]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb: make discrete_position return optional
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
dda83cd7 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
dda83cd7 122 struct type *, int,
699bd4cf 123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
dda83cd7 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
4c4b4cd2 130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
a121b7c1 140static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 141 int, int);
4c4b4cd2 142
d2e4a39e 143static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 144
b4ba55a1 145static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 146 const char *);
b4ba55a1 147
d2e4a39e 148static int is_dynamic_field (struct type *, int);
14f9c5c9 149
10a2c479 150static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 151 const gdb_byte *,
dda83cd7 152 CORE_ADDR, struct value *);
4c4b4cd2
PH
153
154static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 155
28c85d6c 156static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 157
d2e4a39e 158static struct type *to_static_fixed_type (struct type *);
f192137b 159static struct type *static_unwrap_type (struct type *type);
14f9c5c9 160
d2e4a39e 161static struct value *unwrap_value (struct value *);
14f9c5c9 162
ad82864c 163static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 164
ad82864c 165static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 166
ad82864c
JB
167static long decode_packed_array_bitsize (struct type *);
168
169static struct value *decode_constrained_packed_array (struct value *);
170
ad82864c 171static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 172
d2e4a39e 173static struct value *value_subscript_packed (struct value *, int,
dda83cd7 174 struct value **);
14f9c5c9 175
4c4b4cd2 176static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 177 struct type *);
14f9c5c9 178
d2e4a39e 179static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 180
d2e4a39e 181static int equiv_types (struct type *, struct type *);
14f9c5c9 182
d2e4a39e 183static int is_name_suffix (const char *);
14f9c5c9 184
59c8a30b 185static int advance_wild_match (const char **, const char *, char);
73589123 186
b5ec771e 187static bool wild_match (const char *name, const char *patn);
14f9c5c9 188
d2e4a39e 189static struct value *ada_coerce_ref (struct value *);
14f9c5c9 190
4c4b4cd2
PH
191static LONGEST pos_atr (struct value *);
192
3cb382c9 193static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 194
53a47a3e
TT
195static struct value *val_atr (struct type *, LONGEST);
196
d2e4a39e 197static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 198
4c4b4cd2 199static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 200 domain_enum);
14f9c5c9 201
108d56a4 202static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 203 struct type *);
4c4b4cd2 204
0d5cff50 205static int find_struct_field (const char *, struct type *, int,
dda83cd7 206 struct type **, int *, int *, int *, int *);
4c4b4cd2 207
d12307c1 208static int ada_resolve_function (struct block_symbol *, int,
dda83cd7
SM
209 struct value **, int, const char *,
210 struct type *, int);
4c4b4cd2 211
4c4b4cd2
PH
212static int ada_is_direct_array_type (struct type *);
213
52ce6436
PH
214static struct value *ada_index_struct_field (int, struct value *, int,
215 struct type *);
216
217static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
218 struct expression *,
219 int *, enum noside);
52ce6436
PH
220
221static void aggregate_assign_from_choices (struct value *, struct value *,
222 struct expression *,
223 int *, LONGEST *, int *,
224 int, LONGEST, LONGEST);
225
226static void aggregate_assign_positional (struct value *, struct value *,
227 struct expression *,
228 int *, LONGEST *, int *, int,
229 LONGEST, LONGEST);
230
231
232static void aggregate_assign_others (struct value *, struct value *,
233 struct expression *,
234 int *, LONGEST *, int, LONGEST, LONGEST);
235
236
237static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
238
239
240static struct value *ada_evaluate_subexp (struct type *, struct expression *,
241 int *, enum noside);
242
243static void ada_forward_operator_length (struct expression *, int, int *,
244 int *);
852dff6c
JB
245
246static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
247
248static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
249 (const lookup_name_info &lookup_name);
250
4c4b4cd2
PH
251\f
252
ee01b665
JB
253/* The result of a symbol lookup to be stored in our symbol cache. */
254
255struct cache_entry
256{
257 /* The name used to perform the lookup. */
258 const char *name;
259 /* The namespace used during the lookup. */
fe978cb0 260 domain_enum domain;
ee01b665
JB
261 /* The symbol returned by the lookup, or NULL if no matching symbol
262 was found. */
263 struct symbol *sym;
264 /* The block where the symbol was found, or NULL if no matching
265 symbol was found. */
266 const struct block *block;
267 /* A pointer to the next entry with the same hash. */
268 struct cache_entry *next;
269};
270
271/* The Ada symbol cache, used to store the result of Ada-mode symbol
272 lookups in the course of executing the user's commands.
273
274 The cache is implemented using a simple, fixed-sized hash.
275 The size is fixed on the grounds that there are not likely to be
276 all that many symbols looked up during any given session, regardless
277 of the size of the symbol table. If we decide to go to a resizable
278 table, let's just use the stuff from libiberty instead. */
279
280#define HASH_SIZE 1009
281
282struct ada_symbol_cache
283{
284 /* An obstack used to store the entries in our cache. */
285 struct obstack cache_space;
286
287 /* The root of the hash table used to implement our symbol cache. */
288 struct cache_entry *root[HASH_SIZE];
289};
290
291static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 292
4c4b4cd2 293/* Maximum-sized dynamic type. */
14f9c5c9
AS
294static unsigned int varsize_limit;
295
67cb5b2d 296static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
297#ifdef VMS
298 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
299#else
14f9c5c9 300 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 301#endif
14f9c5c9 302
4c4b4cd2 303/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 304static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 305 = "__gnat_ada_main_program_name";
14f9c5c9 306
4c4b4cd2
PH
307/* Limit on the number of warnings to raise per expression evaluation. */
308static int warning_limit = 2;
309
310/* Number of warning messages issued; reset to 0 by cleanups after
311 expression evaluation. */
312static int warnings_issued = 0;
313
27087b7f 314static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
315 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
316};
317
27087b7f 318static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
319 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
320};
321
c6044dd1
JB
322/* Maintenance-related settings for this module. */
323
324static struct cmd_list_element *maint_set_ada_cmdlist;
325static struct cmd_list_element *maint_show_ada_cmdlist;
326
c6044dd1
JB
327/* The "maintenance ada set/show ignore-descriptive-type" value. */
328
491144b5 329static bool ada_ignore_descriptive_types_p = false;
c6044dd1 330
e802dbe0
JB
331 /* Inferior-specific data. */
332
333/* Per-inferior data for this module. */
334
335struct ada_inferior_data
336{
337 /* The ada__tags__type_specific_data type, which is used when decoding
338 tagged types. With older versions of GNAT, this type was directly
339 accessible through a component ("tsd") in the object tag. But this
340 is no longer the case, so we cache it for each inferior. */
f37b313d 341 struct type *tsd_type = nullptr;
3eecfa55
JB
342
343 /* The exception_support_info data. This data is used to determine
344 how to implement support for Ada exception catchpoints in a given
345 inferior. */
f37b313d 346 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
347};
348
349/* Our key to this module's inferior data. */
f37b313d 350static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
351
352/* Return our inferior data for the given inferior (INF).
353
354 This function always returns a valid pointer to an allocated
355 ada_inferior_data structure. If INF's inferior data has not
356 been previously set, this functions creates a new one with all
357 fields set to zero, sets INF's inferior to it, and then returns
358 a pointer to that newly allocated ada_inferior_data. */
359
360static struct ada_inferior_data *
361get_ada_inferior_data (struct inferior *inf)
362{
363 struct ada_inferior_data *data;
364
f37b313d 365 data = ada_inferior_data.get (inf);
e802dbe0 366 if (data == NULL)
f37b313d 367 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
368
369 return data;
370}
371
372/* Perform all necessary cleanups regarding our module's inferior data
373 that is required after the inferior INF just exited. */
374
375static void
376ada_inferior_exit (struct inferior *inf)
377{
f37b313d 378 ada_inferior_data.clear (inf);
e802dbe0
JB
379}
380
ee01b665
JB
381
382 /* program-space-specific data. */
383
384/* This module's per-program-space data. */
385struct ada_pspace_data
386{
f37b313d
TT
387 ~ada_pspace_data ()
388 {
389 if (sym_cache != NULL)
390 ada_free_symbol_cache (sym_cache);
391 }
392
ee01b665 393 /* The Ada symbol cache. */
f37b313d 394 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
395};
396
397/* Key to our per-program-space data. */
f37b313d 398static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
399
400/* Return this module's data for the given program space (PSPACE).
