d9434b5 4596
ee01b665
JB
4597/* Free the memory used by SYM_CACHE. */
4598
4599static void
4600ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4601{
ee01b665
JB
4602 obstack_free (&sym_cache->cache_space, NULL);
4603 xfree (sym_cache);
4604}
3d9434b5 4605
ee01b665
JB
4606/* Return the symbol cache associated to the given program space PSPACE.
4607 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4608
ee01b665
JB
4609static struct ada_symbol_cache *
4610ada_get_symbol_cache (struct program_space *pspace)
4611{
4612 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4613
66c168ae 4614 if (pspace_data->sym_cache == NULL)
ee01b665 4615 {
66c168ae
JB
4616 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4617 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4618 }
4619
66c168ae 4620 return pspace_data->sym_cache;
ee01b665 4621}
3d9434b5
JB
4622
4623/* Clear all entries from the symbol cache. */
4624
4625static void
4626ada_clear_symbol_cache (void)
4627{
ee01b665
JB
4628 struct ada_symbol_cache *sym_cache
4629 = ada_get_symbol_cache (current_program_space);
4630
4631 obstack_free (&sym_cache->cache_space, NULL);
4632 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4633}
4634
fe978cb0 4635/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4636 Return it if found, or NULL otherwise. */
4637
4638static struct cache_entry **
fe978cb0 4639find_entry (const char *name, domain_enum domain)
3d9434b5 4640{
ee01b665
JB
4641 struct ada_symbol_cache *sym_cache
4642 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4643 int h = msymbol_hash (name) % HASH_SIZE;
4644 struct cache_entry **e;
4645
ee01b665 4646 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4647 {
fe978cb0 4648 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4649 return e;
3d9434b5
JB
4650 }
4651 return NULL;
4652}
4653
fe978cb0 4654/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4655 Return 1 if found, 0 otherwise.
4656
4657 If an entry was found and SYM is not NULL, set *SYM to the entry's
4658 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4659
96d887e8 4660static int
fe978cb0 4661lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4662 struct symbol **sym, const struct block **block)
96d887e8 4663{
fe978cb0 4664 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4665
4666 if (e == NULL)
4667 return 0;
4668 if (sym != NULL)
4669 *sym = (*e)->sym;
4670 if (block != NULL)
4671 *block = (*e)->block;
4672 return 1;
96d887e8
PH
4673}
4674
3d9434b5 4675/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4676 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4677
96d887e8 4678static void
fe978cb0 4679cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4680 const struct block *block)
96d887e8 4681{
ee01b665
JB
4682 struct ada_symbol_cache *sym_cache
4683 = ada_get_symbol_cache (current_program_space);
3d9434b5 4684 int h;
3d9434b5
JB
4685 struct cache_entry *e;
4686
1994afbf
DE
4687 /* Symbols for builtin types don't have a block.
4688 For now don't cache such symbols. */
4689 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4690 return;
4691
3d9434b5
JB
4692 /* If the symbol is a local symbol, then do not cache it, as a search
4693 for that symbol depends on the context. To determine whether
4694 the symbol is local or not, we check the block where we found it
4695 against the global and static blocks of its associated symtab. */
4696 if (sym
08be3fe3 4697 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4698 GLOBAL_BLOCK) != block
08be3fe3 4699 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4700 STATIC_BLOCK) != block)
3d9434b5
JB
4701 return;
4702
4703 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4704 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4705 e->next = sym_cache->root[h];
4706 sym_cache->root[h] = e;
2ef5453b 4707 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4708 e->sym = sym;
fe978cb0 4709 e->domain = domain;
3d9434b5 4710 e->block = block;
96d887e8 4711}
4c4b4cd2 4712\f
dda83cd7 4713 /* Symbol Lookup */
4c4b4cd2 4714
b5ec771e
PA
4715/* Return the symbol name match type that should be used used when
4716 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4717
4718 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4719 for Ada lookups. */
c0431670 4720
b5ec771e
PA
4721static symbol_name_match_type
4722name_match_type_from_name (const char *lookup_name)
c0431670 4723{
b5ec771e
PA
4724 return (strstr (lookup_name, "__") == NULL
4725 ? symbol_name_match_type::WILD
4726 : symbol_name_match_type::FULL);
c0431670
JB
4727}
4728
4c4b4cd2
PH
4729/* Return the result of a standard (literal, C-like) lookup of NAME in
4730 given DOMAIN, visible from lexical block BLOCK. */
4731
4732static struct symbol *
4733standard_lookup (const char *name, const struct block *block,
dda83cd7 4734 domain_enum domain)
4c4b4cd2 4735{
acbd605d 4736 /* Initialize it just to avoid a GCC false warning. */
6640a367 4737 struct block_symbol sym = {};
4c4b4cd2 4738
d12307c1
PMR
4739 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4740 return sym.symbol;
a2cd4f14 4741 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4742 cache_symbol (name, domain, sym.symbol, sym.block);
4743 return sym.symbol;
4c4b4cd2
PH
4744}
4745
4746
4747/* Non-zero iff there is at least one non-function/non-enumeral symbol
4748 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4749 since they contend in overloading in the same way. */
4750static int
d12307c1 4751is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4752{
4753 int i;
4754
4755 for (i = 0; i < n; i += 1)
78134374 4756 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
dda83cd7
SM
4757 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4758 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4759 return 1;
4760
4761 return 0;
4762}
4763
4764/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4765 struct types. Otherwise, they may not. */
14f9c5c9
AS
4766
4767static int
d2e4a39e 4768equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4769{
d2e4a39e 4770 if (type0 == type1)
14f9c5c9 4771 return 1;
d2e4a39e 4772 if (type0 == NULL || type1 == NULL
78134374 4773 || type0->code () != type1->code ())
14f9c5c9 4774 return 0;
78134374
SM
4775 if ((type0->code () == TYPE_CODE_STRUCT
4776 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4777 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4778 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4779 return 1;
d2e4a39e 4780
14f9c5c9
AS
4781 return 0;
4782}
4783
4784/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4785 no more defined than that of SYM1. */
14f9c5c9
AS
4786
4787static int
d2e4a39e 4788lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4789{
4790 if (sym0 == sym1)
4791 return 1;
176620f1 4792 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4793 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4794 return 0;
4795
d2e4a39e 4796 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4797 {
4798 case LOC_UNDEF:
4799 return 1;
4800 case LOC_TYPEDEF:
4801 {
dda83cd7
SM
4802 struct type *type0 = SYMBOL_TYPE (sym0);
4803 struct type *type1 = SYMBOL_TYPE (sym1);
4804 const char *name0 = sym0->linkage_name ();
4805 const char *name1 = sym1->linkage_name ();
4806 int len0 = strlen (name0);
4807
4808 return
4809 type0->code () == type1->code ()
4810 && (equiv_types (type0, type1)
4811 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4812 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4813 }
4814 case LOC_CONST:
4815 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
dda83cd7 4816 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4817
4818 case LOC_STATIC:
4819 {
dda83cd7
SM
4820 const char *name0 = sym0->linkage_name ();
4821 const char *name1 = sym1->linkage_name ();
4822 return (strcmp (name0, name1) == 0
4823 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4824 }
4825
d2e4a39e
AS
4826 default:
4827 return 0;
14f9c5c9
AS
4828 }
4829}
4830
d12307c1 4831/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4832 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4833
4834static void
76a01679 4835add_defn_to_vec (struct obstack *obstackp,
dda83cd7
SM
4836 struct symbol *sym,
4837 const struct block *block)
14f9c5c9
AS
4838{
4839 int i;
d12307c1 4840 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4841
529cad9c
PH
4842 /* Do not try to complete stub types, as the debugger is probably
4843 already scanning all symbols matching a certain name at the
4844 time when this function is called. Trying to replace the stub
4845 type by its associated full type will cause us to restart a scan
4846 which may lead to an infinite recursion. Instead, the client
4847 collecting the matching symbols will end up collecting several
4848 matches, with at least one of them complete. It can then filter
4849 out the stub ones if needed. */
4850
4c4b4cd2
PH
4851 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4852 {
d12307c1 4853 if (lesseq_defined_than (sym, prevDefns[i].symbol))
dda83cd7 4854 return;
d12307c1 4855 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
dda83cd7
SM
4856 {
4857 prevDefns[i].symbol = sym;
4858 prevDefns[i].block = block;
4859 return;
4860 }
4c4b4cd2
PH
4861 }
4862
4863 {
d12307c1 4864 struct block_symbol info;
4c4b4cd2 4865
d12307c1 4866 info.symbol = sym;
4c4b4cd2 4867 info.block = block;
d12307c1 4868 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4869 }
4870}
4871
d12307c1
PMR
4872/* Number of block_symbol structures currently collected in current vector in
4873 OBSTACKP. */
4c4b4cd2 4874
76a01679
JB
4875static int
4876num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4877{
d12307c1 4878 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4879}
4880
d12307c1
PMR
4881/* Vector of block_symbol structures currently collected in current vector in
4882 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4883
d12307c1 4884static struct block_symbol *
4c4b4cd2
PH
4885defns_collected (struct obstack *obstackp, int finish)
4886{
4887 if (finish)
224c3ddb 4888 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4889 else
d12307c1 4890 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4891}
4892
7c7b6655
TT
4893/* Return a bound minimal symbol matching NAME according to Ada
4894 decoding rules. Returns an invalid symbol if there is no such
4895 minimal symbol. Names prefixed with "standard__" are handled
4896 specially: "standard__" is first stripped off, and only static and
4897 global symbols are searched. */
4c4b4cd2 4898
7c7b6655 4899struct bound_minimal_symbol
96d887e8 4900ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4901{
7c7b6655 4902 struct bound_minimal_symbol result;
4c4b4cd2 4903
7c7b6655
TT
4904 memset (&result, 0, sizeof (result));
4905
b5ec771e
PA
4906 symbol_name_match_type match_type = name_match_type_from_name (name);
4907 lookup_name_info lookup_name (name, match_type);
4908
4909 symbol_name_matcher_ftype *match_name
4910 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4911
2030c079 4912 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4913 {
7932255d 4914 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4915 {
c9d95fa3 4916 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4917 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4918 {
4919 result.minsym = msymbol;
4920 result.objfile = objfile;
4921 break;
4922 }
4923 }
4924 }
4c4b4cd2 4925
7c7b6655 4926 return result;
96d887e8 4927}
4c4b4cd2 4928
96d887e8
PH
4929/* For all subprograms that statically enclose the subprogram of the
4930 selected frame, add symbols matching identifier NAME in DOMAIN
4931 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4932 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4933 with a wildcard prefix. */
4c4b4cd2 4934
96d887e8
PH
4935static void
4936add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4937 const lookup_name_info &lookup_name,
4938 domain_enum domain)
96d887e8 4939{
96d887e8 4940}
14f9c5c9 4941
96d887e8
PH
4942/* True if TYPE is definitely an artificial type supplied to a symbol
4943 for which no debugging information was given in the symbol file. */
14f9c5c9 4944
96d887e8
PH
4945static int
4946is_nondebugging_type (struct type *type)
4947{
0d5cff50 4948 const char *name = ada_type_name (type);
5b4ee69b 4949
96d887e8
PH
4950 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4951}
4c4b4cd2 4952
8f17729f
JB
4953/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4954 that are deemed "identical" for practical purposes.
4955
4956 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4957 types and that their number of enumerals is identical (in other
1f704f76 4958 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4959
4960static int
4961ada_identical_enum_types_p (struct type *type1, struct type *type2)
4962{
4963 int i;
4964
4965 /* The heuristic we use here is fairly conservative. We consider
4966 that 2 enumerate types are identical if they have the same
4967 number of enumerals and that all enumerals have the same
4968 underlying value and name. */
4969
4970 /* All enums in the type should have an identical underlying value. */
1f704f76 4971 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4972 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4973 return 0;
4974
4975 /* All enumerals should also have the same name (modulo any numerical
4976 suffix). */
1f704f76 4977 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4978 {
0d5cff50
DE
4979 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4980 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4981 int len_1 = strlen (name_1);
4982 int len_2 = strlen (name_2);
4983
4984 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4985 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4986 if (len_1 != len_2
dda83cd7 4987 || strncmp (TYPE_FIELD_NAME (type1, i),
8f17729f
JB
4988 TYPE_FIELD_NAME (type2, i),
4989 len_1) != 0)
4990 return 0;
4991 }
4992
4993 return 1;
4994}
4995
4996/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4997 that are deemed "identical" for practical purposes. Sometimes,
4998 enumerals are not strictly identical, but their types are so similar
4999 that they can be considered identical.
5000
5001 For instance, consider the following code:
5002
5003 type Color is (Black, Red, Green, Blue, White);
5004 type RGB_Color is new Color range Red .. Blue;
5005
5006 Type RGB_Color is a subrange of an implicit type which is a copy
5007 of type Color. If we call that implicit type RGB_ColorB ("B" is
5008 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5009 As a result, when an expression references any of the enumeral
5010 by name (Eg. "print green"), the expression is technically
5011 ambiguous and the user should be asked to disambiguate. But
5012 doing so would only hinder the user, since it wouldn't matter
5013 what choice he makes, the outcome would always be the same.
5014 So, for practical purposes, we consider them as the same. */
5015
5016static int
54d343a2 5017symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5018{
5019 int i;
5020
5021 /* Before performing a thorough comparison check of each type,
5022 we perform a series of inexpensive checks. We expect that these
5023 checks will quickly fail in the vast majority of cases, and thus
5024 help prevent the unnecessary use of a more expensive comparison.
5025 Said comparison also expects us to make some of these checks
5026 (see ada_identical_enum_types_p). */
5027
5028 /* Quick check: All symbols should have an enum type. */
54d343a2 5029 for (i = 0; i < syms.size (); i++)
78134374 5030 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
5031 return 0;
5032
5033 /* Quick check: They should all have the same value. */
54d343a2 5034 for (i = 1; i < syms.size (); i++)
d12307c1 5035 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5036 return 0;
5037
5038 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5039 for (i = 1; i < syms.size (); i++)
1f704f76 5040 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
dda83cd7 5041 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
5042 return 0;
5043
5044 /* All the sanity checks passed, so we might have a set of
5045 identical enumeration types. Perform a more complete
5046 comparison of the type of each symbol. */
54d343a2 5047 for (i = 1; i < syms.size (); i++)
d12307c1 5048 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
dda83cd7 5049 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5050 return 0;
5051
5052 return 1;
5053}
5054
54d343a2 5055/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5056 duplicate other symbols in the list (The only case I know of where
5057 this happens is when object files containing stabs-in-ecoff are
5058 linked with files containing ordinary ecoff debugging symbols (or no
5059 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5060 Returns the number of items in the modified list. */
4c4b4cd2 5061
96d887e8 5062static int
54d343a2 5063remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5064{
5065 int i, j;
4c4b4cd2 5066
8f17729f
JB
5067 /* We should never be called with less than 2 symbols, as there
5068 cannot be any extra symbol in that case. But it's easy to
5069 handle, since we have nothing to do in that case. */
54d343a2
TT
5070 if (syms->size () < 2)
5071 return syms->size ();
8f17729f 5072
96d887e8 5073 i = 0;
54d343a2 5074 while (i < syms->size ())
96d887e8 5075 {
a35ddb44 5076 int remove_p = 0;
339c13b6
JB
5077
5078 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 5079 the get rid of the stub. */
339c13b6 5080
e46d3488 5081 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
dda83cd7
SM
5082 && (*syms)[i].symbol->linkage_name () != NULL)
5083 {
5084 for (j = 0; j < syms->size (); j++)
5085 {
5086 if (j != i
5087 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5088 && (*syms)[j].symbol->linkage_name () != NULL
5089 && strcmp ((*syms)[i].symbol->linkage_name (),
5090 (*syms)[j].symbol->linkage_name ()) == 0)
5091 remove_p = 1;
5092 }
5093 }
339c13b6
JB
5094
5095 /* Two symbols with the same name, same class and same address
dda83cd7 5096 should be identical. */
339c13b6 5097
987012b8 5098 else if ((*syms)[i].symbol->linkage_name () != NULL
dda83cd7
SM
5099 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5100 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5101 {
5102 for (j = 0; j < syms->size (); j += 1)
5103 {
5104 if (i != j
5105 && (*syms)[j].symbol->linkage_name () != NULL
5106 && strcmp ((*syms)[i].symbol->linkage_name (),
5107 (*syms)[j].symbol->linkage_name ()) == 0
5108 && SYMBOL_CLASS ((*syms)[i].symbol)
54d343a2 5109 == SYMBOL_CLASS ((*syms)[j].symbol)
dda83cd7
SM
5110 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5111 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5112 remove_p = 1;
5113 }
5114 }
339c13b6 5115
a35ddb44 5116 if (remove_p)
54d343a2 5117 syms->erase (syms->begin () + i);
1b788fb6
TT
5118 else
5119 i += 1;
14f9c5c9 5120 }
8f17729f
JB
5121
5122 /* If all the remaining symbols are identical enumerals, then
5123 just keep the first one and discard the rest.
5124
5125 Unlike what we did previously, we do not discard any entry
5126 unless they are ALL identical. This is because the symbol
5127 comparison is not a strict comparison, but rather a practical
5128 comparison. If all symbols are considered identical, then
5129 we can just go ahead and use the first one and discard the rest.
5130 But if we cannot reduce the list to a single element, we have
5131 to ask the user to disambiguate anyways. And if we have to
5132 present a multiple-choice menu, it's less confusing if the list
5133 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5134 if (symbols_are_identical_enums (*syms))
5135 syms->resize (1);
8f17729f 5136
54d343a2 5137 return syms->size ();
14f9c5c9
AS
5138}
5139
96d887e8
PH
5140/* Given a type that corresponds to a renaming entity, use the type name
5141 to extract the scope (package name or function name, fully qualified,
5142 and following the GNAT encoding convention) where this renaming has been
49d83361 5143 defined. */
4c4b4cd2 5144
49d83361 5145static std::string
96d887e8 5146xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5147{
96d887e8 5148 /* The renaming types adhere to the following convention:
0963b4bd 5149 <scope>__<rename>___<XR extension>.
96d887e8
PH
5150 So, to extract the scope, we search for the "___XR" extension,
5151 and then backtrack until we find the first "__". */
76a01679 5152
7d93a1e0 5153 const char *name = renaming_type->name ();
108d56a4
SM
5154 const char *suffix = strstr (name, "___XR");
5155 const char *last;
14f9c5c9 5156
96d887e8
PH
5157 /* Now, backtrack a bit until we find the first "__". Start looking
5158 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5159
96d887e8
PH
5160 for (last = suffix - 3; last > name; last--)
5161 if (last[0] == '_' && last[1] == '_')
5162 break;
76a01679 5163
96d887e8 5164 /* Make a copy of scope and return it. */
49d83361 5165 return std::string (name, last);
4c4b4cd2
PH
5166}
5167
96d887e8 5168/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5169
96d887e8
PH
5170static int
5171is_package_name (const char *name)
4c4b4cd2 5172{
96d887e8
PH
5173 /* Here, We take advantage of the fact that no symbols are generated
5174 for packages, while symbols are generated for each function.
5175 So the condition for NAME represent a package becomes equivalent
5176 to NAME not existing in our list of symbols. There is only one
5177 small complication with library-level functions (see below). */
4c4b4cd2 5178
96d887e8
PH
5179 /* If it is a function that has not been defined at library level,
5180 then we should be able to look it up in the symbols. */
5181 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5182 return 0;
14f9c5c9 5183
96d887e8
PH
5184 /* Library-level function names start with "_ada_". See if function
5185 "_ada_" followed by NAME can be found. */
14f9c5c9 5186
96d887e8 5187 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5188 functions names cannot contain "__" in them. */
96d887e8
PH
5189 if (strstr (name, "__") != NULL)
5190 return 0;
4c4b4cd2 5191
528e1572 5192 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5193
528e1572 5194 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5195}
14f9c5c9 5196
96d887e8 5197/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5198 not visible from FUNCTION_NAME. */
14f9c5c9 5199
96d887e8 5200static int
0d5cff50 5201old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5202{
aeb5907d
JB
5203 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5204 return 0;
5205
49d83361 5206 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5207
96d887e8 5208 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5209 if (is_package_name (scope.c_str ()))
5210 return 0;
14f9c5c9 5211
96d887e8
PH
5212 /* Check that the rename is in the current function scope by checking
5213 that its name starts with SCOPE. */
76a01679 5214
96d887e8
PH
5215 /* If the function name starts with "_ada_", it means that it is
5216 a library-level function. Strip this prefix before doing the
5217 comparison, as the encoding for the renaming does not contain
5218 this prefix. */
61012eef 5219 if (startswith (function_name, "_ada_"))
96d887e8 5220 function_name += 5;
f26caa11 5221
49d83361 5222 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5223}
5224
aeb5907d
JB
5225/* Remove entries from SYMS that corresponds to a renaming entity that
5226 is not visible from the function associated with CURRENT_BLOCK or
5227 that is superfluous due to the presence of more specific renaming
5228 information. Places surviving symbols in the initial entries of
5229 SYMS and returns the number of surviving symbols.
96d887e8
PH
5230
5231 Rationale:
aeb5907d
JB
5232 First, in cases where an object renaming is implemented as a
5233 reference variable, GNAT may produce both the actual reference
5234 variable and the renaming encoding. In this case, we discard the
5235 latter.
5236
5237 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5238 entity. Unfortunately, STABS currently does not support the definition
5239 of types that are local to a given lexical block, so all renamings types
5240 are emitted at library level. As a consequence, if an application
5241 contains two renaming entities using the same name, and a user tries to
5242 print the value of one of these entities, the result of the ada symbol
5243 lookup will also contain the wrong renaming type.
f26caa11 5244
96d887e8
PH
5245 This function partially covers for this limitation by attempting to
5246 remove from the SYMS list renaming symbols that should be visible
5247 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5248 method with the current information available. The implementation
5249 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5250
5251 - When the user tries to print a rename in a function while there
dda83cd7
SM
5252 is another rename entity defined in a package: Normally, the
5253 rename in the function has precedence over the rename in the
5254 package, so the latter should be removed from the list. This is
5255 currently not the case.
5256
96d887e8 5257 - This function will incorrectly remove valid renames if
dda83cd7
SM
5258 the CURRENT_BLOCK corresponds to a function which symbol name
5259 has been changed by an "Export" pragma. As a consequence,
5260 the user will be unable to print such rename entities. */
4c4b4cd2 5261
14f9c5c9 5262static int
54d343a2
TT
5263remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5264 const struct block *current_block)
4c4b4cd2
PH
5265{
5266 struct symbol *current_function;
0d5cff50 5267 const char *current_function_name;
4c4b4cd2 5268 int i;
aeb5907d
JB
5269 int is_new_style_renaming;
5270
5271 /* If there is both a renaming foo___XR... encoded as a variable and
5272 a simple variable foo in the same block, discard the latter.
0963b4bd 5273 First, zero out such symbols, then compress. */
aeb5907d 5274 is_new_style_renaming = 0;
54d343a2 5275 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5276 {
54d343a2
TT
5277 struct symbol *sym = (*syms)[i].symbol;
5278 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5279 const char *name;
5280 const char *suffix;
5281
5282 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5283 continue;
987012b8 5284 name = sym->linkage_name ();
aeb5907d
JB
5285 suffix = strstr (name, "___XR");
5286
5287 if (suffix != NULL)
5288 {
5289 int name_len = suffix - name;
5290 int j;
5b4ee69b 5291
aeb5907d 5292 is_new_style_renaming = 1;
54d343a2
TT
5293 for (j = 0; j < syms->size (); j += 1)
5294 if (i != j && (*syms)[j].symbol != NULL
987012b8 5295 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5296 name_len) == 0
54d343a2
TT
5297 && block == (*syms)[j].block)
5298 (*syms)[j].symbol = NULL;
aeb5907d
JB
5299 }
5300 }
5301 if (is_new_style_renaming)
5302 {
5303 int j, k;
5304
54d343a2
TT
5305 for (j = k = 0; j < syms->size (); j += 1)
5306 if ((*syms)[j].symbol != NULL)
aeb5907d 5307 {
54d343a2 5308 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5309 k += 1;
5310 }
5311 return k;
5312 }
4c4b4cd2
PH
5313
5314 /* Extract the function name associated to CURRENT_BLOCK.
5315 Abort if unable to do so. */
76a01679 5316
4c4b4cd2 5317 if (current_block == NULL)
54d343a2 5318 return syms->size ();
76a01679 5319
7f0df278 5320 current_function = block_linkage_function (current_block);
4c4b4cd2 5321 if (current_function == NULL)
54d343a2 5322 return syms->size ();
4c4b4cd2 5323
987012b8 5324 current_function_name = current_function->linkage_name ();
4c4b4cd2 5325 if (current_function_name == NULL)
54d343a2 5326 return syms->size ();
4c4b4cd2
PH
5327
5328 /* Check each of the symbols, and remove it from the list if it is
5329 a type corresponding to a renaming that is out of the scope of
5330 the current block. */
5331
5332 i = 0;
54d343a2 5333 while (i < syms->size ())
4c4b4cd2 5334 {
54d343a2 5335 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5336 == ADA_OBJECT_RENAMING
5337 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5338 current_function_name))
5339 syms->erase (syms->begin () + i);
4c4b4cd2 5340 else
dda83cd7 5341 i += 1;
4c4b4cd2
PH
5342 }
5343
54d343a2 5344 return syms->size ();
4c4b4cd2
PH
5345}
5346
339c13b6
JB
5347/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5348 whose name and domain match NAME and DOMAIN respectively.
5349 If no match was found, then extend the search to "enclosing"
5350 routines (in other words, if we're inside a nested function,
5351 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5352 If WILD_MATCH_P is nonzero, perform the naming matching in
5353 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5354
5355 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5356
5357static void
b5ec771e
PA
5358ada_add_local_symbols (struct obstack *obstackp,
5359 const lookup_name_info &lookup_name,
5360 const struct block *block, domain_enum domain)
339c13b6
JB
5361{
5362 int block_depth = 0;
5363
5364 while (block != NULL)
5365 {
5366 block_depth += 1;
b5ec771e 5367 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5368
5369 /* If we found a non-function match, assume that's the one. */
5370 if (is_nonfunction (defns_collected (obstackp, 0),
dda83cd7
SM
5371 num_defns_collected (obstackp)))
5372 return;
339c13b6
JB
5373
5374 block = BLOCK_SUPERBLOCK (block);
5375 }
5376
5377 /* If no luck so far, try to find NAME as a local symbol in some lexically
5378 enclosing subprogram. */
5379 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5380 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5381}
5382
ccefe4c4 5383/* An object of this type is used as the user_data argument when
40658b94 5384 calling the map_matching_symbols method. */
ccefe4c4 5385
40658b94 5386struct match_data
ccefe4c4 5387{
40658b94 5388 struct objfile *objfile;
ccefe4c4 5389 struct obstack *obstackp;
40658b94
PH
5390 struct symbol *arg_sym;
5391 int found_sym;
ccefe4c4
TT
5392};
5393
199b4314
TT
5394/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5395 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5396 containing the obstack that collects the symbol list, the file that SYM
5397 must come from, a flag indicating whether a non-argument symbol has
5398 been found in the current block, and the last argument symbol
5399 passed in SYM within the current block (if any). When SYM is null,
5400 marking the end of a block, the argument symbol is added if no
5401 other has been found. */
ccefe4c4 5402
199b4314
TT
5403static bool
5404aux_add_nonlocal_symbols (struct block_symbol *bsym,
5405 struct match_data *data)
ccefe4c4 5406{
199b4314
TT
5407 const struct block *block = bsym->block;
5408 struct symbol *sym = bsym->symbol;
5409
40658b94
PH
5410 if (sym == NULL)
5411 {
5412 if (!data->found_sym && data->arg_sym != NULL)
5413 add_defn_to_vec (data->obstackp,
5414 fixup_symbol_section (data->arg_sym, data->objfile),
5415 block);
5416 data->found_sym = 0;
5417 data->arg_sym = NULL;
5418 }
5419 else
5420 {
5421 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5422 return true;
40658b94
PH
5423 else if (SYMBOL_IS_ARGUMENT (sym))
5424 data->arg_sym = sym;
5425 else
5426 {
5427 data->found_sym = 1;
5428 add_defn_to_vec (data->obstackp,
5429 fixup_symbol_section (sym, data->objfile),
5430 block);
5431 }
5432 }
199b4314 5433 return true;
40658b94
PH
5434}
5435
b5ec771e
PA
5436/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5437 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5438 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5439
5440static int
5441ada_add_block_renamings (struct obstack *obstackp,
5442 const struct block *block,
b5ec771e
PA
5443 const lookup_name_info &lookup_name,
5444 domain_enum domain)
22cee43f
PMR
5445{
5446 struct using_direct *renaming;
5447 int defns_mark = num_defns_collected (obstackp);
5448
b5ec771e
PA
5449 symbol_name_matcher_ftype *name_match
5450 = ada_get_symbol_name_matcher (lookup_name);
5451
22cee43f
PMR
5452 for (renaming = block_using (block);
5453 renaming != NULL;
5454 renaming = renaming->next)
5455 {
5456 const char *r_name;
22cee43f
PMR
5457
5458 /* Avoid infinite recursions: skip this renaming if we are actually
5459 already traversing it.
5460
5461 Currently, symbol lookup in Ada don't use the namespace machinery from
5462 C++/Fortran support: skip namespace imports that use them. */
5463 if (renaming->searched
5464 || (renaming->import_src != NULL
5465 && renaming->import_src[0] != '\0')
5466 || (renaming->import_dest != NULL
5467 && renaming->import_dest[0] != '\0'))
5468 continue;
5469 renaming->searched = 1;
5470
5471 /* TODO: here, we perform another name-based symbol lookup, which can
5472 pull its own multiple overloads. In theory, we should be able to do
5473 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5474 not a simple name. But in order to do this, we would need to enhance
5475 the DWARF reader to associate a symbol to this renaming, instead of a
5476 name. So, for now, we do something simpler: re-use the C++/Fortran
5477 namespace machinery. */
5478 r_name = (renaming->alias != NULL
5479 ? renaming->alias
5480 : renaming->declaration);
b5ec771e
PA
5481 if (name_match (r_name, lookup_name, NULL))
5482 {
5483 lookup_name_info decl_lookup_name (renaming->declaration,
5484 lookup_name.match_type ());
5485 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5486 1, NULL);
5487 }
22cee43f
PMR
5488 renaming->searched = 0;
5489 }
5490 return num_defns_collected (obstackp) != defns_mark;
5491}
5492
db230ce3
JB
5493/* Implements compare_names, but only applying the comparision using
5494 the given CASING. */
5b4ee69b 5495
40658b94 5496static int
db230ce3
JB
5497compare_names_with_case (const char *string1, const char *string2,
5498 enum case_sensitivity casing)
40658b94
PH
5499{
5500 while (*string1 != '\0' && *string2 != '\0')
5501 {
db230ce3
JB
5502 char c1, c2;
5503
40658b94
PH
5504 if (isspace (*string1) || isspace (*string2))
5505 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5506
5507 if (casing == case_sensitive_off)
5508 {
5509 c1 = tolower (*string1);
5510 c2 = tolower (*string2);
5511 }
5512 else
5513 {
5514 c1 = *string1;
5515 c2 = *string2;
5516 }
5517 if (c1 != c2)
40658b94 5518 break;
db230ce3 5519
40658b94
PH
5520 string1 += 1;
5521 string2 += 1;
5522 }
db230ce3 5523
40658b94
PH
5524 switch (*string1)
5525 {
5526 case '(':
5527 return strcmp_iw_ordered (string1, string2);
5528 case '_':
5529 if (*string2 == '\0')
5530 {
052874e8 5531 if (is_name_suffix (string1))
40658b94
PH
5532 return 0;
5533 else
1a1d5513 5534 return 1;
40658b94 5535 }
dbb8534f 5536 /* FALLTHROUGH */
40658b94
PH
5537 default:
5538 if (*string2 == '(')
5539 return strcmp_iw_ordered (string1, string2);
5540 else
db230ce3
JB
5541 {
5542 if (casing == case_sensitive_off)
5543 return tolower (*string1) - tolower (*string2);
5544 else
5545 return *string1 - *string2;
5546 }
40658b94 5547 }
ccefe4c4
TT
5548}
5549
db230ce3
JB
5550/* Compare STRING1 to STRING2, with results as for strcmp.
5551 Compatible with strcmp_iw_ordered in that...
5552
5553 strcmp_iw_ordered (STRING1, STRING2) <= 0
5554
5555 ... implies...
5556
5557 compare_names (STRING1, STRING2) <= 0
5558
5559 (they may differ as to what symbols compare equal). */
5560
5561static int
5562compare_names (const char *string1, const char *string2)
5563{
5564 int result;
5565
5566 /* Similar to what strcmp_iw_ordered does, we need to perform
5567 a case-insensitive comparison first, and only resort to
5568 a second, case-sensitive, comparison if the first one was
5569 not sufficient to differentiate the two strings. */
5570
5571 result = compare_names_with_case (string1, string2, case_sensitive_off);
5572 if (result == 0)
5573 result = compare_names_with_case (string1, string2, case_sensitive_on);
5574
5575 return result;
5576}
5577
b5ec771e
PA
5578/* Convenience function to get at the Ada encoded lookup name for
5579 LOOKUP_NAME, as a C string. */
5580
5581static const char *
5582ada_lookup_name (const lookup_name_info &lookup_name)
5583{
5584 return lookup_name.ada ().lookup_name ().c_str ();
5585}
5586
339c13b6 5587/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5588 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5589 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5590 symbols otherwise. */
339c13b6
JB
5591
5592static void
b5ec771e
PA
5593add_nonlocal_symbols (struct obstack *obstackp,
5594 const lookup_name_info &lookup_name,
5595 domain_enum domain, int global)
339c13b6 5596{
40658b94 5597 struct match_data data;
339c13b6 5598
6475f2fe 5599 memset (&data, 0, sizeof data);
ccefe4c4 5600 data.obstackp = obstackp;
339c13b6 5601
b5ec771e
PA
5602 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5603
199b4314
TT
5604 auto callback = [&] (struct block_symbol *bsym)
5605 {
5606 return aux_add_nonlocal_symbols (bsym, &data);
5607 };
5608
2030c079 5609 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5610 {
5611 data.objfile = objfile;
5612
b054970d
TT
5613 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5614 domain, global, callback,
5615 (is_wild_match
5616 ? NULL : compare_names));
22cee43f 5617
b669c953 5618 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5619 {
5620 const struct block *global_block
5621 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5622
b5ec771e
PA
5623 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5624 domain))
22cee43f
PMR
5625 data.found_sym = 1;
5626 }
40658b94
PH
5627 }
5628
5629 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5630 {
b5ec771e 5631 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5632 std::string bracket_name = std::string ("<_ada_") + name + '>';
5633 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5634
2030c079 5635 for (objfile *objfile : current_program_space->objfiles ())
dda83cd7 5636 {
40658b94 5637 data.objfile = objfile;
b054970d 5638 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5639 domain, global, callback,
b5ec771e 5640 compare_names);
40658b94
PH
5641 }
5642 }
339c13b6
JB
5643}
5644
b5ec771e
PA
5645/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5646 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5647 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5648
22cee43f
PMR
5649 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5650 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5651 is the one match returned (no other matches in that or
d9680e73 5652 enclosing blocks is returned). If there are any matches in or
22cee43f 5653 surrounding BLOCK, then these alone are returned.
4eeaa230 5654
b5ec771e
PA
5655 Names prefixed with "standard__" are handled specially:
5656 "standard__" is first stripped off (by the lookup_name
5657 constructor), and only static and global symbols are searched.
14f9c5c9 5658
22cee43f
PMR
5659 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5660 to lookup global symbols. */
5661
5662static void
5663ada_add_all_symbols (struct obstack *obstackp,
5664 const struct block *block,
b5ec771e 5665 const lookup_name_info &lookup_name,
22cee43f
PMR
5666 domain_enum domain,
5667 int full_search,
5668 int *made_global_lookup_p)
14f9c5c9
AS
5669{
5670 struct symbol *sym;
14f9c5c9 5671
22cee43f
PMR
5672 if (made_global_lookup_p)
5673 *made_global_lookup_p = 0;
339c13b6
JB
5674
5675 /* Special case: If the user specifies a symbol name inside package
5676 Standard, do a non-wild matching of the symbol name without
5677 the "standard__" prefix. This was primarily introduced in order
5678 to allow the user to specifically access the standard exceptions
5679 using, for instance, Standard.Constraint_Error when Constraint_Error
5680 is ambiguous (due to the user defining its own Constraint_Error
5681 entity inside its program). */
b5ec771e
PA
5682 if (lookup_name.ada ().standard_p ())
5683 block = NULL;
4c4b4cd2 5684
339c13b6 5685 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5686
4eeaa230
DE
5687 if (block != NULL)
5688 {
5689 if (full_search)
b5ec771e 5690 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5691 else
5692 {
5693 /* In the !full_search case we're are being called by
4009ee92 5694 iterate_over_symbols, and we don't want to search
4eeaa230 5695 superblocks. */
b5ec771e 5696 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5697 }
22cee43f
PMR
5698 if (num_defns_collected (obstackp) > 0 || !full_search)
5699 return;
4eeaa230 5700 }
d2e4a39e 5701
339c13b6
JB
5702 /* No non-global symbols found. Check our cache to see if we have
5703 already performed this search before. If we have, then return
5704 the same result. */
5705
b5ec771e
PA
5706 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5707 domain, &sym, &block))
4c4b4cd2
PH
5708 {
5709 if (sym != NULL)
b5ec771e 5710 add_defn_to_vec (obstackp, sym, block);
22cee43f 5711 return;
4c4b4cd2 5712 }
14f9c5c9 5713
22cee43f
PMR
5714 if (made_global_lookup_p)
5715 *made_global_lookup_p = 1;
b1eedac9 5716
339c13b6
JB
5717 /* Search symbols from all global blocks. */
5718
b5ec771e 5719 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5720
4c4b4cd2 5721 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5722 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5723
22cee43f 5724 if (num_defns_collected (obstackp) == 0)
b5ec771e 5725 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5726}
5727
b5ec771e
PA
5728/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5729 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5730 matches.
54d343a2
TT
5731 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5732 found and the blocks and symbol tables (if any) in which they were
5733 found.
22cee43f
PMR
5734
5735 When full_search is non-zero, any non-function/non-enumeral
5736 symbol match within the nest of blocks whose innermost member is BLOCK,
5737 is the one match returned (no other matches in that or
5738 enclosing blocks is returned). If there are any matches in or
5739 surrounding BLOCK, then these alone are returned.
5740
5741 Names prefixed with "standard__" are handled specially: "standard__"
5742 is first stripped off, and only static and global symbols are searched. */
5743
5744static int
b5ec771e
PA
5745ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5746 const struct block *block,
22cee43f 5747 domain_enum domain,
54d343a2 5748 std::vector<struct block_symbol> *results,
22cee43f
PMR
5749 int full_search)
5750{
22cee43f
PMR
5751 int syms_from_global_search;
5752 int ndefns;
ec6a20c2 5753 auto_obstack obstack;
22cee43f 5754
ec6a20c2 5755 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5756 domain, full_search, &syms_from_global_search);
14f9c5c9 5757
ec6a20c2
JB
5758 ndefns = num_defns_collected (&obstack);
5759
54d343a2
TT
5760 struct block_symbol *base = defns_collected (&obstack, 1);
5761 for (int i = 0; i < ndefns; ++i)
5762 results->push_back (base[i]);
4c4b4cd2 5763
54d343a2 5764 ndefns = remove_extra_symbols (results);
4c4b4cd2 5765
b1eedac9 5766 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5767 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5768
b1eedac9 5769 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5770 cache_symbol (ada_lookup_name (lookup_name), domain,
5771 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5772
54d343a2 5773 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5774
14f9c5c9
AS
5775 return ndefns;
5776}
5777
b5ec771e 5778/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5779 in global scopes, returning the number of matches, and filling *RESULTS
5780 with (SYM,BLOCK) tuples.
ec6a20c2 5781
4eeaa230
DE
5782 See ada_lookup_symbol_list_worker for further details. */
5783
5784int
b5ec771e 5785ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5786 domain_enum domain,
5787 std::vector<struct block_symbol> *results)
4eeaa230 5788{
b5ec771e
PA
5789 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5790 lookup_name_info lookup_name (name, name_match_type);
5791
5792 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5793}
5794
4e5c77fe
JB
5795/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5796 to 1, but choosing the first symbol found if there are multiple
5797 choices.