401 If not is found, add a zero'ed one now.
402
403 This function always returns a valid object. */
404
405static struct ada_pspace_data *
406get_ada_pspace_data (struct program_space *pspace)
407{
408 struct ada_pspace_data *data;
409
f37b313d 410 data = ada_pspace_data_handle.get (pspace);
ee01b665 411 if (data == NULL)
f37b313d 412 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
413
414 return data;
415}
416
dda83cd7 417 /* Utilities */
4c4b4cd2 418
720d1a40 419/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 420 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
421
422 Normally, we really expect a typedef type to only have 1 typedef layer.
423 In other words, we really expect the target type of a typedef type to be
424 a non-typedef type. This is particularly true for Ada units, because
425 the language does not have a typedef vs not-typedef distinction.
426 In that respect, the Ada compiler has been trying to eliminate as many
427 typedef definitions in the debugging information, since they generally
428 do not bring any extra information (we still use typedef under certain
429 circumstances related mostly to the GNAT encoding).
430
431 Unfortunately, we have seen situations where the debugging information
432 generated by the compiler leads to such multiple typedef layers. For
433 instance, consider the following example with stabs:
434
435 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
436 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
437
438 This is an error in the debugging information which causes type
439 pck__float_array___XUP to be defined twice, and the second time,
440 it is defined as a typedef of a typedef.
441
442 This is on the fringe of legality as far as debugging information is
443 concerned, and certainly unexpected. But it is easy to handle these
444 situations correctly, so we can afford to be lenient in this case. */
445
446static struct type *
447ada_typedef_target_type (struct type *type)
448{
78134374 449 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
450 type = TYPE_TARGET_TYPE (type);
451 return type;
452}
453
41d27058
JB
454/* Given DECODED_NAME a string holding a symbol name in its
455 decoded form (ie using the Ada dotted notation), returns
456 its unqualified name. */
457
458static const char *
459ada_unqualified_name (const char *decoded_name)
460{
2b0f535a
JB
461 const char *result;
462
463 /* If the decoded name starts with '<', it means that the encoded
464 name does not follow standard naming conventions, and thus that
465 it is not your typical Ada symbol name. Trying to unqualify it
466 is therefore pointless and possibly erroneous. */
467 if (decoded_name[0] == '<')
468 return decoded_name;
469
470 result = strrchr (decoded_name, '.');
41d27058
JB
471 if (result != NULL)
472 result++; /* Skip the dot... */
473 else
474 result = decoded_name;
475
476 return result;
477}
478
39e7af3e 479/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 480
39e7af3e 481static std::string
41d27058
JB
482add_angle_brackets (const char *str)
483{
39e7af3e 484 return string_printf ("<%s>", str);
41d27058 485}
96d887e8 486
de93309a
SM
487/* Assuming V points to an array of S objects, make sure that it contains at
488 least M objects, updating V and S as necessary. */
489
490#define GROW_VECT(v, s, m) \
491 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
492
f27cf670 493/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 494 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 495 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 496
de93309a 497static void *
f27cf670 498grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 499{
d2e4a39e
AS
500 if (*size < min_size)
501 {
502 *size *= 2;
503 if (*size < min_size)
dda83cd7 504 *size = min_size;
f27cf670 505 vect = xrealloc (vect, *size * element_size);
d2e4a39e 506 }
f27cf670 507 return vect;
14f9c5c9
AS
508}
509
510/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 511 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
512
513static int
ebf56fd3 514field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
515{
516 int len = strlen (target);
5b4ee69b 517
d2e4a39e 518 return
4c4b4cd2
PH
519 (strncmp (field_name, target, len) == 0
520 && (field_name[len] == '\0'
dda83cd7
SM
521 || (startswith (field_name + len, "___")
522 && strcmp (field_name + strlen (field_name) - 6,
523 "___XVN") != 0)));
14f9c5c9
AS
524}
525
526
872c8b51
JB
527/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
528 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
529 and return its index. This function also handles fields whose name
530 have ___ suffixes because the compiler sometimes alters their name
531 by adding such a suffix to represent fields with certain constraints.
532 If the field could not be found, return a negative number if
533 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
534
535int
536ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 537 int maybe_missing)
4c4b4cd2
PH
538{
539 int fieldno;
872c8b51
JB
540 struct type *struct_type = check_typedef ((struct type *) type);
541
1f704f76 542 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 543 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
544 return fieldno;
545
546 if (!maybe_missing)
323e0a4a 547 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 548 field_name, struct_type->name ());
4c4b4cd2
PH
549
550 return -1;
551}
552
553/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
554
555int
d2e4a39e 556ada_name_prefix_len (const char *name)
14f9c5c9
AS
557{
558 if (name == NULL)
559 return 0;
d2e4a39e 560 else
14f9c5c9 561 {
d2e4a39e 562 const char *p = strstr (name, "___");
5b4ee69b 563
14f9c5c9 564 if (p == NULL)
dda83cd7 565 return strlen (name);
14f9c5c9 566 else
dda83cd7 567 return p - name;
14f9c5c9
AS
568 }
569}
570
4c4b4cd2
PH
571/* Return non-zero if SUFFIX is a suffix of STR.
572 Return zero if STR is null. */
573
14f9c5c9 574static int
d2e4a39e 575is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
576{
577 int len1, len2;
5b4ee69b 578
14f9c5c9
AS
579 if (str == NULL)
580 return 0;
581 len1 = strlen (str);
582 len2 = strlen (suffix);
4c4b4cd2 583 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
584}
585
4c4b4cd2
PH
586/* The contents of value VAL, treated as a value of type TYPE. The
587 result is an lval in memory if VAL is. */
14f9c5c9 588
d2e4a39e 589static struct value *
4c4b4cd2 590coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 591{
61ee279c 592 type = ada_check_typedef (type);
df407dfe 593 if (value_type (val) == type)
4c4b4cd2 594 return val;
d2e4a39e 595 else
14f9c5c9 596 {
4c4b4cd2
PH
597 struct value *result;
598
599 /* Make sure that the object size is not unreasonable before
dda83cd7 600 trying to allocate some memory for it. */
c1b5a1a6 601 ada_ensure_varsize_limit (type);
4c4b4cd2 602
41e8491f 603 if (value_lazy (val)
dda83cd7 604 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
41e8491f
JK
605 result = allocate_value_lazy (type);
606 else
607 {
608 result = allocate_value (type);
9a0dc9e3 609 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 610 }
74bcbdf3 611 set_value_component_location (result, val);
9bbda503
AC
612 set_value_bitsize (result, value_bitsize (val));
613 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
614 if (VALUE_LVAL (result) == lval_memory)
615 set_value_address (result, value_address (val));
14f9c5c9
AS
616 return result;
617 }
618}
619
fc1a4b47
AC
620static const gdb_byte *
621cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
622{
623 if (valaddr == NULL)
624 return NULL;
625 else
626 return valaddr + offset;
627}
628
629static CORE_ADDR
ebf56fd3 630cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
631{
632 if (address == 0)
633 return 0;
d2e4a39e 634 else
14f9c5c9
AS
635 return address + offset;
636}
637
4c4b4cd2
PH
638/* Issue a warning (as for the definition of warning in utils.c, but
639 with exactly one argument rather than ...), unless the limit on the
640 number of warnings has passed during the evaluation of the current
641 expression. */
a2249542 642
77109804
AC
643/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
644 provided by "complaint". */
a0b31db1 645static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 646
14f9c5c9 647static void
a2249542 648lim_warning (const char *format, ...)
14f9c5c9 649{
a2249542 650 va_list args;
a2249542 651
5b4ee69b 652 va_start (args, format);
4c4b4cd2
PH
653 warnings_issued += 1;
654 if (warnings_issued <= warning_limit)
a2249542
MK
655 vwarning (format, args);
656
657 va_end (args);
4c4b4cd2
PH
658}
659
714e53ab
PH
660/* Issue an error if the size of an object of type T is unreasonable,
661 i.e. if it would be a bad idea to allocate a value of this type in
662 GDB. */
663
c1b5a1a6
JB
664void
665ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
666{
667 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 668 error (_("object size is larger than varsize-limit"));
714e53ab
PH
669}
670
0963b4bd 671/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 672static LONGEST
c3e5cd34 673max_of_size (int size)
4c4b4cd2 674{
76a01679 675 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 676
76a01679 677 return top_bit | (top_bit - 1);
4c4b4cd2
PH
678}
679
0963b4bd 680/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 681static LONGEST
c3e5cd34 682min_of_size (int size)
4c4b4cd2 683{
c3e5cd34 684 return -max_of_size (size) - 1;
4c4b4cd2
PH
685}
686
0963b4bd 687/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 688static ULONGEST
c3e5cd34 689umax_of_size (int size)
4c4b4cd2 690{
76a01679 691 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 692
76a01679 693 return top_bit | (top_bit - 1);
4c4b4cd2
PH
694}
695
0963b4bd 696/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
697static LONGEST
698max_of_type (struct type *t)
4c4b4cd2 699{
c6d940a9 700 if (t->is_unsigned ())
c3e5cd34
PH
701 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
702 else
703 return max_of_size (TYPE_LENGTH (t));
704}
705
0963b4bd 706/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
707static LONGEST
708min_of_type (struct type *t)
709{
c6d940a9 710 if (t->is_unsigned ())
c3e5cd34
PH
711 return 0;
712 else
713 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
714}
715
716/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
717LONGEST
718ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 719{
b249d2c2 720 type = resolve_dynamic_type (type, {}, 0);
78134374 721 switch (type->code ())
4c4b4cd2
PH
722 {
723 case TYPE_CODE_RANGE:
d1fd641e
SM
724 {
725 const dynamic_prop &high = type->bounds ()->high;
726
727 if (high.kind () == PROP_CONST)
728 return high.const_val ();
729 else
730 {
731 gdb_assert (high.kind () == PROP_UNDEFINED);
732
733 /* This happens when trying to evaluate a type's dynamic bound
734 without a live target. There is nothing relevant for us to
735 return here, so return 0. */
736 return 0;
737 }
738 }
4c4b4cd2 739 case TYPE_CODE_ENUM:
1f704f76 740 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
741 case TYPE_CODE_BOOL:
742 return 1;
743 case TYPE_CODE_CHAR:
76a01679 744 case TYPE_CODE_INT:
690cc4eb 745 return max_of_type (type);
4c4b4cd2 746 default:
43bbcdc2 747 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
748 }
749}
750
14e75d8e 751/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
752LONGEST
753ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 754{
b249d2c2 755 type = resolve_dynamic_type (type, {}, 0);
78134374 756 switch (type->code ())
4c4b4cd2
PH
757 {
758 case TYPE_CODE_RANGE:
d1fd641e
SM
759 {
760 const dynamic_prop &low = type->bounds ()->low;
761
762 if (low.kind () == PROP_CONST)
763 return low.const_val ();
764 else
765 {
766 gdb_assert (low.kind () == PROP_UNDEFINED);
767
768 /* This happens when trying to evaluate a type's dynamic bound
769 without a live target. There is nothing relevant for us to
770 return here, so return 0. */
771 return 0;
772 }
773 }
4c4b4cd2 774 case TYPE_CODE_ENUM:
14e75d8e 775 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
776 case TYPE_CODE_BOOL:
777 return 0;
778 case TYPE_CODE_CHAR:
76a01679 779 case TYPE_CODE_INT:
690cc4eb 780 return min_of_type (type);
4c4b4cd2 781 default:
43bbcdc2 782 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
783 }
784}
785
786/* The identity on non-range types. For range types, the underlying
76a01679 787 non-range scalar type. */
4c4b4cd2
PH
788
789static struct type *
18af8284 790get_base_type (struct type *type)
4c4b4cd2 791{
78134374 792 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 793 {
76a01679 794 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 795 return type;
4c4b4cd2
PH
796 type = TYPE_TARGET_TYPE (type);
797 }
798 return type;
14f9c5c9 799}
41246937
JB
800
801/* Return a decoded version of the given VALUE. This means returning
802 a value whose type is obtained by applying all the GNAT-specific
85102364 803 encodings, making the resulting type a static but standard description
41246937
JB
804 of the initial type. */
805
806struct value *
807ada_get_decoded_value (struct value *value)
808{
809 struct type *type = ada_check_typedef (value_type (value));
810
811 if (ada_is_array_descriptor_type (type)
812 || (ada_is_constrained_packed_array_type (type)
dda83cd7 813 && type->code () != TYPE_CODE_PTR))
41246937 814 {
78134374 815 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 816 value = ada_coerce_to_simple_array_ptr (value);
41246937 817 else
dda83cd7 818 value = ada_coerce_to_simple_array (value);
41246937
JB
819 }
820 else
821 value = ada_to_fixed_value (value);
822
823 return value;
824}
825
826/* Same as ada_get_decoded_value, but with the given TYPE.
827 Because there is no associated actual value for this type,
828 the resulting type might be a best-effort approximation in
829 the case of dynamic types. */
830
831struct type *
832ada_get_decoded_type (struct type *type)
833{
834 type = to_static_fixed_type (type);
835 if (ada_is_constrained_packed_array_type (type))
836 type = ada_coerce_to_simple_array_type (type);
837 return type;
838}
839
4c4b4cd2 840\f
76a01679 841
dda83cd7 842 /* Language Selection */
14f9c5c9
AS
843
844/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 845 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 846
de93309a 847static enum language
ccefe4c4 848ada_update_initial_language (enum language lang)
14f9c5c9 849{
cafb3438 850 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 851 return language_ada;
14f9c5c9
AS
852
853 return lang;
854}
96d887e8
PH
855
856/* If the main procedure is written in Ada, then return its name.
857 The result is good until the next call. Return NULL if the main
858 procedure doesn't appear to be in Ada. */
859
860char *
861ada_main_name (void)
862{
3b7344d5 863 struct bound_minimal_symbol msym;
e83e4e24 864 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 865
96d887e8
PH
866 /* For Ada, the name of the main procedure is stored in a specific
867 string constant, generated by the binder. Look for that symbol,
868 extract its address, and then read that string. If we didn't find
869 that string, then most probably the main procedure is not written
870 in Ada. */
871 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
872
3b7344d5 873 if (msym.minsym != NULL)
96d887e8 874 {
66920317 875 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 876 if (main_program_name_addr == 0)
dda83cd7 877 error (_("Invalid address for Ada main program name."));
96d887e8 878
66920317 879 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 880 return main_program_name.get ();
96d887e8
PH
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885}
14f9c5c9 886\f
dda83cd7 887 /* Symbols */
d2e4a39e 888
4c4b4cd2
PH
889/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
14f9c5c9 891
d2e4a39e
AS
892const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
14f9c5c9
AS
915};
916
5c4258f4 917/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 918 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 919 Otherwise, return the empty string in that case. */
4c4b4cd2 920
5c4258f4 921static std::string
b5ec771e 922ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 923{
4c4b4cd2 924 if (decoded == NULL)
5c4258f4 925 return {};
14f9c5c9 926
5c4258f4
TT
927 std::string encoding_buffer;
928 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 929 {
cdc7bb92 930 if (*p == '.')
5c4258f4 931 encoding_buffer.append ("__");
14f9c5c9 932 else if (*p == '"')
dda83cd7
SM
933 {
934 const struct ada_opname_map *mapping;
935
936 for (mapping = ada_opname_table;
937 mapping->encoded != NULL
938 && !startswith (p, mapping->decoded); mapping += 1)
939 ;
940 if (mapping->encoded == NULL)
b5ec771e
PA
941 {
942 if (throw_errors)
943 error (_("invalid Ada operator name: %s"), p);
944 else
5c4258f4 945 return {};
b5ec771e 946 }
5c4258f4 947 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
948 break;
949 }
d2e4a39e 950 else
5c4258f4 951 encoding_buffer.push_back (*p);
14f9c5c9
AS
952 }
953
4c4b4cd2 954 return encoding_buffer;
14f9c5c9
AS
955}
956
5c4258f4 957/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 958
5c4258f4 959std::string
b5ec771e
PA
960ada_encode (const char *decoded)
961{
962 return ada_encode_1 (decoded, true);
963}
964
14f9c5c9 965/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
966 quotes, unfolded, but with the quotes stripped away. Result good
967 to next call. */
968
de93309a 969static char *
e0802d59 970ada_fold_name (gdb::string_view name)
14f9c5c9 971{
d2e4a39e 972 static char *fold_buffer = NULL;
14f9c5c9
AS
973 static size_t fold_buffer_size = 0;
974
e0802d59 975 int len = name.size ();
d2e4a39e 976 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
977
978 if (name[0] == '\'')
979 {
e0802d59 980 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 981 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
982 }
983 else
984 {
985 int i;
5b4ee69b 986
14f9c5c9 987 for (i = 0; i <= len; i += 1)
dda83cd7 988 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
989 }
990
991 return fold_buffer;
992}
993
529cad9c
PH
994/* Return nonzero if C is either a digit or a lowercase alphabet character. */
995
996static int
997is_lower_alphanum (const char c)
998{
999 return (isdigit (c) || (isalpha (c) && islower (c)));
1000}
1001
c90092fe
JB
1002/* ENCODED is the linkage name of a symbol and LEN contains its length.