5798
5e2336be
JB
5799 The result is stored in *INFO, which must be non-NULL.
5800 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5801
5802void
5803ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5804 domain_enum domain,
d12307c1 5805 struct block_symbol *info)
14f9c5c9 5806{
b5ec771e
PA
5807 /* Since we already have an encoded name, wrap it in '<>' to force a
5808 verbatim match. Otherwise, if the name happens to not look like
5809 an encoded name (because it doesn't include a "__"),
5810 ada_lookup_name_info would re-encode/fold it again, and that
5811 would e.g., incorrectly lowercase object renaming names like
5812 "R28b" -> "r28b". */
12932e2c 5813 std::string verbatim = add_angle_brackets (name);
b5ec771e 5814
5e2336be 5815 gdb_assert (info != NULL);
65392b3e 5816 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5817}
aeb5907d
JB
5818
5819/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5820 scope and in global scopes, or NULL if none. NAME is folded and
5821 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5822 choosing the first symbol if there are multiple choices. */
4e5c77fe 5823
d12307c1 5824struct block_symbol
aeb5907d 5825ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5826 domain_enum domain)
aeb5907d 5827{
54d343a2 5828 std::vector<struct block_symbol> candidates;
f98fc17b 5829 int n_candidates;
f98fc17b
PA
5830
5831 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5832
5833 if (n_candidates == 0)
54d343a2 5834 return {};
f98fc17b
PA
5835
5836 block_symbol info = candidates[0];
5837 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5838 return info;
4c4b4cd2 5839}
14f9c5c9 5840
14f9c5c9 5841
4c4b4cd2
PH
5842/* True iff STR is a possible encoded suffix of a normal Ada name
5843 that is to be ignored for matching purposes. Suffixes of parallel
5844 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5845 are given by any of the regular expressions:
4c4b4cd2 5846
babe1480
JB
5847 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5848 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5849 TKB [subprogram suffix for task bodies]
babe1480 5850 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5851 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5852
5853 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5854 match is performed. This sequence is used to differentiate homonyms,
5855 is an optional part of a valid name suffix. */
4c4b4cd2 5856
14f9c5c9 5857static int
d2e4a39e 5858is_name_suffix (const char *str)
14f9c5c9
AS
5859{
5860 int k;
4c4b4cd2
PH
5861 const char *matching;
5862 const int len = strlen (str);
5863
babe1480
JB
5864 /* Skip optional leading __[0-9]+. */
5865
4c4b4cd2
PH
5866 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5867 {
babe1480
JB
5868 str += 3;
5869 while (isdigit (str[0]))
dda83cd7 5870 str += 1;
4c4b4cd2 5871 }
babe1480
JB
5872
5873 /* [.$][0-9]+ */
4c4b4cd2 5874
babe1480 5875 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5876 {
babe1480 5877 matching = str + 1;
4c4b4cd2 5878 while (isdigit (matching[0]))
dda83cd7 5879 matching += 1;
4c4b4cd2 5880 if (matching[0] == '\0')
dda83cd7 5881 return 1;
4c4b4cd2
PH
5882 }
5883
5884 /* ___[0-9]+ */
babe1480 5885
4c4b4cd2
PH
5886 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5887 {
5888 matching = str + 3;
5889 while (isdigit (matching[0]))
dda83cd7 5890 matching += 1;
4c4b4cd2 5891 if (matching[0] == '\0')
dda83cd7 5892 return 1;
4c4b4cd2
PH
5893 }
5894
9ac7f98e
JB
5895 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5896
5897 if (strcmp (str, "TKB") == 0)
5898 return 1;
5899
529cad9c
PH
5900#if 0
5901 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5902 with a N at the end. Unfortunately, the compiler uses the same
5903 convention for other internal types it creates. So treating
529cad9c 5904 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5905 some regressions. For instance, consider the case of an enumerated
5906 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5907 name ends with N.
5908 Having a single character like this as a suffix carrying some
0963b4bd 5909 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5910 to be something like "_N" instead. In the meantime, do not do
5911 the following check. */
5912 /* Protected Object Subprograms */
5913 if (len == 1 && str [0] == 'N')
5914 return 1;
5915#endif
5916
5917 /* _E[0-9]+[bs]$ */
5918 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5919 {
5920 matching = str + 3;
5921 while (isdigit (matching[0]))
dda83cd7 5922 matching += 1;
529cad9c 5923 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5924 && matching [1] == '\0')
5925 return 1;
529cad9c
PH
5926 }
5927
4c4b4cd2
PH
5928 /* ??? We should not modify STR directly, as we are doing below. This
5929 is fine in this case, but may become problematic later if we find
5930 that this alternative did not work, and want to try matching
5931 another one from the begining of STR. Since we modified it, we
5932 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5933 if (str[0] == 'X')
5934 {
5935 str += 1;
d2e4a39e 5936 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5937 {
5938 if (str[0] != 'n' && str[0] != 'b')
5939 return 0;
5940 str += 1;
5941 }
14f9c5c9 5942 }
babe1480 5943
14f9c5c9
AS
5944 if (str[0] == '\000')
5945 return 1;
babe1480 5946
d2e4a39e 5947 if (str[0] == '_')
14f9c5c9
AS
5948 {
5949 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5950 return 0;
d2e4a39e 5951 if (str[2] == '_')
dda83cd7
SM
5952 {
5953 if (strcmp (str + 3, "JM") == 0)
5954 return 1;
5955 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5956 the LJM suffix in favor of the JM one. But we will
5957 still accept LJM as a valid suffix for a reasonable
5958 amount of time, just to allow ourselves to debug programs
5959 compiled using an older version of GNAT. */
5960 if (strcmp (str + 3, "LJM") == 0)
5961 return 1;
5962 if (str[3] != 'X')
5963 return 0;
5964 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5965 || str[4] == 'U' || str[4] == 'P')
5966 return 1;
5967 if (str[4] == 'R' && str[5] != 'T')
5968 return 1;
5969 return 0;
5970 }
4c4b4cd2 5971 if (!isdigit (str[2]))
dda83cd7 5972 return 0;
4c4b4cd2 5973 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5974 if (!isdigit (str[k]) && str[k] != '_')
5975 return 0;
14f9c5c9
AS
5976 return 1;
5977 }
4c4b4cd2 5978 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5979 {
4c4b4cd2 5980 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5981 if (!isdigit (str[k]) && str[k] != '_')
5982 return 0;
14f9c5c9
AS
5983 return 1;
5984 }
5985 return 0;
5986}
d2e4a39e 5987
aeb5907d
JB
5988/* Return non-zero if the string starting at NAME and ending before
5989 NAME_END contains no capital letters. */
529cad9c
PH
5990
5991static int
5992is_valid_name_for_wild_match (const char *name0)
5993{
f945dedf 5994 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5995 int i;
5996
5823c3ef
JB
5997 /* If the decoded name starts with an angle bracket, it means that
5998 NAME0 does not follow the GNAT encoding format. It should then
5999 not be allowed as a possible wild match. */
6000 if (decoded_name[0] == '<')
6001 return 0;
6002
529cad9c
PH
6003 for (i=0; decoded_name[i] != '\0'; i++)
6004 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6005 return 0;
6006
6007 return 1;
6008}
6009
59c8a30b
JB
6010/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6011 character which could start a simple name. Assumes that *NAMEP points
6012 somewhere inside the string beginning at NAME0. */
4c4b4cd2 6013
14f9c5c9 6014static int
59c8a30b 6015advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 6016{
73589123 6017 const char *name = *namep;
5b4ee69b 6018
5823c3ef 6019 while (1)
14f9c5c9 6020 {
59c8a30b 6021 char t0, t1;
73589123
PH
6022
6023 t0 = *name;
6024 if (t0 == '_')
6025 {
6026 t1 = name[1];
6027 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6028 {
6029 name += 1;
61012eef 6030 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6031 break;
6032 else
6033 name += 1;
6034 }
aa27d0b3
JB
6035 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6036 || name[2] == target0))
73589123
PH
6037 {
6038 name += 2;
6039 break;
6040 }
86b44259
TT
6041 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6042 {
6043 /* Names like "pkg__B_N__name", where N is a number, are
6044 block-local. We can handle these by simply skipping
6045 the "B_" here. */
6046 name += 4;
6047 }
73589123
PH
6048 else
6049 return 0;
6050 }
6051 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6052 name += 1;
6053 else
5823c3ef 6054 return 0;
73589123
PH
6055 }
6056
6057 *namep = name;
6058 return 1;
6059}
6060
b5ec771e
PA
6061/* Return true iff NAME encodes a name of the form prefix.PATN.
6062 Ignores any informational suffixes of NAME (i.e., for which
6063 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6064 simple name. */
73589123 6065
b5ec771e 6066static bool
73589123
PH
6067wild_match (const char *name, const char *patn)
6068{
22e048c9 6069 const char *p;
73589123
PH
6070 const char *name0 = name;
6071
6072 while (1)
6073 {
6074 const char *match = name;
6075
6076 if (*name == *patn)
6077 {
6078 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6079 if (*p != *name)
6080 break;
6081 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6082 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6083
6084 if (name[-1] == '_')
6085 name -= 1;
6086 }
6087 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6088 return false;
96d887e8 6089 }
96d887e8
PH
6090}
6091
b5ec771e
PA
6092/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6093 *defn_symbols, updating the list of symbols in OBSTACKP (if
6094 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6095
6096static void
6097ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6098 const struct block *block,
6099 const lookup_name_info &lookup_name,
6100 domain_enum domain, struct objfile *objfile)
96d887e8 6101{
8157b174 6102 struct block_iterator iter;
96d887e8
PH
6103 /* A matching argument symbol, if any. */
6104 struct symbol *arg_sym;
6105 /* Set true when we find a matching non-argument symbol. */
6106 int found_sym;
6107 struct symbol *sym;
6108
6109 arg_sym = NULL;
6110 found_sym = 0;
b5ec771e
PA
6111 for (sym = block_iter_match_first (block, lookup_name, &iter);
6112 sym != NULL;
6113 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6114 {
c1b5c1eb 6115 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6116 {
6117 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6118 {
6119 if (SYMBOL_IS_ARGUMENT (sym))
6120 arg_sym = sym;
6121 else
6122 {
6123 found_sym = 1;
6124 add_defn_to_vec (obstackp,
6125 fixup_symbol_section (sym, objfile),
6126 block);
6127 }
6128 }
6129 }
96d887e8
PH
6130 }
6131
22cee43f
PMR
6132 /* Handle renamings. */
6133
b5ec771e 6134 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6135 found_sym = 1;
6136
96d887e8
PH
6137 if (!found_sym && arg_sym != NULL)
6138 {
76a01679 6139 add_defn_to_vec (obstackp,
dda83cd7
SM
6140 fixup_symbol_section (arg_sym, objfile),
6141 block);
96d887e8
PH
6142 }
6143
b5ec771e 6144 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6145 {
6146 arg_sym = NULL;
6147 found_sym = 0;
b5ec771e
PA
6148 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6149 const char *name = ada_lookup_name.c_str ();
6150 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6151
6152 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6153 {
dda83cd7
SM
6154 if (symbol_matches_domain (sym->language (),
6155 SYMBOL_DOMAIN (sym), domain))
6156 {
6157 int cmp;
6158
6159 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6160 if (cmp == 0)
6161 {
6162 cmp = !startswith (sym->linkage_name (), "_ada_");
6163 if (cmp == 0)
6164 cmp = strncmp (name, sym->linkage_name () + 5,
6165 name_len);
6166 }
6167
6168 if (cmp == 0
6169 && is_name_suffix (sym->linkage_name () + name_len + 5))
6170 {
2a2d4dc3
AS
6171 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6172 {
6173 if (SYMBOL_IS_ARGUMENT (sym))
6174 arg_sym = sym;
6175 else
6176 {
6177 found_sym = 1;
6178 add_defn_to_vec (obstackp,
6179 fixup_symbol_section (sym, objfile),
6180 block);
6181 }
6182 }
dda83cd7
SM
6183 }
6184 }
76a01679 6185 }
96d887e8
PH
6186
6187 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 6188 They aren't parameters, right? */
96d887e8 6189 if (!found_sym && arg_sym != NULL)
dda83cd7
SM
6190 {
6191 add_defn_to_vec (obstackp,
6192 fixup_symbol_section (arg_sym, objfile),
6193 block);
6194 }
96d887e8
PH
6195 }
6196}
6197\f
41d27058 6198
dda83cd7 6199 /* Symbol Completion */
41d27058 6200
b5ec771e 6201/* See symtab.h. */
41d27058 6202
b5ec771e
PA
6203bool
6204ada_lookup_name_info::matches
6205 (const char *sym_name,
6206 symbol_name_match_type match_type,
a207cff2 6207 completion_match_result *comp_match_res) const
41d27058 6208{
b5ec771e
PA
6209 bool match = false;
6210 const char *text = m_encoded_name.c_str ();
6211 size_t text_len = m_encoded_name.size ();
41d27058
JB
6212
6213 /* First, test against the fully qualified name of the symbol. */
6214
6215 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6216 match = true;
41d27058 6217
f945dedf 6218 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6219 if (match && !m_encoded_p)
41d27058
JB
6220 {
6221 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
6222 that iff we are doing a verbatim match, the decoded version
6223 of the symbol name starts with '<'. Otherwise, this symbol name
6224 is not a suitable completion. */
41d27058 6225
f945dedf 6226 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6227 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6228 }
6229
b5ec771e 6230 if (match && !m_verbatim_p)
41d27058
JB
6231 {
6232 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
6233 be done is to verify that the potentially matching symbol name
6234 does not include capital letters, because the ada-mode would
6235 not be able to understand these symbol names without the
6236 angle bracket notation. */
41d27058
JB
6237 const char *tmp;
6238
6239 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6240 if (*tmp != '\0')
b5ec771e 6241 match = false;
41d27058
JB
6242 }
6243
6244 /* Second: Try wild matching... */
6245
b5ec771e 6246 if (!match && m_wild_match_p)
41d27058
JB
6247 {
6248 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
6249 may represent an unqualified symbol name. We therefore must
6250 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6251 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6252
6253 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6254 match = true;
41d27058
JB
6255 }
6256
b5ec771e 6257 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6258
6259 if (!match)
b5ec771e 6260 return false;
41d27058 6261
a207cff2 6262 if (comp_match_res != NULL)
b5ec771e 6263 {
a207cff2 6264 std::string &match_str = comp_match_res->match.storage ();
41d27058 6265
b5ec771e 6266 if (!m_encoded_p)
a207cff2 6267 match_str = ada_decode (sym_name);
b5ec771e
PA
6268 else
6269 {
6270 if (m_verbatim_p)
6271 match_str = add_angle_brackets (sym_name);
6272 else
6273 match_str = sym_name;
41d27058 6274
b5ec771e 6275 }
a207cff2
PA
6276
6277 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6278 }
6279
b5ec771e 6280 return true;
41d27058
JB
6281}
6282
dda83cd7 6283 /* Field Access */
96d887e8 6284
73fb9985
JB
6285/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6286 for tagged types. */
6287
6288static int
6289ada_is_dispatch_table_ptr_type (struct type *type)
6290{
0d5cff50 6291 const char *name;
73fb9985 6292
78134374 6293 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6294 return 0;
6295
7d93a1e0 6296 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6297 if (name == NULL)
6298 return 0;
6299
6300 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6301}
6302
ac4a2da4
JG
6303/* Return non-zero if TYPE is an interface tag. */
6304
6305static int
6306ada_is_interface_tag (struct type *type)
6307{
7d93a1e0 6308 const char *name = type->name ();
ac4a2da4
JG
6309
6310 if (name == NULL)
6311 return 0;
6312
6313 return (strcmp (name, "ada__tags__interface_tag") == 0);
6314}
6315
963a6417
PH
6316/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6317 to be invisible to users. */
96d887e8 6318
963a6417
PH
6319int
6320ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6321{
1f704f76 6322 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6323 return 1;
ffde82bf 6324
73fb9985
JB
6325 /* Check the name of that field. */
6326 {
6327 const char *name = TYPE_FIELD_NAME (type, field_num);
6328
6329 /* Anonymous field names should not be printed.
6330 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6331 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6332 if (name == NULL)
6333 return 1;
6334
ffde82bf
JB
6335 /* Normally, fields whose name start with an underscore ("_")
6336 are fields that have been internally generated by the compiler,
6337 and thus should not be printed. The "_parent" field is special,
6338 however: This is a field internally generated by the compiler
6339 for tagged types, and it contains the components inherited from
6340 the parent type. This field should not be printed as is, but
6341 should not be ignored either. */
61012eef 6342 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6343 return 1;
6344 }
6345
ac4a2da4
JG
6346 /* If this is the dispatch table of a tagged type or an interface tag,
6347 then ignore. */
73fb9985 6348 if (ada_is_tagged_type (type, 1)
940da03e
SM
6349 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6350 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6351 return 1;
6352
6353 /* Not a special field, so it should not be ignored. */
6354 return 0;
963a6417 6355}
96d887e8 6356
963a6417 6357/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6358 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6359
963a6417
PH
6360int
6361ada_is_tagged_type (struct type *type, int refok)
6362{
988f6b3d 6363 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6364}
96d887e8 6365
963a6417 6366/* True iff TYPE represents the type of X'Tag */
96d887e8 6367
963a6417
PH
6368int
6369ada_is_tag_type (struct type *type)
6370{
460efde1
JB
6371 type = ada_check_typedef (type);
6372
78134374 6373 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6374 return 0;
6375 else
96d887e8 6376 {
963a6417 6377 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6378
963a6417 6379 return (name != NULL
dda83cd7 6380 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6381 }
96d887e8
PH
6382}
6383
963a6417 6384/* The type of the tag on VAL. */
76a01679 6385
de93309a 6386static struct type *
963a6417 6387ada_tag_type (struct value *val)
96d887e8 6388{
988f6b3d 6389 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6390}
96d887e8 6391
b50d69b5
JG
6392/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6393 retired at Ada 05). */
6394
6395static int
6396is_ada95_tag (struct value *tag)
6397{
6398 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6399}
6400
963a6417 6401/* The value of the tag on VAL. */
96d887e8 6402
de93309a 6403static struct value *
963a6417
PH
6404ada_value_tag (struct value *val)
6405{
03ee6b2e 6406 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6407}
6408
963a6417
PH
6409/* The value of the tag on the object of type TYPE whose contents are
6410 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6411 ADDRESS. */
96d887e8 6412
963a6417 6413static struct value *
10a2c479 6414value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6415 const gdb_byte *valaddr,
dda83cd7 6416 CORE_ADDR address)
96d887e8 6417{
b5385fc0 6418 int tag_byte_offset;
963a6417 6419 struct type *tag_type;
5b4ee69b 6420
963a6417 6421 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6422 NULL, NULL, NULL))
96d887e8 6423 {
fc1a4b47 6424 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6425 ? NULL
6426 : valaddr + tag_byte_offset);
963a6417 6427 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6428
963a6417 6429 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6430 }
963a6417
PH
6431 return NULL;
6432}
96d887e8 6433
963a6417
PH
6434static struct type *
6435type_from_tag (struct value *tag)
6436{
f5272a3b 6437 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6438
963a6417 6439 if (type_name != NULL)
5c4258f4 6440 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6441 return NULL;
6442}
96d887e8 6443
b50d69b5
JG
6444/* Given a value OBJ of a tagged type, return a value of this
6445 type at the base address of the object. The base address, as
6446 defined in Ada.Tags, it is the address of the primary tag of
6447 the object, and therefore where the field values of its full
6448 view can be fetched. */
6449
6450struct value *
6451ada_tag_value_at_base_address (struct value *obj)
6452{
b50d69b5
JG
6453 struct value *val;
6454 LONGEST offset_to_top = 0;
6455 struct type *ptr_type, *obj_type;
6456 struct value *tag;
6457 CORE_ADDR base_address;
6458
6459 obj_type = value_type (obj);
6460
6461 /* It is the responsability of the caller to deref pointers. */
6462
78134374 6463 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6464 return obj;
6465
6466 tag = ada_value_tag (obj);
6467 if (!tag)
6468 return obj;
6469
6470 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6471
6472 if (is_ada95_tag (tag))
6473 return obj;
6474
08f49010
XR
6475 ptr_type = language_lookup_primitive_type
6476 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6477 ptr_type = lookup_pointer_type (ptr_type);
6478 val = value_cast (ptr_type, tag);
6479 if (!val)
6480 return obj;
6481
6482 /* It is perfectly possible that an exception be raised while
6483 trying to determine the base address, just like for the tag;
6484 see ada_tag_name for more details. We do not print the error
6485 message for the same reason. */
6486
a70b8144 6487 try
b50d69b5
JG
6488 {
6489 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6490 }
6491
230d2906 6492 catch (const gdb_exception_error &e)
492d29ea
PA
6493 {
6494 return obj;
6495 }
b50d69b5
JG
6496
6497 /* If offset is null, nothing to do. */
6498
6499 if (offset_to_top == 0)
6500 return obj;
6501
6502 /* -1 is a special case in Ada.Tags; however, what should be done
6503 is not quite clear from the documentation. So do nothing for
6504 now. */
6505
6506 if (offset_to_top == -1)
6507 return obj;
6508
08f49010
XR
6509 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6510 from the base address. This was however incompatible with
6511 C++ dispatch table: C++ uses a *negative* value to *add*
6512 to the base address. Ada's convention has therefore been
6513 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6514 use the same convention. Here, we support both cases by
6515 checking the sign of OFFSET_TO_TOP. */
6516
6517 if (offset_to_top > 0)
6518 offset_to_top = -offset_to_top;
6519
6520 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6521 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6522
6523 /* Make sure that we have a proper tag at the new address.
6524 Otherwise, offset_to_top is bogus (which can happen when
6525 the object is not initialized yet). */
6526
6527 if (!tag)
6528 return obj;
6529
6530 obj_type = type_from_tag (tag);
6531
6532 if (!obj_type)
6533 return obj;
6534
6535 return value_from_contents_and_address (obj_type, NULL, base_address);
6536}
6537
1b611343
JB
6538/* Return the "ada__tags__type_specific_data" type. */
6539
6540static struct type *
6541ada_get_tsd_type (struct inferior *inf)
963a6417 6542{
1b611343 6543 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6544
1b611343
JB
6545 if (data->tsd_type == 0)
6546 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6547 return data->tsd_type;
6548}
529cad9c 6549
1b611343
JB
6550/* Return the TSD (type-specific data) associated to the given TAG.
6551 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6552
1b611343 6553 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6554
1b611343
JB
6555static struct value *
6556ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6557{
4c4b4cd2 6558 struct value *val;
1b611343 6559 struct type *type;
5b4ee69b 6560
1b611343
JB
6561 /* First option: The TSD is simply stored as a field of our TAG.
6562 Only older versions of GNAT would use this format, but we have
6563 to test it first, because there are no visible markers for
6564 the current approach except the absence of that field. */
529cad9c 6565
1b611343
JB
6566 val = ada_value_struct_elt (tag, "tsd", 1);
6567 if (val)
6568 return val;
e802dbe0 6569
1b611343
JB
6570 /* Try the second representation for the dispatch table (in which
6571 there is no explicit 'tsd' field in the referent of the tag pointer,
6572 and instead the tsd pointer is stored just before the dispatch
6573 table. */
e802dbe0 6574
1b611343
JB
6575 type = ada_get_tsd_type (current_inferior());
6576 if (type == NULL)
6577 return NULL;
6578 type = lookup_pointer_type (lookup_pointer_type (type));
6579 val = value_cast (type, tag);
6580 if (val == NULL)
6581 return NULL;
6582 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6583}
6584
1b611343
JB
6585/* Given the TSD of a tag (type-specific data), return a string
6586 containing the name of the associated type.
6587
f5272a3b 6588 May return NULL if we are unable to determine the tag name. */
1b611343 6589
f5272a3b 6590static gdb::unique_xmalloc_ptr<char>
1b611343 6591ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6592{
529cad9c 6593 char *p;
1b611343 6594 struct value *val;
529cad9c 6595
1b611343 6596 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6597 if (val == NULL)
1b611343 6598 return NULL;
66920317
TT
6599 gdb::unique_xmalloc_ptr<char> buffer
6600 = target_read_string (value_as_address (val), INT_MAX);
6601 if (buffer == nullptr)
f5272a3b
TT
6602 return nullptr;
6603
6604 for (p = buffer.get (); *p != '\0'; ++p)
6605 {
6606 if (isalpha (*p))
6607 *p = tolower (*p);
6608 }
6609
6610 return buffer;
4c4b4cd2
PH
6611}
6612
6613/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6614 a C string.
6615
6616 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6617 determine the name of that tag. */
4c4b4cd2 6618
f5272a3b 6619gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6620ada_tag_name (struct value *tag)
6621{
f5272a3b 6622 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6623
df407dfe 6624 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6625 return NULL;
1b611343
JB
6626
6627 /* It is perfectly possible that an exception be raised while trying
6628 to determine the TAG's name, even under normal circumstances:
6629 The associated variable may be uninitialized or corrupted, for
6630 instance. We do not let any exception propagate past this point.
6631 instead we return NULL.
6632
6633 We also do not print the error message either (which often is very
6634 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6635 the caller print a more meaningful message if necessary. */
a70b8144 6636 try
1b611343
JB
6637 {
6638 struct value *tsd = ada_get_tsd_from_tag (tag);
6639
6640 if (tsd != NULL)
6641 name = ada_tag_name_from_tsd (tsd);
6642 }
230d2906 6643 catch (const gdb_exception_error &e)
492d29ea
PA
6644 {
6645 }
1b611343
JB
6646
6647 return name;
4c4b4cd2
PH
6648}
6649
6650/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6651
d2e4a39e 6652struct type *
ebf56fd3 6653ada_parent_type (struct type *type)
14f9c5c9
AS
6654{
6655 int i;
6656
61ee279c 6657 type = ada_check_typedef (type);
14f9c5c9 6658
78134374 6659 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6660 return NULL;
6661
1f704f76 6662 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6663 if (ada_is_parent_field (type, i))
0c1f74cf 6664 {
dda83cd7 6665 struct type *parent_type = type->field (i).type ();
0c1f74cf 6666
dda83cd7
SM
6667 /* If the _parent field is a pointer, then dereference it. */
6668 if (parent_type->code () == TYPE_CODE_PTR)
6669 parent_type = TYPE_TARGET_TYPE (parent_type);
6670 /* If there is a parallel XVS type, get the actual base type. */
6671 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6672
dda83cd7 6673 return ada_check_typedef (parent_type);
0c1f74cf 6674 }
14f9c5c9
AS
6675
6676 return NULL;
6677}
6678
4c4b4cd2
PH
6679/* True iff field number FIELD_NUM of structure type TYPE contains the
6680 parent-type (inherited) fields of a derived type. Assumes TYPE is
6681 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6682
6683int
ebf56fd3 6684ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6685{
61ee279c 6686 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6687
4c4b4cd2 6688 return (name != NULL
dda83cd7
SM
6689 && (startswith (name, "PARENT")
6690 || startswith (name, "_parent")));
14f9c5c9
AS
6691}
6692
4c4b4cd2 6693/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6694 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6695 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6696 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6697 structures. */
14f9c5c9
AS
6698
6699int
ebf56fd3 6700ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6701{
d2e4a39e 6702 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6703
dddc0e16
JB
6704 if (name != NULL && strcmp (name, "RETVAL") == 0)
6705 {
6706 /* This happens in functions with "out" or "in out" parameters
6707 which are passed by copy. For such functions, GNAT describes
6708 the function's return type as being a struct where the return
6709 value is in a field called RETVAL, and where the other "out"
6710 or "in out" parameters are fields of that struct. This is not
6711 a wrapper. */
6712 return 0;
6713 }
6714
d2e4a39e 6715 return (name != NULL
dda83cd7
SM
6716 && (startswith (name, "PARENT")
6717 || strcmp (name, "REP") == 0
6718 || startswith (name, "_parent")
6719 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6720}
6721
4c4b4cd2
PH
6722/* True iff field number FIELD_NUM of structure or union type TYPE
6723 is a variant wrapper. Assumes TYPE is a structure type with at least
6724 FIELD_NUM+1 fields. */
14f9c5c9
AS
6725
6726int
ebf56fd3 6727ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6728{
8ecb59f8
TT
6729 /* Only Ada types are eligible. */
6730 if (!ADA_TYPE_P (type))
6731 return 0;
6732
940da03e 6733 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6734
78134374
SM
6735 return (field_type->code () == TYPE_CODE_UNION
6736 || (is_dynamic_field (type, field_num)
6737 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6738 == TYPE_CODE_UNION)));
14f9c5c9
AS
6739}
6740
6741/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6742 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6743 returns the type of the controlling discriminant for the variant.
6744 May return NULL if the type could not be found. */
14f9c5c9 6745
d2e4a39e 6746struct type *
ebf56fd3 6747ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6748{
a121b7c1 6749 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6750
988f6b3d 6751 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6752}
6753
4c4b4cd2 6754/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6755 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6756 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6757
de93309a 6758static int
ebf56fd3 6759ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6760{
d2e4a39e 6761 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6762
14f9c5c9
AS
6763 return (name != NULL && name[0] == 'O');
6764}
6765
6766/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6767 returns the name of the discriminant controlling the variant.
6768 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6769
a121b7c1 6770const char *
ebf56fd3 6771ada_variant_discrim_name (struct type *type0)
14f9c5c9 6772{
d2e4a39e 6773 static char *result = NULL;
14f9c5c9 6774 static size_t result_len = 0;
d2e4a39e
AS
6775 struct type *type;
6776 const char *name;
6777 const char *discrim_end;
6778 const char *discrim_start;
14f9c5c9 6779
78134374 6780 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6781 type = TYPE_TARGET_TYPE (type0);
6782 else
6783 type = type0;
6784
6785 name = ada_type_name (type);
6786
6787 if (name == NULL || name[0] == '\000')
6788 return "";
6789
6790 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6791 discrim_end -= 1)
6792 {
61012eef 6793 if (startswith (discrim_end, "___XVN"))
dda83cd7 6794 break;
14f9c5c9
AS
6795 }
6796 if (discrim_end == name)
6797 return "";
6798
d2e4a39e 6799 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6800 discrim_start -= 1)
6801 {
d2e4a39e 6802 if (discrim_start == name + 1)
dda83cd7 6803 return "";
76a01679 6804 if ((discrim_start > name + 3
dda83cd7
SM
6805 && startswith (discrim_start - 3, "___"))
6806 || discrim_start[-1] == '.')
6807 break;
14f9c5c9
AS
6808 }
6809
6810 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6811 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6812 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6813 return result;
6814}
6815
4c4b4cd2
PH
6816/* Scan STR for a subtype-encoded number, beginning at position K.
6817 Put the position of the character just past the number scanned in
6818 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6819 Return 1 if there was a valid number at the given position, and 0
6820 otherwise. A "subtype-encoded" number consists of the absolute value
6821 in decimal, followed by the letter 'm' to indicate a negative number.
6822 Assumes 0m does not occur. */
14f9c5c9
AS
6823
6824int
d2e4a39e 6825ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6826{
6827 ULONGEST RU;
6828
d2e4a39e 6829 if (!isdigit (str[k]))
14f9c5c9
AS
6830 return 0;
6831
4c4b4cd2 6832 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6833 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6834 LONGEST. */
14f9c5c9
AS
6835 RU = 0;
6836 while (isdigit (str[k]))
6837 {
d2e4a39e 6838 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6839 k += 1;
6840 }
6841
d2e4a39e 6842 if (str[k] == 'm')
14f9c5c9
AS
6843 {
6844 if (R != NULL)
dda83cd7 6845 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6846 k += 1;
6847 }
6848 else if (R != NULL)
6849 *R = (LONGEST) RU;
6850
4c4b4cd2 6851 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6852 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6853 number representable as a LONGEST (although either would probably work
6854 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6855 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6856
6857 if (new_k != NULL)
6858 *new_k = k;
6859 return 1;
6860}
6861
4c4b4cd2
PH
6862/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6863 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6864 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6865
de93309a 6866static int
ebf56fd3 6867ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6868{
d2e4a39e 6869 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6870 int p;
6871
6872 p = 0;
6873 while (1)
6874 {
d2e4a39e 6875 switch (name[p])
dda83cd7
SM
6876 {
6877 case '\0':
6878 return 0;
6879 case 'S':
6880 {
6881 LONGEST W;
6882
6883 if (!ada_scan_number (name, p + 1, &W, &p))
6884 return 0;
6885 if (val == W)
6886 return 1;
6887 break;
6888 }
6889 case 'R':
6890 {
6891 LONGEST L, U;
6892
6893 if (!ada_scan_number (name, p + 1, &L, &p)
6894 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6895 return 0;
6896 if (val >= L && val <= U)
6897 return 1;
6898 break;
6899 }
6900 case 'O':
6901 return 1;
6902 default:
6903 return 0;
6904 }
4c4b4cd2
PH
6905 }
6906}
6907
0963b4bd 6908/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6909
6910/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6911 ARG_TYPE, extract and return the value of one of its (non-static)
6912 fields. FIELDNO says which field. Differs from value_primitive_field
6913 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6914
5eb68a39 6915struct value *
d2e4a39e 6916ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6917 struct type *arg_type)
14f9c5c9 6918{
14f9c5c9
AS
6919 struct type *type;
6920
61ee279c 6921 arg_type = ada_check_typedef (arg_type);
940da03e 6922 type = arg_type->field (fieldno).type ();
14f9c5c9 6923
4504bbde
TT
6924 /* Handle packed fields. It might be that the field is not packed
6925 relative to its containing structure, but the structure itself is
6926 packed; in this case we must take the bit-field path. */
6927 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6928 {
6929 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6930 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6931
0fd88904 6932 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
dda83cd7
SM
6933 offset + bit_pos / 8,
6934 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6935 }
6936 else
6937 return value_primitive_field (arg1, offset, fieldno, arg_type);
6938}
6939
52ce6436
PH
6940/* Find field with name NAME in object of type TYPE. If found,
6941 set the following for each argument that is non-null:
6942 - *FIELD_TYPE_P to the field's type;
6943 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6944 an object of that type;
6945 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6946 - *BIT_SIZE_P to its size in bits if the field is packed, and
6947 0 otherwise;
6948 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6949 fields up to but not including the desired field, or by the total
6950 number of fields if not found. A NULL value of NAME never
6951 matches; the function just counts visible fields in this case.
6952
828d5846
XR
6953 Notice that we need to handle when a tagged record hierarchy
6954 has some components with the same name, like in this scenario:
6955
6956 type Top_T is tagged record
dda83cd7
SM
6957 N : Integer := 1;
6958 U : Integer := 974;
6959 A : Integer := 48;
828d5846
XR
6960 end record;
6961
6962 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6963 N : Character := 'a';
6964 C : Integer := 3;
828d5846
XR
6965 end record;
6966
6967 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6968 N : Float := 4.0;
6969 C : Character := '5';
6970 X : Integer := 6;
6971 A : Character := 'J';
828d5846
XR
6972 end record;
6973
6974 Let's say we now have a variable declared and initialized as follow:
6975
6976 TC : Top_A := new Bottom_T;
6977
6978 And then we use this variable to call this function
6979
6980 procedure Assign (Obj: in out Top_T; TV : Integer);
6981
6982 as follow:
6983
6984 Assign (Top_T (B), 12);
6985
6986 Now, we're in the debugger, and we're inside that procedure
6987 then and we want to print the value of obj.c:
6988
6989 Usually, the tagged record or one of the parent type owns the
6990 component to print and there's no issue but in this particular
6991 case, what does it mean to ask for Obj.C? Since the actual
6992 type for object is type Bottom_T, it could mean two things: type
6993 component C from the Middle_T view, but also component C from
6994 Bottom_T. So in that "undefined" case, when the component is
6995 not found in the non-resolved type (which includes all the
6996 components of the parent type), then resolve it and see if we
6997 get better luck once expanded.
6998
6999 In the case of homonyms in the derived tagged type, we don't
7000 guaranty anything, and pick the one that's easiest for us
7001 to program.
7002
0963b4bd 7003 Returns 1 if found, 0 otherwise. */
52ce6436 7004
4c4b4cd2 7005static int
0d5cff50 7006find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
7007 struct type **field_type_p,
7008 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 7009 int *index_p)
4c4b4cd2
PH
7010{
7011 int i;
828d5846 7012 int parent_offset = -1;
4c4b4cd2 7013
61ee279c 7014 type = ada_check_typedef (type);
76a01679 7015
52ce6436
PH
7016 if (field_type_p != NULL)
7017 *field_type_p = NULL;
7018 if (byte_offset_p != NULL)
d5d6fca5 7019 *byte_offset_p = 0;
52ce6436
PH
7020 if (bit_offset_p != NULL)
7021 *bit_offset_p = 0;
7022 if (bit_size_p != NULL)
7023 *bit_size_p = 0;
7024
1f704f76 7025 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7026 {
7027 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7028 int fld_offset = offset + bit_pos / 8;
0d5cff50 7029 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7030
4c4b4cd2 7031 if (t_field_name == NULL)
dda83cd7 7032 continue;
4c4b4cd2 7033
828d5846 7034 else if (ada_is_parent_field (type, i))
dda83cd7 7035 {
828d5846
XR
7036 /* This is a field pointing us to the parent type of a tagged
7037 type. As hinted in this function's documentation, we give
7038 preference to fields in the current record first, so what
7039 we do here is just record the index of this field before
7040 we skip it. If it turns out we couldn't find our field
7041 in the current record, then we'll get back to it and search
7042 inside it whether the field might exist in the parent. */
7043
dda83cd7
SM
7044 parent_offset = i;
7045 continue;
7046 }
828d5846 7047
52ce6436 7048 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
7049 {
7050 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7051
52ce6436 7052 if (field_type_p != NULL)
940da03e 7053 *field_type_p = type->field (i).type ();
52ce6436
PH
7054 if (byte_offset_p != NULL)
7055 *byte_offset_p = fld_offset;
7056 if (bit_offset_p != NULL)
7057 *bit_offset_p = bit_pos % 8;
7058 if (bit_size_p != NULL)
7059 *bit_size_p = bit_size;
dda83cd7
SM
7060 return 1;
7061 }
4c4b4cd2 7062 else if (ada_is_wrapper_field (type, i))
dda83cd7 7063 {
940da03e 7064 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7065 field_type_p, byte_offset_p, bit_offset_p,
7066 bit_size_p, index_p))
dda83cd7
SM
7067 return 1;
7068 }
4c4b4cd2 7069 else if (ada_is_variant_part (type, i))
dda83cd7 7070 {
52ce6436
PH
7071 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7072 fixed type?? */
dda83cd7
SM
7073 int j;
7074 struct type *field_type
940da03e 7075 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7076
dda83cd7
SM
7077 for (j = 0; j < field_type->num_fields (); j += 1)
7078 {
7079 if (find_struct_field (name, field_type->field (j).type (),
7080 fld_offset
7081 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7082 field_type_p, byte_offset_p,
7083 bit_offset_p, bit_size_p, index_p))
7084 return 1;
7085 }
7086 }
52ce6436
PH
7087 else if (index_p != NULL)
7088 *index_p += 1;
4c4b4cd2 7089 }
828d5846
XR
7090
7091 /* Field not found so far. If this is a tagged type which
7092 has a parent, try finding that field in the parent now. */
7093
7094 if (parent_offset != -1)
7095 {
7096 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7097 int fld_offset = offset + bit_pos / 8;
7098
940da03e 7099 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
7100 fld_offset, field_type_p, byte_offset_p,
7101 bit_offset_p, bit_size_p, index_p))
7102 return 1;
828d5846
XR
7103 }
7104
4c4b4cd2
PH
7105 return 0;
7106}
7107
0963b4bd 7108/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7109
52ce6436
PH
7110static int
7111num_visible_fields (struct type *type)
7112{
7113 int n;
5b4ee69b 7114
52ce6436
PH
7115 n = 0;
7116 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7117 return n;
7118}
14f9c5c9 7119
4c4b4cd2 7120/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7121 and search in it assuming it has (class) type TYPE.
7122 If found, return value, else return NULL.
7123
828d5846
XR
7124 Searches recursively through wrapper fields (e.g., '_parent').
7125
7126 In the case of homonyms in the tagged types, please refer to the
7127 long explanation in find_struct_field's function documentation. */
14f9c5c9 7128
4c4b4cd2 7129static struct value *
108d56a4 7130ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 7131 struct type *type)
14f9c5c9
AS
7132{
7133 int i;
828d5846 7134 int parent_offset = -1;
14f9c5c9 7135
5b4ee69b 7136 type = ada_check_typedef (type);
1f704f76 7137 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7138 {
0d5cff50 7139 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7140
7141 if (t_field_name == NULL)
dda83cd7 7142 continue;
14f9c5c9 7143
828d5846 7144 else if (ada_is_parent_field (type, i))
dda83cd7 7145 {
828d5846
XR
7146 /* This is a field pointing us to the parent type of a tagged
7147 type. As hinted in this function's documentation, we give
7148 preference to fields in the current record first, so what
7149 we do here is just record the index of this field before
7150 we skip it. If it turns out we couldn't find our field
7151 in the current record, then we'll get back to it and search
7152 inside it whether the field might exist in the parent. */
7153
dda83cd7
SM
7154 parent_offset = i;
7155 continue;
7156 }
828d5846 7157
14f9c5c9 7158 else if (field_name_match (t_field_name, name))
dda83cd7 7159 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7160
7161 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7162 {
7163 struct value *v = /* Do not let indent join lines here. */
7164 ada_search_struct_field (name, arg,
7165 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7166 type->field (i).type ());
5b4ee69b 7167
dda83cd7
SM
7168 if (v != NULL)
7169 return v;
7170 }
14f9c5c9
AS
7171
7172 else if (ada_is_variant_part (type, i))
dda83cd7 7173 {
0963b4bd 7174 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
7175 int j;
7176 struct type *field_type = ada_check_typedef (type->field (i).type ());
7177 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
4c4b4cd2 7178
dda83cd7
SM
7179 for (j = 0; j < field_type->num_fields (); j += 1)
7180 {
7181 struct value *v = ada_search_struct_field /* Force line
0963b4bd 7182 break. */
dda83cd7
SM
7183 (name, arg,
7184 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7185 field_type->field (j).type ());
5b4ee69b 7186
dda83cd7
SM
7187 if (v != NULL)
7188 return v;
7189 }
7190 }
14f9c5c9 7191 }
828d5846
XR
7192
7193 /* Field not found so far. If this is a tagged type which
7194 has a parent, try finding that field in the parent now. */
7195
7196 if (parent_offset != -1)
7197 {
7198 struct value *v = ada_search_struct_field (
7199 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7200 type->field (parent_offset).type ());
828d5846
XR
7201
7202 if (v != NULL)
dda83cd7 7203 return v;
828d5846
XR
7204 }
7205
14f9c5c9
AS
7206 return NULL;
7207}
d2e4a39e 7208
52ce6436
PH
7209static struct value *ada_index_struct_field_1 (int *, struct value *,
7210 int, struct type *);
7211
7212
7213/* Return field #INDEX in ARG, where the index is that returned by
7214 * find_struct_field through its INDEX_P argument. Adjust the address
7215 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7216 * If found, return value, else return NULL. */
52ce6436
PH
7217
7218static struct value *
7219ada_index_struct_field (int index, struct value *arg, int offset,
7220 struct type *type)
7221{
7222 return ada_index_struct_field_1 (&index, arg, offset, type);
7223}
7224
7225
7226/* Auxiliary function for ada_index_struct_field. Like
7227 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7228 * *INDEX_P. */
52ce6436
PH
7229
7230static struct value *
7231ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7232 struct type *type)
7233{
7234 int i;
7235 type = ada_check_typedef (type);
7236
1f704f76 7237 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7238 {
7239 if (TYPE_FIELD_NAME (type, i) == NULL)
dda83cd7 7240 continue;
52ce6436 7241 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7242 {
7243 struct value *v = /* Do not let indent join lines here. */
7244 ada_index_struct_field_1 (index_p, arg,
52ce6436 7245 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7246 type->field (i).type ());
5b4ee69b 7247
dda83cd7
SM
7248 if (v != NULL)
7249 return v;
7250 }
52ce6436
PH
7251
7252 else if (ada_is_variant_part (type, i))
dda83cd7 7253 {
52ce6436 7254 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7255 find_struct_field. */
52ce6436 7256 error (_("Cannot assign this kind of variant record"));
dda83cd7 7257 }
52ce6436 7258 else if (*index_p == 0)
dda83cd7 7259 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
7260 else
7261 *index_p -= 1;
7262 }
7263 return NULL;
7264}
7265
3b4de39c 7266/* Return a string representation of type TYPE. */
99bbb428 7267
3b4de39c 7268static std::string
99bbb428
PA
7269type_as_string (struct type *type)
7270{
d7e74731 7271 string_file tmp_stream;
99bbb428 7272
d7e74731 7273 type_print (type, "", &tmp_stream, -1);
99bbb428 7274
d7e74731 7275 return std::move (tmp_stream.string ());
99bbb428
PA
7276}
7277
14f9c5c9 7278/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7279 If DISPP is non-null, add its byte displacement from the beginning of a
7280 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7281 work for packed fields).
7282
7283 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7284 followed by "___".
14f9c5c9 7285
0963b4bd 7286 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7287 be a (pointer or reference)+ to a struct or union, and the
7288 ultimate target type will be searched.
14f9c5c9
AS
7289
7290 Looks recursively into variant clauses and parent types.
7291
828d5846
XR
7292 In the case of homonyms in the tagged types, please refer to the
7293 long explanation in find_struct_field's function documentation.
7294
4c4b4cd2
PH
7295 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7296 TYPE is not a type of the right kind. */
14f9c5c9 7297
4c4b4cd2 7298static struct type *
a121b7c1 7299ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 7300 int noerr)
14f9c5c9
AS
7301{
7302 int i;
828d5846 7303 int parent_offset = -1;
14f9c5c9
AS
7304
7305 if (name == NULL)
7306 goto BadName;
7307
76a01679 7308 if (refok && type != NULL)
4c4b4cd2
PH
7309 while (1)
7310 {
dda83cd7
SM
7311 type = ada_check_typedef (type);
7312 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7313 break;
7314 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7315 }
14f9c5c9 7316
76a01679 7317 if (type == NULL
78134374
SM
7318 || (type->code () != TYPE_CODE_STRUCT
7319 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7320 {
4c4b4cd2 7321 if (noerr)
dda83cd7 7322 return NULL;
99bbb428 7323
3b4de39c
PA
7324 error (_("Type %s is not a structure or union type"),
7325 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7326 }
7327
7328 type = to_static_fixed_type (type);
7329
1f704f76 7330 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7331 {
0d5cff50 7332 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7333 struct type *t;
d2e4a39e 7334
14f9c5c9 7335 if (t_field_name == NULL)
dda83cd7 7336 continue;
14f9c5c9 7337
828d5846 7338 else if (ada_is_parent_field (type, i))
dda83cd7 7339 {
828d5846
XR
7340 /* This is a field pointing us to the parent type of a tagged
7341 type. As hinted in this function's documentation, we give
7342 preference to fields in the current record first, so what
7343 we do here is just record the index of this field before
7344 we skip it. If it turns out we couldn't find our field
7345 in the current record, then we'll get back to it and search
7346 inside it whether the field might exist in the parent. */
7347
dda83cd7
SM
7348 parent_offset = i;
7349 continue;
7350 }
828d5846 7351
14f9c5c9 7352 else if (field_name_match (t_field_name, name))
940da03e 7353 return type->field (i).type ();
14f9c5c9
AS
7354
7355 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7356 {
7357 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7358 0, 1);
7359 if (t != NULL)
988f6b3d 7360 return t;
dda83cd7 7361 }
14f9c5c9
AS
7362
7363 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7364 {
7365 int j;
7366 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7367
dda83cd7
SM
7368 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7369 {
b1f33ddd 7370 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7371 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7372 generates these for unchecked variant types. Revisit
dda83cd7 7373 if the compiler changes this practice. */
0d5cff50 7374 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7375
b1f33ddd
JB
7376 if (v_field_name != NULL
7377 && field_name_match (v_field_name, name))
940da03e 7378 t = field_type->field (j).type ();
b1f33ddd 7379 else
940da03e 7380 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7381 name, 0, 1);
b1f33ddd 7382
dda83cd7 7383 if (t != NULL)
988f6b3d 7384 return t;
dda83cd7
SM
7385 }
7386 }
14f9c5c9
AS
7387
7388 }
7389
828d5846
XR
7390 /* Field not found so far. If this is a tagged type which
7391 has a parent, try finding that field in the parent now. */
7392
7393 if (parent_offset != -1)
7394 {
dda83cd7 7395 struct type *t;
828d5846 7396
dda83cd7
SM
7397 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7398 name, 0, 1);
7399 if (t != NULL)
828d5846
XR
7400 return t;
7401 }
7402
14f9c5c9 7403BadName:
d2e4a39e 7404 if (!noerr)
14f9c5c9 7405 {
2b2798cc 7406 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7407
7408 error (_("Type %s has no component named %s"),
3b4de39c 7409 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7410 }
7411
7412 return NULL;
7413}
7414
b1f33ddd
JB
7415/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7416 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7417 represents an unchecked union (that is, the variant part of a
0963b4bd 7418 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7419
7420static int
7421is_unchecked_variant (struct type *var_type, struct type *outer_type)
7422{
a121b7c1 7423 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7424
988f6b3d 7425 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7426}
7427
7428
14f9c5c9 7429/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7430 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7431 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7432
d2e4a39e 7433int
d8af9068 7434ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7435{
7436 int others_clause;
7437 int i;
a121b7c1 7438 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7439 struct value *discrim;
14f9c5c9
AS
7440 LONGEST discrim_val;
7441
012370f6
TT
7442 /* Using plain value_from_contents_and_address here causes problems
7443 because we will end up trying to resolve a type that is currently
7444 being constructed. */
0c281816
JB
7445 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7446 if (discrim == NULL)
14f9c5c9 7447 return -1;
0c281816 7448 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7449
7450 others_clause = -1;
1f704f76 7451 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7452 {
7453 if (ada_is_others_clause (var_type, i))
dda83cd7 7454 others_clause = i;
14f9c5c9 7455 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7456 return i;
14f9c5c9
AS
7457 }
7458
7459 return others_clause;
7460}
d2e4a39e 7461\f
14f9c5c9
AS
7462
7463
dda83cd7 7464 /* Dynamic-Sized Records */
14f9c5c9
AS
7465
7466/* Strategy: The type ostensibly attached to a value with dynamic size
7467 (i.e., a size that is not statically recorded in the debugging
7468 data) does not accurately reflect the size or layout of the value.
7469 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7470 conventional types that are constructed on the fly. */
14f9c5c9
AS
7471
7472/* There is a subtle and tricky problem here. In general, we cannot
7473 determine the size of dynamic records without its data. However,
7474 the 'struct value' data structure, which GDB uses to represent
7475 quantities in the inferior process (the target), requires the size
7476 of the type at the time of its allocation in order to reserve space
7477 for GDB's internal copy of the data. That's why the
7478 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7479 rather than struct value*s.
14f9c5c9
AS
7480
7481 However, GDB's internal history variables ($1, $2, etc.) are
7482 struct value*s containing internal copies of the data that are not, in
7483 general, the same as the data at their corresponding addresses in
7484 the target. Fortunately, the types we give to these values are all
7485 conventional, fixed-size types (as per the strategy described
7486 above), so that we don't usually have to perform the
7487 'to_fixed_xxx_type' conversions to look at their values.
7488 Unfortunately, there is one exception: if one of the internal
7489 history variables is an array whose elements are unconstrained
7490 records, then we will need to create distinct fixed types for each
7491 element selected. */
7492
7493/* The upshot of all of this is that many routines take a (type, host
7494 address, target address) triple as arguments to represent a value.
7495 The host address, if non-null, is supposed to contain an internal
7496 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7497 target at the target address. */
14f9c5c9
AS
7498
7499/* Assuming that VAL0 represents a pointer value, the result of
7500 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7501 dynamic-sized types. */
14f9c5c9 7502
d2e4a39e
AS
7503struct value *
7504ada_value_ind (struct value *val0)
14f9c5c9 7505{
c48db5ca 7506 struct value *val = value_ind (val0);
5b4ee69b 7507
b50d69b5
JG
7508 if (ada_is_tagged_type (value_type (val), 0))
7509 val = ada_tag_value_at_base_address (val);
7510
4c4b4cd2 7511 return ada_to_fixed_value (val);
14f9c5c9
AS
7512}
7513
7514/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7515 qualifiers on VAL0. */
7516
d2e4a39e
AS
7517static struct value *
7518ada_coerce_ref (struct value *val0)
7519{
78134374 7520 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7521 {
7522 struct value *val = val0;
5b4ee69b 7523
994b9211 7524 val = coerce_ref (val);
b50d69b5
JG
7525
7526 if (ada_is_tagged_type (value_type (val), 0))
7527 val = ada_tag_value_at_base_address (val);
7528
4c4b4cd2 7529 return ada_to_fixed_value (val);
d2e4a39e
AS
7530 }
7531 else
14f9c5c9
AS
7532 return val0;
7533}
7534
4c4b4cd2 7535/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7536
7537static unsigned int
ebf56fd3 7538field_alignment (struct type *type, int f)
14f9c5c9 7539{
d2e4a39e 7540 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7541 int len;
14f9c5c9
AS
7542 int align_offset;
7543
64a1bf19
JB
7544 /* The field name should never be null, unless the debugging information
7545 is somehow malformed. In this case, we assume the field does not
7546 require any alignment. */
7547 if (name == NULL)
7548 return 1;
7549
7550 len = strlen (name);
7551
4c4b4cd2
PH
7552 if (!isdigit (name[len - 1]))
7553 return 1;
14f9c5c9 7554
d2e4a39e 7555 if (isdigit (name[len - 2]))
14f9c5c9
AS
7556 align_offset = len - 2;
7557 else
7558 align_offset = len - 1;
7559
61012eef 7560 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7561 return TARGET_CHAR_BIT;
7562
4c4b4cd2
PH
7563 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7564}
7565
852dff6c 7566/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7567
852dff6c
JB
7568static struct symbol *
7569ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7570{
7571 struct symbol *sym;
7572
7573 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7574 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7575 return sym;
7576
4186eb54
KS
7577 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7578 return sym;
14f9c5c9
AS
7579}
7580
dddfab26
UW
7581/* Find a type named NAME. Ignores ambiguity. This routine will look
7582 solely for types defined by debug info, it will not search the GDB
7583 primitive types. */
4c4b4cd2 7584
852dff6c 7585static struct type *
ebf56fd3 7586ada_find_any_type (const char *name)
14f9c5c9 7587{
852dff6c 7588 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7589
14f9c5c9 7590 if (sym != NULL)
dddfab26 7591 return SYMBOL_TYPE (sym);
14f9c5c9 7592
dddfab26 7593 return NULL;
14f9c5c9
AS
7594}
7595
739593e0
JB
7596/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7597 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7598 symbol, in which case it is returned. Otherwise, this looks for
7599 symbols whose name is that of NAME_SYM suffixed with "___XR".
7600 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7601
c0e70c62
TT
7602static bool
7603ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7604{
987012b8 7605 const char *name = name_sym->linkage_name ();
c0e70c62 7606 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7607}
7608
14f9c5c9 7609/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7610 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7611 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7612 otherwise return 0. */
7613
14f9c5c9 7614int
d2e4a39e 7615ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7616{
7617 if (type1 == NULL)
7618 return 1;
7619 else if (type0 == NULL)
7620 return 0;
78134374 7621 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7622 return 1;
78134374 7623 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7624 return 0;
7d93a1e0 7625 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7626 return 1;
ad82864c 7627 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7628 return 1;
4c4b4cd2 7629 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7630 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7631 return 1;
aeb5907d
JB
7632 else
7633 {
7d93a1e0
SM
7634 const char *type0_name = type0->name ();
7635 const char *type1_name = type1->name ();
aeb5907d
JB
7636
7637 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7638 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7639 return 1;
7640 }
14f9c5c9
AS
7641 return 0;
7642}
7643
e86ca25f
TT
7644/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7645 null. */
4c4b4cd2 7646
0d5cff50 7647const char *
d2e4a39e 7648ada_type_name (struct type *type)
14f9c5c9 7649{
d2e4a39e 7650 if (type == NULL)
14f9c5c9 7651 return NULL;
7d93a1e0 7652 return type->name ();
14f9c5c9
AS
7653}
7654
b4ba55a1
JB
7655/* Search the list of "descriptive" types associated to TYPE for a type
7656 whose name is NAME. */
7657
7658static struct type *
7659find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7660{
931e5bc3 7661 struct type *result, *tmp;
b4ba55a1 7662
c6044dd1
JB
7663 if (ada_ignore_descriptive_types_p)
7664 return NULL;
7665
b4ba55a1
JB
7666 /* If there no descriptive-type info, then there is no parallel type
7667 to be found. */
7668 if (!HAVE_GNAT_AUX_INFO (type))
7669 return NULL;
7670
7671 result = TYPE_DESCRIPTIVE_TYPE (type);
7672 while (result != NULL)
7673 {
0d5cff50 7674 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7675
7676 if (result_name == NULL)
dda83cd7
SM
7677 {
7678 warning (_("unexpected null name on descriptive type"));
7679 return NULL;
7680 }
b4ba55a1
JB
7681
7682 /* If the names match, stop. */
7683 if (strcmp (result_name, name) == 0)
7684 break;
7685
7686 /* Otherwise, look at the next item on the list, if any. */
7687 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7688 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7689 else
7690 tmp = NULL;
7691
7692 /* If not found either, try after having resolved the typedef. */
7693 if (tmp != NULL)
7694 result = tmp;
b4ba55a1 7695 else
931e5bc3 7696 {
f168693b 7697 result = check_typedef (result);
931e5bc3
JG
7698 if (HAVE_GNAT_AUX_INFO (result))
7699 result = TYPE_DESCRIPTIVE_TYPE (result);
7700 else
7701 result = NULL;
7702 }
b4ba55a1
JB
7703 }
7704
7705 /* If we didn't find a match, see whether this is a packed array. With
7706 older compilers, the descriptive type information is either absent or
7707 irrelevant when it comes to packed arrays so the above lookup fails.
7708 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7709 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7710 return ada_find_any_type (name);
7711
7712 return result;
7713}
7714
7715/* Find a parallel type to TYPE with the specified NAME, using the
7716 descriptive type taken from the debugging information, if available,
7717 and otherwise using the (slower) name-based method. */
7718
7719static struct type *
7720ada_find_parallel_type_with_name (struct type *type, const char *name)
7721{
7722 struct type *result = NULL;
7723
7724 if (HAVE_GNAT_AUX_INFO (type))
7725 result = find_parallel_type_by_descriptive_type (type, name);
7726 else
7727 result = ada_find_any_type (name);
7728
7729 return result;
7730}
7731
7732/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7733 SUFFIX to the name of TYPE. */
14f9c5c9 7734
d2e4a39e 7735struct type *
ebf56fd3 7736ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7737{
0d5cff50 7738 char *name;
fe978cb0 7739 const char *type_name = ada_type_name (type);
14f9c5c9 7740 int len;
d2e4a39e 7741
fe978cb0 7742 if (type_name == NULL)
14f9c5c9
AS
7743 return NULL;
7744
fe978cb0 7745 len = strlen (type_name);
14f9c5c9 7746
b4ba55a1 7747 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7748
fe978cb0 7749 strcpy (name, type_name);
14f9c5c9
AS
7750 strcpy (name + len, suffix);
7751
b4ba55a1 7752 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7753}
7754
14f9c5c9 7755/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7756 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7757
d2e4a39e
AS
7758static struct type *
7759dynamic_template_type (struct type *type)
14f9c5c9 7760{
61ee279c 7761 type = ada_check_typedef (type);
14f9c5c9 7762
78134374 7763 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7764 || ada_type_name (type) == NULL)
14f9c5c9 7765 return NULL;
d2e4a39e 7766 else
14f9c5c9
AS
7767 {
7768 int len = strlen (ada_type_name (type));
5b4ee69b 7769
4c4b4cd2 7770 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7771 return type;
14f9c5c9 7772 else
dda83cd7 7773 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7774 }
7775}
7776
7777/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7778 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7779
d2e4a39e
AS
7780static int
7781is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7782{
7783 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7784
d2e4a39e 7785 return name != NULL
940da03e 7786 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7787 && strstr (name, "___XVL") != NULL;
7788}
7789
4c4b4cd2
PH
7790/* The index of the variant field of TYPE, or -1 if TYPE does not
7791 represent a variant record type. */
14f9c5c9 7792
d2e4a39e 7793static int
4c4b4cd2 7794variant_field_index (struct type *type)
14f9c5c9
AS
7795{
7796 int f;
7797
78134374 7798 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7799 return -1;
7800
1f704f76 7801 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7802 {
7803 if (ada_is_variant_part (type, f))
dda83cd7 7804 return f;
4c4b4cd2
PH
7805 }
7806 return -1;
14f9c5c9
AS
7807}
7808
4c4b4cd2
PH
7809/* A record type with no fields. */
7810
d2e4a39e 7811static struct type *
fe978cb0 7812empty_record (struct type *templ)
14f9c5c9 7813{
fe978cb0 7814 struct type *type = alloc_type_copy (templ);
5b4ee69b 7815
67607e24 7816 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7817 INIT_NONE_SPECIFIC (type);
d0e39ea2 7818 type->set_name ("<empty>");
14f9c5c9
AS
7819 TYPE_LENGTH (type) = 0;
7820 return type;
7821}
7822
7823/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7824 the value of type TYPE at VALADDR or ADDRESS (see comments at
7825 the beginning of this section) VAL according to GNAT conventions.
7826 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7827 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7828 an outer-level type (i.e., as opposed to a branch of a variant.) A
7829 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7830 of the variant.
14f9c5c9 7831
4c4b4cd2
PH
7832 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7833 length are not statically known are discarded. As a consequence,
7834 VALADDR, ADDRESS and DVAL0 are ignored.
7835
7836 NOTE: Limitations: For now, we assume that dynamic fields and
7837 variants occupy whole numbers of bytes. However, they need not be
7838 byte-aligned. */
7839
7840struct type *
10a2c479 7841ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7842 const gdb_byte *valaddr,
dda83cd7
SM
7843 CORE_ADDR address, struct value *dval0,
7844 int keep_dynamic_fields)
14f9c5c9 7845{
d2e4a39e
AS
7846 struct value *mark = value_mark ();
7847 struct value *dval;
7848 struct type *rtype;
14f9c5c9 7849 int nfields, bit_len;
4c4b4cd2 7850 int variant_field;
14f9c5c9 7851 long off;
d94e4f4f 7852 int fld_bit_len;
14f9c5c9
AS
7853 int f;
7854
4c4b4cd2
PH
7855 /* Compute the number of fields in this record type that are going
7856 to be processed: unless keep_dynamic_fields, this includes only
7857 fields whose position and length are static will be processed. */
7858 if (keep_dynamic_fields)
1f704f76 7859 nfields = type->num_fields ();
4c4b4cd2
PH
7860 else
7861 {
7862 nfields = 0;
1f704f76 7863 while (nfields < type->num_fields ()
dda83cd7
SM
7864 && !ada_is_variant_part (type, nfields)
7865 && !is_dynamic_field (type, nfields))
7866 nfields++;
4c4b4cd2
PH
7867 }
7868
e9bb382b 7869 rtype = alloc_type_copy (type);
67607e24 7870 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7871 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7872 rtype->set_num_fields (nfields);
3cabb6b0
SM
7873 rtype->set_fields
7874 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7875 rtype->set_name (ada_type_name (type));
9cdd0d12 7876 rtype->set_is_fixed_instance (true);
14f9c5c9 7877
d2e4a39e
AS
7878 off = 0;
7879 bit_len = 0;
4c4b4cd2
PH
7880 variant_field = -1;
7881
14f9c5c9
AS
7882 for (f = 0; f < nfields; f += 1)
7883 {
a89febbd 7884 off = align_up (off, field_alignment (type, f))
6c038f32 7885 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7886 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7887 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7888
d2e4a39e 7889 if (ada_is_variant_part (type, f))
dda83cd7
SM
7890 {
7891 variant_field = f;
7892 fld_bit_len = 0;
7893 }
14f9c5c9 7894 else if (is_dynamic_field (type, f))
dda83cd7 7895 {
284614f0
JB
7896 const gdb_byte *field_valaddr = valaddr;
7897 CORE_ADDR field_address = address;
7898 struct type *field_type =
940da03e 7899 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7900
dda83cd7 7901 if (dval0 == NULL)
b5304971
JG
7902 {
7903 /* rtype's length is computed based on the run-time
7904 value of discriminants. If the discriminants are not
7905 initialized, the type size may be completely bogus and
0963b4bd 7906 GDB may fail to allocate a value for it. So check the
b5304971 7907 size first before creating the value. */
c1b5a1a6 7908 ada_ensure_varsize_limit (rtype);
012370f6
TT
7909 /* Using plain value_from_contents_and_address here
7910 causes problems because we will end up trying to
7911 resolve a type that is currently being
7912 constructed. */
7913 dval = value_from_contents_and_address_unresolved (rtype,
7914 valaddr,
7915 address);
9f1f738a 7916 rtype = value_type (dval);
b5304971 7917 }
dda83cd7
SM
7918 else
7919 dval = dval0;
4c4b4cd2 7920
284614f0
JB
7921 /* If the type referenced by this field is an aligner type, we need
7922 to unwrap that aligner type, because its size might not be set.
7923 Keeping the aligner type would cause us to compute the wrong
7924 size for this field, impacting the offset of the all the fields
7925 that follow this one. */
7926 if (ada_is_aligner_type (field_type))
7927 {
7928 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7929
7930 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7931 field_address = cond_offset_target (field_address, field_offset);
7932 field_type = ada_aligned_type (field_type);
7933 }
7934
7935 field_valaddr = cond_offset_host (field_valaddr,
7936 off / TARGET_CHAR_BIT);
7937 field_address = cond_offset_target (field_address,
7938 off / TARGET_CHAR_BIT);
7939
7940 /* Get the fixed type of the field. Note that, in this case,
7941 we do not want to get the real type out of the tag: if
7942 the current field is the parent part of a tagged record,
7943 we will get the tag of the object. Clearly wrong: the real
7944 type of the parent is not the real type of the child. We
7945 would end up in an infinite loop. */
7946 field_type = ada_get_base_type (field_type);
7947 field_type = ada_to_fixed_type (field_type, field_valaddr,
7948 field_address, dval, 0);
27f2a97b
JB
7949 /* If the field size is already larger than the maximum
7950 object size, then the record itself will necessarily
7951 be larger than the maximum object size. We need to make
7952 this check now, because the size might be so ridiculously
7953 large (due to an uninitialized variable in the inferior)
7954 that it would cause an overflow when adding it to the
7955 record size. */
c1b5a1a6 7956 ada_ensure_varsize_limit (field_type);
284614f0 7957
5d14b6e5 7958 rtype->field (f).set_type (field_type);
dda83cd7 7959 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7960 /* The multiplication can potentially overflow. But because
7961 the field length has been size-checked just above, and
7962 assuming that the maximum size is a reasonable value,
7963 an overflow should not happen in practice. So rather than
7964 adding overflow recovery code to this already complex code,
7965 we just assume that it's not going to happen. */
dda83cd7
SM
7966 fld_bit_len =
7967 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7968 }
14f9c5c9 7969 else
dda83cd7 7970 {
5ded5331
JB
7971 /* Note: If this field's type is a typedef, it is important
7972 to preserve the typedef layer.
7973
7974 Otherwise, we might be transforming a typedef to a fat
7975 pointer (encoding a pointer to an unconstrained array),
7976 into a basic fat pointer (encoding an unconstrained
7977 array). As both types are implemented using the same
7978 structure, the typedef is the only clue which allows us
7979 to distinguish between the two options. Stripping it
7980 would prevent us from printing this field appropriately. */
dda83cd7
SM
7981 rtype->field (f).set_type (type->field (f).type ());
7982 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7983 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7984 fld_bit_len =
7985 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7986 else
5ded5331 7987 {
940da03e 7988 struct type *field_type = type->field (f).type ();
5ded5331
JB
7989
7990 /* We need to be careful of typedefs when computing
7991 the length of our field. If this is a typedef,
7992 get the length of the target type, not the length
7993 of the typedef. */
78134374 7994 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7995 field_type = ada_typedef_target_type (field_type);
7996
dda83cd7
SM
7997 fld_bit_len =
7998 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 7999 }
dda83cd7 8000 }
14f9c5c9 8001 if (off + fld_bit_len > bit_len)
dda83cd7 8002 bit_len = off + fld_bit_len;
d94e4f4f 8003 off += fld_bit_len;
4c4b4cd2 8004 TYPE_LENGTH (rtype) =
dda83cd7 8005 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8006 }
4c4b4cd2
PH
8007
8008 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8009 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8010 the record. This can happen in the presence of representation
8011 clauses. */
8012 if (variant_field >= 0)
8013 {
8014 struct type *branch_type;
8015
8016 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8017
8018 if (dval0 == NULL)
9f1f738a 8019 {
012370f6
TT
8020 /* Using plain value_from_contents_and_address here causes
8021 problems because we will end up trying to resolve a type
8022 that is currently being constructed. */
8023 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8024 address);
9f1f738a
SA
8025 rtype = value_type (dval);
8026 }
4c4b4cd2 8027 else
dda83cd7 8028 dval = dval0;
4c4b4cd2
PH
8029
8030 branch_type =
dda83cd7
SM
8031 to_fixed_variant_branch_type
8032 (type->field (variant_field).type (),
8033 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8034 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 8035 if (branch_type == NULL)
dda83cd7
SM
8036 {
8037 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8038 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8039 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 8040 }
4c4b4cd2 8041 else
dda83cd7
SM
8042 {
8043 rtype->field (variant_field).set_type (branch_type);
8044 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8045 fld_bit_len =
8046 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8047 TARGET_CHAR_BIT;
8048 if (off + fld_bit_len > bit_len)
8049 bit_len = off + fld_bit_len;
8050 TYPE_LENGTH (rtype) =
8051 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8052 }
4c4b4cd2
PH
8053 }
8054
714e53ab
PH
8055 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8056 should contain the alignment of that record, which should be a strictly
8057 positive value. If null or negative, then something is wrong, most
8058 probably in the debug info. In that case, we don't round up the size
0963b4bd 8059 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8060 the current RTYPE length might be good enough for our purposes. */
8061 if (TYPE_LENGTH (type) <= 0)
8062 {
7d93a1e0 8063 if (rtype->name ())
cc1defb1 8064 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8065 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8066 else
cc1defb1
KS
8067 warning (_("Invalid type size for <unnamed> detected: %s."),
8068 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8069 }
8070 else
8071 {
a89febbd
TT
8072 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8073 TYPE_LENGTH (type));
714e53ab 8074 }
14f9c5c9
AS
8075
8076 value_free_to_mark (mark);
d2e4a39e 8077 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8078 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8079 return rtype;
8080}
8081
4c4b4cd2
PH
8082/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8083 of 1. */
14f9c5c9 8084
d2e4a39e 8085static struct type *
fc1a4b47 8086template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8087 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
8088{
8089 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 8090 address, dval0, 1);
4c4b4cd2
PH
8091}
8092
8093/* An ordinary record type in which ___XVL-convention fields and
8094 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8095 static approximations, containing all possible fields. Uses
8096 no runtime values. Useless for use in values, but that's OK,
8097 since the results are used only for type determinations. Works on both
8098 structs and unions. Representation note: to save space, we memorize
8099 the result of this function in the TYPE_TARGET_TYPE of the
8100 template type. */
8101
8102static struct type *
8103template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8104{
8105 struct type *type;
8106 int nfields;
8107 int f;
8108
9e195661 8109 /* No need no do anything if the input type is already fixed. */
22c4c60c 8110 if (type0->is_fixed_instance ())
9e195661
PMR
8111 return type0;
8112
8113 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8114 if (TYPE_TARGET_TYPE (type0) != NULL)
8115 return TYPE_TARGET_TYPE (type0);
8116
9e195661 8117 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8118 type = type0;
1f704f76 8119 nfields = type0->num_fields ();
9e195661
PMR
8120
8121 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8122 recompute all over next time. */
8123 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8124
8125 for (f = 0; f < nfields; f += 1)
8126 {
940da03e 8127 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8128 struct type *new_type;
14f9c5c9 8129
4c4b4cd2 8130 if (is_dynamic_field (type0, f))
460efde1
JB
8131 {
8132 field_type = ada_check_typedef (field_type);
dda83cd7 8133 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 8134 }
14f9c5c9 8135 else
dda83cd7 8136 new_type = static_unwrap_type (field_type);
9e195661
PMR
8137
8138 if (new_type != field_type)
8139 {
8140 /* Clone TYPE0 only the first time we get a new field type. */
8141 if (type == type0)
8142 {
8143 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8144 type->set_code (type0->code ());
8ecb59f8 8145 INIT_NONE_SPECIFIC (type);
5e33d5f4 8146 type->set_num_fields (nfields);
3cabb6b0
SM
8147
8148 field *fields =
8149 ((struct field *)
8150 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8151 memcpy (fields, type0->fields (),
9e195661 8152 sizeof (struct field) * nfields);
3cabb6b0
SM
8153 type->set_fields (fields);
8154
d0e39ea2 8155 type->set_name (ada_type_name (type0));
9cdd0d12 8156 type->set_is_fixed_instance (true);
9e195661
PMR
8157 TYPE_LENGTH (type) = 0;
8158 }
5d14b6e5 8159 type->field (f).set_type (new_type);
9e195661
PMR
8160 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8161 }
14f9c5c9 8162 }
9e195661 8163
14f9c5c9
AS
8164 return type;
8165}
8166
4c4b4cd2 8167/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8168 whose address in memory is ADDRESS, returns a revision of TYPE,
8169 which should be a non-dynamic-sized record, in which the variant
8170 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8171 for discriminant values in DVAL0, which can be NULL if the record
8172 contains the necessary discriminant values. */
8173
d2e4a39e 8174static struct type *
fc1a4b47 8175to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 8176 CORE_ADDR address, struct value *dval0)
14f9c5c9 8177{
d2e4a39e 8178 struct value *mark = value_mark ();
4c4b4cd2 8179 struct value *dval;
d2e4a39e 8180 struct type *rtype;
14f9c5c9 8181 struct type *branch_type;
1f704f76 8182 int nfields = type->num_fields ();
4c4b4cd2 8183 int variant_field = variant_field_index (type);
14f9c5c9 8184
4c4b4cd2 8185 if (variant_field == -1)
14f9c5c9
AS
8186 return type;
8187
4c4b4cd2 8188 if (dval0 == NULL)
9f1f738a
SA
8189 {
8190 dval = value_from_contents_and_address (type, valaddr, address);
8191 type = value_type (dval);
8192 }
4c4b4cd2
PH
8193 else
8194 dval = dval0;
8195
e9bb382b 8196 rtype = alloc_type_copy (type);
67607e24 8197 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8198 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8199 rtype->set_num_fields (nfields);
3cabb6b0
SM
8200
8201 field *fields =
d2e4a39e 8202 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8203 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8204 rtype->set_fields (fields);
8205
d0e39ea2 8206 rtype->set_name (ada_type_name (type));
9cdd0d12 8207 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
8208 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8209
4c4b4cd2 8210 branch_type = to_fixed_variant_branch_type
940da03e 8211 (type->field (variant_field).type (),
d2e4a39e 8212 cond_offset_host (valaddr,
dda83cd7
SM
8213 TYPE_FIELD_BITPOS (type, variant_field)
8214 / TARGET_CHAR_BIT),
d2e4a39e 8215 cond_offset_target (address,
dda83cd7
SM
8216 TYPE_FIELD_BITPOS (type, variant_field)
8217 / TARGET_CHAR_BIT), dval);
d2e4a39e 8218 if (branch_type == NULL)
14f9c5c9 8219 {
4c4b4cd2 8220 int f;
5b4ee69b 8221
4c4b4cd2 8222 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 8223 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8224 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8225 }
8226 else
8227 {
5d14b6e5 8228 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8229 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8230 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8231 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8232 }
940da03e 8233 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8234
4c4b4cd2 8235 value_free_to_mark (mark);
14f9c5c9
AS
8236 return rtype;
8237}
8238
8239/* An ordinary record type (with fixed-length fields) that describes
8240 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8241 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8242 should be in DVAL, a record value; it may be NULL if the object
8243 at ADDR itself contains any necessary discriminant values.
8244 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8245 values from the record are needed. Except in the case that DVAL,
8246 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8247 unchecked) is replaced by a particular branch of the variant.