1003 This function saves in LEN the length of that same symbol name but
1004 without either of these suffixes:
29480c32
JB
1005 . .{DIGIT}+
1006 . ${DIGIT}+
1007 . ___{DIGIT}+
1008 . __{DIGIT}+.
c90092fe 1009
29480c32
JB
1010 These are suffixes introduced by the compiler for entities such as
1011 nested subprogram for instance, in order to avoid name clashes.
1012 They do not serve any purpose for the debugger. */
1013
1014static void
1015ada_remove_trailing_digits (const char *encoded, int *len)
1016{
1017 if (*len > 1 && isdigit (encoded[*len - 1]))
1018 {
1019 int i = *len - 2;
5b4ee69b 1020
29480c32 1021 while (i > 0 && isdigit (encoded[i]))
dda83cd7 1022 i--;
29480c32 1023 if (i >= 0 && encoded[i] == '.')
dda83cd7 1024 *len = i;
29480c32 1025 else if (i >= 0 && encoded[i] == '$')
dda83cd7 1026 *len = i;
61012eef 1027 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 1028 *len = i - 2;
61012eef 1029 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 1030 *len = i - 1;
29480c32
JB
1031 }
1032}
1033
1034/* Remove the suffix introduced by the compiler for protected object
1035 subprograms. */
1036
1037static void
1038ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1039{
1040 /* Remove trailing N. */
1041
1042 /* Protected entry subprograms are broken into two
1043 separate subprograms: The first one is unprotected, and has
1044 a 'N' suffix; the second is the protected version, and has
0963b4bd 1045 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1046 the protection. Since the P subprograms are internally generated,
1047 we leave these names undecoded, giving the user a clue that this
1048 entity is internal. */
1049
1050 if (*len > 1
1051 && encoded[*len - 1] == 'N'
1052 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1053 *len = *len - 1;
1054}
1055
1056/* If ENCODED follows the GNAT entity encoding conventions, then return
1057 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1058 replaced by ENCODED. */
14f9c5c9 1059
f945dedf 1060std::string
4c4b4cd2 1061ada_decode (const char *encoded)
14f9c5c9
AS
1062{
1063 int i, j;
1064 int len0;
d2e4a39e 1065 const char *p;
14f9c5c9 1066 int at_start_name;
f945dedf 1067 std::string decoded;
d2e4a39e 1068
0d81f350
JG
1069 /* With function descriptors on PPC64, the value of a symbol named
1070 ".FN", if it exists, is the entry point of the function "FN". */
1071 if (encoded[0] == '.')
1072 encoded += 1;
1073
29480c32
JB
1074 /* The name of the Ada main procedure starts with "_ada_".
1075 This prefix is not part of the decoded name, so skip this part
1076 if we see this prefix. */
61012eef 1077 if (startswith (encoded, "_ada_"))
4c4b4cd2 1078 encoded += 5;
14f9c5c9 1079
29480c32
JB
1080 /* If the name starts with '_', then it is not a properly encoded
1081 name, so do not attempt to decode it. Similarly, if the name
1082 starts with '<', the name should not be decoded. */
4c4b4cd2 1083 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1084 goto Suppress;
1085
4c4b4cd2 1086 len0 = strlen (encoded);
4c4b4cd2 1087
29480c32
JB
1088 ada_remove_trailing_digits (encoded, &len0);
1089 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1090
4c4b4cd2
PH
1091 /* Remove the ___X.* suffix if present. Do not forget to verify that
1092 the suffix is located before the current "end" of ENCODED. We want
1093 to avoid re-matching parts of ENCODED that have previously been
1094 marked as discarded (by decrementing LEN0). */
1095 p = strstr (encoded, "___");
1096 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1097 {
1098 if (p[3] == 'X')
dda83cd7 1099 len0 = p - encoded;
14f9c5c9 1100 else
dda83cd7 1101 goto Suppress;
14f9c5c9 1102 }
4c4b4cd2 1103
29480c32
JB
1104 /* Remove any trailing TKB suffix. It tells us that this symbol
1105 is for the body of a task, but that information does not actually
1106 appear in the decoded name. */
1107
61012eef 1108 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1109 len0 -= 3;
76a01679 1110
a10967fa
JB
1111 /* Remove any trailing TB suffix. The TB suffix is slightly different
1112 from the TKB suffix because it is used for non-anonymous task
1113 bodies. */
1114
61012eef 1115 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1116 len0 -= 2;
1117
29480c32
JB
1118 /* Remove trailing "B" suffixes. */
1119 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1120
61012eef 1121 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1122 len0 -= 1;
1123
4c4b4cd2 1124 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1125
f945dedf 1126 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1127
29480c32
JB
1128 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1129
4c4b4cd2 1130 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1131 {
4c4b4cd2
PH
1132 i = len0 - 2;
1133 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1134 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1135 i -= 1;
4c4b4cd2 1136 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1137 len0 = i - 1;
4c4b4cd2 1138 else if (encoded[i] == '$')
dda83cd7 1139 len0 = i;
d2e4a39e 1140 }
14f9c5c9 1141
29480c32
JB
1142 /* The first few characters that are not alphabetic are not part
1143 of any encoding we use, so we can copy them over verbatim. */
1144
4c4b4cd2
PH
1145 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1146 decoded[j] = encoded[i];
14f9c5c9
AS
1147
1148 at_start_name = 1;
1149 while (i < len0)
1150 {
29480c32 1151 /* Is this a symbol function? */
4c4b4cd2 1152 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1153 {
1154 int k;
1155
1156 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1157 {
1158 int op_len = strlen (ada_opname_table[k].encoded);
1159 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1160 op_len - 1) == 0)
1161 && !isalnum (encoded[i + op_len]))
1162 {
1163 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1164 at_start_name = 0;
1165 i += op_len;
1166 j += strlen (ada_opname_table[k].decoded);
1167 break;
1168 }
1169 }
1170 if (ada_opname_table[k].encoded != NULL)
1171 continue;
1172 }
14f9c5c9
AS
1173 at_start_name = 0;
1174
529cad9c 1175 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1176 into "." (just below). */
529cad9c 1177
61012eef 1178 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1179 i += 2;
529cad9c 1180
29480c32 1181 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1182 be translated into "." (just below). These are internal names
1183 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1184
1185 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1186 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1187 && isdigit (encoded [i+4]))
1188 {
1189 int k = i + 5;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++; /* Skip any extra digit. */
1193
1194 /* Double-check that the "__B_{DIGITS}+" sequence we found
1195 is indeed followed by "__". */
1196 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1197 i = k;
1198 }
29480c32 1199
529cad9c
PH
1200 /* Remove _E{DIGITS}+[sb] */
1201
1202 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1203 of subprograms created by the compiler for each entry. The first
1204 one implements the actual entry code, and has a suffix following
1205 the convention above; the second one implements the barrier and
1206 uses the same convention as above, except that the 'E' is replaced
1207 by a 'B'.