8248
8249 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8250 is questionable and may be removed. It can arise during the
8251 processing of an unconstrained-array-of-record type where all the
8252 variant branches have exactly the same size. This is because in
8253 such cases, the compiler does not bother to use the XVS convention
8254 when encoding the record. I am currently dubious of this
8255 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8256
d2e4a39e 8257static struct type *
fc1a4b47 8258to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 8259 CORE_ADDR address, struct value *dval)
14f9c5c9 8260{
d2e4a39e 8261 struct type *templ_type;
14f9c5c9 8262
22c4c60c 8263 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8264 return type0;
8265
d2e4a39e 8266 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8267
8268 if (templ_type != NULL)
8269 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8270 else if (variant_field_index (type0) >= 0)
8271 {
8272 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 8273 return type0;
4c4b4cd2 8274 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 8275 dval);
4c4b4cd2 8276 }
14f9c5c9
AS
8277 else
8278 {
9cdd0d12 8279 type0->set_is_fixed_instance (true);
14f9c5c9
AS
8280 return type0;
8281 }
8282
8283}
8284
8285/* An ordinary record type (with fixed-length fields) that describes
8286 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8287 union type. Any necessary discriminants' values should be in DVAL,
8288 a record value. That is, this routine selects the appropriate
8289 branch of the union at ADDR according to the discriminant value
b1f33ddd 8290 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8291 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8292
d2e4a39e 8293static struct type *
fc1a4b47 8294to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 8295 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8296{
8297 int which;
d2e4a39e
AS
8298 struct type *templ_type;
8299 struct type *var_type;
14f9c5c9 8300
78134374 8301 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8302 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8303 else
14f9c5c9
AS
8304 var_type = var_type0;
8305
8306 templ_type = ada_find_parallel_type (var_type, "___XVU");
8307
8308 if (templ_type != NULL)
8309 var_type = templ_type;
8310
b1f33ddd
JB
8311 if (is_unchecked_variant (var_type, value_type (dval)))
8312 return var_type0;
d8af9068 8313 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8314
8315 if (which < 0)
e9bb382b 8316 return empty_record (var_type);
14f9c5c9 8317 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8318 return to_fixed_record_type
940da03e 8319 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8320 valaddr, address, dval);
940da03e 8321 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8322 return
8323 to_fixed_record_type
940da03e 8324 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8325 else
940da03e 8326 return var_type->field (which).type ();
14f9c5c9
AS
8327}
8328
8908fca5
JB
8329/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8330 ENCODING_TYPE, a type following the GNAT conventions for discrete
8331 type encodings, only carries redundant information. */
8332
8333static int
8334ada_is_redundant_range_encoding (struct type *range_type,
8335 struct type *encoding_type)
8336{
108d56a4 8337 const char *bounds_str;
8908fca5
JB
8338 int n;
8339 LONGEST lo, hi;
8340
78134374 8341 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8342
78134374
SM
8343 if (get_base_type (range_type)->code ()
8344 != get_base_type (encoding_type)->code ())
005e2509
JB
8345 {
8346 /* The compiler probably used a simple base type to describe
8347 the range type instead of the range's actual base type,
8348 expecting us to get the real base type from the encoding
8349 anyway. In this situation, the encoding cannot be ignored
8350 as redundant. */
8351 return 0;
8352 }
8353
8908fca5
JB
8354 if (is_dynamic_type (range_type))
8355 return 0;
8356
7d93a1e0 8357 if (encoding_type->name () == NULL)
8908fca5
JB
8358 return 0;
8359
7d93a1e0 8360 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8361 if (bounds_str == NULL)
8362 return 0;
8363
8364 n = 8; /* Skip "___XDLU_". */
8365 if (!ada_scan_number (bounds_str, n, &lo, &n))
8366 return 0;
5537ddd0 8367 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8368 return 0;
8369
8370 n += 2; /* Skip the "__" separator between the two bounds. */
8371 if (!ada_scan_number (bounds_str, n, &hi, &n))
8372 return 0;
5537ddd0 8373 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8374 return 0;
8375
8376 return 1;
8377}
8378
8379/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8380 a type following the GNAT encoding for describing array type
8381 indices, only carries redundant information. */
8382
8383static int
8384ada_is_redundant_index_type_desc (struct type *array_type,
8385 struct type *desc_type)
8386{
8387 struct type *this_layer = check_typedef (array_type);
8388 int i;
8389
1f704f76 8390 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8391 {
3d967001 8392 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8393 desc_type->field (i).type ()))
8908fca5
JB
8394 return 0;
8395 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8396 }
8397
8398 return 1;
8399}
8400
14f9c5c9
AS
8401/* Assuming that TYPE0 is an array type describing the type of a value
8402 at ADDR, and that DVAL describes a record containing any
8403 discriminants used in TYPE0, returns a type for the value that
8404 contains no dynamic components (that is, no components whose sizes
8405 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8406 true, gives an error message if the resulting type's size is over
4c4b4cd2 8407 varsize_limit. */
14f9c5c9 8408
d2e4a39e
AS
8409static struct type *
8410to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8411 int ignore_too_big)
14f9c5c9 8412{
d2e4a39e
AS
8413 struct type *index_type_desc;
8414 struct type *result;
ad82864c 8415 int constrained_packed_array_p;
931e5bc3 8416 static const char *xa_suffix = "___XA";
14f9c5c9 8417
b0dd7688 8418 type0 = ada_check_typedef (type0);
22c4c60c 8419 if (type0->is_fixed_instance ())
4c4b4cd2 8420 return type0;
14f9c5c9 8421
ad82864c
JB
8422 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8423 if (constrained_packed_array_p)
75fd6a26
TT
8424 {
8425 type0 = decode_constrained_packed_array_type (type0);
8426 if (type0 == nullptr)
8427 error (_("could not decode constrained packed array type"));
8428 }
284614f0 8429
931e5bc3
JG
8430 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8431
8432 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8433 encoding suffixed with 'P' may still be generated. If so,
8434 it should be used to find the XA type. */
8435
8436 if (index_type_desc == NULL)
8437 {
1da0522e 8438 const char *type_name = ada_type_name (type0);
931e5bc3 8439
1da0522e 8440 if (type_name != NULL)
931e5bc3 8441 {
1da0522e 8442 const int len = strlen (type_name);
931e5bc3
JG
8443 char *name = (char *) alloca (len + strlen (xa_suffix));
8444
1da0522e 8445 if (type_name[len - 1] == 'P')
931e5bc3 8446 {
1da0522e 8447 strcpy (name, type_name);
931e5bc3
JG
8448 strcpy (name + len - 1, xa_suffix);
8449 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8450 }
8451 }
8452 }
8453
28c85d6c 8454 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8455 if (index_type_desc != NULL
8456 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8457 {
8458 /* Ignore this ___XA parallel type, as it does not bring any
8459 useful information. This allows us to avoid creating fixed
8460 versions of the array's index types, which would be identical
8461 to the original ones. This, in turn, can also help avoid
8462 the creation of fixed versions of the array itself. */
8463 index_type_desc = NULL;
8464 }
8465
14f9c5c9
AS
8466 if (index_type_desc == NULL)
8467 {
61ee279c 8468 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8469
14f9c5c9 8470 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8471 depend on the contents of the array in properly constructed
8472 debugging data. */
529cad9c 8473 /* Create a fixed version of the array element type.
dda83cd7
SM
8474 We're not providing the address of an element here,
8475 and thus the actual object value cannot be inspected to do
8476 the conversion. This should not be a problem, since arrays of
8477 unconstrained objects are not allowed. In particular, all
8478 the elements of an array of a tagged type should all be of
8479 the same type specified in the debugging info. No need to
8480 consult the object tag. */
1ed6ede0 8481 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8482
284614f0
JB
8483 /* Make sure we always create a new array type when dealing with
8484 packed array types, since we're going to fix-up the array
8485 type length and element bitsize a little further down. */
ad82864c 8486 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8487 result = type0;
14f9c5c9 8488 else
dda83cd7
SM
8489 result = create_array_type (alloc_type_copy (type0),
8490 elt_type, type0->index_type ());
14f9c5c9
AS
8491 }
8492 else
8493 {
8494 int i;
8495 struct type *elt_type0;
8496
8497 elt_type0 = type0;
1f704f76 8498 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8499 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8500
8501 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8502 depend on the contents of the array in properly constructed
8503 debugging data. */
529cad9c 8504 /* Create a fixed version of the array element type.
dda83cd7
SM
8505 We're not providing the address of an element here,
8506 and thus the actual object value cannot be inspected to do
8507 the conversion. This should not be a problem, since arrays of
8508 unconstrained objects are not allowed. In particular, all
8509 the elements of an array of a tagged type should all be of
8510 the same type specified in the debugging info. No need to
8511 consult the object tag. */
1ed6ede0 8512 result =
dda83cd7 8513 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8514
8515 elt_type0 = type0;
1f704f76 8516 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8517 {
8518 struct type *range_type =
8519 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8520
dda83cd7
SM
8521 result = create_array_type (alloc_type_copy (elt_type0),
8522 result, range_type);
1ce677a4 8523 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8524 }
d2e4a39e 8525 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
dda83cd7 8526 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8527 }
8528
2e6fda7d
JB
8529 /* We want to preserve the type name. This can be useful when
8530 trying to get the type name of a value that has already been
8531 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8532 result->set_name (type0->name ());
2e6fda7d 8533
ad82864c 8534 if (constrained_packed_array_p)
284614f0
JB
8535 {
8536 /* So far, the resulting type has been created as if the original
8537 type was a regular (non-packed) array type. As a result, the
8538 bitsize of the array elements needs to be set again, and the array
8539 length needs to be recomputed based on that bitsize. */
8540 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8541 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8542
8543 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8544 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8545 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8546 TYPE_LENGTH (result)++;
284614f0
JB
8547 }
8548
9cdd0d12 8549 result->set_is_fixed_instance (true);
14f9c5c9 8550 return result;
d2e4a39e 8551}
14f9c5c9
AS
8552
8553
8554/* A standard type (containing no dynamically sized components)
8555 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8556 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8557 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8558 ADDRESS or in VALADDR contains these discriminants.
8559
1ed6ede0
JB
8560 If CHECK_TAG is not null, in the case of tagged types, this function
8561 attempts to locate the object's tag and use it to compute the actual
8562 type. However, when ADDRESS is null, we cannot use it to determine the
8563 location of the tag, and therefore compute the tagged type's actual type.
8564 So we return the tagged type without consulting the tag. */
529cad9c 8565
f192137b
JB
8566static struct type *
8567ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8568 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8569{
61ee279c 8570 type = ada_check_typedef (type);
8ecb59f8
TT
8571
8572 /* Only un-fixed types need to be handled here. */
8573 if (!HAVE_GNAT_AUX_INFO (type))
8574 return type;
8575
78134374 8576 switch (type->code ())
d2e4a39e
AS
8577 {
8578 default:
14f9c5c9 8579 return type;
d2e4a39e 8580 case TYPE_CODE_STRUCT:
4c4b4cd2 8581 {
dda83cd7
SM
8582 struct type *static_type = to_static_fixed_type (type);
8583 struct type *fixed_record_type =
8584 to_fixed_record_type (type, valaddr, address, NULL);
8585
8586 /* If STATIC_TYPE is a tagged type and we know the object's address,
8587 then we can determine its tag, and compute the object's actual
8588 type from there. Note that we have to use the fixed record
8589 type (the parent part of the record may have dynamic fields
8590 and the way the location of _tag is expressed may depend on
8591 them). */
8592
8593 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8594 {
b50d69b5
JG
8595 struct value *tag =
8596 value_tag_from_contents_and_address
8597 (fixed_record_type,
8598 valaddr,
8599 address);
8600 struct type *real_type = type_from_tag (tag);
8601 struct value *obj =
8602 value_from_contents_and_address (fixed_record_type,
8603 valaddr,
8604 address);
dda83cd7
SM
8605 fixed_record_type = value_type (obj);
8606 if (real_type != NULL)
8607 return to_fixed_record_type
b50d69b5
JG
8608 (real_type, NULL,
8609 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8610 }
8611
8612 /* Check to see if there is a parallel ___XVZ variable.
8613 If there is, then it provides the actual size of our type. */
8614 else if (ada_type_name (fixed_record_type) != NULL)
8615 {
8616 const char *name = ada_type_name (fixed_record_type);
8617 char *xvz_name
224c3ddb 8618 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8619 bool xvz_found = false;
dda83cd7 8620 LONGEST size;
4af88198 8621
dda83cd7 8622 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8623 try
eccab96d
JB
8624 {
8625 xvz_found = get_int_var_value (xvz_name, size);
8626 }
230d2906 8627 catch (const gdb_exception_error &except)
eccab96d
JB
8628 {
8629 /* We found the variable, but somehow failed to read
8630 its value. Rethrow the same error, but with a little
8631 bit more information, to help the user understand
8632 what went wrong (Eg: the variable might have been
8633 optimized out). */
8634 throw_error (except.error,
8635 _("unable to read value of %s (%s)"),
3d6e9d23 8636 xvz_name, except.what ());
eccab96d 8637 }
eccab96d 8638
dda83cd7
SM
8639 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8640 {
8641 fixed_record_type = copy_type (fixed_record_type);
8642 TYPE_LENGTH (fixed_record_type) = size;
8643
8644 /* The FIXED_RECORD_TYPE may have be a stub. We have
8645 observed this when the debugging info is STABS, and
8646 apparently it is something that is hard to fix.
8647
8648 In practice, we don't need the actual type definition
8649 at all, because the presence of the XVZ variable allows us
8650 to assume that there must be a XVS type as well, which we
8651 should be able to use later, when we need the actual type
8652 definition.
8653
8654 In the meantime, pretend that the "fixed" type we are
8655 returning is NOT a stub, because this can cause trouble
8656 when using this type to create new types targeting it.
8657 Indeed, the associated creation routines often check
8658 whether the target type is a stub and will try to replace
8659 it, thus using a type with the wrong size. This, in turn,
8660 might cause the new type to have the wrong size too.
8661 Consider the case of an array, for instance, where the size
8662 of the array is computed from the number of elements in
8663 our array multiplied by the size of its element. */
b4b73759 8664 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8665 }
8666 }
8667 return fixed_record_type;
4c4b4cd2 8668 }
d2e4a39e 8669 case TYPE_CODE_ARRAY:
4c4b4cd2 8670 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8671 case TYPE_CODE_UNION:
8672 if (dval == NULL)
dda83cd7 8673 return type;
d2e4a39e 8674 else
dda83cd7 8675 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8676 }
14f9c5c9
AS
8677}
8678
f192137b
JB
8679/* The same as ada_to_fixed_type_1, except that it preserves the type
8680 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8681
8682 The typedef layer needs be preserved in order to differentiate between
8683 arrays and array pointers when both types are implemented using the same
8684 fat pointer. In the array pointer case, the pointer is encoded as
8685 a typedef of the pointer type. For instance, considering:
8686
8687 type String_Access is access String;
8688 S1 : String_Access := null;
8689
8690 To the debugger, S1 is defined as a typedef of type String. But
8691 to the user, it is a pointer. So if the user tries to print S1,
8692 we should not dereference the array, but print the array address
8693 instead.
8694
8695 If we didn't preserve the typedef layer, we would lose the fact that
8696 the type is to be presented as a pointer (needs de-reference before
8697 being printed). And we would also use the source-level type name. */
f192137b
JB
8698
8699struct type *
8700ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8701 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8702
8703{
8704 struct type *fixed_type =
8705 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8706
96dbd2c1
JB
8707 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8708 then preserve the typedef layer.
8709
8710 Implementation note: We can only check the main-type portion of
8711 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8712 from TYPE now returns a type that has the same instance flags
8713 as TYPE. For instance, if TYPE is a "typedef const", and its
8714 target type is a "struct", then the typedef elimination will return
8715 a "const" version of the target type. See check_typedef for more
8716 details about how the typedef layer elimination is done.
8717
8718 brobecker/2010-11-19: It seems to me that the only case where it is
8719 useful to preserve the typedef layer is when dealing with fat pointers.
8720 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8721 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8722 because we call check_typedef/ada_check_typedef pretty much everywhere.
8723 */
78134374 8724 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8725 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8726 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8727 return type;
8728
8729 return fixed_type;
8730}
8731
14f9c5c9 8732/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8733 TYPE0, but based on no runtime data. */
14f9c5c9 8734
d2e4a39e
AS
8735static struct type *
8736to_static_fixed_type (struct type *type0)
14f9c5c9 8737{
d2e4a39e 8738 struct type *type;
14f9c5c9
AS
8739
8740 if (type0 == NULL)
8741 return NULL;
8742
22c4c60c 8743 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8744 return type0;
8745
61ee279c 8746 type0 = ada_check_typedef (type0);
d2e4a39e 8747
78134374 8748 switch (type0->code ())
14f9c5c9
AS
8749 {
8750 default:
8751 return type0;
8752 case TYPE_CODE_STRUCT:
8753 type = dynamic_template_type (type0);
d2e4a39e 8754 if (type != NULL)
dda83cd7 8755 return template_to_static_fixed_type (type);
4c4b4cd2 8756 else
dda83cd7 8757 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8758 case TYPE_CODE_UNION:
8759 type = ada_find_parallel_type (type0, "___XVU");
8760 if (type != NULL)
dda83cd7 8761 return template_to_static_fixed_type (type);
4c4b4cd2 8762 else
dda83cd7 8763 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8764 }
8765}
8766
4c4b4cd2
PH
8767/* A static approximation of TYPE with all type wrappers removed. */
8768
d2e4a39e
AS
8769static struct type *
8770static_unwrap_type (struct type *type)
14f9c5c9
AS
8771{
8772 if (ada_is_aligner_type (type))
8773 {
940da03e 8774 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8775 if (ada_type_name (type1) == NULL)
d0e39ea2 8776 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8777
8778 return static_unwrap_type (type1);
8779 }
d2e4a39e 8780 else
14f9c5c9 8781 {
d2e4a39e 8782 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8783
d2e4a39e 8784 if (raw_real_type == type)
dda83cd7 8785 return type;
14f9c5c9 8786 else
dda83cd7 8787 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8788 }
8789}
8790
8791/* In some cases, incomplete and private types require
4c4b4cd2 8792 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8793 type Foo;
8794 type FooP is access Foo;
8795 V: FooP;
8796 type Foo is array ...;
4c4b4cd2 8797 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8798 cross-references to such types, we instead substitute for FooP a
8799 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8800 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8801
8802/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8803 exists, otherwise TYPE. */
8804
d2e4a39e 8805struct type *
61ee279c 8806ada_check_typedef (struct type *type)
14f9c5c9 8807{
727e3d2e
JB
8808 if (type == NULL)
8809 return NULL;
8810
736ade86
XR
8811 /* If our type is an access to an unconstrained array, which is encoded
8812 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8813 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8814 what allows us to distinguish between fat pointers that represent
8815 array types, and fat pointers that represent array access types
8816 (in both cases, the compiler implements them as fat pointers). */
736ade86 8817 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8818 return type;
8819
f168693b 8820 type = check_typedef (type);
78134374 8821 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8822 || !type->is_stub ()
7d93a1e0 8823 || type->name () == NULL)
14f9c5c9 8824 return type;
d2e4a39e 8825 else
14f9c5c9 8826 {
7d93a1e0 8827 const char *name = type->name ();
d2e4a39e 8828 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8829
05e522ef 8830 if (type1 == NULL)
dda83cd7 8831 return type;
05e522ef
JB
8832
8833 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8834 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8835 types, only for the typedef-to-array types). If that's the case,
8836 strip the typedef layer. */
78134374 8837 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8838 type1 = ada_check_typedef (type1);
8839
8840 return type1;
14f9c5c9
AS
8841 }
8842}
8843
8844/* A value representing the data at VALADDR/ADDRESS as described by
8845 type TYPE0, but with a standard (static-sized) type that correctly
8846 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8847 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8848 creation of struct values]. */
14f9c5c9 8849
4c4b4cd2
PH
8850static struct value *
8851ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8852 struct value *val0)
14f9c5c9 8853{
1ed6ede0 8854 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8855
14f9c5c9
AS
8856 if (type == type0 && val0 != NULL)
8857 return val0;
cc0e770c
JB
8858
8859 if (VALUE_LVAL (val0) != lval_memory)
8860 {
8861 /* Our value does not live in memory; it could be a convenience
8862 variable, for instance. Create a not_lval value using val0's
8863 contents. */
8864 return value_from_contents (type, value_contents (val0));
8865 }
8866
8867 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8868}
8869
8870/* A value representing VAL, but with a standard (static-sized) type
8871 that correctly describes it. Does not necessarily create a new
8872 value. */
8873
0c3acc09 8874struct value *
4c4b4cd2
PH
8875ada_to_fixed_value (struct value *val)
8876{
c48db5ca 8877 val = unwrap_value (val);
d8ce9127 8878 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8879 return val;
14f9c5c9 8880}
d2e4a39e 8881\f
14f9c5c9 8882
14f9c5c9
AS
8883/* Attributes */
8884
4c4b4cd2
PH
8885/* Table mapping attribute numbers to names.
8886 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8887
27087b7f 8888static const char * const attribute_names[] = {
14f9c5c9
AS
8889 "<?>",
8890
d2e4a39e 8891 "first",
14f9c5c9
AS
8892 "last",
8893 "length",
8894 "image",
14f9c5c9
AS
8895 "max",
8896 "min",
4c4b4cd2
PH
8897 "modulus",
8898 "pos",
8899 "size",
8900 "tag",
14f9c5c9 8901 "val",
14f9c5c9
AS
8902 0
8903};
8904
de93309a 8905static const char *
4c4b4cd2 8906ada_attribute_name (enum exp_opcode n)
14f9c5c9 8907{
4c4b4cd2
PH
8908 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8909 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8910 else
8911 return attribute_names[0];
8912}
8913
4c4b4cd2 8914/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8915
4c4b4cd2
PH
8916static LONGEST
8917pos_atr (struct value *arg)
14f9c5c9 8918{
24209737
PH
8919 struct value *val = coerce_ref (arg);
8920 struct type *type = value_type (val);
14f9c5c9 8921
d2e4a39e 8922 if (!discrete_type_p (type))
323e0a4a 8923 error (_("'POS only defined on discrete types"));
14f9c5c9 8924
6244c119
SM
8925 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8926 if (!result.has_value ())
aa715135 8927 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8928
6244c119 8929 return *result;
4c4b4cd2
PH
8930}
8931
8932static struct value *
3cb382c9 8933value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8934{
3cb382c9 8935 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8936}
8937
4c4b4cd2 8938/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8939
d2e4a39e 8940static struct value *
53a47a3e 8941val_atr (struct type *type, LONGEST val)
14f9c5c9 8942{
53a47a3e 8943 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8944 if (type->code () == TYPE_CODE_RANGE)
8945 type = TYPE_TARGET_TYPE (type);
78134374 8946 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8947 {
53a47a3e 8948 if (val < 0 || val >= type->num_fields ())
dda83cd7 8949 error (_("argument to 'VAL out of range"));
53a47a3e 8950 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8951 }
53a47a3e
TT
8952 return value_from_longest (type, val);
8953}
8954
8955static struct value *
8956value_val_atr (struct type *type, struct value *arg)
8957{
8958 if (!discrete_type_p (type))
8959 error (_("'VAL only defined on discrete types"));
8960 if (!integer_type_p (value_type (arg)))
8961 error (_("'VAL requires integral argument"));
8962
8963 return val_atr (type, value_as_long (arg));
14f9c5c9 8964}
14f9c5c9 8965\f
d2e4a39e 8966
dda83cd7 8967 /* Evaluation */
14f9c5c9 8968
4c4b4cd2
PH
8969/* True if TYPE appears to be an Ada character type.
8970 [At the moment, this is true only for Character and Wide_Character;
8971 It is a heuristic test that could stand improvement]. */
14f9c5c9 8972
fc913e53 8973bool
d2e4a39e 8974ada_is_character_type (struct type *type)
14f9c5c9 8975{
7b9f71f2
JB
8976 const char *name;
8977
8978 /* If the type code says it's a character, then assume it really is,
8979 and don't check any further. */
78134374 8980 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8981 return true;
7b9f71f2
JB
8982
8983 /* Otherwise, assume it's a character type iff it is a discrete type
8984 with a known character type name. */
8985 name = ada_type_name (type);
8986 return (name != NULL
dda83cd7
SM
8987 && (type->code () == TYPE_CODE_INT
8988 || type->code () == TYPE_CODE_RANGE)
8989 && (strcmp (name, "character") == 0
8990 || strcmp (name, "wide_character") == 0
8991 || strcmp (name, "wide_wide_character") == 0
8992 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8993}
8994
4c4b4cd2 8995/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8996
fc913e53 8997bool
ebf56fd3 8998ada_is_string_type (struct type *type)
14f9c5c9 8999{
61ee279c 9000 type = ada_check_typedef (type);
d2e4a39e 9001 if (type != NULL
78134374 9002 && type->code () != TYPE_CODE_PTR
76a01679 9003 && (ada_is_simple_array_type (type)
dda83cd7 9004 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9005 && ada_array_arity (type) == 1)
9006 {
9007 struct type *elttype = ada_array_element_type (type, 1);
9008
9009 return ada_is_character_type (elttype);
9010 }
d2e4a39e 9011 else
fc913e53 9012 return false;
14f9c5c9
AS
9013}
9014
5bf03f13
JB
9015/* The compiler sometimes provides a parallel XVS type for a given
9016 PAD type. Normally, it is safe to follow the PAD type directly,
9017 but older versions of the compiler have a bug that causes the offset
9018 of its "F" field to be wrong. Following that field in that case
9019 would lead to incorrect results, but this can be worked around
9020 by ignoring the PAD type and using the associated XVS type instead.
9021
9022 Set to True if the debugger should trust the contents of PAD types.
9023 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9024static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9025
9026/* True if TYPE is a struct type introduced by the compiler to force the
9027 alignment of a value. Such types have a single field with a
4c4b4cd2 9028 distinctive name. */
14f9c5c9
AS
9029
9030int
ebf56fd3 9031ada_is_aligner_type (struct type *type)
14f9c5c9 9032{
61ee279c 9033 type = ada_check_typedef (type);
714e53ab 9034
5bf03f13 9035 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9036 return 0;
9037
78134374 9038 return (type->code () == TYPE_CODE_STRUCT
dda83cd7
SM
9039 && type->num_fields () == 1
9040 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9041}
9042
9043/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9044 the parallel type. */
14f9c5c9 9045
d2e4a39e
AS
9046struct type *
9047ada_get_base_type (struct type *raw_type)
14f9c5c9 9048{
d2e4a39e
AS
9049 struct type *real_type_namer;
9050 struct type *raw_real_type;
14f9c5c9 9051
78134374 9052 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9053 return raw_type;
9054
284614f0
JB
9055 if (ada_is_aligner_type (raw_type))
9056 /* The encoding specifies that we should always use the aligner type.
9057 So, even if this aligner type has an associated XVS type, we should
9058 simply ignore it.
9059
9060 According to the compiler gurus, an XVS type parallel to an aligner
9061 type may exist because of a stabs limitation. In stabs, aligner
9062 types are empty because the field has a variable-sized type, and
9063 thus cannot actually be used as an aligner type. As a result,
9064 we need the associated parallel XVS type to decode the type.
9065 Since the policy in the compiler is to not change the internal
9066 representation based on the debugging info format, we sometimes
9067 end up having a redundant XVS type parallel to the aligner type. */
9068 return raw_type;
9069
14f9c5c9 9070 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9071 if (real_type_namer == NULL
78134374 9072 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9073 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9074 return raw_type;
9075
940da03e 9076 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9077 {
9078 /* This is an older encoding form where the base type needs to be
85102364 9079 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9080 more efficient. */
9081 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9082 if (raw_real_type == NULL)
9083 return raw_type;
9084 else
9085 return raw_real_type;
9086 }
9087
9088 /* The field in our XVS type is a reference to the base type. */
940da03e 9089 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9090}
14f9c5c9 9091
4c4b4cd2 9092/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9093
d2e4a39e
AS
9094struct type *
9095ada_aligned_type (struct type *type)
14f9c5c9
AS
9096{
9097 if (ada_is_aligner_type (type))
940da03e 9098 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9099 else
9100 return ada_get_base_type (type);
9101}
9102
9103
9104/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9105 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9106
fc1a4b47
AC
9107const gdb_byte *
9108ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9109{
d2e4a39e 9110 if (ada_is_aligner_type (type))
940da03e 9111 return ada_aligned_value_addr (type->field (0).type (),
dda83cd7
SM
9112 valaddr +
9113 TYPE_FIELD_BITPOS (type,
9114 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9115 else
9116 return valaddr;
9117}
9118
4c4b4cd2
PH
9119
9120
14f9c5c9 9121/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9122 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9123const char *
9124ada_enum_name (const char *name)
14f9c5c9 9125{
4c4b4cd2
PH
9126 static char *result;
9127 static size_t result_len = 0;
e6a959d6 9128 const char *tmp;
14f9c5c9 9129
4c4b4cd2
PH
9130 /* First, unqualify the enumeration name:
9131 1. Search for the last '.' character. If we find one, then skip
177b42fe 9132 all the preceding characters, the unqualified name starts
76a01679 9133 right after that dot.
4c4b4cd2 9134 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9135 translates dots into "__". Search forward for double underscores,
9136 but stop searching when we hit an overloading suffix, which is
9137 of the form "__" followed by digits. */
4c4b4cd2 9138
c3e5cd34
PH
9139 tmp = strrchr (name, '.');
9140 if (tmp != NULL)
4c4b4cd2
PH
9141 name = tmp + 1;
9142 else
14f9c5c9 9143 {
4c4b4cd2 9144 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
9145 {
9146 if (isdigit (tmp[2]))
9147 break;
9148 else
9149 name = tmp + 2;
9150 }
14f9c5c9
AS
9151 }
9152
9153 if (name[0] == 'Q')
9154 {
14f9c5c9 9155 int v;
5b4ee69b 9156
14f9c5c9 9157 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
9158 {
9159 if (sscanf (name + 2, "%x", &v) != 1)
9160 return name;
9161 }
272560b5
TT
9162 else if (((name[1] >= '0' && name[1] <= '9')
9163 || (name[1] >= 'a' && name[1] <= 'z'))
9164 && name[2] == '\0')
9165 {
9166 GROW_VECT (result, result_len, 4);
9167 xsnprintf (result, result_len, "'%c'", name[1]);
9168 return result;
9169 }
14f9c5c9 9170 else
dda83cd7 9171 return name;
14f9c5c9 9172
4c4b4cd2 9173 GROW_VECT (result, result_len, 16);
14f9c5c9 9174 if (isascii (v) && isprint (v))
dda83cd7 9175 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9176 else if (name[1] == 'U')
dda83cd7 9177 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9178 else
dda83cd7 9179 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9180
9181 return result;
9182 }
d2e4a39e 9183 else
4c4b4cd2 9184 {
c3e5cd34
PH
9185 tmp = strstr (name, "__");
9186 if (tmp == NULL)
9187 tmp = strstr (name, "$");
9188 if (tmp != NULL)
dda83cd7
SM
9189 {
9190 GROW_VECT (result, result_len, tmp - name + 1);
9191 strncpy (result, name, tmp - name);
9192 result[tmp - name] = '\0';
9193 return result;
9194 }
4c4b4cd2
PH
9195
9196 return name;
9197 }
14f9c5c9
AS
9198}
9199
14f9c5c9
AS
9200/* Evaluate the subexpression of EXP starting at *POS as for
9201 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9202 expression. */
14f9c5c9 9203
d2e4a39e
AS
9204static struct value *
9205evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9206{
fe1fe7ea 9207 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9208}
9209
9210/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9211 value it wraps. */
14f9c5c9 9212
d2e4a39e
AS
9213static struct value *
9214unwrap_value (struct value *val)
14f9c5c9 9215{
df407dfe 9216 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9217
14f9c5c9
AS
9218 if (ada_is_aligner_type (type))
9219 {
de4d072f 9220 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9221 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9222
14f9c5c9 9223 if (ada_type_name (val_type) == NULL)
d0e39ea2 9224 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9225
9226 return unwrap_value (v);
9227 }
d2e4a39e 9228 else
14f9c5c9 9229 {
d2e4a39e 9230 struct type *raw_real_type =
dda83cd7 9231 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9232
5bf03f13
JB
9233 /* If there is no parallel XVS or XVE type, then the value is
9234 already unwrapped. Return it without further modification. */
9235 if ((type == raw_real_type)
9236 && ada_find_parallel_type (type, "___XVE") == NULL)
9237 return val;
14f9c5c9 9238
d2e4a39e 9239 return
dda83cd7
SM
9240 coerce_unspec_val_to_type
9241 (val, ada_to_fixed_type (raw_real_type, 0,
9242 value_address (val),
9243 NULL, 1));
14f9c5c9
AS
9244 }
9245}
d2e4a39e
AS
9246
9247static struct value *
75f24e86 9248cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9249{
db99d0d0
JB
9250 struct value *scale
9251 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
50eff16b 9252 arg = value_cast (value_type (scale), arg);
14f9c5c9 9253
50eff16b
UW
9254 arg = value_binop (arg, scale, BINOP_MUL);
9255 return value_cast (type, arg);
14f9c5c9
AS
9256}
9257
d2e4a39e 9258static struct value *
75f24e86 9259cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9260{
50eff16b
UW
9261 if (type == value_type (arg))
9262 return arg;
5b4ee69b 9263
75f24e86 9264 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
b2188a06 9265 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
75f24e86 9266 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
50eff16b
UW
9267 else
9268 arg = value_cast (value_type (scale), arg);
9269
9270 arg = value_binop (arg, scale, BINOP_DIV);
9271 return value_cast (type, arg);
14f9c5c9
AS
9272}
9273
d99dcf51
JB
9274/* Given two array types T1 and T2, return nonzero iff both arrays
9275 contain the same number of elements. */
9276
9277static int
9278ada_same_array_size_p (struct type *t1, struct type *t2)
9279{
9280 LONGEST lo1, hi1, lo2, hi2;
9281
9282 /* Get the array bounds in order to verify that the size of
9283 the two arrays match. */
9284 if (!get_array_bounds (t1, &lo1, &hi1)
9285 || !get_array_bounds (t2, &lo2, &hi2))
9286 error (_("unable to determine array bounds"));
9287
9288 /* To make things easier for size comparison, normalize a bit
9289 the case of empty arrays by making sure that the difference
9290 between upper bound and lower bound is always -1. */
9291 if (lo1 > hi1)
9292 hi1 = lo1 - 1;
9293 if (lo2 > hi2)
9294 hi2 = lo2 - 1;
9295
9296 return (hi1 - lo1 == hi2 - lo2);
9297}
9298
9299/* Assuming that VAL is an array of integrals, and TYPE represents
9300 an array with the same number of elements, but with wider integral
9301 elements, return an array "casted" to TYPE. In practice, this
9302 means that the returned array is built by casting each element
9303 of the original array into TYPE's (wider) element type. */
9304
9305static struct value *
9306ada_promote_array_of_integrals (struct type *type, struct value *val)
9307{
9308 struct type *elt_type = TYPE_TARGET_TYPE (type);
9309 LONGEST lo, hi;
9310 struct value *res;
9311 LONGEST i;
9312
9313 /* Verify that both val and type are arrays of scalars, and
9314 that the size of val's elements is smaller than the size
9315 of type's element. */
78134374 9316 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9317 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9318 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9319 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9320 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9321 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9322
9323 if (!get_array_bounds (type, &lo, &hi))
9324 error (_("unable to determine array bounds"));
9325
9326 res = allocate_value (type);
9327
9328 /* Promote each array element. */
9329 for (i = 0; i < hi - lo + 1; i++)
9330 {
9331 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9332
9333 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9334 value_contents_all (elt), TYPE_LENGTH (elt_type));
9335 }
9336
9337 return res;
9338}
9339
4c4b4cd2
PH
9340/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9341 return the converted value. */
9342
d2e4a39e
AS
9343static struct value *
9344coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9345{
df407dfe 9346 struct type *type2 = value_type (val);
5b4ee69b 9347
14f9c5c9
AS
9348 if (type == type2)
9349 return val;
9350
61ee279c
PH
9351 type2 = ada_check_typedef (type2);
9352 type = ada_check_typedef (type);
14f9c5c9 9353
78134374
SM
9354 if (type2->code () == TYPE_CODE_PTR
9355 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9356 {
9357 val = ada_value_ind (val);
df407dfe 9358 type2 = value_type (val);
14f9c5c9
AS
9359 }
9360
78134374
SM
9361 if (type2->code () == TYPE_CODE_ARRAY
9362 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9363 {
d99dcf51
JB
9364 if (!ada_same_array_size_p (type, type2))
9365 error (_("cannot assign arrays of different length"));
9366
9367 if (is_integral_type (TYPE_TARGET_TYPE (type))
9368 && is_integral_type (TYPE_TARGET_TYPE (type2))
9369 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9370 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9371 {
9372 /* Allow implicit promotion of the array elements to
9373 a wider type. */
9374 return ada_promote_array_of_integrals (type, val);
9375 }
9376
9377 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
9378 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9379 error (_("Incompatible types in assignment"));
04624583 9380 deprecated_set_value_type (val, type);
14f9c5c9 9381 }
d2e4a39e 9382 return val;
14f9c5c9
AS
9383}
9384
4c4b4cd2
PH
9385static struct value *
9386ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9387{
9388 struct value *val;
9389 struct type *type1, *type2;
9390 LONGEST v, v1, v2;
9391
994b9211
AC
9392 arg1 = coerce_ref (arg1);
9393 arg2 = coerce_ref (arg2);
18af8284
JB
9394 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9395 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9396
78134374
SM
9397 if (type1->code () != TYPE_CODE_INT
9398 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9399 return value_binop (arg1, arg2, op);
9400
76a01679 9401 switch (op)
4c4b4cd2
PH
9402 {
9403 case BINOP_MOD:
9404 case BINOP_DIV:
9405 case BINOP_REM:
9406 break;
9407 default:
9408 return value_binop (arg1, arg2, op);
9409 }
9410
9411 v2 = value_as_long (arg2);
9412 if (v2 == 0)
323e0a4a 9413 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2 9414
c6d940a9 9415 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9416 return value_binop (arg1, arg2, op);
9417
9418 v1 = value_as_long (arg1);
9419 switch (op)
9420 {
9421 case BINOP_DIV:
9422 v = v1 / v2;
76a01679 9423 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9424 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9425 break;
9426 case BINOP_REM:
9427 v = v1 % v2;
76a01679 9428 if (v * v1 < 0)
dda83cd7 9429 v -= v2;
4c4b4cd2
PH
9430 break;
9431 default:
9432 /* Should not reach this point. */
9433 v = 0;
9434 }
9435
9436 val = allocate_value (type1);
990a07ab 9437 store_unsigned_integer (value_contents_raw (val),
dda83cd7 9438 TYPE_LENGTH (value_type (val)),
34877895 9439 type_byte_order (type1), v);
4c4b4cd2
PH
9440 return val;
9441}
9442
9443static int
9444ada_value_equal (struct value *arg1, struct value *arg2)
9445{
df407dfe
AC
9446 if (ada_is_direct_array_type (value_type (arg1))
9447 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9448 {
79e8fcaa
JB
9449 struct type *arg1_type, *arg2_type;
9450
f58b38bf 9451 /* Automatically dereference any array reference before
dda83cd7 9452 we attempt to perform the comparison. */
f58b38bf
JB
9453 arg1 = ada_coerce_ref (arg1);
9454 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9455
4c4b4cd2
PH
9456 arg1 = ada_coerce_to_simple_array (arg1);
9457 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9458
9459 arg1_type = ada_check_typedef (value_type (arg1));
9460 arg2_type = ada_check_typedef (value_type (arg2));
9461
78134374 9462 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9463 || arg2_type->code () != TYPE_CODE_ARRAY)
9464 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9465 /* FIXME: The following works only for types whose
dda83cd7
SM
9466 representations use all bits (no padding or undefined bits)
9467 and do not have user-defined equality. */
79e8fcaa
JB
9468 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9469 && memcmp (value_contents (arg1), value_contents (arg2),
9470 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9471 }
9472 return value_equal (arg1, arg2);
9473}
9474
52ce6436
PH
9475/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9476 component of LHS (a simple array or a record), updating *POS past
9477 the expression, assuming that LHS is contained in CONTAINER. Does
9478 not modify the inferior's memory, nor does it modify LHS (unless
9479 LHS == CONTAINER). */
9480
9481static void
9482assign_component (struct value *container, struct value *lhs, LONGEST index,
9483 struct expression *exp, int *pos)
9484{
9485 struct value *mark = value_mark ();
9486 struct value *elt;
0e2da9f0 9487 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9488
78134374 9489 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9490 {
22601c15
UW
9491 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9492 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9493
52ce6436
PH
9494 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9495 }
9496 else
9497 {
9498 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9499 elt = ada_to_fixed_value (elt);
52ce6436
PH
9500 }
9501
9502 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9503 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9504 else
9505 value_assign_to_component (container, elt,
9506 ada_evaluate_subexp (NULL, exp, pos,
9507 EVAL_NORMAL));
9508
9509 value_free_to_mark (mark);
9510}
9511
9512/* Assuming that LHS represents an lvalue having a record or array
9513 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9514 of that aggregate's value to LHS, advancing *POS past the
9515 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9516 lvalue containing LHS (possibly LHS itself). Does not modify
9517 the inferior's memory, nor does it modify the contents of
0963b4bd 9518 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9519
9520static struct value *
9521assign_aggregate (struct value *container,
9522 struct value *lhs, struct expression *exp,
9523 int *pos, enum noside noside)
9524{
9525 struct type *lhs_type;
9526 int n = exp->elts[*pos+1].longconst;
9527 LONGEST low_index, high_index;
52ce6436 9528 int i;
52ce6436
PH
9529
9530 *pos += 3;
9531 if (noside != EVAL_NORMAL)
9532 {
52ce6436
PH
9533 for (i = 0; i < n; i += 1)
9534 ada_evaluate_subexp (NULL, exp, pos, noside);
9535 return container;
9536 }
9537
9538 container = ada_coerce_ref (container);
9539 if (ada_is_direct_array_type (value_type (container)))
9540 container = ada_coerce_to_simple_array (container);
9541 lhs = ada_coerce_ref (lhs);
9542 if (!deprecated_value_modifiable (lhs))
9543 error (_("Left operand of assignment is not a modifiable lvalue."));
9544
0e2da9f0 9545 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9546 if (ada_is_direct_array_type (lhs_type))
9547 {
9548 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9549 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9550 low_index = lhs_type->bounds ()->low.const_val ();
9551 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9552 }
78134374 9553 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9554 {
9555 low_index = 0;
9556 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9557 }
9558 else
9559 error (_("Left-hand side must be array or record."));
9560
cf608cc4 9561 std::vector<LONGEST> indices (4);
52ce6436
PH
9562 indices[0] = indices[1] = low_index - 1;
9563 indices[2] = indices[3] = high_index + 1;
52ce6436
PH
9564
9565 for (i = 0; i < n; i += 1)
9566 {
9567 switch (exp->elts[*pos].opcode)
9568 {
1fbf5ada 9569 case OP_CHOICES:
cf608cc4 9570 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
1fbf5ada
JB
9571 low_index, high_index);
9572 break;
9573 case OP_POSITIONAL:
9574 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436 9575 low_index, high_index);
1fbf5ada
JB
9576 break;
9577 case OP_OTHERS:
9578 if (i != n-1)
9579 error (_("Misplaced 'others' clause"));
cf608cc4
TT
9580 aggregate_assign_others (container, lhs, exp, pos, indices,
9581 low_index, high_index);
1fbf5ada
JB
9582 break;
9583 default:
9584 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9585 }
9586 }
9587
9588 return container;
9589}
9590
9591/* Assign into the component of LHS indexed by the OP_POSITIONAL
9592 construct at *POS, updating *POS past the construct, given that
cf608cc4
TT
9593 the positions are relative to lower bound LOW, where HIGH is the
9594 upper bound. Record the position in INDICES. CONTAINER is as for
0963b4bd 9595 assign_aggregate. */
52ce6436
PH
9596static void
9597aggregate_assign_positional (struct value *container,
9598 struct value *lhs, struct expression *exp,
cf608cc4
TT
9599 int *pos, std::vector<LONGEST> &indices,
9600 LONGEST low, LONGEST high)
52ce6436
PH
9601{
9602 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9603
9604 if (ind - 1 == high)
e1d5a0d2 9605 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9606 if (ind <= high)
9607 {
cf608cc4 9608 add_component_interval (ind, ind, indices);
52ce6436
PH
9609 *pos += 3;
9610 assign_component (container, lhs, ind, exp, pos);
9611 }
9612 else
9613 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9614}
9615
9616/* Assign into the components of LHS indexed by the OP_CHOICES
9617 construct at *POS, updating *POS past the construct, given that
9618 the allowable indices are LOW..HIGH. Record the indices assigned
cf608cc4 9619 to in INDICES. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9620static void
9621aggregate_assign_from_choices (struct value *container,
9622 struct value *lhs, struct expression *exp,
cf608cc4
TT
9623 int *pos, std::vector<LONGEST> &indices,
9624 LONGEST low, LONGEST high)
52ce6436
PH
9625{
9626 int j;
9627 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9628 int choice_pos, expr_pc;
9629 int is_array = ada_is_direct_array_type (value_type (lhs));
9630
9631 choice_pos = *pos += 3;
9632
9633 for (j = 0; j < n_choices; j += 1)
9634 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9635 expr_pc = *pos;
9636 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9637
9638 for (j = 0; j < n_choices; j += 1)
9639 {
9640 LONGEST lower, upper;
9641 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9642
52ce6436
PH
9643 if (op == OP_DISCRETE_RANGE)
9644 {
9645 choice_pos += 1;
9646 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9647 EVAL_NORMAL));
9648 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9649 EVAL_NORMAL));
9650 }
9651 else if (is_array)
9652 {
9653 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9654 EVAL_NORMAL));
9655 upper = lower;
9656 }
9657 else
9658 {
9659 int ind;
0d5cff50 9660 const char *name;
5b4ee69b 9661
52ce6436
PH
9662 switch (op)
9663 {
9664 case OP_NAME:
9665 name = &exp->elts[choice_pos + 2].string;
9666 break;
9667 case OP_VAR_VALUE:
987012b8 9668 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9669 break;
9670 default:
9671 error (_("Invalid record component association."));
9672 }
9673 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9674 ind = 0;
9675 if (! find_struct_field (name, value_type (lhs), 0,
9676 NULL, NULL, NULL, NULL, &ind))
9677 error (_("Unknown component name: %s."), name);
9678 lower = upper = ind;
9679 }
9680
9681 if (lower <= upper && (lower < low || upper > high))
9682 error (_("Index in component association out of bounds."));
9683
cf608cc4 9684 add_component_interval (lower, upper, indices);
52ce6436
PH
9685 while (lower <= upper)
9686 {
9687 int pos1;
5b4ee69b 9688
52ce6436
PH
9689 pos1 = expr_pc;
9690 assign_component (container, lhs, lower, exp, &pos1);
9691 lower += 1;
9692 }
9693 }
9694}
9695
9696/* Assign the value of the expression in the OP_OTHERS construct in
9697 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9698 have not been previously assigned. The index intervals already assigned
cf608cc4
TT
9699 are in INDICES. Updates *POS to after the OP_OTHERS clause.