529cad9c 1208
dda83cd7
SM
1209 Just as above, we do not decode the name of barrier functions
1210 to give the user a clue that the code he is debugging has been
1211 internally generated. */
529cad9c
PH
1212
1213 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1214 && isdigit (encoded[i+2]))
1215 {
1216 int k = i + 3;
1217
1218 while (k < len0 && isdigit (encoded[k]))
1219 k++;
1220
1221 if (k < len0
1222 && (encoded[k] == 'b' || encoded[k] == 's'))
1223 {
1224 k++;
1225 /* Just as an extra precaution, make sure that if this
1226 suffix is followed by anything else, it is a '_'.
1227 Otherwise, we matched this sequence by accident. */
1228 if (k == len0
1229 || (k < len0 && encoded[k] == '_'))
1230 i = k;
1231 }
1232 }
529cad9c
PH
1233
1234 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1235 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1236
1237 if (i < len0 + 3
dda83cd7
SM
1238 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1239 {
1240 /* Backtrack a bit up until we reach either the begining of
1241 the encoded name, or "__". Make sure that we only find
1242 digits or lowercase characters. */
1243 const char *ptr = encoded + i - 1;
1244
1245 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1246 ptr--;
1247 if (ptr < encoded
1248 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1249 i++;
1250 }
529cad9c 1251
4c4b4cd2 1252 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1253 {
1254 /* This is a X[bn]* sequence not separated from the previous
1255 part of the name with a non-alpha-numeric character (in other
1256 words, immediately following an alpha-numeric character), then
1257 verify that it is placed at the end of the encoded name. If
1258 not, then the encoding is not valid and we should abort the
1259 decoding. Otherwise, just skip it, it is used in body-nested
1260 package names. */
1261 do
1262 i += 1;
1263 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1264 if (i < len0)
1265 goto Suppress;
1266 }
cdc7bb92 1267 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1268 {
1269 /* Replace '__' by '.'. */
1270 decoded[j] = '.';
1271 at_start_name = 1;
1272 i += 2;
1273 j += 1;
1274 }
14f9c5c9 1275 else
dda83cd7
SM
1276 {
1277 /* It's a character part of the decoded name, so just copy it
1278 over. */
1279 decoded[j] = encoded[i];
1280 i += 1;
1281 j += 1;
1282 }
14f9c5c9 1283 }
f945dedf 1284 decoded.resize (j);
14f9c5c9 1285
29480c32
JB
1286 /* Decoded names should never contain any uppercase character.
1287 Double-check this, and abort the decoding if we find one. */
1288
f945dedf 1289 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1290 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1291 goto Suppress;
1292
f945dedf 1293 return decoded;
14f9c5c9
AS
1294
1295Suppress:
4c4b4cd2 1296 if (encoded[0] == '<')
f945dedf 1297 decoded = encoded;
14f9c5c9 1298 else
f945dedf 1299 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1300 return decoded;
1301
1302}
1303
1304/* Table for keeping permanent unique copies of decoded names. Once
1305 allocated, names in this table are never released. While this is a
1306 storage leak, it should not be significant unless there are massive
1307 changes in the set of decoded names in successive versions of a
1308 symbol table loaded during a single session. */
1309static struct htab *decoded_names_store;
1310
1311/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1312 in the language-specific part of GSYMBOL, if it has not been
1313 previously computed. Tries to save the decoded name in the same
1314 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1315 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1316 GSYMBOL).
4c4b4cd2
PH
1317 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1318 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1319 when a decoded name is cached in it. */
4c4b4cd2 1320
45e6c716 1321const char *
f85f34ed 1322ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1323{
f85f34ed
TT
1324 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1325 const char **resultp =
615b3f62 1326 &gsymbol->language_specific.demangled_name;
5b4ee69b 1327
f85f34ed 1328 if (!gsymbol->ada_mangled)
4c4b4cd2 1329 {
4d4eaa30 1330 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1331 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1332
f85f34ed 1333 gsymbol->ada_mangled = 1;
5b4ee69b 1334
f85f34ed 1335 if (obstack != NULL)
f945dedf 1336 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1337 else
dda83cd7 1338 {
f85f34ed
TT
1339 /* Sometimes, we can't find a corresponding objfile, in
1340 which case, we put the result on the heap. Since we only
1341 decode when needed, we hope this usually does not cause a
1342 significant memory leak (FIXME). */
1343
dda83cd7
SM
1344 char **slot = (char **) htab_find_slot (decoded_names_store,
1345 decoded.c_str (), INSERT);
5b4ee69b 1346
dda83cd7
SM
1347 if (*slot == NULL)
1348 *slot = xstrdup (decoded.c_str ());
1349 *resultp = *slot;
1350 }
4c4b4cd2 1351 }
14f9c5c9 1352
4c4b4cd2
PH
1353 return *resultp;
1354}
76a01679 1355
2c0b251b 1356static char *
76a01679 1357ada_la_decode (const char *encoded, int options)
4c4b4cd2 1358{
f945dedf 1359 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1360}
1361
14f9c5c9 1362\f
d2e4a39e 1363
dda83cd7 1364 /* Arrays */
14f9c5c9 1365
28c85d6c
JB
1366/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1367 generated by the GNAT compiler to describe the index type used
1368 for each dimension of an array, check whether it follows the latest
1369 known encoding. If not, fix it up to conform to the latest encoding.
1370 Otherwise, do nothing. This function also does nothing if
1371 INDEX_DESC_TYPE is NULL.
1372
85102364 1373 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1374 Initially, the information would be provided through the name of each
1375 field of the structure type only, while the type of these fields was
1376 described as unspecified and irrelevant. The debugger was then expected
1377 to perform a global type lookup using the name of that field in order
1378 to get access to the full index type description. Because these global
1379 lookups can be very expensive, the encoding was later enhanced to make
1380 the global lookup unnecessary by defining the field type as being
1381 the full index type description.
1382
1383 The purpose of this routine is to allow us to support older versions
1384 of the compiler by detecting the use of the older encoding, and by
1385 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1386 we essentially replace each field's meaningless type by the associated
1387 index subtype). */
1388
1389void
1390ada_fixup_array_indexes_type (struct type *index_desc_type)
1391{
1392 int i;
1393
1394 if (index_desc_type == NULL)
1395 return;
1f704f76 1396 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1397
1398 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1399 to check one field only, no need to check them all). If not, return
1400 now.
1401
1402 If our INDEX_DESC_TYPE was generated using the older encoding,
1403 the field type should be a meaningless integer type whose name
1404 is not equal to the field name. */
940da03e
SM
1405 if (index_desc_type->field (0).type ()->name () != NULL
1406 && strcmp (index_desc_type->field (0).type ()->name (),
dda83cd7 1407 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
28c85d6c
JB
1408 return;
1409
1410 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1411 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1412 {
0d5cff50 1413 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1414 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1415
1416 if (raw_type)
5d14b6e5 1417 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1418 }
1419}
1420
4c4b4cd2
PH
1421/* The desc_* routines return primitive portions of array descriptors
1422 (fat pointers). */
14f9c5c9
AS
1423
1424/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1425 level of indirection, if needed. */
1426
d2e4a39e
AS
1427static struct type *
1428desc_base_type (struct type *type)
14f9c5c9
AS
1429{
1430 if (type == NULL)
1431 return NULL;
61ee279c 1432 type = ada_check_typedef (type);
78134374 1433 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1434 type = ada_typedef_target_type (type);
1435
1265e4aa 1436 if (type != NULL
78134374 1437 && (type->code () == TYPE_CODE_PTR
dda83cd7 1438 || type->code () == TYPE_CODE_REF))
61ee279c 1439 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1440 else
1441 return type;
1442}
1443
4c4b4cd2
PH
1444/* True iff TYPE indicates a "thin" array pointer type. */
1445
14f9c5c9 1446static int
d2e4a39e 1447is_thin_pntr (struct type *type)
14f9c5c9 1448{
d2e4a39e 1449 return
14f9c5c9
AS
1450 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1451 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1452}
1453
4c4b4cd2
PH
1454/* The descriptor type for thin pointer type TYPE. */
1455
d2e4a39e
AS
1456static struct type *
1457thin_descriptor_type (struct type *type)
14f9c5c9 1458{
d2e4a39e 1459 struct type *base_type = desc_base_type (type);
5b4ee69b 1460
14f9c5c9
AS
1461 if (base_type == NULL)
1462 return NULL;
1463 if (is_suffix (ada_type_name (base_type), "___XVE"))
1464 return base_type;
d2e4a39e 1465 else
14f9c5c9 1466 {
d2e4a39e 1467 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1468
14f9c5c9 1469 if (alt_type == NULL)
dda83cd7 1470 return base_type;
14f9c5c9 1471 else
dda83cd7 1472 return alt_type;
14f9c5c9
AS
1473 }
1474}
1475
4c4b4cd2
PH
1476/* A pointer to the array data for thin-pointer value VAL. */
1477
d2e4a39e
AS
1478static struct value *
1479thin_data_pntr (struct value *val)
14f9c5c9 1480{
828292f2 1481 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1482 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1483
556bdfd4
UW
1484 data_type = lookup_pointer_type (data_type);
1485
78134374 1486 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1487 return value_cast (data_type, value_copy (val));
d2e4a39e 1488 else
42ae5230 1489 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1490}
1491
4c4b4cd2
PH
1492/* True iff TYPE indicates a "thick" array pointer type. */
1493
14f9c5c9 1494static int
d2e4a39e 1495is_thick_pntr (struct type *type)
14f9c5c9
AS
1496{
1497 type = desc_base_type (type);
78134374 1498 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1499 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1500}
1501
4c4b4cd2
PH
1502/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1503 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1504
d2e4a39e
AS
1505static struct type *
1506desc_bounds_type (struct type *type)
14f9c5c9 1507{
d2e4a39e 1508 struct type *r;
14f9c5c9
AS
1509
1510 type = desc_base_type (type);
1511
1512 if (type == NULL)
1513 return NULL;
1514 else if (is_thin_pntr (type))
1515 {
1516 type = thin_descriptor_type (type);
1517 if (type == NULL)
dda83cd7 1518 return NULL;
14f9c5c9
AS
1519 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1520 if (r != NULL)
dda83cd7 1521 return ada_check_typedef (r);
14f9c5c9 1522 }
78134374 1523 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1524 {
1525 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1526 if (r != NULL)
dda83cd7 1527 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1528 }
1529 return NULL;
1530}
1531
1532/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1533 one, a pointer to its bounds data. Otherwise NULL. */
1534
d2e4a39e
AS
1535static struct value *
1536desc_bounds (struct value *arr)
14f9c5c9 1537{
df407dfe 1538 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1539
d2e4a39e 1540 if (is_thin_pntr (type))
14f9c5c9 1541 {
d2e4a39e 1542 struct type *bounds_type =
dda83cd7 1543 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1544 LONGEST addr;
1545
4cdfadb1 1546 if (bounds_type == NULL)
dda83cd7 1547 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1548
1549 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1550 since desc_type is an XVE-encoded type (and shouldn't be),
1551 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1552 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1553 addr = value_as_long (arr);
d2e4a39e 1554 else
dda83cd7 1555 addr = value_address (arr);
14f9c5c9 1556
d2e4a39e 1557 return
dda83cd7
SM
1558 value_from_longest (lookup_pointer_type (bounds_type),
1559 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1560 }
1561
1562 else if (is_thick_pntr (type))
05e522ef
JB
1563 {
1564 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1565 _("Bad GNAT array descriptor"));
1566 struct type *p_bounds_type = value_type (p_bounds);
1567
1568 if (p_bounds_type
78134374 1569 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1570 {
1571 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1572
e46d3488 1573 if (target_type->is_stub ())
05e522ef
JB
1574 p_bounds = value_cast (lookup_pointer_type
1575 (ada_check_typedef (target_type)),
1576 p_bounds);
1577 }
1578 else
1579 error (_("Bad GNAT array descriptor"));
1580
1581 return p_bounds;
1582 }
14f9c5c9
AS
1583 else
1584 return NULL;
1585}
1586
4c4b4cd2
PH
1587/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1588 position of the field containing the address of the bounds data. */
1589
14f9c5c9 1590static int
d2e4a39e 1591fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1592{
1593 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1594}
1595
1596/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1597 size of the field containing the address of the bounds data. */
1598
14f9c5c9 1599static int
d2e4a39e 1600fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1601{
1602 type = desc_base_type (type);
1603
d2e4a39e 1604 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1605 return TYPE_FIELD_BITSIZE (type, 1);
1606 else
940da03e 1607 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1608}
1609
4c4b4cd2 1610/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1611 pointer to one, the type of its array data (a array-with-no-bounds type);
1612 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1613 data. */
4c4b4cd2 1614
d2e4a39e 1615static struct type *
556bdfd4 1616desc_data_target_type (struct type *type)
14f9c5c9
AS
1617{
1618 type = desc_base_type (type);
1619
4c4b4cd2 1620 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1621 if (is_thin_pntr (type))
940da03e 1622 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1623 else if (is_thick_pntr (type))
556bdfd4
UW
1624 {
1625 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1626
1627 if (data_type
78134374 1628 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1629 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1630 }
1631
1632 return NULL;
14f9c5c9
AS
1633}
1634
1635/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1636 its array data. */
4c4b4cd2 1637
d2e4a39e
AS
1638static struct value *
1639desc_data (struct value *arr)
14f9c5c9 1640{
df407dfe 1641 struct type *type = value_type (arr);
5b4ee69b 1642
14f9c5c9
AS
1643 if (is_thin_pntr (type))
1644 return thin_data_pntr (arr);
1645 else if (is_thick_pntr (type))
d2e4a39e 1646 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
dda83cd7 1647 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1648 else
1649 return NULL;
1650}
1651
1652
1653/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1654 position of the field containing the address of the data. */
1655
14f9c5c9 1656static int
d2e4a39e 1657fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1658{
1659 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1660}
1661
1662/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1663 size of the field containing the address of the data. */
1664
14f9c5c9 1665static int
d2e4a39e 1666fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1667{
1668 type = desc_base_type (type);
1669
1670 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1671 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1672 else
940da03e 1673 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1674}
1675
4c4b4cd2 1676/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1677 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1678 bound, if WHICH is 1. The first bound is I=1. */
1679
d2e4a39e
AS
1680static struct value *
1681desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1682{
250106a7
TT
1683 char bound_name[20];
1684 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1685 which ? 'U' : 'L', i - 1);
1686 return value_struct_elt (&bounds, NULL, bound_name, NULL,
dda83cd7 1687 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1688}
1689
1690/* If BOUNDS is an array-bounds structure type, return the bit position
1691 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
14f9c5c9 1694static int
d2e4a39e 1695desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1696{
d2e4a39e 1697 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1698}
1699
1700/* If BOUNDS is an array-bounds structure type, return the bit field size
1701 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1702 bound, if WHICH is 1. The first bound is I=1. */
1703
76a01679 1704static int
d2e4a39e 1705desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1706{
1707 type = desc_base_type (type);
1708
d2e4a39e
AS
1709 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1710 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1711 else
940da03e 1712 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1713}
1714
1715/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1716 Ith bound (numbering from 1). Otherwise, NULL. */
1717
d2e4a39e
AS
1718static struct type *
1719desc_index_type (struct type *type, int i)
14f9c5c9
AS
1720{
1721 type = desc_base_type (type);
1722
78134374 1723 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1724 {
1725 char bound_name[20];
1726 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1727 return lookup_struct_elt_type (type, bound_name, 1);
1728 }
d2e4a39e 1729 else
14f9c5c9
AS
1730 return NULL;
1731}
1732
4c4b4cd2
PH
1733/* The number of index positions in the array-bounds type TYPE.