9700 CONTAINER is as for assign_aggregate. */
52ce6436
PH
9701static void
9702aggregate_assign_others (struct value *container,
9703 struct value *lhs, struct expression *exp,
cf608cc4 9704 int *pos, std::vector<LONGEST> &indices,
52ce6436
PH
9705 LONGEST low, LONGEST high)
9706{
9707 int i;
5ce64950 9708 int expr_pc = *pos + 1;
52ce6436 9709
cf608cc4 9710 int num_indices = indices.size ();
52ce6436
PH
9711 for (i = 0; i < num_indices - 2; i += 2)
9712 {
9713 LONGEST ind;
5b4ee69b 9714
52ce6436
PH
9715 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9716 {
5ce64950 9717 int localpos;
5b4ee69b 9718
5ce64950
MS
9719 localpos = expr_pc;
9720 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9721 }
9722 }
9723 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9724}
9725
cf608cc4
TT
9726/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9727 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9728 overlap. */
52ce6436
PH
9729static void
9730add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9731 std::vector<LONGEST> &indices)
52ce6436
PH
9732{
9733 int i, j;
5b4ee69b 9734
cf608cc4
TT
9735 int size = indices.size ();
9736 for (i = 0; i < size; i += 2) {
52ce6436
PH
9737 if (high >= indices[i] && low <= indices[i + 1])
9738 {
9739 int kh;
5b4ee69b 9740
cf608cc4 9741 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9742 if (high < indices[kh])
9743 break;
9744 if (low < indices[i])
9745 indices[i] = low;
9746 indices[i + 1] = indices[kh - 1];
9747 if (high > indices[i + 1])
9748 indices[i + 1] = high;
cf608cc4
TT
9749 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9750 indices.resize (kh - i - 2);
52ce6436
PH
9751 return;
9752 }
9753 else if (high < indices[i])
9754 break;
9755 }
9756
cf608cc4
TT
9757 indices.resize (indices.size () + 2);
9758 for (j = size - 1; j >= i + 2; j -= 1)
52ce6436
PH
9759 indices[j] = indices[j - 2];
9760 indices[i] = low;
9761 indices[i + 1] = high;
9762}
9763
6e48bd2c
JB
9764/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9765 is different. */
9766
9767static struct value *
b7e22850 9768ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9769{
9770 if (type == ada_check_typedef (value_type (arg2)))
9771 return arg2;
9772
b2188a06 9773 if (ada_is_gnat_encoded_fixed_point_type (type))
75f24e86 9774 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c 9775
b2188a06 9776 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
75f24e86 9777 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c
JB
9778
9779 return value_cast (type, arg2);
9780}
9781
284614f0
JB
9782/* Evaluating Ada expressions, and printing their result.
9783 ------------------------------------------------------
9784
21649b50
JB
9785 1. Introduction:
9786 ----------------
9787
284614f0
JB
9788 We usually evaluate an Ada expression in order to print its value.
9789 We also evaluate an expression in order to print its type, which
9790 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9791 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9792 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9793 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9794 similar.
9795
9796 Evaluating expressions is a little more complicated for Ada entities
9797 than it is for entities in languages such as C. The main reason for
9798 this is that Ada provides types whose definition might be dynamic.
9799 One example of such types is variant records. Or another example
9800 would be an array whose bounds can only be known at run time.
9801
9802 The following description is a general guide as to what should be
9803 done (and what should NOT be done) in order to evaluate an expression
9804 involving such types, and when. This does not cover how the semantic
9805 information is encoded by GNAT as this is covered separatly. For the
9806 document used as the reference for the GNAT encoding, see exp_dbug.ads
9807 in the GNAT sources.
9808
9809 Ideally, we should embed each part of this description next to its
9810 associated code. Unfortunately, the amount of code is so vast right
9811 now that it's hard to see whether the code handling a particular
9812 situation might be duplicated or not. One day, when the code is
9813 cleaned up, this guide might become redundant with the comments
9814 inserted in the code, and we might want to remove it.
9815
21649b50
JB
9816 2. ``Fixing'' an Entity, the Simple Case:
9817 -----------------------------------------
9818
284614f0
JB
9819 When evaluating Ada expressions, the tricky issue is that they may
9820 reference entities whose type contents and size are not statically
9821 known. Consider for instance a variant record:
9822
9823 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9824 case Empty is
9825 when True => null;
9826 when False => Value : Integer;
9827 end case;
284614f0
JB
9828 end record;
9829 Yes : Rec := (Empty => False, Value => 1);
9830 No : Rec := (empty => True);
9831
9832 The size and contents of that record depends on the value of the
9833 descriminant (Rec.Empty). At this point, neither the debugging
9834 information nor the associated type structure in GDB are able to
9835 express such dynamic types. So what the debugger does is to create
9836 "fixed" versions of the type that applies to the specific object.
30baf67b 9837 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9838 which means creating its associated fixed type.
9839
9840 Example: when printing the value of variable "Yes" above, its fixed
9841 type would look like this:
9842
9843 type Rec is record
dda83cd7
SM
9844 Empty : Boolean;
9845 Value : Integer;
284614f0
JB
9846 end record;
9847
9848 On the other hand, if we printed the value of "No", its fixed type
9849 would become:
9850
9851 type Rec is record
dda83cd7 9852 Empty : Boolean;
284614f0
JB
9853 end record;
9854
9855 Things become a little more complicated when trying to fix an entity
9856 with a dynamic type that directly contains another dynamic type,
9857 such as an array of variant records, for instance. There are
9858 two possible cases: Arrays, and records.
9859
21649b50
JB
9860 3. ``Fixing'' Arrays:
9861 ---------------------
9862
9863 The type structure in GDB describes an array in terms of its bounds,
9864 and the type of its elements. By design, all elements in the array
9865 have the same type and we cannot represent an array of variant elements
9866 using the current type structure in GDB. When fixing an array,
9867 we cannot fix the array element, as we would potentially need one
9868 fixed type per element of the array. As a result, the best we can do
9869 when fixing an array is to produce an array whose bounds and size
9870 are correct (allowing us to read it from memory), but without having
9871 touched its element type. Fixing each element will be done later,
9872 when (if) necessary.
9873
9874 Arrays are a little simpler to handle than records, because the same
9875 amount of memory is allocated for each element of the array, even if
1b536f04 9876 the amount of space actually used by each element differs from element
21649b50 9877 to element. Consider for instance the following array of type Rec:
284614f0
JB
9878
9879 type Rec_Array is array (1 .. 2) of Rec;
9880
1b536f04
JB
9881 The actual amount of memory occupied by each element might be different
9882 from element to element, depending on the value of their discriminant.
21649b50 9883 But the amount of space reserved for each element in the array remains
1b536f04 9884 fixed regardless. So we simply need to compute that size using
21649b50
JB
9885 the debugging information available, from which we can then determine
9886 the array size (we multiply the number of elements of the array by
9887 the size of each element).
9888
9889 The simplest case is when we have an array of a constrained element
9890 type. For instance, consider the following type declarations:
9891
dda83cd7
SM
9892 type Bounded_String (Max_Size : Integer) is
9893 Length : Integer;
9894 Buffer : String (1 .. Max_Size);
9895 end record;
9896 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9897
9898 In this case, the compiler describes the array as an array of
9899 variable-size elements (identified by its XVS suffix) for which
9900 the size can be read in the parallel XVZ variable.
9901
9902 In the case of an array of an unconstrained element type, the compiler
9903 wraps the array element inside a private PAD type. This type should not
9904 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9905 that we also use the adjective "aligner" in our code to designate
9906 these wrapper types.
9907
1b536f04 9908 In some cases, the size allocated for each element is statically
21649b50
JB
9909 known. In that case, the PAD type already has the correct size,
9910 and the array element should remain unfixed.
9911
9912 But there are cases when this size is not statically known.
9913 For instance, assuming that "Five" is an integer variable:
284614f0 9914
dda83cd7
SM
9915 type Dynamic is array (1 .. Five) of Integer;
9916 type Wrapper (Has_Length : Boolean := False) is record
9917 Data : Dynamic;
9918 case Has_Length is
9919 when True => Length : Integer;
9920 when False => null;
9921 end case;
9922 end record;
9923 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9924
dda83cd7
SM
9925 Hello : Wrapper_Array := (others => (Has_Length => True,
9926 Data => (others => 17),
9927 Length => 1));
284614f0
JB
9928
9929
9930 The debugging info would describe variable Hello as being an
9931 array of a PAD type. The size of that PAD type is not statically
9932 known, but can be determined using a parallel XVZ variable.
9933 In that case, a copy of the PAD type with the correct size should
9934 be used for the fixed array.
9935
21649b50
JB
9936 3. ``Fixing'' record type objects:
9937 ----------------------------------
9938
9939 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9940 record types. In this case, in order to compute the associated
9941 fixed type, we need to determine the size and offset of each of
9942 its components. This, in turn, requires us to compute the fixed
9943 type of each of these components.
9944
9945 Consider for instance the example:
9946
dda83cd7
SM
9947 type Bounded_String (Max_Size : Natural) is record
9948 Str : String (1 .. Max_Size);
9949 Length : Natural;
9950 end record;
9951 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
9952
9953 In that case, the position of field "Length" depends on the size
9954 of field Str, which itself depends on the value of the Max_Size
21649b50 9955 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9956 we need to fix the type of field Str. Therefore, fixing a variant
9957 record requires us to fix each of its components.
9958
9959 However, if a component does not have a dynamic size, the component
9960 should not be fixed. In particular, fields that use a PAD type
9961 should not fixed. Here is an example where this might happen
9962 (assuming type Rec above):
9963
9964 type Container (Big : Boolean) is record
dda83cd7
SM
9965 First : Rec;
9966 After : Integer;
9967 case Big is
9968 when True => Another : Integer;
9969 when False => null;
9970 end case;
284614f0
JB
9971 end record;
9972 My_Container : Container := (Big => False,
dda83cd7
SM
9973 First => (Empty => True),
9974 After => 42);
284614f0
JB
9975
9976 In that example, the compiler creates a PAD type for component First,
9977 whose size is constant, and then positions the component After just
9978 right after it. The offset of component After is therefore constant
9979 in this case.
9980
9981 The debugger computes the position of each field based on an algorithm
9982 that uses, among other things, the actual position and size of the field
21649b50
JB
9983 preceding it. Let's now imagine that the user is trying to print
9984 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9985 end up computing the offset of field After based on the size of the
9986 fixed version of field First. And since in our example First has
9987 only one actual field, the size of the fixed type is actually smaller
9988 than the amount of space allocated to that field, and thus we would
9989 compute the wrong offset of field After.
9990
21649b50
JB
9991 To make things more complicated, we need to watch out for dynamic
9992 components of variant records (identified by the ___XVL suffix in
9993 the component name). Even if the target type is a PAD type, the size
9994 of that type might not be statically known. So the PAD type needs
9995 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9996 we might end up with the wrong size for our component. This can be
9997 observed with the following type declarations:
284614f0 9998
dda83cd7
SM
9999 type Octal is new Integer range 0 .. 7;
10000 type Octal_Array is array (Positive range <>) of Octal;
10001 pragma Pack (Octal_Array);
284614f0 10002
dda83cd7
SM
10003 type Octal_Buffer (Size : Positive) is record
10004 Buffer : Octal_Array (1 .. Size);
10005 Length : Integer;
10006 end record;
284614f0
JB
10007
10008 In that case, Buffer is a PAD type whose size is unset and needs
10009 to be computed by fixing the unwrapped type.
10010
21649b50
JB
10011 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10012 ----------------------------------------------------------
10013
10014 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10015 thus far, be actually fixed?
10016
10017 The answer is: Only when referencing that element. For instance
10018 when selecting one component of a record, this specific component
10019 should be fixed at that point in time. Or when printing the value
10020 of a record, each component should be fixed before its value gets
10021 printed. Similarly for arrays, the element of the array should be
10022 fixed when printing each element of the array, or when extracting
10023 one element out of that array. On the other hand, fixing should
10024 not be performed on the elements when taking a slice of an array!
10025
31432a67 10026 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10027 size of each field is that we end up also miscomputing the size
10028 of the containing type. This can have adverse results when computing
10029 the value of an entity. GDB fetches the value of an entity based
10030 on the size of its type, and thus a wrong size causes GDB to fetch
10031 the wrong amount of memory. In the case where the computed size is
10032 too small, GDB fetches too little data to print the value of our
31432a67 10033 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10034 past the buffer containing the data =:-o. */
10035
ced9779b
JB
10036/* Evaluate a subexpression of EXP, at index *POS, and return a value
10037 for that subexpression cast to TO_TYPE. Advance *POS over the
10038 subexpression. */
10039
10040static value *
10041ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10042 enum noside noside, struct type *to_type)
10043{
10044 int pc = *pos;
10045
10046 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10047 || exp->elts[pc].opcode == OP_VAR_VALUE)
10048 {
10049 (*pos) += 4;
10050
10051 value *val;
10052 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
dda83cd7
SM
10053 {
10054 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10055 return value_zero (to_type, not_lval);
10056
10057 val = evaluate_var_msym_value (noside,
10058 exp->elts[pc + 1].objfile,
10059 exp->elts[pc + 2].msymbol);
10060 }
ced9779b 10061 else
dda83cd7
SM
10062 val = evaluate_var_value (noside,
10063 exp->elts[pc + 1].block,
10064 exp->elts[pc + 2].symbol);
ced9779b
JB
10065
10066 if (noside == EVAL_SKIP)
dda83cd7 10067 return eval_skip_value (exp);
ced9779b
JB
10068
10069 val = ada_value_cast (to_type, val);
10070
10071 /* Follow the Ada language semantics that do not allow taking
10072 an address of the result of a cast (view conversion in Ada). */
10073 if (VALUE_LVAL (val) == lval_memory)
dda83cd7
SM
10074 {
10075 if (value_lazy (val))
10076 value_fetch_lazy (val);
10077 VALUE_LVAL (val) = not_lval;
10078 }
ced9779b
JB
10079 return val;
10080 }
10081
10082 value *val = evaluate_subexp (to_type, exp, pos, noside);
10083 if (noside == EVAL_SKIP)
10084 return eval_skip_value (exp);
10085 return ada_value_cast (to_type, val);
10086}
10087
284614f0
JB
10088/* Implement the evaluate_exp routine in the exp_descriptor structure
10089 for the Ada language. */
10090
52ce6436 10091static struct value *
ebf56fd3 10092ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
dda83cd7 10093 int *pos, enum noside noside)
14f9c5c9
AS
10094{
10095 enum exp_opcode op;
b5385fc0 10096 int tem;
14f9c5c9 10097 int pc;
5ec18f2b 10098 int preeval_pos;
14f9c5c9
AS
10099 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10100 struct type *type;
52ce6436 10101 int nargs, oplen;
d2e4a39e 10102 struct value **argvec;
14f9c5c9 10103
d2e4a39e
AS
10104 pc = *pos;
10105 *pos += 1;
14f9c5c9
AS
10106 op = exp->elts[pc].opcode;
10107
d2e4a39e 10108 switch (op)
14f9c5c9
AS
10109 {
10110 default:
10111 *pos -= 1;
6e48bd2c 10112 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10113
10114 if (noside == EVAL_NORMAL)
10115 arg1 = unwrap_value (arg1);
6e48bd2c 10116
edd079d9 10117 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
dda83cd7
SM
10118 then we need to perform the conversion manually, because
10119 evaluate_subexp_standard doesn't do it. This conversion is
10120 necessary in Ada because the different kinds of float/fixed
10121 types in Ada have different representations.
6e48bd2c 10122
dda83cd7
SM
10123 Similarly, we need to perform the conversion from OP_LONG
10124 ourselves. */
edd079d9 10125 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
dda83cd7 10126 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10127
10128 return arg1;
4c4b4cd2
PH
10129
10130 case OP_STRING:
10131 {
dda83cd7
SM
10132 struct value *result;
10133
10134 *pos -= 1;
10135 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10136 /* The result type will have code OP_STRING, bashed there from
10137 OP_ARRAY. Bash it back. */
10138 if (value_type (result)->code () == TYPE_CODE_STRING)
10139 value_type (result)->set_code (TYPE_CODE_ARRAY);
10140 return result;
4c4b4cd2 10141 }
14f9c5c9
AS
10142
10143 case UNOP_CAST:
10144 (*pos) += 2;
10145 type = exp->elts[pc + 1].type;
ced9779b 10146 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10147
4c4b4cd2
PH
10148 case UNOP_QUAL:
10149 (*pos) += 2;
10150 type = exp->elts[pc + 1].type;
10151 return ada_evaluate_subexp (type, exp, pos, noside);
10152
14f9c5c9 10153 case BINOP_ASSIGN:
fe1fe7ea 10154 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
52ce6436
PH
10155 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10156 {
10157 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10158 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10159 return arg1;
10160 return ada_value_assign (arg1, arg1);
10161 }
003f3813 10162 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
dda83cd7
SM
10163 except if the lhs of our assignment is a convenience variable.
10164 In the case of assigning to a convenience variable, the lhs
10165 should be exactly the result of the evaluation of the rhs. */
003f3813
JB
10166 type = value_type (arg1);
10167 if (VALUE_LVAL (arg1) == lval_internalvar)
dda83cd7 10168 type = NULL;
003f3813 10169 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10170 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10171 return arg1;
f411722c
TT
10172 if (VALUE_LVAL (arg1) == lval_internalvar)
10173 {
10174 /* Nothing. */
10175 }
b2188a06 10176 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10177 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
b2188a06 10178 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
dda83cd7
SM
10179 error
10180 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10181 else
dda83cd7 10182 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10183 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10184
10185 case BINOP_ADD:
10186 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10187 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10188 if (noside == EVAL_SKIP)
dda83cd7 10189 goto nosideret;
78134374 10190 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10191 return (value_from_longest
10192 (value_type (arg1),
10193 value_as_long (arg1) + value_as_long (arg2)));
78134374 10194 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10195 return (value_from_longest
10196 (value_type (arg2),
10197 value_as_long (arg1) + value_as_long (arg2)));
b49180ac
TT
10198 /* Preserve the original type for use by the range case below.
10199 We cannot cast the result to a reference type, so if ARG1 is
10200 a reference type, find its underlying type. */
b7789565 10201 type = value_type (arg1);
78134374 10202 while (type->code () == TYPE_CODE_REF)
dda83cd7 10203 type = TYPE_TARGET_TYPE (type);
b49180ac
TT
10204 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10205 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10206 {
10207 if (value_type (arg1) != value_type (arg2))
10208 error (_("Operands of fixed-point addition must have the same type"));
10209 }
10210 else
10211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10212 arg1 = value_binop (arg1, arg2, BINOP_ADD);
10213 /* We need to special-case the result of adding to a range.
10214 This is done for the benefit of "ptype". gdb's Ada support
10215 historically used the LHS to set the result type here, so
10216 preserve this behavior. */
10217 if (type->code () == TYPE_CODE_RANGE)
10218 arg1 = value_cast (type, arg1);
10219 return arg1;
14f9c5c9
AS
10220
10221 case BINOP_SUB:
10222 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10223 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10224 if (noside == EVAL_SKIP)
dda83cd7 10225 goto nosideret;
78134374 10226 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10227 return (value_from_longest
10228 (value_type (arg1),
10229 value_as_long (arg1) - value_as_long (arg2)));
78134374 10230 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10231 return (value_from_longest
10232 (value_type (arg2),
10233 value_as_long (arg1) - value_as_long (arg2)));
b49180ac
TT
10234 /* Preserve the original type for use by the range case below.
10235 We cannot cast the result to a reference type, so if ARG1 is
10236 a reference type, find its underlying type. */
b7789565 10237 type = value_type (arg1);
78134374 10238 while (type->code () == TYPE_CODE_REF)
dda83cd7 10239 type = TYPE_TARGET_TYPE (type);
b49180ac
TT
10240 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10241 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10242 {
10243 if (value_type (arg1) != value_type (arg2))
10244 error (_("Operands of fixed-point subtraction "
10245 "must have the same type"));
10246 }
10247 else
10248 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10249 arg1 = value_binop (arg1, arg2, BINOP_SUB);
10250 /* We need to special-case the result of adding to a range.
10251 This is done for the benefit of "ptype". gdb's Ada support
10252 historically used the LHS to set the result type here, so
10253 preserve this behavior. */
10254 if (type->code () == TYPE_CODE_RANGE)
10255 arg1 = value_cast (type, arg1);
10256 return arg1;
14f9c5c9
AS
10257
10258 case BINOP_MUL:
10259 case BINOP_DIV:
e1578042
JB
10260 case BINOP_REM:
10261 case BINOP_MOD:
fe1fe7ea
SM
10262 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10263 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10264 if (noside == EVAL_SKIP)
dda83cd7 10265 goto nosideret;
e1578042 10266 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10267 {
10268 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10269 return value_zero (value_type (arg1), not_lval);
10270 }
14f9c5c9 10271 else
dda83cd7
SM
10272 {
10273 type = builtin_type (exp->gdbarch)->builtin_double;
10274 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10275 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10276 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10277 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10278 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10279 return ada_value_binop (arg1, arg2, op);
10280 }
4c4b4cd2 10281
4c4b4cd2
PH
10282 case BINOP_EQUAL:
10283 case BINOP_NOTEQUAL:
fe1fe7ea 10284 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
df407dfe 10285 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10286 if (noside == EVAL_SKIP)
dda83cd7 10287 goto nosideret;
4c4b4cd2 10288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10289 tem = 0;
4c4b4cd2 10290 else
f44316fa
UW
10291 {
10292 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10293 tem = ada_value_equal (arg1, arg2);
10294 }
4c4b4cd2 10295 if (op == BINOP_NOTEQUAL)
dda83cd7 10296 tem = !tem;
fbb06eb1
UW
10297 type = language_bool_type (exp->language_defn, exp->gdbarch);
10298 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10299
10300 case UNOP_NEG:
fe1fe7ea 10301 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10302 if (noside == EVAL_SKIP)
dda83cd7 10303 goto nosideret;
b2188a06 10304 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10305 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10306 else
f44316fa
UW
10307 {
10308 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10309 return value_neg (arg1);
10310 }
4c4b4cd2 10311
2330c6c6
JB
10312 case BINOP_LOGICAL_AND:
10313 case BINOP_LOGICAL_OR:
10314 case UNOP_LOGICAL_NOT:
000d5124 10315 {
dda83cd7 10316 struct value *val;
000d5124 10317
dda83cd7
SM
10318 *pos -= 1;
10319 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1 10320 type = language_bool_type (exp->language_defn, exp->gdbarch);
dda83cd7 10321 return value_cast (type, val);
000d5124 10322 }
2330c6c6
JB
10323
10324 case BINOP_BITWISE_AND:
10325 case BINOP_BITWISE_IOR:
10326 case BINOP_BITWISE_XOR:
000d5124 10327 {
dda83cd7 10328 struct value *val;
000d5124 10329
fe1fe7ea
SM
10330 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10331 *pos = pc;
dda83cd7 10332 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
000d5124 10333
dda83cd7 10334 return value_cast (value_type (arg1), val);
000d5124 10335 }
2330c6c6 10336
14f9c5c9
AS
10337 case OP_VAR_VALUE:
10338 *pos -= 1;
6799def4 10339
14f9c5c9 10340 if (noside == EVAL_SKIP)
dda83cd7
SM
10341 {
10342 *pos += 4;
10343 goto nosideret;
10344 }
da5c522f
JB
10345
10346 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
10347 /* Only encountered when an unresolved symbol occurs in a
10348 context other than a function call, in which case, it is
10349 invalid. */
10350 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10351 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10352
10353 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10354 {
10355 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10356 /* Check to see if this is a tagged type. We also need to handle
10357 the case where the type is a reference to a tagged type, but
10358 we have to be careful to exclude pointers to tagged types.
10359 The latter should be shown as usual (as a pointer), whereas
10360 a reference should mostly be transparent to the user. */
10361 if (ada_is_tagged_type (type, 0)
10362 || (type->code () == TYPE_CODE_REF
10363 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10364 {
10365 /* Tagged types are a little special in the fact that the real
10366 type is dynamic and can only be determined by inspecting the
10367 object's tag. This means that we need to get the object's
10368 value first (EVAL_NORMAL) and then extract the actual object
10369 type from its tag.
10370
10371 Note that we cannot skip the final step where we extract
10372 the object type from its tag, because the EVAL_NORMAL phase
10373 results in dynamic components being resolved into fixed ones.
10374 This can cause problems when trying to print the type
10375 description of tagged types whose parent has a dynamic size:
10376 We use the type name of the "_parent" component in order
10377 to print the name of the ancestor type in the type description.
10378 If that component had a dynamic size, the resolution into
10379 a fixed type would result in the loss of that type name,
10380 thus preventing us from printing the name of the ancestor
10381 type in the type description. */
fe1fe7ea 10382 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
0d72a7c3 10383
78134374 10384 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10385 {
10386 struct type *actual_type;
10387
10388 actual_type = type_from_tag (ada_value_tag (arg1));
10389 if (actual_type == NULL)
10390 /* If, for some reason, we were unable to determine
10391 the actual type from the tag, then use the static
10392 approximation that we just computed as a fallback.
10393 This can happen if the debugging information is
10394 incomplete, for instance. */
10395 actual_type = type;
10396 return value_zero (actual_type, not_lval);
10397 }
10398 else
10399 {
10400 /* In the case of a ref, ada_coerce_ref takes care
10401 of determining the actual type. But the evaluation
10402 should return a ref as it should be valid to ask
10403 for its address; so rebuild a ref after coerce. */
10404 arg1 = ada_coerce_ref (arg1);
a65cfae5 10405 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10406 }
10407 }
0c1f74cf 10408
84754697
JB
10409 /* Records and unions for which GNAT encodings have been
10410 generated need to be statically fixed as well.
10411 Otherwise, non-static fixing produces a type where
10412 all dynamic properties are removed, which prevents "ptype"
10413 from being able to completely describe the type.
10414 For instance, a case statement in a variant record would be
10415 replaced by the relevant components based on the actual
10416 value of the discriminants. */
78134374 10417 if ((type->code () == TYPE_CODE_STRUCT
84754697 10418 && dynamic_template_type (type) != NULL)
78134374 10419 || (type->code () == TYPE_CODE_UNION
84754697
JB
10420 && ada_find_parallel_type (type, "___XVU") != NULL))
10421 {
10422 *pos += 4;
10423 return value_zero (to_static_fixed_type (type), not_lval);
10424 }
dda83cd7 10425 }
da5c522f
JB
10426
10427 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10428 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10429
10430 case OP_FUNCALL:
10431 (*pos) += 2;
10432
10433 /* Allocate arg vector, including space for the function to be
dda83cd7 10434 called in argvec[0] and a terminating NULL. */
4c4b4cd2 10435 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10436 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10437
10438 if (exp->elts[*pos].opcode == OP_VAR_VALUE
dda83cd7
SM
10439 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10440 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10441 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2 10442 else
dda83cd7
SM
10443 {
10444 for (tem = 0; tem <= nargs; tem += 1)
fe1fe7ea
SM
10445 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10446 argvec[tem] = 0;
4c4b4cd2 10447
dda83cd7
SM
10448 if (noside == EVAL_SKIP)
10449 goto nosideret;
10450 }
4c4b4cd2 10451
ad82864c
JB
10452 if (ada_is_constrained_packed_array_type
10453 (desc_base_type (value_type (argvec[0]))))
dda83cd7 10454 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10455 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
dda83cd7
SM
10456 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10457 /* This is a packed array that has already been fixed, and
284614f0
JB
10458 therefore already coerced to a simple array. Nothing further
10459 to do. */
dda83cd7 10460 ;
78134374 10461 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10462 {
10463 /* Make sure we dereference references so that all the code below
10464 feels like it's really handling the referenced value. Wrapping
10465 types (for alignment) may be there, so make sure we strip them as
10466 well. */
10467 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10468 }
78134374 10469 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10470 && VALUE_LVAL (argvec[0]) == lval_memory)
10471 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10472
df407dfe 10473 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10474
10475 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10476 them. So, if this is an array typedef (encoding use for array
10477 access types encoded as fat pointers), strip it now. */
78134374 10478 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10479 type = ada_typedef_target_type (type);
10480
78134374 10481 if (type->code () == TYPE_CODE_PTR)
dda83cd7
SM
10482 {
10483 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10484 {
10485 case TYPE_CODE_FUNC:
10486 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10487 break;
10488 case TYPE_CODE_ARRAY:
10489 break;
10490 case TYPE_CODE_STRUCT:
10491 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10492 argvec[0] = ada_value_ind (argvec[0]);
10493 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10494 break;
10495 default:
10496 error (_("cannot subscript or call something of type `%s'"),
10497 ada_type_name (value_type (argvec[0])));
10498 break;
10499 }
10500 }
4c4b4cd2 10501
78134374 10502 switch (type->code ())
dda83cd7
SM
10503 {
10504 case TYPE_CODE_FUNC:
10505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10506 {
7022349d
PA
10507 if (TYPE_TARGET_TYPE (type) == NULL)
10508 error_call_unknown_return_type (NULL);
10509 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10510 }
e71585ff
PA
10511 return call_function_by_hand (argvec[0], NULL,
10512 gdb::make_array_view (argvec + 1,
10513 nargs));
c8ea1972
PH
10514 case TYPE_CODE_INTERNAL_FUNCTION:
10515 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10516 /* We don't know anything about what the internal
10517 function might return, but we have to return
10518 something. */
10519 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10520 not_lval);
10521 else
10522 return call_internal_function (exp->gdbarch, exp->language_defn,
10523 argvec[0], nargs, argvec + 1);
10524
dda83cd7
SM
10525 case TYPE_CODE_STRUCT:
10526 {
10527 int arity;
10528
10529 arity = ada_array_arity (type);
10530 type = ada_array_element_type (type, nargs);
10531 if (type == NULL)
10532 error (_("cannot subscript or call a record"));
10533 if (arity != nargs)
10534 error (_("wrong number of subscripts; expecting %d"), arity);
10535 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10536 return value_zero (ada_aligned_type (type), lval_memory);
10537 return
10538 unwrap_value (ada_value_subscript
10539 (argvec[0], nargs, argvec + 1));
10540 }
10541 case TYPE_CODE_ARRAY:
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10543 {
10544 type = ada_array_element_type (type, nargs);
10545 if (type == NULL)
10546 error (_("element type of array unknown"));
10547 else
10548 return value_zero (ada_aligned_type (type), lval_memory);
10549 }
10550 return
10551 unwrap_value (ada_value_subscript
10552 (ada_coerce_to_simple_array (argvec[0]),
10553 nargs, argvec + 1));
10554 case TYPE_CODE_PTR: /* Pointer to array */
10555 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10556 {
deede10c 10557 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
dda83cd7
SM
10558 type = ada_array_element_type (type, nargs);
10559 if (type == NULL)
10560 error (_("element type of array unknown"));
10561 else
10562 return value_zero (ada_aligned_type (type), lval_memory);
10563 }
10564 return
10565 unwrap_value (ada_value_ptr_subscript (argvec[0],
deede10c 10566 nargs, argvec + 1));
4c4b4cd2 10567
dda83cd7
SM
10568 default:
10569 error (_("Attempt to index or call something other than an "
e1d5a0d2 10570 "array or function"));
dda83cd7 10571 }
4c4b4cd2
PH
10572
10573 case TERNOP_SLICE:
10574 {
fe1fe7ea
SM
10575 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10576 struct value *low_bound_val
10577 = evaluate_subexp (nullptr, exp, pos, noside);
10578 struct value *high_bound_val
10579 = evaluate_subexp (nullptr, exp, pos, noside);
10580 LONGEST low_bound;
dda83cd7
SM
10581 LONGEST high_bound;
10582
10583 low_bound_val = coerce_ref (low_bound_val);
10584 high_bound_val = coerce_ref (high_bound_val);
10585 low_bound = value_as_long (low_bound_val);
10586 high_bound = value_as_long (high_bound_val);
10587
10588 if (noside == EVAL_SKIP)
10589 goto nosideret;
10590
10591 /* If this is a reference to an aligner type, then remove all
10592 the aligners. */
10593 if (value_type (array)->code () == TYPE_CODE_REF
10594 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10595 TYPE_TARGET_TYPE (value_type (array)) =
10596 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10597
c9a28cbe 10598 if (ada_is_any_packed_array_type (value_type (array)))
dda83cd7
SM
10599 error (_("cannot slice a packed array"));
10600
10601 /* If this is a reference to an array or an array lvalue,
10602 convert to a pointer. */
10603 if (value_type (array)->code () == TYPE_CODE_REF
10604 || (value_type (array)->code () == TYPE_CODE_ARRAY
10605 && VALUE_LVAL (array) == lval_memory))
10606 array = value_addr (array);
10607
10608 if (noside == EVAL_AVOID_SIDE_EFFECTS
10609 && ada_is_array_descriptor_type (ada_check_typedef
10610 (value_type (array))))
10611 return empty_array (ada_type_of_array (array, 0), low_bound,
bff8c71f 10612 high_bound);
4c4b4cd2 10613
dda83cd7
SM
10614 array = ada_coerce_to_simple_array_ptr (array);
10615
10616 /* If we have more than one level of pointer indirection,
10617 dereference the value until we get only one level. */
10618 while (value_type (array)->code () == TYPE_CODE_PTR
10619 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10620 == TYPE_CODE_PTR))
10621 array = value_ind (array);
10622
10623 /* Make sure we really do have an array type before going further,
10624 to avoid a SEGV when trying to get the index type or the target
10625 type later down the road if the debug info generated by
10626 the compiler is incorrect or incomplete. */
10627 if (!ada_is_simple_array_type (value_type (array)))
10628 error (_("cannot take slice of non-array"));
10629
10630 if (ada_check_typedef (value_type (array))->code ()
10631 == TYPE_CODE_PTR)
10632 {
10633 struct type *type0 = ada_check_typedef (value_type (array));
10634
10635 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10636 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10637 else
10638 {
10639 struct type *arr_type0 =
10640 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10641
10642 return ada_value_slice_from_ptr (array, arr_type0,
10643 longest_to_int (low_bound),
10644 longest_to_int (high_bound));
10645 }
10646 }
10647 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 return array;
10649 else if (high_bound < low_bound)
10650 return empty_array (value_type (array), low_bound, high_bound);
10651 else
10652 return ada_value_slice (array, longest_to_int (low_bound),
529cad9c 10653 longest_to_int (high_bound));
4c4b4cd2 10654 }
14f9c5c9 10655
4c4b4cd2
PH
10656 case UNOP_IN_RANGE:
10657 (*pos) += 2;
fe1fe7ea 10658 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8008e265 10659 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10660
14f9c5c9 10661 if (noside == EVAL_SKIP)
dda83cd7 10662 goto nosideret;
14f9c5c9 10663
78134374 10664 switch (type->code ())
dda83cd7
SM
10665 {
10666 default:
10667 lim_warning (_("Membership test incompletely implemented; "
e1d5a0d2 10668 "always returns true"));
fbb06eb1
UW
10669 type = language_bool_type (exp->language_defn, exp->gdbarch);
10670 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2 10671
dda83cd7 10672 case TYPE_CODE_RANGE:
5537ddd0
SM
10673 arg2 = value_from_longest (type,
10674 type->bounds ()->low.const_val ());
10675 arg3 = value_from_longest (type,
10676 type->bounds ()->high.const_val ());
f44316fa
UW
10677 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10679 type = language_bool_type (exp->language_defn, exp->gdbarch);
10680 return
10681 value_from_longest (type,
dda83cd7
SM
10682 (value_less (arg1, arg3)
10683 || value_equal (arg1, arg3))
10684 && (value_less (arg2, arg1)
10685 || value_equal (arg2, arg1)));
10686 }
4c4b4cd2
PH
10687
10688 case BINOP_IN_BOUNDS:
14f9c5c9 10689 (*pos) += 2;
fe1fe7ea
SM
10690 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10691 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10692
4c4b4cd2 10693 if (noside == EVAL_SKIP)
dda83cd7 10694 goto nosideret;
14f9c5c9 10695
4c4b4cd2 10696 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10697 {
10698 type = language_bool_type (exp->language_defn, exp->gdbarch);
10699 return value_zero (type, not_lval);
10700 }
14f9c5c9 10701
4c4b4cd2 10702 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10703
1eea4ebd
UW
10704 type = ada_index_type (value_type (arg2), tem, "range");
10705 if (!type)
10706 type = value_type (arg1);
14f9c5c9 10707
1eea4ebd
UW
10708 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10709 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10710
f44316fa
UW
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10713 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10714 return
dda83cd7
SM
10715 value_from_longest (type,
10716 (value_less (arg1, arg3)
10717 || value_equal (arg1, arg3))
10718 && (value_less (arg2, arg1)
10719 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10720
10721 case TERNOP_IN_RANGE:
fe1fe7ea
SM
10722 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10723 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10724 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2
PH
10725
10726 if (noside == EVAL_SKIP)
dda83cd7 10727 goto nosideret;
4c4b4cd2 10728
f44316fa
UW
10729 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10730 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10731 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10732 return
dda83cd7
SM
10733 value_from_longest (type,
10734 (value_less (arg1, arg3)
10735 || value_equal (arg1, arg3))
10736 && (value_less (arg2, arg1)
10737 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10738
10739 case OP_ATR_FIRST:
10740 case OP_ATR_LAST:
10741 case OP_ATR_LENGTH:
10742 {
dda83cd7 10743 struct type *type_arg;
5b4ee69b 10744
dda83cd7
SM
10745 if (exp->elts[*pos].opcode == OP_TYPE)
10746 {
fe1fe7ea
SM
10747 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10748 arg1 = NULL;
dda83cd7
SM
10749 type_arg = check_typedef (exp->elts[pc + 2].type);
10750 }
10751 else
10752 {
fe1fe7ea
SM
10753 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10754 type_arg = NULL;
dda83cd7 10755 }
76a01679 10756
dda83cd7
SM
10757 if (exp->elts[*pos].opcode != OP_LONG)
10758 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10759 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10760 *pos += 4;
76a01679 10761
dda83cd7
SM
10762 if (noside == EVAL_SKIP)
10763 goto nosideret;
680e1bee
TT
10764 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 {
10766 if (type_arg == NULL)
10767 type_arg = value_type (arg1);
76a01679 10768
dda83cd7 10769 if (ada_is_constrained_packed_array_type (type_arg))
680e1bee
TT
10770 type_arg = decode_constrained_packed_array_type (type_arg);
10771
10772 if (!discrete_type_p (type_arg))
10773 {
10774 switch (op)
10775 {
10776 default: /* Should never happen. */
10777 error (_("unexpected attribute encountered"));
10778 case OP_ATR_FIRST:
10779 case OP_ATR_LAST:
10780 type_arg = ada_index_type (type_arg, tem,
10781 ada_attribute_name (op));
10782 break;
10783 case OP_ATR_LENGTH:
10784 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10785 break;
10786 }
10787 }
10788
10789 return value_zero (type_arg, not_lval);
10790 }
dda83cd7
SM
10791 else if (type_arg == NULL)
10792 {
10793 arg1 = ada_coerce_ref (arg1);
76a01679 10794
dda83cd7
SM
10795 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10796 arg1 = ada_coerce_to_simple_array (arg1);
76a01679 10797
dda83cd7 10798 if (op == OP_ATR_LENGTH)
1eea4ebd 10799 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10800 else
10801 {
10802 type = ada_index_type (value_type (arg1), tem,
10803 ada_attribute_name (op));
10804 if (type == NULL)
10805 type = builtin_type (exp->gdbarch)->builtin_int;
10806 }
76a01679 10807
dda83cd7
SM
10808 switch (op)
10809 {
10810 default: /* Should never happen. */
10811 error (_("unexpected attribute encountered"));
10812 case OP_ATR_FIRST:
10813 return value_from_longest
1eea4ebd 10814 (type, ada_array_bound (arg1, tem, 0));
dda83cd7
SM
10815 case OP_ATR_LAST:
10816 return value_from_longest
1eea4ebd 10817 (type, ada_array_bound (arg1, tem, 1));
dda83cd7
SM
10818 case OP_ATR_LENGTH:
10819 return value_from_longest
1eea4ebd 10820 (type, ada_array_length (arg1, tem));
dda83cd7
SM
10821 }
10822 }
10823 else if (discrete_type_p (type_arg))
10824 {
10825 struct type *range_type;
10826 const char *name = ada_type_name (type_arg);
10827
10828 range_type = NULL;
10829 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10830 range_type = to_fixed_range_type (type_arg, NULL);
10831 if (range_type == NULL)
10832 range_type = type_arg;
10833 switch (op)
10834 {
10835 default:
10836 error (_("unexpected attribute encountered"));
10837 case OP_ATR_FIRST:
690cc4eb 10838 return value_from_longest
43bbcdc2 10839 (range_type, ada_discrete_type_low_bound (range_type));
dda83cd7
SM
10840 case OP_ATR_LAST:
10841 return value_from_longest
43bbcdc2 10842 (range_type, ada_discrete_type_high_bound (range_type));
dda83cd7
SM
10843 case OP_ATR_LENGTH:
10844 error (_("the 'length attribute applies only to array types"));
10845 }
10846 }
10847 else if (type_arg->code () == TYPE_CODE_FLT)
10848 error (_("unimplemented type attribute"));
10849 else
10850 {
10851 LONGEST low, high;
10852
10853 if (ada_is_constrained_packed_array_type (type_arg))
10854 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10855
aa4fb036 10856 if (op == OP_ATR_LENGTH)
1eea4ebd 10857 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10858 else
10859 {
10860 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10861 if (type == NULL)
10862 type = builtin_type (exp->gdbarch)->builtin_int;
10863 }
1eea4ebd 10864
dda83cd7
SM
10865 switch (op)
10866 {
10867 default:
10868 error (_("unexpected attribute encountered"));
10869 case OP_ATR_FIRST:
10870 low = ada_array_bound_from_type (type_arg, tem, 0);
10871 return value_from_longest (type, low);
10872 case OP_ATR_LAST:
10873 high = ada_array_bound_from_type (type_arg, tem, 1);
10874 return value_from_longest (type, high);
10875 case OP_ATR_LENGTH:
10876 low = ada_array_bound_from_type (type_arg, tem, 0);
10877 high = ada_array_bound_from_type (type_arg, tem, 1);
10878 return value_from_longest (type, high - low + 1);
10879 }
10880 }
14f9c5c9
AS
10881 }
10882
4c4b4cd2 10883 case OP_ATR_TAG:
fe1fe7ea 10884 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10885 if (noside == EVAL_SKIP)
dda83cd7 10886 goto nosideret;
4c4b4cd2
PH
10887
10888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10889 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10890
10891 return ada_value_tag (arg1);
10892
10893 case OP_ATR_MIN:
10894 case OP_ATR_MAX:
fe1fe7ea
SM
10895 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10896 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10897 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10898 if (noside == EVAL_SKIP)
dda83cd7 10899 goto nosideret;
d2e4a39e 10900 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10901 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10902 else
f44316fa
UW
10903 {
10904 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10905 return value_binop (arg1, arg2,
10906 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10907 }
14f9c5c9 10908
4c4b4cd2
PH
10909 case OP_ATR_MODULUS:
10910 {
dda83cd7 10911 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10912
fe1fe7ea
SM
10913 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10914 if (noside == EVAL_SKIP)
dda83cd7 10915 goto nosideret;
4c4b4cd2 10916
dda83cd7
SM
10917 if (!ada_is_modular_type (type_arg))
10918 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10919
dda83cd7
SM
10920 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10921 ada_modulus (type_arg));
4c4b4cd2
PH
10922 }
10923
10924
10925 case OP_ATR_POS:
fe1fe7ea
SM
10926 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10927 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10928 if (noside == EVAL_SKIP)
dda83cd7 10929 goto nosideret;
3cb382c9
UW
10930 type = builtin_type (exp->gdbarch)->builtin_int;
10931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10932 return value_zero (type, not_lval);
14f9c5c9 10933 else
3cb382c9 10934 return value_pos_atr (type, arg1);
14f9c5c9 10935
4c4b4cd2 10936 case OP_ATR_SIZE:
fe1fe7ea 10937 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8c1c099f
JB
10938 type = value_type (arg1);
10939
10940 /* If the argument is a reference, then dereference its type, since
dda83cd7
SM
10941 the user is really asking for the size of the actual object,
10942 not the size of the pointer. */
78134374 10943 if (type->code () == TYPE_CODE_REF)
dda83cd7 10944 type = TYPE_TARGET_TYPE (type);
8c1c099f 10945
4c4b4cd2 10946 if (noside == EVAL_SKIP)
dda83cd7 10947 goto nosideret;
4c4b4cd2 10948 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10949 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10950 else
dda83cd7
SM
10951 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10952 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10953
10954 case OP_ATR_VAL:
fe1fe7ea
SM
10955 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10956 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10957 type = exp->elts[pc + 2].type;
14f9c5c9 10958 if (noside == EVAL_SKIP)
dda83cd7 10959 goto nosideret;
4c4b4cd2 10960 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10961 return value_zero (type, not_lval);
4c4b4cd2 10962 else
dda83cd7 10963 return value_val_atr (type, arg1);
4c4b4cd2
PH
10964
10965 case BINOP_EXP:
fe1fe7ea
SM
10966 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10967 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10968 if (noside == EVAL_SKIP)
dda83cd7 10969 goto nosideret;
4c4b4cd2 10970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10971 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10972 else
f44316fa
UW
10973 {
10974 /* For integer exponentiation operations,
10975 only promote the first argument. */
10976 if (is_integral_type (value_type (arg2)))
10977 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10978 else
10979 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10980
10981 return value_binop (arg1, arg2, op);
10982 }
4c4b4cd2
PH
10983
10984 case UNOP_PLUS:
fe1fe7ea 10985 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10986 if (noside == EVAL_SKIP)
dda83cd7 10987 goto nosideret;
4c4b4cd2 10988 else
dda83cd7 10989 return arg1;
4c4b4cd2
PH
10990
10991 case UNOP_ABS:
fe1fe7ea 10992 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10993 if (noside == EVAL_SKIP)
dda83cd7 10994 goto nosideret;
f44316fa 10995 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10996 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
dda83cd7 10997 return value_neg (arg1);
14f9c5c9 10998 else
dda83cd7 10999 return arg1;
14f9c5c9
AS
11000
11001 case UNOP_IND:
5ec18f2b 11002 preeval_pos = *pos;
fe1fe7ea 11003 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11004 if (noside == EVAL_SKIP)
dda83cd7 11005 goto nosideret;
df407dfe 11006 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11008 {
11009 if (ada_is_array_descriptor_type (type))
11010 /* GDB allows dereferencing GNAT array descriptors. */
11011 {
11012 struct type *arrType = ada_type_of_array (arg1, 0);
11013
11014 if (arrType == NULL)
11015 error (_("Attempt to dereference null array pointer."));
11016 return value_at_lazy (arrType, 0);
11017 }
11018 else if (type->code () == TYPE_CODE_PTR
11019 || type->code () == TYPE_CODE_REF
11020 /* In C you can dereference an array to get the 1st elt. */
11021 || type->code () == TYPE_CODE_ARRAY)
11022 {
11023 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11024 only be determined by inspecting the object's tag.
11025 This means that we need to evaluate completely the
11026 expression in order to get its type. */
5ec18f2b 11027
78134374
SM
11028 if ((type->code () == TYPE_CODE_REF
11029 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11030 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11031 {
fe1fe7ea
SM
11032 arg1
11033 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11034 type = value_type (ada_value_ind (arg1));
11035 }
11036 else
11037 {
11038 type = to_static_fixed_type
11039 (ada_aligned_type
11040 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11041 }
c1b5a1a6 11042 ada_ensure_varsize_limit (type);
dda83cd7
SM
11043 return value_zero (type, lval_memory);
11044 }
11045 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11046 {
11047 /* GDB allows dereferencing an int. */
11048 if (expect_type == NULL)
11049 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11050 lval_memory);
11051 else
11052 {
11053 expect_type =
11054 to_static_fixed_type (ada_aligned_type (expect_type));
11055 return value_zero (expect_type, lval_memory);
11056 }
11057 }
dda83cd7
SM
11058 else
11059 error (_("Attempt to take contents of a non-pointer value."));
11060 }
0963b4bd 11061 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11062 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11063
78134374 11064 if (type->code () == TYPE_CODE_INT)
dda83cd7
SM
11065 /* GDB allows dereferencing an int. If we were given
11066 the expect_type, then use that as the target type.
11067 Otherwise, assume that the target type is an int. */
11068 {
11069 if (expect_type != NULL)
96967637
JB
11070 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11071 arg1));
11072 else
11073 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11074 (CORE_ADDR) value_as_address (arg1));
dda83cd7 11075 }
6b0d7253 11076
4c4b4cd2 11077 if (ada_is_array_descriptor_type (type))
dda83cd7
SM
11078 /* GDB allows dereferencing GNAT array descriptors. */
11079 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11080 else
dda83cd7 11081 return ada_value_ind (arg1);
14f9c5c9
AS
11082
11083 case STRUCTOP_STRUCT:
11084 tem = longest_to_int (exp->elts[pc + 1].longconst);
11085 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11086 preeval_pos = *pos;
fe1fe7ea 11087 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11088 if (noside == EVAL_SKIP)
dda83cd7 11089 goto nosideret;
14f9c5c9 11090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11091 {
11092 struct type *type1 = value_type (arg1);
5b4ee69b 11093
dda83cd7
SM
11094 if (ada_is_tagged_type (type1, 1))
11095 {
11096 type = ada_lookup_struct_elt_type (type1,
11097 &exp->elts[pc + 2].string,
11098 1, 1);
5ec18f2b
JG
11099
11100 /* If the field is not found, check if it exists in the
11101 extension of this object's type. This means that we
11102 need to evaluate completely the expression. */
11103
dda83cd7 11104 if (type == NULL)
5ec18f2b 11105 {
fe1fe7ea
SM
11106 arg1
11107 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11108 arg1 = ada_value_struct_elt (arg1,
11109 &exp->elts[pc + 2].string,
11110 0);
11111 arg1 = unwrap_value (arg1);
11112 type = value_type (ada_to_fixed_value (arg1));
11113 }
dda83cd7
SM
11114 }
11115 else
11116 type =
11117 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11118 0);
11119
11120 return value_zero (ada_aligned_type (type), lval_memory);
11121 }
14f9c5c9 11122 else
a579cd9a
MW
11123 {
11124 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11125 arg1 = unwrap_value (arg1);
11126 return ada_to_fixed_value (arg1);
11127 }
284614f0 11128
14f9c5c9 11129 case OP_TYPE:
4c4b4cd2 11130 /* The value is not supposed to be used. This is here to make it
dda83cd7 11131 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11132 (*pos) += 2;
11133 if (noside == EVAL_SKIP)
dda83cd7 11134 goto nosideret;
14f9c5c9 11135 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11136 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11137 else
dda83cd7 11138 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11139
11140 case OP_AGGREGATE:
11141 case OP_CHOICES:
11142 case OP_OTHERS:
11143 case OP_DISCRETE_RANGE:
11144 case OP_POSITIONAL:
11145 case OP_NAME:
11146 if (noside == EVAL_NORMAL)
11147 switch (op)
11148 {
11149 case OP_NAME:
11150 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11151 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11152 case OP_AGGREGATE:
11153 error (_("Aggregates only allowed on the right of an assignment"));
11154 default:
0963b4bd
MS
11155 internal_error (__FILE__, __LINE__,
11156 _("aggregate apparently mangled"));
52ce6436
PH
11157 }
11158
11159 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11160 *pos += oplen - 1;
11161 for (tem = 0; tem < nargs; tem += 1)
11162 ada_evaluate_subexp (NULL, exp, pos, noside);
11163 goto nosideret;
14f9c5c9
AS
11164 }
11165
11166nosideret:
ced9779b 11167 return eval_skip_value (exp);
14f9c5c9 11168}
14f9c5c9 11169\f
d2e4a39e 11170
dda83cd7 11171 /* Fixed point */
14f9c5c9
AS
11172
11173/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11174 type name that encodes the 'small and 'delta information.
4c4b4cd2 11175 Otherwise, return NULL. */
14f9c5c9 11176
d2e4a39e 11177static const char *
60bd1d53 11178gnat_encoded_fixed_point_type_info (struct type *type)
14f9c5c9 11179{
d2e4a39e 11180 const char *name = ada_type_name (type);
78134374 11181 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11182
d2e4a39e
AS
11183 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11184 {
14f9c5c9 11185 const char *tail = strstr (name, "___XF_");
5b4ee69b 11186
14f9c5c9 11187 if (tail == NULL)
dda83cd7 11188 return NULL;
d2e4a39e 11189 else
dda83cd7 11190 return tail + 5;
14f9c5c9
AS
11191 }
11192 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
60bd1d53 11193 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11194 else
11195 return NULL;
11196}
11197
4c4b4cd2 11198/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11199
11200int
b2188a06 11201ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11202{
60bd1d53 11203 return gnat_encoded_fixed_point_type_info (type) != NULL;
14f9c5c9
AS
11204}
11205
4c4b4cd2
PH
11206/* Return non-zero iff TYPE represents a System.Address type. */
11207
11208int
11209ada_is_system_address_type (struct type *type)
11210{
7d93a1e0 11211 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11212}
11213
14f9c5c9 11214/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11215 type, return the target floating-point type to be used to represent
11216 of this type during internal computation. */
11217
11218static struct type *
11219ada_scaling_type (struct type *type)
11220{
11221 return builtin_type (get_type_arch (type))->builtin_long_double;
11222}
11223
11224/* Assuming that TYPE is the representation of an Ada fixed-point
11225 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11226 delta cannot be determined. */
14f9c5c9 11227
50eff16b 11228struct value *
b2188a06 11229gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11230{
60bd1d53 11231 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11232 struct type *scale_type = ada_scaling_type (type);
11233
11234 long long num, den;
11235
11236 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11237 return nullptr;
d2e4a39e 11238 else
50eff16b
UW
11239 return value_binop (value_from_longest (scale_type, num),
11240 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11241}
11242
b2188a06
JB
11243/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11244 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11245
50eff16b 11246struct value *
75f24e86 11247gnat_encoded_fixed_point_scaling_factor (struct type *type)
14f9c5c9 11248{
60bd1d53 11249 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11250 struct type *scale_type = ada_scaling_type (type);
11251
11252 long long num0, den0, num1, den1;
14f9c5c9 11253 int n;
d2e4a39e 11254
50eff16b 11255 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11256 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11257
11258 if (n < 2)
50eff16b 11259 return value_from_longest (scale_type, 1);
14f9c5c9 11260 else if (n == 4)
50eff16b
UW
11261 return value_binop (value_from_longest (scale_type, num1),
11262 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11263 else
50eff16b
UW
11264 return value_binop (value_from_longest (scale_type, num0),
11265 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11266}
11267
14f9c5c9 11268\f
d2e4a39e 11269
dda83cd7 11270 /* Range types */
14f9c5c9
AS
11271
11272/* Scan STR beginning at position K for a discriminant name, and
11273 return the value of that discriminant field of DVAL in *PX. If
11274 PNEW_K is not null, put the position of the character beyond the
11275 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11276 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11277
11278static int
108d56a4 11279scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 11280 int *pnew_k)
14f9c5c9
AS
11281{
11282 static char *bound_buffer = NULL;
11283 static size_t bound_buffer_len = 0;
5da1a4d3 11284 const char *pstart, *pend, *bound;
d2e4a39e 11285 struct value *bound_val;
14f9c5c9
AS
11286
11287 if (dval == NULL || str == NULL || str[k] == '\0')
11288 return 0;
11289
5da1a4d3
SM
11290 pstart = str + k;
11291 pend = strstr (pstart, "__");
14f9c5c9
AS
11292 if (pend == NULL)
11293 {
5da1a4d3 11294 bound = pstart;
14f9c5c9
AS
11295 k += strlen (bound);
11296 }
d2e4a39e 11297 else
14f9c5c9 11298 {
5da1a4d3
SM
11299 int len = pend - pstart;
11300
11301 /* Strip __ and beyond. */
11302 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11303 strncpy (bound_buffer, pstart, len);
11304 bound_buffer[len] = '\0';
11305
14f9c5c9 11306 bound = bound_buffer;
d2e4a39e 11307 k = pend - str;
14f9c5c9 11308 }
d2e4a39e 11309
df407dfe 11310 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11311 if (bound_val == NULL)
11312 return 0;
11313
11314 *px = value_as_long (bound_val);
11315 if (pnew_k != NULL)
11316 *pnew_k = k;
11317 return 1;
11318}
11319
25a1127b
TT
11320/* Value of variable named NAME. Only exact matches are considered.
11321 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11322 otherwise causes an error with message ERR_MSG. */
11323
d2e4a39e 11324static struct value *
edb0c9cb 11325get_var_value (const char *name, const char *err_msg)
14f9c5c9 11326{
25a1127b
TT
11327 std::string quoted_name = add_angle_brackets (name);
11328
11329 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 11330
54d343a2 11331 std::vector<struct block_symbol> syms;
b5ec771e
PA
11332 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11333 get_selected_block (0),
11334 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11335
11336 if (nsyms != 1)
11337 {
11338 if (err_msg == NULL)
dda83cd7 11339 return 0;
14f9c5c9 11340 else
dda83cd7 11341 error (("%s"), err_msg);
14f9c5c9
AS
11342 }
11343
54d343a2 11344 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11345}
d2e4a39e 11346
edb0c9cb
PA
11347/* Value of integer variable named NAME in the current environment.
11348 If no such variable is found, returns false. Otherwise, sets VALUE
11349 to the variable's value and returns true. */
4c4b4cd2 11350
edb0c9cb
PA
11351bool
11352get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11353{
4c4b4cd2 11354 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11355
14f9c5c9 11356 if (var_val == 0)
edb0c9cb
PA
11357 return false;
11358
11359 value = value_as_long (var_val);
11360 return true;
14f9c5c9 11361}
d2e4a39e 11362
14f9c5c9
AS
11363
11364/* Return a range type whose base type is that of the range type named
11365 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11366 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11367 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11368 corresponding range type from debug information; fall back to using it
11369 if symbol lookup fails. If a new type must be created, allocate it
11370 like ORIG_TYPE was. The bounds information, in general, is encoded
11371 in NAME, the base type given in the named range type. */
14f9c5c9 11372
d2e4a39e 11373static struct type *
28c85d6c 11374to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11375{
0d5cff50 11376 const char *name;
14f9c5c9 11377 struct type *base_type;
108d56a4 11378 const char *subtype_info;
14f9c5c9 11379
28c85d6c 11380 gdb_assert (raw_type != NULL);
7d93a1e0 11381 gdb_assert (raw_type->name () != NULL);
dddfab26 11382
78134374 11383 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11384 base_type = TYPE_TARGET_TYPE (raw_type);
11385 else
11386 base_type = raw_type;
11387
7d93a1e0 11388 name = raw_type->name ();
14f9c5c9
AS
11389 subtype_info = strstr (name, "___XD");
11390 if (subtype_info == NULL)
690cc4eb 11391 {
43bbcdc2
PH
11392 LONGEST L = ada_discrete_type_low_bound (raw_type);
11393 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11394
690cc4eb
PH
11395 if (L < INT_MIN || U > INT_MAX)
11396 return raw_type;
11397 else
0c9c3474
SA
11398 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11399 L, U);
690cc4eb 11400 }
14f9c5c9
AS
11401 else
11402 {
11403 static char *name_buf = NULL;
11404 static size_t name_len = 0;
11405 int prefix_len = subtype_info - name;
11406 LONGEST L, U;
11407 struct type *type;
108d56a4 11408 const char *bounds_str;
14f9c5c9
AS
11409 int n;
11410
11411 GROW_VECT (name_buf, name_len, prefix_len + 5);
11412 strncpy (name_buf, name, prefix_len);
11413 name_buf[prefix_len] = '\0';
11414
11415 subtype_info += 5;
11416 bounds_str = strchr (subtype_info, '_');
11417 n = 1;
11418
d2e4a39e 11419 if (*subtype_info == 'L')
dda83cd7
SM
11420 {
11421 if (!ada_scan_number (bounds_str, n, &L, &n)
11422 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11423 return raw_type;
11424 if (bounds_str[n] == '_')
11425 n += 2;
11426 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11427 n += 1;
11428 subtype_info += 1;
11429 }
d2e4a39e 11430 else
dda83cd7
SM
11431 {
11432 strcpy (name_buf + prefix_len, "___L");
11433 if (!get_int_var_value (name_buf, L))
11434 {
11435 lim_warning (_("Unknown lower bound, using 1."));
11436 L = 1;
11437 }
11438 }
14f9c5c9 11439
d2e4a39e 11440 if (*subtype_info == 'U')
dda83cd7
SM
11441 {
11442 if (!ada_scan_number (bounds_str, n, &U, &n)
11443 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11444 return raw_type;
11445 }
d2e4a39e 11446 else
dda83cd7
SM
11447 {
11448 strcpy (name_buf + prefix_len, "___U");
11449 if (!get_int_var_value (name_buf, U))
11450 {
11451 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11452 U = L;
11453 }
11454 }
14f9c5c9 11455
0c9c3474
SA
11456 type = create_static_range_type (alloc_type_copy (raw_type),
11457 base_type, L, U);
f5a91472 11458 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11459 to match the size of the base_type, which is not what we want.
11460 Set it back to the original range type's length. */
f5a91472 11461 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11462 type->set_name (name);
14f9c5c9
AS
11463 return type;
11464 }
11465}
11466
4c4b4cd2
PH
11467/* True iff NAME is the name of a range type. */
11468
14f9c5c9 11469int
d2e4a39e 11470ada_is_range_type_name (const char *name)
14f9c5c9
AS
11471{
11472 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11473}
14f9c5c9 11474\f
d2e4a39e 11475
dda83cd7 11476 /* Modular types */
4c4b4cd2
PH
11477
11478/* True iff TYPE is an Ada modular type. */
14f9c5c9 11479
14f9c5c9 11480int
d2e4a39e 11481ada_is_modular_type (struct type *type)
14f9c5c9 11482{
18af8284 11483 struct type *subranged_type = get_base_type (type);
14f9c5c9 11484
78134374 11485 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11486 && subranged_type->code () == TYPE_CODE_INT
11487 && subranged_type->is_unsigned ());
14f9c5c9
AS
11488}
11489
4c4b4cd2
PH
11490/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11491
61ee279c 11492ULONGEST
0056e4d5 11493ada_modulus (struct type *type)
14f9c5c9 11494{
5e500d33
SM
11495 const dynamic_prop &high = type->bounds ()->high;
11496
11497 if (high.kind () == PROP_CONST)
11498 return (ULONGEST) high.const_val () + 1;
11499
11500 /* If TYPE is unresolved, the high bound might be a location list. Return
11501 0, for lack of a better value to return. */
11502 return 0;
14f9c5c9 11503}
d2e4a39e 11504\f
f7f9143b
JB
11505
11506/* Ada exception catchpoint support:
11507 ---------------------------------
11508
11509 We support 3 kinds of exception catchpoints:
11510 . catchpoints on Ada exceptions
11511 . catchpoints on unhandled Ada exceptions
11512 . catchpoints on failed assertions
11513
11514 Exceptions raised during failed assertions, or unhandled exceptions
11515 could perfectly be caught with the general catchpoint on Ada exceptions.
11516 However, we can easily differentiate these two special cases, and having
11517 the option to distinguish these two cases from the rest can be useful
11518 to zero-in on certain situations.
11519
11520 Exception catchpoints are a specialized form of breakpoint,
11521 since they rely on inserting breakpoints inside known routines
11522 of the GNAT runtime. The implementation therefore uses a standard
11523 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11524 of breakpoint_ops.
11525
0259addd
JB
11526 Support in the runtime for exception catchpoints have been changed
11527 a few times already, and these changes affect the implementation
11528 of these catchpoints. In order to be able to support several
11529 variants of the runtime, we use a sniffer that will determine
28010a5d 11530 the runtime variant used by the program being debugged. */
f7f9143b 11531
82eacd52
JB
11532/* Ada's standard exceptions.
11533
11534 The Ada 83 standard also defined Numeric_Error. But there so many
11535 situations where it was unclear from the Ada 83 Reference Manual
11536 (RM) whether Constraint_Error or Numeric_Error should be raised,
11537 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11538 Interpretation saying that anytime the RM says that Numeric_Error
11539 should be raised, the implementation may raise Constraint_Error.
11540 Ada 95 went one step further and pretty much removed Numeric_Error
11541 from the list of standard exceptions (it made it a renaming of
11542 Constraint_Error, to help preserve compatibility when compiling
11543 an Ada83 compiler). As such, we do not include Numeric_Error from
11544 this list of standard exceptions. */
3d0b0fa3 11545
27087b7f 11546static const char * const standard_exc[] = {
3d0b0fa3
JB
11547 "constraint_error",
11548 "program_error",
11549 "storage_error",
11550 "tasking_error"
11551};
11552
0259addd
JB
11553typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11554
11555/* A structure that describes how to support exception catchpoints
11556 for a given executable. */
11557
11558struct exception_support_info
11559{
11560 /* The name of the symbol to break on in order to insert
11561 a catchpoint on exceptions. */
11562 const char *catch_exception_sym;
11563
11564 /* The name of the symbol to break on in order to insert
11565 a catchpoint on unhandled exceptions. */
11566 const char *catch_exception_unhandled_sym;
11567
11568 /* The name of the symbol to break on in order to insert
11569 a catchpoint on failed assertions. */
11570 const char *catch_assert_sym;
11571
9f757bf7
XR
11572 /* The name of the symbol to break on in order to insert
11573 a catchpoint on exception handling. */
11574 const char *catch_handlers_sym;
11575
0259addd
JB
11576 /* Assuming that the inferior just triggered an unhandled exception
11577 catchpoint, this function is responsible for returning the address
11578 in inferior memory where the name of that exception is stored.
11579 Return zero if the address could not be computed. */
11580 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11581};
11582
11583static CORE_ADDR ada_unhandled_exception_name_addr (void);
11584static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11585
11586/* The following exception support info structure describes how to
11587 implement exception catchpoints with the latest version of the
ca683e3a 11588 Ada runtime (as of 2019-08-??). */
0259addd
JB
11589
11590static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11591{
11592 "__gnat_debug_raise_exception", /* catch_exception_sym */
11593 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11594 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11595 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11596 ada_unhandled_exception_name_addr
11597};
11598
11599/* The following exception support info structure describes how to
11600 implement exception catchpoints with an earlier version of the
11601 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11602
11603static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11604{
11605 "__gnat_debug_raise_exception", /* catch_exception_sym */
11606 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11607 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11608 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11609 ada_unhandled_exception_name_addr
11610};
11611
11612/* The following exception support info structure describes how to
11613 implement exception catchpoints with a slightly older version
11614 of the Ada runtime. */
11615
11616static const struct exception_support_info exception_support_info_fallback =
11617{
11618 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11619 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11620 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11621 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11622 ada_unhandled_exception_name_addr_from_raise
11623};
11624
f17011e0
JB
11625/* Return nonzero if we can detect the exception support routines
11626 described in EINFO.
11627
11628 This function errors out if an abnormal situation is detected
11629 (for instance, if we find the exception support routines, but
11630 that support is found to be incomplete). */
11631
11632static int
11633ada_has_this_exception_support (const struct exception_support_info *einfo)
11634{
11635 struct symbol *sym;
11636
11637 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11638 that should be compiled with debugging information. As a result, we
11639 expect to find that symbol in the symtabs. */
11640
11641 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11642 if (sym == NULL)
a6af7abe
JB
11643 {
11644 /* Perhaps we did not find our symbol because the Ada runtime was
11645 compiled without debugging info, or simply stripped of it.
11646 It happens on some GNU/Linux distributions for instance, where
11647 users have to install a separate debug package in order to get
11648 the runtime's debugging info. In that situation, let the user
11649 know why we cannot insert an Ada exception catchpoint.
11650
11651 Note: Just for the purpose of inserting our Ada exception
11652 catchpoint, we could rely purely on the associated minimal symbol.
11653 But we would be operating in degraded mode anyway, since we are
11654 still lacking the debugging info needed later on to extract
11655 the name of the exception being raised (this name is printed in
11656 the catchpoint message, and is also used when trying to catch
11657 a specific exception). We do not handle this case for now. */
3b7344d5 11658 struct bound_minimal_symbol msym
1c8e84b0
JB
11659 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11660
3b7344d5 11661 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11662 error (_("Your Ada runtime appears to be missing some debugging "
11663 "information.\nCannot insert Ada exception catchpoint "
11664 "in this configuration."));
11665
11666 return 0;
11667 }
f17011e0
JB
11668
11669 /* Make sure that the symbol we found corresponds to a function. */
11670
11671 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11672 {
11673 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11674 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11675 return 0;
11676 }
11677
11678 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11679 if (sym == NULL)
11680 {
11681 struct bound_minimal_symbol msym
11682 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11683
11684 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11685 error (_("Your Ada runtime appears to be missing some debugging "
11686 "information.\nCannot insert Ada exception catchpoint "
11687 "in this configuration."));
11688
11689 return 0;
11690 }
11691
11692 /* Make sure that the symbol we found corresponds to a function. */
11693
11694 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11695 {
11696 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11697 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11698 return 0;
11699 }
f17011e0
JB
11700
11701 return 1;
11702}
11703
0259addd
JB
11704/* Inspect the Ada runtime and determine which exception info structure
11705 should be used to provide support for exception catchpoints.
11706
3eecfa55
JB
11707 This function will always set the per-inferior exception_info,
11708 or raise an error. */
0259addd
JB
11709
11710static void
11711ada_exception_support_info_sniffer (void)
11712{
3eecfa55 11713 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11714
11715 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11716 if (data->exception_info != NULL)
0259addd
JB
11717 return;
11718
11719 /* Check the latest (default) exception support info. */
f17011e0 11720 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11721 {
3eecfa55 11722 data->exception_info = &default_exception_support_info;
0259addd
JB
11723 return;
11724 }
11725
ca683e3a
AO
11726 /* Try the v0 exception suport info. */
11727 if (ada_has_this_exception_support (&exception_support_info_v0))
11728 {
11729 data->exception_info = &exception_support_info_v0;
11730 return;
11731 }
11732
0259addd 11733 /* Try our fallback exception suport info. */
f17011e0 11734 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11735 {
3eecfa55 11736 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11737 return;
11738 }
11739
11740 /* Sometimes, it is normal for us to not be able to find the routine
11741 we are looking for. This happens when the program is linked with
11742 the shared version of the GNAT runtime, and the program has not been
11743 started yet. Inform the user of these two possible causes if
11744 applicable. */
11745
ccefe4c4 11746 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11747 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11748
11749 /* If the symbol does not exist, then check that the program is
11750 already started, to make sure that shared libraries have been
11751 loaded. If it is not started, this may mean that the symbol is
11752 in a shared library. */
11753
e99b03dc 11754 if (inferior_ptid.pid () == 0)
0259addd
JB
11755 error (_("Unable to insert catchpoint. Try to start the program first."));
11756
11757 /* At this point, we know that we are debugging an Ada program and
11758 that the inferior has been started, but we still are not able to
0963b4bd 11759 find the run-time symbols. That can mean that we are in
0259addd
JB
11760 configurable run time mode, or that a-except as been optimized
11761 out by the linker... In any case, at this point it is not worth
11762 supporting this feature. */
11763
7dda8cff 11764 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11765}
11766
f7f9143b
JB
11767/* True iff FRAME is very likely to be that of a function that is
11768 part of the runtime system. This is all very heuristic, but is
11769 intended to be used as advice as to what frames are uninteresting
11770 to most users. */
11771
11772static int
11773is_known_support_routine (struct frame_info *frame)
11774{
692465f1 11775 enum language func_lang;
f7f9143b 11776 int i;
f35a17b5 11777 const char *fullname;
f7f9143b 11778
4ed6b5be
JB
11779 /* If this code does not have any debugging information (no symtab),
11780 This cannot be any user code. */
f7f9143b 11781
51abb421 11782 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11783 if (sal.symtab == NULL)
11784 return 1;
11785
4ed6b5be
JB
11786 /* If there is a symtab, but the associated source file cannot be
11787 located, then assume this is not user code: Selecting a frame
11788 for which we cannot display the code would not be very helpful
11789 for the user. This should also take care of case such as VxWorks
11790 where the kernel has some debugging info provided for a few units. */
f7f9143b 11791
f35a17b5
JK
11792 fullname = symtab_to_fullname (sal.symtab);
11793 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11794 return 1;
11795
85102364 11796 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11797 We also check the name of the objfile against the name of some
11798 known system libraries that sometimes come with debugging info
11799 too. */
11800
f7f9143b
JB
11801 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11802 {
11803 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11804 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11805 return 1;
eb822aa6 11806 if (SYMTAB_OBJFILE (sal.symtab) != NULL
dda83cd7
SM
11807 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11808 return 1;
f7f9143b
JB
11809 }
11810
4ed6b5be 11811 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11812
c6dc63a1
TT
11813 gdb::unique_xmalloc_ptr<char> func_name
11814 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11815 if (func_name == NULL)
11816 return 1;
11817
11818 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11819 {
11820 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11821 if (re_exec (func_name.get ()))
11822 return 1;
f7f9143b
JB
11823 }
11824
11825 return 0;
11826}
11827
11828/* Find the first frame that contains debugging information and that is not
11829 part of the Ada run-time, starting from FI and moving upward. */
11830
0ef643c8 11831void
f7f9143b
JB
11832ada_find_printable_frame (struct frame_info *fi)
11833{
11834 for (; fi != NULL; fi = get_prev_frame (fi))
11835 {
11836 if (!is_known_support_routine (fi))
dda83cd7
SM
11837 {
11838 select_frame (fi);
11839 break;
11840 }
f7f9143b
JB
11841 }
11842
11843}
11844
11845/* Assuming that the inferior just triggered an unhandled exception
11846 catchpoint, return the address in inferior memory where the name
11847 of the exception is stored.
11848
11849 Return zero if the address could not be computed. */
11850
11851static CORE_ADDR
11852ada_unhandled_exception_name_addr (void)
0259addd
JB
11853{
11854 return parse_and_eval_address ("e.full_name");
11855}
11856
11857/* Same as ada_unhandled_exception_name_addr, except that this function
11858 should be used when the inferior uses an older version of the runtime,
11859 where the exception name needs to be extracted from a specific frame
11860 several frames up in the callstack. */
11861
11862static CORE_ADDR
11863ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11864{
11865 int frame_level;
11866 struct frame_info *fi;
3eecfa55 11867 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11868
11869 /* To determine the name of this exception, we need to select
11870 the frame corresponding to RAISE_SYM_NAME. This frame is
11871 at least 3 levels up, so we simply skip the first 3 frames
11872 without checking the name of their associated function. */
11873 fi = get_current_frame ();
11874 for (frame_level = 0; frame_level < 3; frame_level += 1)
11875 if (fi != NULL)
11876 fi = get_prev_frame (fi);
11877
11878 while (fi != NULL)
11879 {
692465f1
JB
11880 enum language func_lang;
11881
c6dc63a1
TT
11882 gdb::unique_xmalloc_ptr<char> func_name
11883 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11884 if (func_name != NULL)
11885 {
dda83cd7 11886 if (strcmp (func_name.get (),
55b87a52
KS
11887 data->exception_info->catch_exception_sym) == 0)
11888 break; /* We found the frame we were looking for... */
55b87a52 11889 }
fb44b1a7 11890 fi = get_prev_frame (fi);
f7f9143b
JB
11891 }
11892
11893 if (fi == NULL)
11894 return 0;
11895
11896 select_frame (fi);
11897 return parse_and_eval_address ("id.full_name");
11898}
11899
11900/* Assuming the inferior just triggered an Ada exception catchpoint
11901 (of any type), return the address in inferior memory where the name
11902 of the exception is stored, if applicable.
11903
45db7c09
PA
11904 Assumes the selected frame is the current frame.
11905
f7f9143b
JB
11906 Return zero if the address could not be computed, or if not relevant. */
11907
11908static CORE_ADDR
761269c8 11909ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11910 struct breakpoint *b)
f7f9143b 11911{
3eecfa55
JB
11912 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11913
f7f9143b
JB
11914 switch (ex)
11915 {
761269c8 11916 case ada_catch_exception:
dda83cd7
SM
11917 return (parse_and_eval_address ("e.full_name"));
11918 break;
f7f9143b 11919
761269c8 11920 case ada_catch_exception_unhandled:
dda83cd7
SM
11921 return data->exception_info->unhandled_exception_name_addr ();
11922 break;
9f757bf7
XR
11923
11924 case ada_catch_handlers:
dda83cd7 11925 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11926 name. */
dda83cd7 11927 break;
9f757bf7 11928
761269c8 11929 case ada_catch_assert:
dda83cd7
SM
11930 return 0; /* Exception name is not relevant in this case. */
11931 break;
f7f9143b
JB
11932
11933 default:
dda83cd7
SM
11934 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11935 break;
f7f9143b
JB
11936 }
11937
11938 return 0; /* Should never be reached. */
11939}
11940
e547c119
JB
11941/* Assuming the inferior is stopped at an exception catchpoint,
11942 return the message which was associated to the exception, if
11943 available. Return NULL if the message could not be retrieved.