1734 Return 0 if TYPE is NULL. */
1735
14f9c5c9 1736static int
d2e4a39e 1737desc_arity (struct type *type)
14f9c5c9
AS
1738{
1739 type = desc_base_type (type);
1740
1741 if (type != NULL)
1f704f76 1742 return type->num_fields () / 2;
14f9c5c9
AS
1743 return 0;
1744}
1745
4c4b4cd2
PH
1746/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1747 an array descriptor type (representing an unconstrained array
1748 type). */
1749
76a01679
JB
1750static int
1751ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1752{
1753 if (type == NULL)
1754 return 0;
61ee279c 1755 type = ada_check_typedef (type);
78134374 1756 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1757 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1758}
1759
52ce6436 1760/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1761 * to one. */
52ce6436 1762
2c0b251b 1763static int
52ce6436
PH
1764ada_is_array_type (struct type *type)
1765{
78134374
SM
1766 while (type != NULL
1767 && (type->code () == TYPE_CODE_PTR
1768 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1769 type = TYPE_TARGET_TYPE (type);
1770 return ada_is_direct_array_type (type);
1771}
1772
4c4b4cd2 1773/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1774
14f9c5c9 1775int
4c4b4cd2 1776ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1777{
1778 if (type == NULL)
1779 return 0;
61ee279c 1780 type = ada_check_typedef (type);
78134374
SM
1781 return (type->code () == TYPE_CODE_ARRAY
1782 || (type->code () == TYPE_CODE_PTR
1783 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1784 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1785}
1786
4c4b4cd2
PH
1787/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1788
14f9c5c9 1789int
4c4b4cd2 1790ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1791{
556bdfd4 1792 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1793
1794 if (type == NULL)
1795 return 0;
61ee279c 1796 type = ada_check_typedef (type);
556bdfd4 1797 return (data_type != NULL
78134374 1798 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1799 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1800}
1801
1802/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1803 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1804 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1805 is still needed. */
1806
14f9c5c9 1807int
ebf56fd3 1808ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1809{
d2e4a39e 1810 return
14f9c5c9 1811 type != NULL
78134374 1812 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1813 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1814 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1815 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1816}
1817
1818
4c4b4cd2 1819/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1820 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1821 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1822 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1823 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1824 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1825 a descriptor. */
de93309a
SM
1826
1827static struct type *
d2e4a39e 1828ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1829{
ad82864c
JB
1830 if (ada_is_constrained_packed_array_type (value_type (arr)))
1831 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1832
df407dfe
AC
1833 if (!ada_is_array_descriptor_type (value_type (arr)))
1834 return value_type (arr);
d2e4a39e
AS
1835
1836 if (!bounds)
ad82864c
JB
1837 {
1838 struct type *array_type =
1839 ada_check_typedef (desc_data_target_type (value_type (arr)));
1840
1841 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1842 TYPE_FIELD_BITSIZE (array_type, 0) =
1843 decode_packed_array_bitsize (value_type (arr));
1844
1845 return array_type;
1846 }
14f9c5c9
AS
1847 else
1848 {
d2e4a39e 1849 struct type *elt_type;
14f9c5c9 1850 int arity;
d2e4a39e 1851 struct value *descriptor;
14f9c5c9 1852
df407dfe
AC
1853 elt_type = ada_array_element_type (value_type (arr), -1);
1854 arity = ada_array_arity (value_type (arr));
14f9c5c9 1855
d2e4a39e 1856 if (elt_type == NULL || arity == 0)
dda83cd7 1857 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1858
1859 descriptor = desc_bounds (arr);
d2e4a39e 1860 if (value_as_long (descriptor) == 0)
dda83cd7 1861 return NULL;
d2e4a39e 1862 while (arity > 0)
dda83cd7
SM
1863 {
1864 struct type *range_type = alloc_type_copy (value_type (arr));
1865 struct type *array_type = alloc_type_copy (value_type (arr));
1866 struct value *low = desc_one_bound (descriptor, arity, 0);
1867 struct value *high = desc_one_bound (descriptor, arity, 1);
1868
1869 arity -= 1;
1870 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1871 longest_to_int (value_as_long (low)),
1872 longest_to_int (value_as_long (high)));
dda83cd7 1873 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1874
1875 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1876 {
1877 /* We need to store the element packed bitsize, as well as
dda83cd7 1878 recompute the array size, because it was previously
e67ad678
JB
1879 computed based on the unpacked element size. */
1880 LONGEST lo = value_as_long (low);
1881 LONGEST hi = value_as_long (high);
1882
1883 TYPE_FIELD_BITSIZE (elt_type, 0) =
1884 decode_packed_array_bitsize (value_type (arr));
1885 /* If the array has no element, then the size is already
dda83cd7 1886 zero, and does not need to be recomputed. */
e67ad678
JB
1887 if (lo < hi)
1888 {
1889 int array_bitsize =
dda83cd7 1890 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1891
1892 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1893 }
1894 }
dda83cd7 1895 }
14f9c5c9
AS
1896
1897 return lookup_pointer_type (elt_type);
1898 }
1899}
1900
1901/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1902 Otherwise, returns either a standard GDB array with bounds set
1903 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1904 GDB array. Returns NULL if ARR is a null fat pointer. */
1905
d2e4a39e
AS
1906struct value *
1907ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1908{
df407dfe 1909 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1910 {
d2e4a39e 1911 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1912
14f9c5c9 1913 if (arrType == NULL)
dda83cd7 1914 return NULL;
14f9c5c9
AS
1915 return value_cast (arrType, value_copy (desc_data (arr)));
1916 }
ad82864c
JB
1917 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1918 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1919 else
1920 return arr;
1921}
1922
1923/* If ARR does not represent an array, returns ARR unchanged.
1924 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1925 be ARR itself if it already is in the proper form). */
1926
720d1a40 1927struct value *
d2e4a39e 1928ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1929{
df407dfe 1930 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1931 {
d2e4a39e 1932 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1933
14f9c5c9 1934 if (arrVal == NULL)
dda83cd7 1935 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1936 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1937 return value_ind (arrVal);
1938 }
ad82864c
JB
1939 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1940 return decode_constrained_packed_array (arr);
d2e4a39e 1941 else
14f9c5c9
AS
1942 return arr;
1943}
1944
1945/* If TYPE represents a GNAT array type, return it translated to an
1946 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1947 packing). For other types, is the identity. */
1948
d2e4a39e
AS
1949struct type *
1950ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1951{
ad82864c
JB
1952 if (ada_is_constrained_packed_array_type (type))
1953 return decode_constrained_packed_array_type (type);
17280b9f
UW
1954
1955 if (ada_is_array_descriptor_type (type))
556bdfd4 1956 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1957
1958 return type;
14f9c5c9
AS
1959}
1960
4c4b4cd2
PH
1961/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1962
ad82864c 1963static int
57567375 1964ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1965{
1966 if (type == NULL)
1967 return 0;
4c4b4cd2 1968 type = desc_base_type (type);
61ee279c 1969 type = ada_check_typedef (type);
d2e4a39e 1970 return
14f9c5c9
AS
1971 ada_type_name (type) != NULL
1972 && strstr (ada_type_name (type), "___XP") != NULL;
1973}
1974
ad82864c
JB
1975/* Non-zero iff TYPE represents a standard GNAT constrained
1976 packed-array type. */
1977
1978int
1979ada_is_constrained_packed_array_type (struct type *type)
1980{
57567375 1981 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1982 && !ada_is_array_descriptor_type (type);
1983}
1984
1985/* Non-zero iff TYPE represents an array descriptor for a
1986 unconstrained packed-array type. */
1987
1988static int
1989ada_is_unconstrained_packed_array_type (struct type *type)
1990{
57567375
TT
1991 if (!ada_is_array_descriptor_type (type))
1992 return 0;
1993
1994 if (ada_is_gnat_encoded_packed_array_type (type))
1995 return 1;
1996
1997 /* If we saw GNAT encodings, then the above code is sufficient.