11944
e547c119
JB
11945 Note: The exception message can be associated to an exception
11946 either through the use of the Raise_Exception function, or
11947 more simply (Ada 2005 and later), via:
11948
11949 raise Exception_Name with "exception message";
11950
11951 */
11952
6f46ac85 11953static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11954ada_exception_message_1 (void)
11955{
11956 struct value *e_msg_val;
e547c119 11957 int e_msg_len;
e547c119
JB
11958
11959 /* For runtimes that support this feature, the exception message
11960 is passed as an unbounded string argument called "message". */
11961 e_msg_val = parse_and_eval ("message");
11962 if (e_msg_val == NULL)
11963 return NULL; /* Exception message not supported. */
11964
11965 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11966 gdb_assert (e_msg_val != NULL);
11967 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11968
11969 /* If the message string is empty, then treat it as if there was
11970 no exception message. */
11971 if (e_msg_len <= 0)
11972 return NULL;
11973
15f3b077
TT
11974 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11975 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11976 e_msg_len);
11977 e_msg.get ()[e_msg_len] = '\0';
11978
11979 return e_msg;
e547c119
JB
11980}
11981
11982/* Same as ada_exception_message_1, except that all exceptions are
11983 contained here (returning NULL instead). */
11984
6f46ac85 11985static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11986ada_exception_message (void)
11987{
6f46ac85 11988 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11989
a70b8144 11990 try
e547c119
JB
11991 {
11992 e_msg = ada_exception_message_1 ();
11993 }
230d2906 11994 catch (const gdb_exception_error &e)
e547c119 11995 {
6f46ac85 11996 e_msg.reset (nullptr);
e547c119 11997 }
e547c119
JB
11998
11999 return e_msg;
12000}
12001
f7f9143b
JB
12002/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12003 any error that ada_exception_name_addr_1 might cause to be thrown.
12004 When an error is intercepted, a warning with the error message is printed,
12005 and zero is returned. */
12006
12007static CORE_ADDR
761269c8 12008ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 12009 struct breakpoint *b)
f7f9143b 12010{
f7f9143b
JB
12011 CORE_ADDR result = 0;
12012
a70b8144 12013 try
f7f9143b
JB
12014 {
12015 result = ada_exception_name_addr_1 (ex, b);
12016 }
12017
230d2906 12018 catch (const gdb_exception_error &e)
f7f9143b 12019 {
3d6e9d23 12020 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12021 return 0;
12022 }
12023
12024 return result;
12025}
12026
cb7de75e 12027static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12028 (const char *excep_string,
12029 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12030
12031/* Ada catchpoints.
12032
12033 In the case of catchpoints on Ada exceptions, the catchpoint will
12034 stop the target on every exception the program throws. When a user
12035 specifies the name of a specific exception, we translate this
12036 request into a condition expression (in text form), and then parse
12037 it into an expression stored in each of the catchpoint's locations.
12038 We then use this condition to check whether the exception that was
12039 raised is the one the user is interested in. If not, then the
12040 target is resumed again. We store the name of the requested
12041 exception, in order to be able to re-set the condition expression
12042 when symbols change. */
12043
12044/* An instance of this type is used to represent an Ada catchpoint
5625a286 12045 breakpoint location. */
28010a5d 12046
5625a286 12047class ada_catchpoint_location : public bp_location
28010a5d 12048{
5625a286 12049public:
5f486660 12050 ada_catchpoint_location (breakpoint *owner)
f06f1252 12051 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12052 {}
28010a5d
PA
12053
12054 /* The condition that checks whether the exception that was raised
12055 is the specific exception the user specified on catchpoint
12056 creation. */
4d01a485 12057 expression_up excep_cond_expr;
28010a5d
PA
12058};
12059
c1fc2657 12060/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12061
c1fc2657 12062struct ada_catchpoint : public breakpoint
28010a5d 12063{
37f6a7f4
TT
12064 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12065 : m_kind (kind)
12066 {
12067 }
12068
28010a5d 12069 /* The name of the specific exception the user specified. */
bc18fbb5 12070 std::string excep_string;
37f6a7f4
TT
12071
12072 /* What kind of catchpoint this is. */
12073 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12074};
12075
12076/* Parse the exception condition string in the context of each of the
12077 catchpoint's locations, and store them for later evaluation. */
12078
12079static void
9f757bf7 12080create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 12081 enum ada_exception_catchpoint_kind ex)
28010a5d 12082{
fccf9de1
TT
12083 struct bp_location *bl;
12084
28010a5d 12085 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12086 if (c->excep_string.empty ())
28010a5d
PA
12087 return;
12088
12089 /* Same if there are no locations... */
c1fc2657 12090 if (c->loc == NULL)
28010a5d
PA
12091 return;
12092
fccf9de1
TT
12093 /* Compute the condition expression in text form, from the specific
12094 expection we want to catch. */
12095 std::string cond_string
12096 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12097
fccf9de1
TT
12098 /* Iterate over all the catchpoint's locations, and parse an
12099 expression for each. */
12100 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12101 {
12102 struct ada_catchpoint_location *ada_loc
fccf9de1 12103 = (struct ada_catchpoint_location *) bl;
4d01a485 12104 expression_up exp;
28010a5d 12105
fccf9de1 12106 if (!bl->shlib_disabled)
28010a5d 12107 {
bbc13ae3 12108 const char *s;
28010a5d 12109
cb7de75e 12110 s = cond_string.c_str ();
a70b8144 12111 try
28010a5d 12112 {
fccf9de1
TT
12113 exp = parse_exp_1 (&s, bl->address,
12114 block_for_pc (bl->address),
036e657b 12115 0);
28010a5d 12116 }
230d2906 12117 catch (const gdb_exception_error &e)
849f2b52
JB
12118 {
12119 warning (_("failed to reevaluate internal exception condition "
12120 "for catchpoint %d: %s"),
3d6e9d23 12121 c->number, e.what ());
849f2b52 12122 }
28010a5d
PA
12123 }
12124
b22e99fd 12125 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12126 }
28010a5d
PA
12127}
12128
28010a5d
PA
12129/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12130 structure for all exception catchpoint kinds. */
12131
12132static struct bp_location *
37f6a7f4 12133allocate_location_exception (struct breakpoint *self)
28010a5d 12134{
5f486660 12135 return new ada_catchpoint_location (self);
28010a5d
PA
12136}
12137
12138/* Implement the RE_SET method in the breakpoint_ops structure for all
12139 exception catchpoint kinds. */
12140
12141static void
37f6a7f4 12142re_set_exception (struct breakpoint *b)
28010a5d
PA
12143{
12144 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12145
12146 /* Call the base class's method. This updates the catchpoint's
12147 locations. */
2060206e 12148 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12149
12150 /* Reparse the exception conditional expressions. One for each
12151 location. */
37f6a7f4 12152 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12153}
12154
12155/* Returns true if we should stop for this breakpoint hit. If the
12156 user specified a specific exception, we only want to cause a stop
12157 if the program thrown that exception. */
12158
12159static int
12160should_stop_exception (const struct bp_location *bl)
12161{
12162 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12163 const struct ada_catchpoint_location *ada_loc
12164 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12165 int stop;
12166
37f6a7f4
TT
12167 struct internalvar *var = lookup_internalvar ("_ada_exception");
12168 if (c->m_kind == ada_catch_assert)
12169 clear_internalvar (var);
12170 else
12171 {
12172 try
12173 {
12174 const char *expr;
12175
12176 if (c->m_kind == ada_catch_handlers)
12177 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12178 ".all.occurrence.id");
12179 else
12180 expr = "e";
12181
12182 struct value *exc = parse_and_eval (expr);
12183 set_internalvar (var, exc);
12184 }
12185 catch (const gdb_exception_error &ex)
12186 {
12187 clear_internalvar (var);
12188 }
12189 }
12190
28010a5d 12191 /* With no specific exception, should always stop. */
bc18fbb5 12192 if (c->excep_string.empty ())
28010a5d
PA
12193 return 1;
12194
12195 if (ada_loc->excep_cond_expr == NULL)
12196 {
12197 /* We will have a NULL expression if back when we were creating
12198 the expressions, this location's had failed to parse. */
12199 return 1;
12200 }
12201
12202 stop = 1;
a70b8144 12203 try
28010a5d
PA
12204 {
12205 struct value *mark;
12206
12207 mark = value_mark ();
4d01a485 12208 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12209 value_free_to_mark (mark);
12210 }
230d2906 12211 catch (const gdb_exception &ex)
492d29ea
PA
12212 {
12213 exception_fprintf (gdb_stderr, ex,
12214 _("Error in testing exception condition:\n"));
12215 }
492d29ea 12216
28010a5d
PA
12217 return stop;
12218}
12219
12220/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12221 for all exception catchpoint kinds. */
12222
12223static void
37f6a7f4 12224check_status_exception (bpstat bs)
28010a5d 12225{
b6433ede 12226 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
12227}
12228
f7f9143b
JB
12229/* Implement the PRINT_IT method in the breakpoint_ops structure
12230 for all exception catchpoint kinds. */
12231
12232static enum print_stop_action
37f6a7f4 12233print_it_exception (bpstat bs)
f7f9143b 12234{
79a45e25 12235 struct ui_out *uiout = current_uiout;
348d480f
PA
12236 struct breakpoint *b = bs->breakpoint_at;
12237
956a9fb9 12238 annotate_catchpoint (b->number);
f7f9143b 12239
112e8700 12240 if (uiout->is_mi_like_p ())
f7f9143b 12241 {
112e8700 12242 uiout->field_string ("reason",
956a9fb9 12243 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12244 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12245 }
12246
112e8700
SM
12247 uiout->text (b->disposition == disp_del
12248 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12249 uiout->field_signed ("bkptno", b->number);
112e8700 12250 uiout->text (", ");
f7f9143b 12251
45db7c09
PA
12252 /* ada_exception_name_addr relies on the selected frame being the
12253 current frame. Need to do this here because this function may be
12254 called more than once when printing a stop, and below, we'll
12255 select the first frame past the Ada run-time (see
12256 ada_find_printable_frame). */
12257 select_frame (get_current_frame ());
12258
37f6a7f4
TT
12259 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12260 switch (c->m_kind)
f7f9143b 12261 {
761269c8
JB
12262 case ada_catch_exception:
12263 case ada_catch_exception_unhandled:
9f757bf7 12264 case ada_catch_handlers:
956a9fb9 12265 {
37f6a7f4 12266 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12267 char exception_name[256];
12268
12269 if (addr != 0)
12270 {
c714b426
PA
12271 read_memory (addr, (gdb_byte *) exception_name,
12272 sizeof (exception_name) - 1);
956a9fb9
JB
12273 exception_name [sizeof (exception_name) - 1] = '\0';
12274 }
12275 else
12276 {
12277 /* For some reason, we were unable to read the exception
12278 name. This could happen if the Runtime was compiled
12279 without debugging info, for instance. In that case,
12280 just replace the exception name by the generic string
12281 "exception" - it will read as "an exception" in the
12282 notification we are about to print. */
967cff16 12283 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12284 }
12285 /* In the case of unhandled exception breakpoints, we print
12286 the exception name as "unhandled EXCEPTION_NAME", to make
12287 it clearer to the user which kind of catchpoint just got
12288 hit. We used ui_out_text to make sure that this extra
12289 info does not pollute the exception name in the MI case. */
37f6a7f4 12290 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12291 uiout->text ("unhandled ");
12292 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12293 }
12294 break;
761269c8 12295 case ada_catch_assert:
956a9fb9
JB
12296 /* In this case, the name of the exception is not really
12297 important. Just print "failed assertion" to make it clearer
12298 that his program just hit an assertion-failure catchpoint.
12299 We used ui_out_text because this info does not belong in
12300 the MI output. */
112e8700 12301 uiout->text ("failed assertion");
956a9fb9 12302 break;
f7f9143b 12303 }
e547c119 12304
6f46ac85 12305 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12306 if (exception_message != NULL)
12307 {
e547c119 12308 uiout->text (" (");
6f46ac85 12309 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12310 uiout->text (")");
e547c119
JB
12311 }
12312
112e8700 12313 uiout->text (" at ");
956a9fb9 12314 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12315
12316 return PRINT_SRC_AND_LOC;
12317}
12318
12319/* Implement the PRINT_ONE method in the breakpoint_ops structure
12320 for all exception catchpoint kinds. */
12321
12322static void
37f6a7f4 12323print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12324{
79a45e25 12325 struct ui_out *uiout = current_uiout;
28010a5d 12326 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12327 struct value_print_options opts;
12328
12329 get_user_print_options (&opts);
f06f1252 12330
79a45b7d 12331 if (opts.addressprint)
f06f1252 12332 uiout->field_skip ("addr");
f7f9143b
JB
12333
12334 annotate_field (5);
37f6a7f4 12335 switch (c->m_kind)
f7f9143b 12336 {
761269c8 12337 case ada_catch_exception:
dda83cd7
SM
12338 if (!c->excep_string.empty ())
12339 {
bc18fbb5
TT
12340 std::string msg = string_printf (_("`%s' Ada exception"),
12341 c->excep_string.c_str ());
28010a5d 12342
dda83cd7
SM
12343 uiout->field_string ("what", msg);
12344 }
12345 else
12346 uiout->field_string ("what", "all Ada exceptions");
12347
12348 break;
f7f9143b 12349
761269c8 12350 case ada_catch_exception_unhandled:
dda83cd7
SM
12351 uiout->field_string ("what", "unhandled Ada exceptions");
12352 break;
f7f9143b 12353
9f757bf7 12354 case ada_catch_handlers:
dda83cd7
SM
12355 if (!c->excep_string.empty ())
12356 {
9f757bf7
XR
12357 uiout->field_fmt ("what",
12358 _("`%s' Ada exception handlers"),
bc18fbb5 12359 c->excep_string.c_str ());
dda83cd7
SM
12360 }
12361 else
9f757bf7 12362 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 12363 break;
9f757bf7 12364
761269c8 12365 case ada_catch_assert:
dda83cd7
SM
12366 uiout->field_string ("what", "failed Ada assertions");
12367 break;
f7f9143b
JB
12368
12369 default:
dda83cd7
SM
12370 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12371 break;
f7f9143b
JB
12372 }
12373}
12374
12375/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12376 for all exception catchpoint kinds. */
12377
12378static void
37f6a7f4 12379print_mention_exception (struct breakpoint *b)
f7f9143b 12380{
28010a5d 12381 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12382 struct ui_out *uiout = current_uiout;
28010a5d 12383
112e8700 12384 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 12385 : _("Catchpoint "));
381befee 12386 uiout->field_signed ("bkptno", b->number);
112e8700 12387 uiout->text (": ");
00eb2c4a 12388
37f6a7f4 12389 switch (c->m_kind)
f7f9143b 12390 {
761269c8 12391 case ada_catch_exception:
dda83cd7 12392 if (!c->excep_string.empty ())
00eb2c4a 12393 {
862d101a 12394 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12395 c->excep_string.c_str ());
862d101a 12396 uiout->text (info.c_str ());
00eb2c4a 12397 }
dda83cd7
SM
12398 else
12399 uiout->text (_("all Ada exceptions"));
12400 break;
f7f9143b 12401
761269c8 12402 case ada_catch_exception_unhandled:
dda83cd7
SM
12403 uiout->text (_("unhandled Ada exceptions"));
12404 break;
9f757bf7
XR
12405
12406 case ada_catch_handlers:
dda83cd7 12407 if (!c->excep_string.empty ())
9f757bf7
XR
12408 {
12409 std::string info
12410 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12411 c->excep_string.c_str ());
9f757bf7
XR
12412 uiout->text (info.c_str ());
12413 }
dda83cd7
SM
12414 else
12415 uiout->text (_("all Ada exceptions handlers"));
12416 break;
9f757bf7 12417
761269c8 12418 case ada_catch_assert:
dda83cd7
SM
12419 uiout->text (_("failed Ada assertions"));
12420 break;
f7f9143b
JB
12421
12422 default:
dda83cd7
SM
12423 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12424 break;
f7f9143b
JB
12425 }
12426}
12427
6149aea9
PA
12428/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12429 for all exception catchpoint kinds. */
12430
12431static void
37f6a7f4 12432print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12433{
28010a5d
PA
12434 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12435
37f6a7f4 12436 switch (c->m_kind)
6149aea9 12437 {
761269c8 12438 case ada_catch_exception:
6149aea9 12439 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12440 if (!c->excep_string.empty ())
12441 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12442 break;
12443
761269c8 12444 case ada_catch_exception_unhandled:
78076abc 12445 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12446 break;
12447
9f757bf7
XR
12448 case ada_catch_handlers:
12449 fprintf_filtered (fp, "catch handlers");
12450 break;
12451
761269c8 12452 case ada_catch_assert:
6149aea9
PA
12453 fprintf_filtered (fp, "catch assert");
12454 break;
12455
12456 default:
12457 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12458 }
d9b3f62e 12459 print_recreate_thread (b, fp);
6149aea9
PA
12460}
12461
37f6a7f4 12462/* Virtual tables for various breakpoint types. */
2060206e 12463static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12464static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12465static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12466static struct breakpoint_ops catch_handlers_breakpoint_ops;
12467
f06f1252
TT
12468/* See ada-lang.h. */
12469
12470bool
12471is_ada_exception_catchpoint (breakpoint *bp)
12472{
12473 return (bp->ops == &catch_exception_breakpoint_ops
12474 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12475 || bp->ops == &catch_assert_breakpoint_ops
12476 || bp->ops == &catch_handlers_breakpoint_ops);
12477}
12478
f7f9143b
JB
12479/* Split the arguments specified in a "catch exception" command.
12480 Set EX to the appropriate catchpoint type.
28010a5d 12481 Set EXCEP_STRING to the name of the specific exception if
5845583d 12482 specified by the user.
9f757bf7
XR
12483 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12484 "catch handlers" command. False otherwise.
5845583d
JB
12485 If a condition is found at the end of the arguments, the condition
12486 expression is stored in COND_STRING (memory must be deallocated
12487 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12488
12489static void
a121b7c1 12490catch_ada_exception_command_split (const char *args,
9f757bf7 12491 bool is_catch_handlers_cmd,
dda83cd7 12492 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12493 std::string *excep_string,
12494 std::string *cond_string)
f7f9143b 12495{
bc18fbb5 12496 std::string exception_name;
f7f9143b 12497
bc18fbb5
TT
12498 exception_name = extract_arg (&args);
12499 if (exception_name == "if")
5845583d
JB
12500 {
12501 /* This is not an exception name; this is the start of a condition
12502 expression for a catchpoint on all exceptions. So, "un-get"
12503 this token, and set exception_name to NULL. */
bc18fbb5 12504 exception_name.clear ();
5845583d
JB
12505 args -= 2;
12506 }
f7f9143b 12507
5845583d 12508 /* Check to see if we have a condition. */
f7f9143b 12509
f1735a53 12510 args = skip_spaces (args);
61012eef 12511 if (startswith (args, "if")
5845583d
JB
12512 && (isspace (args[2]) || args[2] == '\0'))
12513 {
12514 args += 2;
f1735a53 12515 args = skip_spaces (args);
5845583d
JB
12516
12517 if (args[0] == '\0')
dda83cd7 12518 error (_("Condition missing after `if' keyword"));
bc18fbb5 12519 *cond_string = args;
5845583d
JB
12520
12521 args += strlen (args);
12522 }
12523
12524 /* Check that we do not have any more arguments. Anything else
12525 is unexpected. */
f7f9143b
JB
12526
12527 if (args[0] != '\0')
12528 error (_("Junk at end of expression"));
12529
9f757bf7
XR
12530 if (is_catch_handlers_cmd)
12531 {
12532 /* Catch handling of exceptions. */
12533 *ex = ada_catch_handlers;
12534 *excep_string = exception_name;
12535 }
bc18fbb5 12536 else if (exception_name.empty ())
f7f9143b
JB
12537 {
12538 /* Catch all exceptions. */
761269c8 12539 *ex = ada_catch_exception;
bc18fbb5 12540 excep_string->clear ();
f7f9143b 12541 }
bc18fbb5 12542 else if (exception_name == "unhandled")
f7f9143b
JB
12543 {
12544 /* Catch unhandled exceptions. */
761269c8 12545 *ex = ada_catch_exception_unhandled;
bc18fbb5 12546 excep_string->clear ();
f7f9143b
JB
12547 }
12548 else
12549 {
12550 /* Catch a specific exception. */
761269c8 12551 *ex = ada_catch_exception;
28010a5d 12552 *excep_string = exception_name;
f7f9143b
JB
12553 }
12554}
12555
12556/* Return the name of the symbol on which we should break in order to
12557 implement a catchpoint of the EX kind. */
12558
12559static const char *
761269c8 12560ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12561{
3eecfa55
JB
12562 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12563
12564 gdb_assert (data->exception_info != NULL);
0259addd 12565
f7f9143b
JB
12566 switch (ex)
12567 {
761269c8 12568 case ada_catch_exception:
dda83cd7
SM
12569 return (data->exception_info->catch_exception_sym);
12570 break;
761269c8 12571 case ada_catch_exception_unhandled:
dda83cd7
SM
12572 return (data->exception_info->catch_exception_unhandled_sym);
12573 break;
761269c8 12574 case ada_catch_assert:
dda83cd7
SM
12575 return (data->exception_info->catch_assert_sym);
12576 break;
9f757bf7 12577 case ada_catch_handlers:
dda83cd7
SM
12578 return (data->exception_info->catch_handlers_sym);
12579 break;
f7f9143b 12580 default:
dda83cd7
SM
12581 internal_error (__FILE__, __LINE__,
12582 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12583 }
12584}
12585
12586/* Return the breakpoint ops "virtual table" used for catchpoints
12587 of the EX kind. */
12588
c0a91b2b 12589static const struct breakpoint_ops *
761269c8 12590ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12591{
12592 switch (ex)
12593 {
761269c8 12594 case ada_catch_exception:
dda83cd7
SM
12595 return (&catch_exception_breakpoint_ops);
12596 break;
761269c8 12597 case ada_catch_exception_unhandled:
dda83cd7
SM
12598 return (&catch_exception_unhandled_breakpoint_ops);
12599 break;
761269c8 12600 case ada_catch_assert:
dda83cd7
SM
12601 return (&catch_assert_breakpoint_ops);
12602 break;
9f757bf7 12603 case ada_catch_handlers:
dda83cd7
SM
12604 return (&catch_handlers_breakpoint_ops);
12605 break;
f7f9143b 12606 default:
dda83cd7
SM
12607 internal_error (__FILE__, __LINE__,
12608 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12609 }
12610}
12611
12612/* Return the condition that will be used to match the current exception
12613 being raised with the exception that the user wants to catch. This
12614 assumes that this condition is used when the inferior just triggered
12615 an exception catchpoint.
cb7de75e 12616 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12617
cb7de75e 12618static std::string
9f757bf7 12619ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12620 enum ada_exception_catchpoint_kind ex)
f7f9143b 12621{
3d0b0fa3 12622 int i;
fccf9de1 12623 bool is_standard_exc = false;
cb7de75e 12624 std::string result;
9f757bf7
XR
12625
12626 if (ex == ada_catch_handlers)
12627 {
12628 /* For exception handlers catchpoints, the condition string does
dda83cd7 12629 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12630 result = ("long_integer (GNAT_GCC_exception_Access"
12631 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12632 }
12633 else
fccf9de1 12634 result = "long_integer (e)";
3d0b0fa3 12635
0963b4bd 12636 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12637 runtime units that have been compiled without debugging info; if
28010a5d 12638 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12639 exception (e.g. "constraint_error") then, during the evaluation
12640 of the condition expression, the symbol lookup on this name would
0963b4bd 12641 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12642 may then be set only on user-defined exceptions which have the
12643 same not-fully-qualified name (e.g. my_package.constraint_error).
12644
12645 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12646 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12647 exception constraint_error" is rewritten into "catch exception
12648 standard.constraint_error".
12649
85102364 12650 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12651 the inferior program, then the only way to specify this exception as a
12652 breakpoint condition is to use its fully-qualified named:
fccf9de1 12653 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12654
12655 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12656 {
28010a5d 12657 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12658 {
fccf9de1 12659 is_standard_exc = true;
9f757bf7 12660 break;
3d0b0fa3
JB
12661 }
12662 }
9f757bf7 12663
fccf9de1
TT
12664 result += " = ";
12665
12666 if (is_standard_exc)
12667 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12668 else
12669 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12670
9f757bf7 12671 return result;
f7f9143b
JB
12672}
12673
12674/* Return the symtab_and_line that should be used to insert an exception
12675 catchpoint of the TYPE kind.
12676
28010a5d
PA
12677 ADDR_STRING returns the name of the function where the real
12678 breakpoint that implements the catchpoints is set, depending on the
12679 type of catchpoint we need to create. */
f7f9143b
JB
12680
12681static struct symtab_and_line
bc18fbb5 12682ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12683 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12684{
12685 const char *sym_name;
12686 struct symbol *sym;
f7f9143b 12687
0259addd
JB
12688 /* First, find out which exception support info to use. */
12689 ada_exception_support_info_sniffer ();
12690
12691 /* Then lookup the function on which we will break in order to catch
f7f9143b 12692 the Ada exceptions requested by the user. */
f7f9143b
JB
12693 sym_name = ada_exception_sym_name (ex);
12694 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12695
57aff202
JB
12696 if (sym == NULL)
12697 error (_("Catchpoint symbol not found: %s"), sym_name);
12698
12699 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12700 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12701
12702 /* Set ADDR_STRING. */
cc12f4a8 12703 *addr_string = sym_name;
f7f9143b 12704
f7f9143b 12705 /* Set OPS. */
4b9eee8c 12706 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12707
f17011e0 12708 return find_function_start_sal (sym, 1);
f7f9143b
JB
12709}
12710
b4a5b78b 12711/* Create an Ada exception catchpoint.
f7f9143b 12712
b4a5b78b 12713 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12714
bc18fbb5 12715 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12716 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12717 of the exception to which this catchpoint applies.
2df4d1d5 12718
bc18fbb5 12719 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12720
b4a5b78b
JB
12721 TEMPFLAG, if nonzero, means that the underlying breakpoint
12722 should be temporary.
28010a5d 12723
b4a5b78b 12724 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12725
349774ef 12726void
28010a5d 12727create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12728 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12729 const std::string &excep_string,
56ecd069 12730 const std::string &cond_string,
28010a5d 12731 int tempflag,
349774ef 12732 int disabled,
28010a5d
PA
12733 int from_tty)
12734{
cc12f4a8 12735 std::string addr_string;
b4a5b78b 12736 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12737 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12738
37f6a7f4 12739 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12740 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12741 ops, tempflag, disabled, from_tty);
28010a5d 12742 c->excep_string = excep_string;
9f757bf7 12743 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12744 if (!cond_string.empty ())
733d554a 12745 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12746 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12747}
12748
9ac4176b
PA
12749/* Implement the "catch exception" command. */
12750
12751static void
eb4c3f4a 12752catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12753 struct cmd_list_element *command)
12754{
a121b7c1 12755 const char *arg = arg_entry;
9ac4176b
PA
12756 struct gdbarch *gdbarch = get_current_arch ();
12757 int tempflag;
761269c8 12758 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12759 std::string excep_string;
56ecd069 12760 std::string cond_string;
9ac4176b
PA
12761
12762 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12763
12764 if (!arg)
12765 arg = "";
9f757bf7 12766 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12767 &cond_string);
9f757bf7
XR
12768 create_ada_exception_catchpoint (gdbarch, ex_kind,
12769 excep_string, cond_string,
12770 tempflag, 1 /* enabled */,
12771 from_tty);
12772}
12773
12774/* Implement the "catch handlers" command. */
12775
12776static void
12777catch_ada_handlers_command (const char *arg_entry, int from_tty,
12778 struct cmd_list_element *command)
12779{
12780 const char *arg = arg_entry;
12781 struct gdbarch *gdbarch = get_current_arch ();
12782 int tempflag;
12783 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12784 std::string excep_string;
56ecd069 12785 std::string cond_string;
9f757bf7
XR
12786
12787 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12788
12789 if (!arg)
12790 arg = "";
12791 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12792 &cond_string);
b4a5b78b
JB
12793 create_ada_exception_catchpoint (gdbarch, ex_kind,
12794 excep_string, cond_string,
349774ef
JB
12795 tempflag, 1 /* enabled */,
12796 from_tty);
9ac4176b
PA
12797}
12798
71bed2db
TT
12799/* Completion function for the Ada "catch" commands. */
12800
12801static void
12802catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12803 const char *text, const char *word)
12804{
12805 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12806
12807 for (const ada_exc_info &info : exceptions)
12808 {
12809 if (startswith (info.name, word))
b02f78f9 12810 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12811 }
12812}
12813
b4a5b78b 12814/* Split the arguments specified in a "catch assert" command.
5845583d 12815
b4a5b78b
JB
12816 ARGS contains the command's arguments (or the empty string if
12817 no arguments were passed).
5845583d
JB
12818
12819 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12820 (the memory needs to be deallocated after use). */
5845583d 12821
b4a5b78b 12822static void
56ecd069 12823catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12824{
f1735a53 12825 args = skip_spaces (args);
f7f9143b 12826
5845583d 12827 /* Check whether a condition was provided. */
61012eef 12828 if (startswith (args, "if")
5845583d 12829 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12830 {
5845583d 12831 args += 2;
f1735a53 12832 args = skip_spaces (args);
5845583d 12833 if (args[0] == '\0')
dda83cd7 12834 error (_("condition missing after `if' keyword"));
56ecd069 12835 cond_string.assign (args);
f7f9143b
JB
12836 }
12837
5845583d
JB
12838 /* Otherwise, there should be no other argument at the end of
12839 the command. */
12840 else if (args[0] != '\0')
12841 error (_("Junk at end of arguments."));
f7f9143b
JB
12842}
12843
9ac4176b
PA
12844/* Implement the "catch assert" command. */
12845
12846static void
eb4c3f4a 12847catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12848 struct cmd_list_element *command)
12849{
a121b7c1 12850 const char *arg = arg_entry;
9ac4176b
PA
12851 struct gdbarch *gdbarch = get_current_arch ();
12852 int tempflag;
56ecd069 12853 std::string cond_string;
9ac4176b
PA
12854
12855 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12856
12857 if (!arg)
12858 arg = "";
56ecd069 12859 catch_ada_assert_command_split (arg, cond_string);
761269c8 12860 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12861 "", cond_string,
349774ef
JB
12862 tempflag, 1 /* enabled */,
12863 from_tty);
9ac4176b 12864}
778865d3
JB
12865
12866/* Return non-zero if the symbol SYM is an Ada exception object. */
12867
12868static int
12869ada_is_exception_sym (struct symbol *sym)
12870{
7d93a1e0 12871 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12872
12873 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
dda83cd7
SM
12874 && SYMBOL_CLASS (sym) != LOC_BLOCK
12875 && SYMBOL_CLASS (sym) != LOC_CONST
12876 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12877 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12878}
12879
12880/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12881 Ada exception object. This matches all exceptions except the ones
12882 defined by the Ada language. */
12883
12884static int
12885ada_is_non_standard_exception_sym (struct symbol *sym)
12886{
12887 int i;
12888
12889 if (!ada_is_exception_sym (sym))
12890 return 0;
12891
12892 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12893 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12894 return 0; /* A standard exception. */
12895
12896 /* Numeric_Error is also a standard exception, so exclude it.
12897 See the STANDARD_EXC description for more details as to why
12898 this exception is not listed in that array. */
987012b8 12899 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12900 return 0;
12901
12902 return 1;
12903}
12904
ab816a27 12905/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12906 objects.
12907
12908 The comparison is determined first by exception name, and then
12909 by exception address. */
12910
ab816a27 12911bool
cc536b21 12912ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12913{
778865d3
JB
12914 int result;
12915
ab816a27
TT
12916 result = strcmp (name, other.name);
12917 if (result < 0)
12918 return true;
12919 if (result == 0 && addr < other.addr)
12920 return true;
12921 return false;
12922}
778865d3 12923
ab816a27 12924bool
cc536b21 12925ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12926{
12927 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12928}
12929
12930/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12931 routine, but keeping the first SKIP elements untouched.
12932
12933 All duplicates are also removed. */
12934
12935static void
ab816a27 12936sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12937 int skip)
12938{
ab816a27
TT
12939 std::sort (exceptions->begin () + skip, exceptions->end ());
12940 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12941 exceptions->end ());
778865d3
JB
12942}
12943
778865d3
JB
12944/* Add all exceptions defined by the Ada standard whose name match
12945 a regular expression.
12946
12947 If PREG is not NULL, then this regexp_t object is used to
12948 perform the symbol name matching. Otherwise, no name-based
12949 filtering is performed.
12950
12951 EXCEPTIONS is a vector of exceptions to which matching exceptions
12952 gets pushed. */
12953
12954static void
2d7cc5c7 12955ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12956 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12957{
12958 int i;
12959
12960 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12961 {
12962 if (preg == NULL
2d7cc5c7 12963 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12964 {
12965 struct bound_minimal_symbol msymbol
12966 = ada_lookup_simple_minsym (standard_exc[i]);
12967
12968 if (msymbol.minsym != NULL)
12969 {
12970 struct ada_exc_info info
77e371c0 12971 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12972
ab816a27 12973 exceptions->push_back (info);
778865d3
JB
12974 }
12975 }
12976 }
12977}
12978
12979/* Add all Ada exceptions defined locally and accessible from the given
12980 FRAME.
12981
12982 If PREG is not NULL, then this regexp_t object is used to
12983 perform the symbol name matching. Otherwise, no name-based
12984 filtering is performed.
12985
12986 EXCEPTIONS is a vector of exceptions to which matching exceptions
12987 gets pushed. */
12988
12989static void
2d7cc5c7
PA
12990ada_add_exceptions_from_frame (compiled_regex *preg,
12991 struct frame_info *frame,
ab816a27 12992 std::vector<ada_exc_info> *exceptions)
778865d3 12993{
3977b71f 12994 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12995
12996 while (block != 0)
12997 {
12998 struct block_iterator iter;
12999 struct symbol *sym;
13000
13001 ALL_BLOCK_SYMBOLS (block, iter, sym)
13002 {
13003 switch (SYMBOL_CLASS (sym))
13004 {
13005 case LOC_TYPEDEF:
13006 case LOC_BLOCK:
13007 case LOC_CONST:
13008 break;
13009 default:
13010 if (ada_is_exception_sym (sym))
13011 {
987012b8 13012 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13013 SYMBOL_VALUE_ADDRESS (sym)};
13014
ab816a27 13015 exceptions->push_back (info);
778865d3
JB
13016 }
13017 }
13018 }
13019 if (BLOCK_FUNCTION (block) != NULL)
13020 break;
13021 block = BLOCK_SUPERBLOCK (block);
13022 }
13023}
13024
14bc53a8
PA
13025/* Return true if NAME matches PREG or if PREG is NULL. */
13026
13027static bool
2d7cc5c7 13028name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13029{
13030 return (preg == NULL
f945dedf 13031 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13032}
13033
778865d3
JB
13034/* Add all exceptions defined globally whose name name match
13035 a regular expression, excluding standard exceptions.
13036
13037 The reason we exclude standard exceptions is that they need
13038 to be handled separately: Standard exceptions are defined inside
13039 a runtime unit which is normally not compiled with debugging info,
13040 and thus usually do not show up in our symbol search. However,
13041 if the unit was in fact built with debugging info, we need to
13042 exclude them because they would duplicate the entry we found
13043 during the special loop that specifically searches for those
13044 standard exceptions.
13045
13046 If PREG is not NULL, then this regexp_t object is used to
13047 perform the symbol name matching. Otherwise, no name-based
13048 filtering is performed.
13049
13050 EXCEPTIONS is a vector of exceptions to which matching exceptions
13051 gets pushed. */
13052
13053static void
2d7cc5c7 13054ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13055 std::vector<ada_exc_info> *exceptions)
778865d3 13056{
14bc53a8
PA
13057 /* In Ada, the symbol "search name" is a linkage name, whereas the
13058 regular expression used to do the matching refers to the natural
13059 name. So match against the decoded name. */
13060 expand_symtabs_matching (NULL,
b5ec771e 13061 lookup_name_info::match_any (),
14bc53a8
PA
13062 [&] (const char *search_name)
13063 {
f945dedf
CB
13064 std::string decoded = ada_decode (search_name);
13065 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13066 },
13067 NULL,
13068 VARIABLES_DOMAIN);
778865d3 13069
2030c079 13070 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13071 {
b669c953 13072 for (compunit_symtab *s : objfile->compunits ())
778865d3 13073 {
d8aeb77f
TT
13074 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13075 int i;
778865d3 13076
d8aeb77f
TT
13077 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13078 {
582942f4 13079 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13080 struct block_iterator iter;
13081 struct symbol *sym;
778865d3 13082
d8aeb77f
TT
13083 ALL_BLOCK_SYMBOLS (b, iter, sym)
13084 if (ada_is_non_standard_exception_sym (sym)
987012b8 13085 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13086 {
13087 struct ada_exc_info info
987012b8 13088 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13089
13090 exceptions->push_back (info);
13091 }
13092 }
778865d3
JB
13093 }
13094 }
13095}
13096
13097/* Implements ada_exceptions_list with the regular expression passed
13098 as a regex_t, rather than a string.
13099
13100 If not NULL, PREG is used to filter out exceptions whose names
13101 do not match. Otherwise, all exceptions are listed. */
13102
ab816a27 13103static std::vector<ada_exc_info>
2d7cc5c7 13104ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13105{
ab816a27 13106 std::vector<ada_exc_info> result;
778865d3
JB
13107 int prev_len;
13108
13109 /* First, list the known standard exceptions. These exceptions
13110 need to be handled separately, as they are usually defined in
13111 runtime units that have been compiled without debugging info. */
13112
13113 ada_add_standard_exceptions (preg, &result);
13114
13115 /* Next, find all exceptions whose scope is local and accessible
13116 from the currently selected frame. */
13117
13118 if (has_stack_frames ())
13119 {
ab816a27 13120 prev_len = result.size ();
778865d3
JB
13121 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13122 &result);
ab816a27 13123 if (result.size () > prev_len)
778865d3
JB
13124 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13125 }
13126
13127 /* Add all exceptions whose scope is global. */
13128
ab816a27 13129 prev_len = result.size ();
778865d3 13130 ada_add_global_exceptions (preg, &result);
ab816a27 13131 if (result.size () > prev_len)
778865d3
JB
13132 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13133
778865d3
JB
13134 return result;
13135}
13136
13137/* Return a vector of ada_exc_info.
13138
13139 If REGEXP is NULL, all exceptions are included in the result.
13140 Otherwise, it should contain a valid regular expression,
13141 and only the exceptions whose names match that regular expression
13142 are included in the result.
13143
13144 The exceptions are sorted in the following order:
13145 - Standard exceptions (defined by the Ada language), in
13146 alphabetical order;
13147 - Exceptions only visible from the current frame, in
13148 alphabetical order;
13149 - Exceptions whose scope is global, in alphabetical order. */
13150
ab816a27 13151std::vector<ada_exc_info>
778865d3
JB
13152ada_exceptions_list (const char *regexp)
13153{
2d7cc5c7
PA
13154 if (regexp == NULL)
13155 return ada_exceptions_list_1 (NULL);
778865d3 13156
2d7cc5c7
PA
13157 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13158 return ada_exceptions_list_1 (&reg);
778865d3
JB
13159}
13160
13161/* Implement the "info exceptions" command. */
13162
13163static void
1d12d88f 13164info_exceptions_command (const char *regexp, int from_tty)
778865d3 13165{
778865d3 13166 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13167
ab816a27 13168 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13169
13170 if (regexp != NULL)
13171 printf_filtered
13172 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13173 else
13174 printf_filtered (_("All defined Ada exceptions:\n"));
13175
ab816a27
TT
13176 for (const ada_exc_info &info : exceptions)
13177 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13178}
13179
dda83cd7 13180 /* Operators */
4c4b4cd2
PH
13181/* Information about operators given special treatment in functions
13182 below. */
13183/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13184
13185#define ADA_OPERATORS \
13186 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13187 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13188 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13189 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13190 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13191 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13192 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13193 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13194 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13195 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13196 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13197 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13198 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13199 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13200 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13201 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13202 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13203 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13204 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13205
13206static void
554794dc
SDJ
13207ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13208 int *argsp)
4c4b4cd2
PH
13209{
13210 switch (exp->elts[pc - 1].opcode)
13211 {
76a01679 13212 default:
4c4b4cd2
PH
13213 operator_length_standard (exp, pc, oplenp, argsp);
13214 break;
13215
13216#define OP_DEFN(op, len, args, binop) \
13217 case op: *oplenp = len; *argsp = args; break;
13218 ADA_OPERATORS;
13219#undef OP_DEFN
52ce6436
PH
13220
13221 case OP_AGGREGATE:
13222 *oplenp = 3;
13223 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13224 break;
13225
13226 case OP_CHOICES:
13227 *oplenp = 3;
13228 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13229 break;
4c4b4cd2
PH
13230 }
13231}
13232
c0201579
JK
13233/* Implementation of the exp_descriptor method operator_check. */
13234
13235static int
13236ada_operator_check (struct expression *exp, int pos,
13237 int (*objfile_func) (struct objfile *objfile, void *data),
13238 void *data)
13239{
13240 const union exp_element *const elts = exp->elts;
13241 struct type *type = NULL;
13242
13243 switch (elts[pos].opcode)
13244 {
13245 case UNOP_IN_RANGE:
13246 case UNOP_QUAL:
13247 type = elts[pos + 1].type;
13248 break;
13249
13250 default:
13251 return operator_check_standard (exp, pos, objfile_func, data);
13252 }
13253
13254 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13255
13256 if (type && TYPE_OBJFILE (type)
13257 && (*objfile_func) (TYPE_OBJFILE (type), data))
13258 return 1;
13259
13260 return 0;
13261}
13262
4c4b4cd2
PH
13263/* As for operator_length, but assumes PC is pointing at the first
13264 element of the operator, and gives meaningful results only for the
52ce6436 13265 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13266
13267static void
76a01679 13268ada_forward_operator_length (struct expression *exp, int pc,
dda83cd7 13269 int *oplenp, int *argsp)
4c4b4cd2 13270{
76a01679 13271 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13272 {
13273 default:
13274 *oplenp = *argsp = 0;
13275 break;
52ce6436 13276
4c4b4cd2
PH
13277#define OP_DEFN(op, len, args, binop) \
13278 case op: *oplenp = len; *argsp = args; break;
13279 ADA_OPERATORS;
13280#undef OP_DEFN
52ce6436
PH
13281
13282 case OP_AGGREGATE:
13283 *oplenp = 3;
13284 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13285 break;
13286
13287 case OP_CHOICES:
13288 *oplenp = 3;
13289 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13290 break;
13291
13292 case OP_STRING:
13293 case OP_NAME:
13294 {
13295 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13296
52ce6436
PH
13297 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13298 *argsp = 0;
13299 break;
13300 }
4c4b4cd2
PH
13301 }
13302}
13303
13304static int
13305ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13306{
13307 enum exp_opcode op = exp->elts[elt].opcode;
13308 int oplen, nargs;
13309 int pc = elt;
13310 int i;
76a01679 13311
4c4b4cd2
PH
13312 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13313
76a01679 13314 switch (op)
4c4b4cd2 13315 {
76a01679 13316 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13317 case OP_ATR_FIRST:
13318 case OP_ATR_LAST:
13319 case OP_ATR_LENGTH:
13320 case OP_ATR_IMAGE:
13321 case OP_ATR_MAX:
13322 case OP_ATR_MIN:
13323 case OP_ATR_MODULUS:
13324 case OP_ATR_POS:
13325 case OP_ATR_SIZE:
13326 case OP_ATR_TAG:
13327 case OP_ATR_VAL:
13328 break;
13329
13330 case UNOP_IN_RANGE:
13331 case UNOP_QUAL:
323e0a4a
AC
13332 /* XXX: gdb_sprint_host_address, type_sprint */
13333 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13334 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13335 fprintf_filtered (stream, " (");
13336 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13337 fprintf_filtered (stream, ")");
13338 break;
13339 case BINOP_IN_BOUNDS:
52ce6436
PH
13340 fprintf_filtered (stream, " (%d)",
13341 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13342 break;
13343 case TERNOP_IN_RANGE:
13344 break;
13345
52ce6436
PH
13346 case OP_AGGREGATE:
13347 case OP_OTHERS:
13348 case OP_DISCRETE_RANGE:
13349 case OP_POSITIONAL:
13350 case OP_CHOICES:
13351 break;
13352
13353 case OP_NAME:
13354 case OP_STRING:
13355 {
13356 char *name = &exp->elts[elt + 2].string;
13357 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13358
52ce6436
PH
13359 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13360 break;
13361 }
13362
4c4b4cd2
PH
13363 default:
13364 return dump_subexp_body_standard (exp, stream, elt);
13365 }
13366
13367 elt += oplen;
13368 for (i = 0; i < nargs; i += 1)
13369 elt = dump_subexp (exp, stream, elt);
13370
13371 return elt;
13372}
13373
13374/* The Ada extension of print_subexp (q.v.). */
13375
76a01679
JB
13376static void
13377ada_print_subexp (struct expression *exp, int *pos,
dda83cd7 13378 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13379{
52ce6436 13380 int oplen, nargs, i;
4c4b4cd2
PH
13381 int pc = *pos;
13382 enum exp_opcode op = exp->elts[pc].opcode;
13383
13384 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13385
52ce6436 13386 *pos += oplen;
4c4b4cd2
PH
13387 switch (op)
13388 {
13389 default:
52ce6436 13390 *pos -= oplen;
4c4b4cd2
PH
13391 print_subexp_standard (exp, pos, stream, prec);
13392 return;
13393
13394 case OP_VAR_VALUE:
987012b8 13395 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13396 return;
13397
13398 case BINOP_IN_BOUNDS:
323e0a4a 13399 /* XXX: sprint_subexp */
4c4b4cd2 13400 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13401 fputs_filtered (" in ", stream);
4c4b4cd2 13402 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13403 fputs_filtered ("'range", stream);
4c4b4cd2 13404 if (exp->elts[pc + 1].longconst > 1)
dda83cd7
SM
13405 fprintf_filtered (stream, "(%ld)",
13406 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13407 return;
13408
13409 case TERNOP_IN_RANGE:
4c4b4cd2 13410 if (prec >= PREC_EQUAL)
dda83cd7 13411 fputs_filtered ("(", stream);
323e0a4a 13412 /* XXX: sprint_subexp */
4c4b4cd2 13413 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13414 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13415 print_subexp (exp, pos, stream, PREC_EQUAL);
13416 fputs_filtered (" .. ", stream);
13417 print_subexp (exp, pos, stream, PREC_EQUAL);
13418 if (prec >= PREC_EQUAL)
dda83cd7 13419 fputs_filtered (")", stream);
76a01679 13420 return;
4c4b4cd2
PH
13421
13422 case OP_ATR_FIRST:
13423 case OP_ATR_LAST:
13424 case OP_ATR_LENGTH:
13425 case OP_ATR_IMAGE:
13426 case OP_ATR_MAX:
13427 case OP_ATR_MIN:
13428 case OP_ATR_MODULUS:
13429 case OP_ATR_POS:
13430 case OP_ATR_SIZE:
13431 case OP_ATR_TAG:
13432 case OP_ATR_VAL:
4c4b4cd2 13433 if (exp->elts[*pos].opcode == OP_TYPE)
dda83cd7
SM
13434 {
13435 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13436 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
79d43c61 13437 &type_print_raw_options);
dda83cd7
SM
13438 *pos += 3;
13439 }
4c4b4cd2 13440 else
dda83cd7 13441 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13442 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13443 if (nargs > 1)
dda83cd7
SM
13444 {
13445 int tem;
13446
13447 for (tem = 1; tem < nargs; tem += 1)
13448 {
13449 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13450 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13451 }
13452 fputs_filtered (")", stream);
13453 }
4c4b4cd2 13454 return;
14f9c5c9 13455
4c4b4cd2 13456 case UNOP_QUAL:
4c4b4cd2
PH
13457 type_print (exp->elts[pc + 1].type, "", stream, 0);
13458 fputs_filtered ("'(", stream);
13459 print_subexp (exp, pos, stream, PREC_PREFIX);
13460 fputs_filtered (")", stream);
13461 return;
14f9c5c9 13462
4c4b4cd2 13463 case UNOP_IN_RANGE:
323e0a4a 13464 /* XXX: sprint_subexp */
4c4b4cd2 13465 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13466 fputs_filtered (" in ", stream);
79d43c61
TT
13467 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13468 &type_print_raw_options);
4c4b4cd2 13469 return;
52ce6436
PH
13470
13471 case OP_DISCRETE_RANGE:
13472 print_subexp (exp, pos, stream, PREC_SUFFIX);
13473 fputs_filtered ("..", stream);
13474 print_subexp (exp, pos, stream, PREC_SUFFIX);
13475 return;
13476
13477 case OP_OTHERS:
13478 fputs_filtered ("others => ", stream);
13479 print_subexp (exp, pos, stream, PREC_SUFFIX);
13480 return;
13481
13482 case OP_CHOICES:
13483 for (i = 0; i < nargs-1; i += 1)
13484 {
13485 if (i > 0)
13486 fputs_filtered ("|", stream);
13487 print_subexp (exp, pos, stream, PREC_SUFFIX);
13488 }
13489 fputs_filtered (" => ", stream);
13490 print_subexp (exp, pos, stream, PREC_SUFFIX);
13491 return;
13492
13493 case OP_POSITIONAL:
13494 print_subexp (exp, pos, stream, PREC_SUFFIX);
13495 return;
13496
13497 case OP_AGGREGATE:
13498 fputs_filtered ("(", stream);
13499 for (i = 0; i < nargs; i += 1)
13500 {
13501 if (i > 0)
13502 fputs_filtered (", ", stream);
13503 print_subexp (exp, pos, stream, PREC_SUFFIX);
13504 }
13505 fputs_filtered (")", stream);
13506 return;
4c4b4cd2
PH
13507 }
13508}
14f9c5c9
AS
13509
13510/* Table mapping opcodes into strings for printing operators
13511 and precedences of the operators. */
13512
d2e4a39e
AS
13513static const struct op_print ada_op_print_tab[] = {
13514 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13515 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13516 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13517 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13518 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13519 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13520 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13521 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13522 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13523 {">=", BINOP_GEQ, PREC_ORDER, 0},
13524 {">", BINOP_GTR, PREC_ORDER, 0},
13525 {"<", BINOP_LESS, PREC_ORDER, 0},
13526 {">>", BINOP_RSH, PREC_SHIFT, 0},
13527 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13528 {"+", BINOP_ADD, PREC_ADD, 0},
13529 {"-", BINOP_SUB, PREC_ADD, 0},
13530 {"&", BINOP_CONCAT, PREC_ADD, 0},
13531 {"*", BINOP_MUL, PREC_MUL, 0},
13532 {"/", BINOP_DIV, PREC_MUL, 0},
13533 {"rem", BINOP_REM, PREC_MUL, 0},
13534 {"mod", BINOP_MOD, PREC_MUL, 0},
13535 {"**", BINOP_EXP, PREC_REPEAT, 0},
13536 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13537 {"-", UNOP_NEG, PREC_PREFIX, 0},
13538 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13539 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13540 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13541 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13542 {".all", UNOP_IND, PREC_SUFFIX, 1},
13543 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13544 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13545 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9 13546};
6c038f32
PH
13547\f
13548 /* Language vector */
13549
6c038f32
PH
13550static const struct exp_descriptor ada_exp_descriptor = {
13551 ada_print_subexp,
13552 ada_operator_length,
c0201579 13553 ada_operator_check,
6c038f32
PH
13554 ada_dump_subexp_body,
13555 ada_evaluate_subexp
13556};
13557
b5ec771e
PA
13558/* symbol_name_matcher_ftype adapter for wild_match. */
13559
13560static bool
13561do_wild_match (const char *symbol_search_name,
13562 const lookup_name_info &lookup_name,
a207cff2 13563 completion_match_result *comp_match_res)
b5ec771e
PA
13564{
13565 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13566}
13567
13568/* symbol_name_matcher_ftype adapter for full_match. */
13569
13570static bool
13571do_full_match (const char *symbol_search_name,
13572 const lookup_name_info &lookup_name,
a207cff2 13573 completion_match_result *comp_match_res)
b5ec771e 13574{
86b44259
TT
13575 if (startswith (symbol_search_name, "_ada_"))
13576 symbol_search_name += 5;
13577
13578 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13579 int uscore_count = 0;
13580 while (*lname != '\0')
13581 {
13582 if (*symbol_search_name != *lname)
13583 {
13584 if (*symbol_search_name == 'B' && uscore_count == 2
13585 && symbol_search_name[1] == '_')
13586 {
13587 symbol_search_name += 2;
13588 while (isdigit (*symbol_search_name))
13589 ++symbol_search_name;
13590 if (symbol_search_name[0] == '_'
13591 && symbol_search_name[1] == '_')
13592 {
13593 symbol_search_name += 2;
13594 continue;
13595 }
13596 }
13597 return false;
13598 }
13599
13600 if (*symbol_search_name == '_')
13601 ++uscore_count;
13602 else
13603 uscore_count = 0;
13604
13605 ++symbol_search_name;
13606 ++lname;
13607 }
13608
13609 return is_name_suffix (symbol_search_name);
b5ec771e
PA
13610}
13611
a2cd4f14
JB
13612/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13613
13614static bool
13615do_exact_match (const char *symbol_search_name,
13616 const lookup_name_info &lookup_name,
13617 completion_match_result *comp_match_res)
13618{
13619 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13620}
13621
b5ec771e
PA
13622/* Build the Ada lookup name for LOOKUP_NAME. */
13623
13624ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13625{
e0802d59 13626 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13627
13628 if (user_name[0] == '<')
13629 {
13630 if (user_name.back () == '>')
e0802d59 13631 m_encoded_name
5ac58899 13632 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 13633 else
e0802d59 13634 m_encoded_name
5ac58899 13635 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
13636 m_encoded_p = true;
13637 m_verbatim_p = true;
13638 m_wild_match_p = false;
13639 m_standard_p = false;
13640 }
13641 else
13642 {
13643 m_verbatim_p = false;
13644
e0802d59 13645 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13646
13647 if (!m_encoded_p)
13648 {
e0802d59 13649 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
13650 m_encoded_name = ada_encode_1 (folded, false);
13651 if (m_encoded_name.empty ())
5ac58899 13652 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13653 }
13654 else
5ac58899 13655 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13656
13657 /* Handle the 'package Standard' special case. See description
13658 of m_standard_p. */
13659 if (startswith (m_encoded_name.c_str (), "standard__"))
13660 {
13661 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13662 m_standard_p = true;
13663 }
13664 else
13665 m_standard_p = false;
74ccd7f5 13666
b5ec771e
PA
13667 /* If the name contains a ".", then the user is entering a fully
13668 qualified entity name, and the match must not be done in wild
13669 mode. Similarly, if the user wants to complete what looks
13670 like an encoded name, the match must not be done in wild
13671 mode. Also, in the standard__ special case always do
13672 non-wild matching. */
13673 m_wild_match_p
13674 = (lookup_name.match_type () != symbol_name_match_type::FULL
13675 && !m_encoded_p
13676 && !m_standard_p
13677 && user_name.find ('.') == std::string::npos);
13678 }
13679}
13680
13681/* symbol_name_matcher_ftype method for Ada. This only handles
13682 completion mode. */
13683
13684static bool
13685ada_symbol_name_matches (const char *symbol_search_name,
13686 const lookup_name_info &lookup_name,
a207cff2 13687 completion_match_result *comp_match_res)
74ccd7f5 13688{
b5ec771e
PA
13689 return lookup_name.ada ().matches (symbol_search_name,
13690 lookup_name.match_type (),
a207cff2 13691 comp_match_res);
b5ec771e
PA
13692}
13693
de63c46b
PA
13694/* A name matcher that matches the symbol name exactly, with
13695 strcmp. */
13696
13697static bool
13698literal_symbol_name_matcher (const char *symbol_search_name,
13699 const lookup_name_info &lookup_name,
13700 completion_match_result *comp_match_res)
13701{
e0802d59 13702 gdb::string_view name_view = lookup_name.name ();
de63c46b 13703
e0802d59
TT
13704 if (lookup_name.completion_mode ()
13705 ? (strncmp (symbol_search_name, name_view.data (),
13706 name_view.size ()) == 0)
13707 : symbol_search_name == name_view)
de63c46b
PA
13708 {
13709 if (comp_match_res != NULL)
13710 comp_match_res->set_match (symbol_search_name);
13711 return true;
13712 }
13713 else
13714 return false;
13715}
13716
c9debfb9 13717/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13718 Ada. */
13719
13720static symbol_name_matcher_ftype *
13721ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13722{
de63c46b
PA
13723 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13724 return literal_symbol_name_matcher;
13725
b5ec771e
PA
13726 if (lookup_name.completion_mode ())
13727 return ada_symbol_name_matches;
74ccd7f5 13728 else
b5ec771e
PA
13729 {
13730 if (lookup_name.ada ().wild_match_p ())
13731 return do_wild_match;
a2cd4f14
JB
13732 else if (lookup_name.ada ().verbatim_p ())
13733 return do_exact_match;
b5ec771e
PA
13734 else
13735 return do_full_match;
13736 }
74ccd7f5
JB
13737}
13738
0874fd07
AB
13739/* Class representing the Ada language. */
13740
13741class ada_language : public language_defn
13742{
13743public:
13744 ada_language ()
0e25e767 13745 : language_defn (language_ada)
0874fd07 13746 { /* Nothing. */ }
5bd40f2a 13747
6f7664a9
AB
13748 /* See language.h. */
13749
13750 const char *name () const override
13751 { return "ada"; }
13752
13753 /* See language.h. */
13754
13755 const char *natural_name () const override
13756 { return "Ada"; }
13757
e171d6f1
AB
13758 /* See language.h. */
13759
13760 const std::vector<const char *> &filename_extensions () const override
13761 {
13762 static const std::vector<const char *> extensions
13763 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13764 return extensions;
13765 }
13766
5bd40f2a
AB
13767 /* Print an array element index using the Ada syntax. */
13768
13769 void print_array_index (struct type *index_type,
13770 LONGEST index,
13771 struct ui_file *stream,
13772 const value_print_options *options) const override
13773 {
13774 struct value *index_value = val_atr (index_type, index);
13775
00c696a6 13776 value_print (index_value, stream, options);
5bd40f2a
AB
13777 fprintf_filtered (stream, " => ");
13778 }
15e5fd35
AB
13779
13780 /* Implement the "read_var_value" language_defn method for Ada. */
13781
13782 struct value *read_var_value (struct symbol *var,
13783 const struct block *var_block,
13784 struct frame_info *frame) const override
13785 {
13786 /* The only case where default_read_var_value is not sufficient
13787 is when VAR is a renaming... */
13788 if (frame != nullptr)
13789 {
13790 const struct block *frame_block = get_frame_block (frame, NULL);
13791 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13792 return ada_read_renaming_var_value (var, frame_block);
13793 }
13794
13795 /* This is a typical case where we expect the default_read_var_value
13796 function to work. */
13797 return language_defn::read_var_value (var, var_block, frame);
13798 }
1fb314aa
AB
13799
13800 /* See language.h. */
13801 void language_arch_info (struct gdbarch *gdbarch,
13802 struct language_arch_info *lai) const override
13803 {
13804 const struct builtin_type *builtin = builtin_type (gdbarch);
13805
7bea47f0
AB
13806 /* Helper function to allow shorter lines below. */
13807 auto add = [&] (struct type *t)
13808 {
13809 lai->add_primitive_type (t);
13810 };
13811
13812 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13813 0, "integer"));
13814 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13815 0, "long_integer"));
13816 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13817 0, "short_integer"));
13818 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13819 0, "character");
13820 lai->set_string_char_type (char_type);
13821 add (char_type);
13822 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13823 "float", gdbarch_float_format (gdbarch)));
13824 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13825 "long_float", gdbarch_double_format (gdbarch)));
13826 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13827 0, "long_long_integer"));
13828 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13829 "long_long_float",
13830 gdbarch_long_double_format (gdbarch)));
13831 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13832 0, "natural"));
13833 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13834 0, "positive"));
13835 add (builtin->builtin_void);
13836
13837 struct type *system_addr_ptr
1fb314aa
AB
13838 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13839 "void"));
7bea47f0
AB
13840 system_addr_ptr->set_name ("system__address");
13841 add (system_addr_ptr);
1fb314aa
AB
13842
13843 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13844 type. This is a signed integral type whose size is the same as
13845 the size of addresses. */
7bea47f0
AB
13846 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13847 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13848 "storage_offset"));
1fb314aa 13849
7bea47f0 13850 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 13851 }
4009ee92
AB
13852
13853 /* See language.h. */
13854
13855 bool iterate_over_symbols
13856 (const struct block *block, const lookup_name_info &name,
13857 domain_enum domain,
13858 gdb::function_view<symbol_found_callback_ftype> callback) const override
13859 {
13860 std::vector<struct block_symbol> results;
13861
13862 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13863 for (block_symbol &sym : results)
13864 {
13865 if (!callback (&sym))
13866 return false;
13867 }
13868
13869 return true;
13870 }
6f827019
AB
13871
13872 /* See language.h. */
13873 bool sniff_from_mangled_name (const char *mangled,
13874 char **out) const override
13875 {
13876 std::string demangled = ada_decode (mangled);
13877
13878 *out = NULL;
13879
13880 if (demangled != mangled && demangled[0] != '<')
13881 {
13882 /* Set the gsymbol language to Ada, but still return 0.
13883 Two reasons for that:
13884
13885 1. For Ada, we prefer computing the symbol's decoded name
13886 on the fly rather than pre-compute it, in order to save
13887 memory (Ada projects are typically very large).
13888
13889 2. There are some areas in the definition of the GNAT
13890 encoding where, with a bit of bad luck, we might be able
13891 to decode a non-Ada symbol, generating an incorrect
13892 demangled name (Eg: names ending with "TB" for instance
13893 are identified as task bodies and so stripped from
13894 the decoded name returned).
13895
13896 Returning true, here, but not setting *DEMANGLED, helps us get
13897 a little bit of the best of both worlds. Because we're last,
13898 we should not affect any of the other languages that were
13899 able to demangle the symbol before us; we get to correctly
13900 tag Ada symbols as such; and even if we incorrectly tagged a
13901 non-Ada symbol, which should be rare, any routing through the
13902 Ada language should be transparent (Ada tries to behave much
13903 like C/C++ with non-Ada symbols). */
13904 return true;
13905 }
13906
13907 return false;
13908 }
fbfb0a46
AB
13909
13910 /* See language.h. */
13911
5399db93 13912 char *demangle_symbol (const char *mangled, int options) const override
0a50df5d
AB
13913 {
13914 return ada_la_decode (mangled, options);
13915 }
13916
13917 /* See language.h. */
13918
fbfb0a46
AB
13919 void print_type (struct type *type, const char *varstring,
13920 struct ui_file *stream, int show, int level,
13921 const struct type_print_options *flags) const override
13922 {
13923 ada_print_type (type, varstring, stream, show, level, flags);
13924 }
c9debfb9 13925
53fc67f8
AB
13926 /* See language.h. */
13927
13928 const char *word_break_characters (void) const override
13929 {
13930 return ada_completer_word_break_characters;
13931 }
13932
7e56227d
AB
13933 /* See language.h. */
13934
13935 void collect_symbol_completion_matches (completion_tracker &tracker,
13936 complete_symbol_mode mode,
13937 symbol_name_match_type name_match_type,
13938 const char *text, const char *word,
13939 enum type_code code) const override
13940 {
13941 struct symbol *sym;
13942 const struct block *b, *surrounding_static_block = 0;
13943 struct block_iterator iter;
13944
13945 gdb_assert (code == TYPE_CODE_UNDEF);
13946
13947 lookup_name_info lookup_name (text, name_match_type, true);
13948
13949 /* First, look at the partial symtab symbols. */
13950 expand_symtabs_matching (NULL,
13951 lookup_name,
13952 NULL,
13953 NULL,
13954 ALL_DOMAIN);
13955
13956 /* At this point scan through the misc symbol vectors and add each
13957 symbol you find to the list. Eventually we want to ignore
13958 anything that isn't a text symbol (everything else will be
13959 handled by the psymtab code above). */
13960
13961 for (objfile *objfile : current_program_space->objfiles ())
13962 {
13963 for (minimal_symbol *msymbol : objfile->msymbols ())
13964 {
13965 QUIT;
13966
13967 if (completion_skip_symbol (mode, msymbol))
13968 continue;
13969
13970 language symbol_language = msymbol->language ();
13971
13972 /* Ada minimal symbols won't have their language set to Ada. If
13973 we let completion_list_add_name compare using the
13974 default/C-like matcher, then when completing e.g., symbols in a
13975 package named "pck", we'd match internal Ada symbols like
13976 "pckS", which are invalid in an Ada expression, unless you wrap
13977 them in '<' '>' to request a verbatim match.
13978
13979 Unfortunately, some Ada encoded names successfully demangle as
13980 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13981 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13982 with the wrong language set. Paper over that issue here. */
13983 if (symbol_language == language_auto
13984 || symbol_language == language_cplus)
13985 symbol_language = language_ada;
13986
13987 completion_list_add_name (tracker,
13988 symbol_language,
13989 msymbol->linkage_name (),
13990 lookup_name, text, word);
13991 }
13992 }
13993
13994 /* Search upwards from currently selected frame (so that we can
13995 complete on local vars. */
13996
13997 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13998 {
13999 if (!BLOCK_SUPERBLOCK (b))
14000 surrounding_static_block = b; /* For elmin of dups */
14001
14002 ALL_BLOCK_SYMBOLS (b, iter, sym)
14003 {
14004 if (completion_skip_symbol (mode, sym))
14005 continue;
14006
14007 completion_list_add_name (tracker,
14008 sym->language (),
14009 sym->linkage_name (),
14010 lookup_name, text, word);
14011 }
14012 }
14013
14014 /* Go through the symtabs and check the externs and statics for
14015 symbols which match. */
14016
14017 for (objfile *objfile : current_program_space->objfiles ())
14018 {
14019 for (compunit_symtab *s : objfile->compunits ())
14020 {
14021 QUIT;
14022 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14023 ALL_BLOCK_SYMBOLS (b, iter, sym)
14024 {
14025 if (completion_skip_symbol (mode, sym))
14026 continue;
14027
14028 completion_list_add_name (tracker,
14029 sym->language (),
14030 sym->linkage_name (),
14031 lookup_name, text, word);
14032 }
14033 }
14034 }
14035
14036 for (objfile *objfile : current_program_space->objfiles ())
14037 {
14038 for (compunit_symtab *s : objfile->compunits ())
14039 {
14040 QUIT;
14041 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14042 /* Don't do this block twice. */
14043 if (b == surrounding_static_block)
14044 continue;
14045 ALL_BLOCK_SYMBOLS (b, iter, sym)
14046 {
14047 if (completion_skip_symbol (mode, sym))
14048 continue;
14049
14050 completion_list_add_name (tracker,
14051 sym->language (),
14052 sym->linkage_name (),
14053 lookup_name, text, word);
14054 }
14055 }
14056 }
14057 }
14058
f16a9f57
AB
14059 /* See language.h. */
14060
14061 gdb::unique_xmalloc_ptr<char> watch_location_expression
14062 (struct type *type, CORE_ADDR addr) const override
14063 {
14064 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14065 std::string name = type_to_string (type);
14066 return gdb::unique_xmalloc_ptr<char>
14067 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14068 }
14069
a1d1fa3e
AB
14070 /* See language.h. */
14071
14072 void value_print (struct value *val, struct ui_file *stream,
14073 const struct value_print_options *options) const override
14074 {
14075 return ada_value_print (val, stream, options);
14076 }
14077
ebe2334e
AB
14078 /* See language.h. */
14079
14080 void value_print_inner
14081 (struct value *val, struct ui_file *stream, int recurse,
14082 const struct value_print_options *options) const override
14083 {
14084 return ada_value_print_inner (val, stream, recurse, options);
14085 }
14086
a78a19b1
AB
14087 /* See language.h. */
14088
14089 struct block_symbol lookup_symbol_nonlocal
14090 (const char *name, const struct block *block,
14091 const domain_enum domain) const override
14092 {
14093 struct block_symbol sym;
14094
14095 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14096 if (sym.symbol != NULL)
14097 return sym;
14098
14099 /* If we haven't found a match at this point, try the primitive
14100 types. In other languages, this search is performed before
14101 searching for global symbols in order to short-circuit that
14102 global-symbol search if it happens that the name corresponds
14103 to a primitive type. But we cannot do the same in Ada, because
14104 it is perfectly legitimate for a program to declare a type which
14105 has the same name as a standard type. If looking up a type in
14106 that situation, we have traditionally ignored the primitive type
14107 in favor of user-defined types. This is why, unlike most other
14108 languages, we search the primitive types this late and only after
14109 having searched the global symbols without success. */
14110
14111 if (domain == VAR_DOMAIN)
14112 {
14113 struct gdbarch *gdbarch;
14114
14115 if (block == NULL)
14116 gdbarch = target_gdbarch ();
14117 else
14118 gdbarch = block_gdbarch (block);
14119 sym.symbol
14120 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14121 if (sym.symbol != NULL)
14122 return sym;
14123 }
14124
14125 return {};
14126 }
14127
87afa652
AB
14128 /* See language.h. */
14129
14130 int parser (struct parser_state *ps) const override
14131 {
14132 warnings_issued = 0;
14133 return ada_parse (ps);
14134 }
14135
1bf9c363
AB
14136 /* See language.h.
14137
14138 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14139 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14140 namespace) and converts operators that are user-defined into
14141 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14142 a preferred result type [at the moment, only type void has any
14143 effect---causing procedures to be preferred over functions in calls].
14144 A null CONTEXT_TYPE indicates that a non-void return type is
14145 preferred. May change (expand) *EXP. */
14146
c5c41205
TT
14147 void post_parser (expression_up *expp, struct parser_state *ps)
14148 const override
1bf9c363
AB
14149 {
14150 struct type *context_type = NULL;
14151 int pc = 0;
14152
c5c41205 14153 if (ps->void_context_p)
1bf9c363
AB
14154 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14155
c5c41205
TT
14156 resolve_subexp (expp, &pc, 1, context_type, ps->parse_completion,
14157 ps->block_tracker);
1bf9c363
AB
14158 }
14159
ec8cec5b
AB
14160 /* See language.h. */
14161
14162 void emitchar (int ch, struct type *chtype,
14163 struct ui_file *stream, int quoter) const override
14164 {
14165 ada_emit_char (ch, chtype, stream, quoter, 1);
14166 }
14167
52b50f2c
AB
14168 /* See language.h. */
14169
14170 void printchar (int ch, struct type *chtype,
14171 struct ui_file *stream) const override
14172 {
14173 ada_printchar (ch, chtype, stream);
14174 }
14175
d711ee67
AB
14176 /* See language.h. */
14177
14178 void printstr (struct ui_file *stream, struct type *elttype,
14179 const gdb_byte *string, unsigned int length,
14180 const char *encoding, int force_ellipses,
14181 const struct value_print_options *options) const override
14182 {
14183 ada_printstr (stream, elttype, string, length, encoding,
14184 force_ellipses, options);
14185 }
14186
4ffc13fb
AB
14187 /* See language.h. */
14188
14189 void print_typedef (struct type *type, struct symbol *new_symbol,
14190 struct ui_file *stream) const override
14191 {
14192 ada_print_typedef (type, new_symbol, stream);
14193 }
14194
39e7ecca
AB
14195 /* See language.h. */
14196
14197 bool is_string_type_p (struct type *type) const override
14198 {
14199 return ada_is_string_type (type);
14200 }
14201
22e3f3ed
AB
14202 /* See language.h. */
14203
14204 const char *struct_too_deep_ellipsis () const override
14205 { return "(...)"; }
39e7ecca 14206
67bd3fd5
AB
14207 /* See language.h. */
14208
14209 bool c_style_arrays_p () const override
14210 { return false; }
14211
d3355e4d
AB
14212 /* See language.h. */
14213
14214 bool store_sym_names_in_linkage_form_p () const override
14215 { return true; }
14216
b63a3f3f
AB
14217 /* See language.h. */
14218
14219 const struct lang_varobj_ops *varobj_ops () const override
14220 { return &ada_varobj_ops; }
14221
5aba6ebe
AB
14222 /* See language.h. */
14223
14224 const struct exp_descriptor *expression_ops () const override
14225 { return &ada_exp_descriptor; }
14226
b7c6e27d
AB
14227 /* See language.h. */
14228
14229 const struct op_print *opcode_print_table () const override
14230 { return ada_op_print_tab; }
14231
c9debfb9
AB
14232protected:
14233 /* See language.h. */
14234
14235 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14236 (const lookup_name_info &lookup_name) const override
14237 {
14238 return ada_get_symbol_name_matcher (lookup_name);
14239 }
0874fd07
AB
14240};
14241
14242/* Single instance of the Ada language class. */
14243
14244static ada_language ada_language_defn;
14245
5bf03f13
JB
14246/* Command-list for the "set/show ada" prefix command. */
14247static struct cmd_list_element *set_ada_list;
14248static struct cmd_list_element *show_ada_list;
14249
2060206e
PA
14250static void
14251initialize_ada_catchpoint_ops (void)
14252{
14253 struct breakpoint_ops *ops;
14254
14255 initialize_breakpoint_ops ();
14256
14257 ops = &catch_exception_breakpoint_ops;
14258 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14259 ops->allocate_location = allocate_location_exception;
14260 ops->re_set = re_set_exception;
14261 ops->check_status = check_status_exception;
14262 ops->print_it = print_it_exception;
14263 ops->print_one = print_one_exception;
14264 ops->print_mention = print_mention_exception;
14265 ops->print_recreate = print_recreate_exception;
2060206e
PA
14266
14267 ops = &catch_exception_unhandled_breakpoint_ops;
14268 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14269 ops->allocate_location = allocate_location_exception;
14270 ops->re_set = re_set_exception;
14271 ops->check_status = check_status_exception;
14272 ops->print_it = print_it_exception;
14273 ops->print_one = print_one_exception;
14274 ops->print_mention = print_mention_exception;
14275 ops->print_recreate = print_recreate_exception;
2060206e
PA
14276
14277 ops = &catch_assert_breakpoint_ops;
14278 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14279 ops->allocate_location = allocate_location_exception;
14280 ops->re_set = re_set_exception;
14281 ops->check_status = check_status_exception;
14282 ops->print_it = print_it_exception;
14283 ops->print_one = print_one_exception;
14284 ops->print_mention = print_mention_exception;
14285 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14286
14287 ops = &catch_handlers_breakpoint_ops;
14288 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14289 ops->allocate_location = allocate_location_exception;
14290 ops->re_set = re_set_exception;
14291 ops->check_status = check_status_exception;
14292 ops->print_it = print_it_exception;
14293 ops->print_one = print_one_exception;
14294 ops->print_mention = print_mention_exception;
14295 ops->print_recreate = print_recreate_exception;
2060206e
PA
14296}
14297
3d9434b5
JB
14298/* This module's 'new_objfile' observer. */
14299
14300static void
14301ada_new_objfile_observer (struct objfile *objfile)
14302{
14303 ada_clear_symbol_cache ();
14304}
14305
14306/* This module's 'free_objfile' observer. */
14307
14308static void
14309ada_free_objfile_observer (struct objfile *objfile)
14310{
14311 ada_clear_symbol_cache ();
14312}
14313
6c265988 14314void _initialize_ada_language ();
d2e4a39e 14315void
6c265988 14316_initialize_ada_language ()
14f9c5c9 14317{
2060206e
PA
14318 initialize_ada_catchpoint_ops ();
14319
0743fc83
TT
14320 add_basic_prefix_cmd ("ada", no_class,
14321 _("Prefix command for changing Ada-specific settings."),
14322 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14323
0743fc83
TT
14324 add_show_prefix_cmd ("ada", no_class,
14325 _("Generic command for showing Ada-specific settings."),
14326 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14327
14328 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 14329 &trust_pad_over_xvs, _("\
590042fc
PW
14330Enable or disable an optimization trusting PAD types over XVS types."), _("\
14331Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 14332 _("\
5bf03f13
JB
14333This is related to the encoding used by the GNAT compiler. The debugger\n\
14334should normally trust the contents of PAD types, but certain older versions\n\
14335of GNAT have a bug that sometimes causes the information in the PAD type\n\
14336to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14337work around this bug. It is always safe to turn this option \"off\", but\n\
14338this incurs a slight performance penalty, so it is recommended to NOT change\n\
14339this option to \"off\" unless necessary."),
dda83cd7 14340 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 14341
d72413e6
PMR
14342 add_setshow_boolean_cmd ("print-signatures", class_vars,
14343 &print_signatures, _("\
14344Enable or disable the output of formal and return types for functions in the \
590042fc 14345overloads selection menu."), _("\
d72413e6 14346Show whether the output of formal and return types for functions in the \
590042fc 14347overloads selection menu is activated."),
d72413e6
PMR
14348 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14349
9ac4176b
PA
14350 add_catch_command ("exception", _("\
14351Catch Ada exceptions, when raised.\n\
9bf7038b 14352Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14353Without any argument, stop when any Ada exception is raised.\n\
14354If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14355being raised does not have a handler (and will therefore lead to the task's\n\
14356termination).\n\
14357Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14358raised is the same as ARG.\n\
14359CONDITION is a boolean expression that is evaluated to see whether the\n\
14360exception should cause a stop."),
9ac4176b 14361 catch_ada_exception_command,
71bed2db 14362 catch_ada_completer,
9ac4176b
PA
14363 CATCH_PERMANENT,
14364 CATCH_TEMPORARY);
9f757bf7
XR
14365
14366 add_catch_command ("handlers", _("\
14367Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14368Usage: catch handlers [ARG] [if CONDITION]\n\
14369Without any argument, stop when any Ada exception is handled.\n\
14370With an argument, catch only exceptions with the given name.\n\
14371CONDITION is a boolean expression that is evaluated to see whether the\n\
14372exception should cause a stop."),
9f757bf7 14373 catch_ada_handlers_command,
dda83cd7 14374 catch_ada_completer,
9f757bf7
XR
14375 CATCH_PERMANENT,
14376 CATCH_TEMPORARY);
9ac4176b
PA
14377 add_catch_command ("assert", _("\
14378Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14379Usage: catch assert [if CONDITION]\n\
14380CONDITION is a boolean expression that is evaluated to see whether the\n\
14381exception should cause a stop."),
9ac4176b 14382 catch_assert_command,
dda83cd7 14383 NULL,
9ac4176b
PA
14384 CATCH_PERMANENT,
14385 CATCH_TEMPORARY);
14386
6c038f32 14387 varsize_limit = 65536;
3fcded8f
JB
14388 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14389 &varsize_limit, _("\
14390Set the maximum number of bytes allowed in a variable-size object."), _("\
14391Show the maximum number of bytes allowed in a variable-size object."), _("\
14392Attempts to access an object whose size is not a compile-time constant\n\
14393and exceeds this limit will cause an error."),
14394 NULL, NULL, &setlist, &showlist);
6c038f32 14395
778865d3
JB
14396 add_info ("exceptions", info_exceptions_command,
14397 _("\
14398List all Ada exception names.\n\
9bf7038b 14399Usage: info exceptions [REGEXP]\n\
778865d3
JB
14400If a regular expression is passed as an argument, only those matching\n\
14401the regular expression are listed."));
14402
0743fc83
TT
14403 add_basic_prefix_cmd ("ada", class_maintenance,
14404 _("Set Ada maintenance-related variables."),
14405 &maint_set_ada_cmdlist, "maintenance set ada ",
14406 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14407
0743fc83
TT
14408 add_show_prefix_cmd ("ada", class_maintenance,
14409 _("Show Ada maintenance-related variables."),
14410 &maint_show_ada_cmdlist, "maintenance show ada ",
14411 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14412
14413 add_setshow_boolean_cmd
14414 ("ignore-descriptive-types", class_maintenance,
14415 &ada_ignore_descriptive_types_p,
14416 _("Set whether descriptive types generated by GNAT should be ignored."),
14417 _("Show whether descriptive types generated by GNAT should be ignored."),
14418 _("\
14419When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14420DWARF attribute."),
14421 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14422
459a2e4c
TT
14423 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14424 NULL, xcalloc, xfree);
6b69afc4 14425
3d9434b5 14426 /* The ada-lang observers. */
76727919
TT
14427 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14428 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14429 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14430}