1998 However, with minimal encodings, we will just have a thick
1999 pointer instead. */
2000 if (is_thick_pntr (type))
2001 {
2002 type = desc_base_type (type);
2003 /* The structure's first field is a pointer to an array, so this
2004 fetches the array type. */
2005 type = TYPE_TARGET_TYPE (type->field (0).type ());
2006 /* Now we can see if the array elements are packed. */
2007 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2008 }
2009
2010 return 0;
ad82864c
JB
2011}
2012
c9a28cbe
TT
2013/* Return true if TYPE is a (Gnat-encoded) constrained packed array
2014 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2015
2016static bool
2017ada_is_any_packed_array_type (struct type *type)
2018{
2019 return (ada_is_constrained_packed_array_type (type)
2020 || (type->code () == TYPE_CODE_ARRAY
2021 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2022}
2023
ad82864c
JB
2024/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2025 return the size of its elements in bits. */
2026
2027static long
2028decode_packed_array_bitsize (struct type *type)
2029{
0d5cff50
DE
2030 const char *raw_name;
2031 const char *tail;
ad82864c
JB
2032 long bits;
2033
720d1a40
JB
2034 /* Access to arrays implemented as fat pointers are encoded as a typedef
2035 of the fat pointer type. We need the name of the fat pointer type
2036 to do the decoding, so strip the typedef layer. */
78134374 2037 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2038 type = ada_typedef_target_type (type);
2039
2040 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2041 if (!raw_name)
2042 raw_name = ada_type_name (desc_base_type (type));
2043
2044 if (!raw_name)
2045 return 0;
2046
2047 tail = strstr (raw_name, "___XP");
57567375
TT
2048 if (tail == nullptr)
2049 {
2050 gdb_assert (is_thick_pntr (type));
2051 /* The structure's first field is a pointer to an array, so this
2052 fetches the array type. */
2053 type = TYPE_TARGET_TYPE (type->field (0).type ());
2054 /* Now we can see if the array elements are packed. */
2055 return TYPE_FIELD_BITSIZE (type, 0);
2056 }
ad82864c
JB
2057
2058 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2059 {
2060 lim_warning
2061 (_("could not understand bit size information on packed array"));
2062 return 0;
2063 }
2064
2065 return bits;
2066}
2067
14f9c5c9
AS
2068/* Given that TYPE is a standard GDB array type with all bounds filled
2069 in, and that the element size of its ultimate scalar constituents
2070 (that is, either its elements, or, if it is an array of arrays, its
2071 elements' elements, etc.) is *ELT_BITS, return an identical type,
2072 but with the bit sizes of its elements (and those of any
2073 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2074 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2075 in bits.
2076
2077 Note that, for arrays whose index type has an XA encoding where
2078 a bound references a record discriminant, getting that discriminant,
2079 and therefore the actual value of that bound, is not possible
2080 because none of the given parameters gives us access to the record.
2081 This function assumes that it is OK in the context where it is being
2082 used to return an array whose bounds are still dynamic and where
2083 the length is arbitrary. */
4c4b4cd2 2084
d2e4a39e 2085static struct type *
ad82864c 2086constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2087{
d2e4a39e
AS
2088 struct type *new_elt_type;
2089 struct type *new_type;
99b1c762
JB
2090 struct type *index_type_desc;
2091 struct type *index_type;
14f9c5c9
AS
2092 LONGEST low_bound, high_bound;
2093
61ee279c 2094 type = ada_check_typedef (type);
78134374 2095 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2096 return type;
2097
99b1c762
JB
2098 index_type_desc = ada_find_parallel_type (type, "___XA");
2099 if (index_type_desc)
940da03e 2100 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2101 NULL);
2102 else
3d967001 2103 index_type = type->index_type ();
99b1c762 2104
e9bb382b 2105 new_type = alloc_type_copy (type);
ad82864c
JB
2106 new_elt_type =
2107 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2108 elt_bits);
99b1c762 2109 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2110 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2111 new_type->set_name (ada_type_name (type));
14f9c5c9 2112
78134374 2113 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2114 && is_dynamic_type (check_typedef (index_type)))
2115 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2116 low_bound = high_bound = 0;
2117 if (high_bound < low_bound)
2118 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2119 else
14f9c5c9
AS
2120 {
2121 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2122 TYPE_LENGTH (new_type) =
dda83cd7 2123 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2124 }
2125
9cdd0d12 2126 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2127 return new_type;
2128}
2129
ad82864c
JB
2130/* The array type encoded by TYPE, where
2131 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2132
d2e4a39e 2133static struct type *
ad82864c 2134decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2135{
0d5cff50 2136 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2137 char *name;
0d5cff50 2138 const char *tail;
d2e4a39e 2139 struct type *shadow_type;
14f9c5c9 2140 long bits;
14f9c5c9 2141
727e3d2e
JB
2142 if (!raw_name)
2143 raw_name = ada_type_name (desc_base_type (type));
2144
2145 if (!raw_name)
2146 return NULL;
2147
2148 name = (char *) alloca (strlen (raw_name) + 1);
2149 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2150 type = desc_base_type (type);
2151
14f9c5c9
AS
2152 memcpy (name, raw_name, tail - raw_name);
2153 name[tail - raw_name] = '\000';
2154
b4ba55a1
JB
2155 shadow_type = ada_find_parallel_type_with_name (type, name);
2156
2157 if (shadow_type == NULL)
14f9c5c9 2158 {
323e0a4a 2159 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2160 return NULL;
2161 }
f168693b 2162 shadow_type = check_typedef (shadow_type);
14f9c5c9 2163
78134374 2164 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2165 {
0963b4bd
MS
2166 lim_warning (_("could not understand bounds "
2167 "information on packed array"));
14f9c5c9
AS
2168 return NULL;
2169 }
d2e4a39e 2170
ad82864c
JB
2171 bits = decode_packed_array_bitsize (type);
2172 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2173}
2174
a7400e44
TT
2175/* Helper function for decode_constrained_packed_array. Set the field
2176 bitsize on a series of packed arrays. Returns the number of
2177 elements in TYPE. */
2178
2179static LONGEST
2180recursively_update_array_bitsize (struct type *type)
2181{
2182 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2183
2184 LONGEST low, high;
2185 if (get_discrete_bounds (type->index_type (), &low, &high) < 0
2186 || low > high)
2187 return 0;
2188 LONGEST our_len = high - low + 1;
2189
2190 struct type *elt_type = TYPE_TARGET_TYPE (type);
2191 if (elt_type->code () == TYPE_CODE_ARRAY)
2192 {
2193 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2194 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2195 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2196
2197 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2198 / HOST_CHAR_BIT);
2199 }
2200
2201 return our_len;
2202}
2203
ad82864c
JB
2204/* Given that ARR is a struct value *indicating a GNAT constrained packed
2205 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2206 standard GDB array type except that the BITSIZEs of the array
2207 target types are set to the number of bits in each element, and the
4c4b4cd2 2208 type length is set appropriately. */
14f9c5c9 2209
d2e4a39e 2210static struct value *
ad82864c 2211decode_constrained_packed_array (struct value *arr)
14f9c5c9 2212{
4c4b4cd2 2213 struct type *type;
14f9c5c9 2214
11aa919a
PMR
2215 /* If our value is a pointer, then dereference it. Likewise if
2216 the value is a reference. Make sure that this operation does not
2217 cause the target type to be fixed, as this would indirectly cause
2218 this array to be decoded. The rest of the routine assumes that
2219 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2220 and "value_ind" routines to perform the dereferencing, as opposed
2221 to using "ada_coerce_ref" or "ada_value_ind". */
2222 arr = coerce_ref (arr);
78134374 2223 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2224 arr = value_ind (arr);
4c4b4cd2 2225
ad82864c 2226 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2227 if (type == NULL)
2228 {
323e0a4a 2229 error (_("can't unpack array"));
14f9c5c9
AS
2230 return NULL;
2231 }
61ee279c 2232
a7400e44
TT
2233 /* Decoding the packed array type could not correctly set the field
2234 bitsizes for any dimension except the innermost, because the
2235 bounds may be variable and were not passed to that function. So,
2236 we further resolve the array bounds here and then update the
2237 sizes. */
2238 const gdb_byte *valaddr = value_contents_for_printing (arr);
2239 CORE_ADDR address = value_address (arr);
2240 gdb::array_view<const gdb_byte> view
2241 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2242 type = resolve_dynamic_type (type, view, address);
2243 recursively_update_array_bitsize (type);
2244
d5a22e77 2245 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2246 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2247 {
2248 /* This is a (right-justified) modular type representing a packed
2249 array with no wrapper. In order to interpret the value through
2250 the (left-justified) packed array type we just built, we must
2251 first left-justify it. */
2252 int bit_size, bit_pos;
2253 ULONGEST mod;
2254
df407dfe 2255 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2256 bit_size = 0;
2257 while (mod > 0)
2258 {
2259 bit_size += 1;
2260 mod >>= 1;
2261 }
df407dfe 2262 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2263 arr = ada_value_primitive_packed_val (arr, NULL,
2264 bit_pos / HOST_CHAR_BIT,
2265 bit_pos % HOST_CHAR_BIT,
2266 bit_size,
2267 type);
2268 }
2269
4c4b4cd2 2270 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2271}
2272
2273
2274/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2275 given in IND. ARR must be a simple array. */
14f9c5c9 2276
d2e4a39e
AS
2277static struct value *
2278value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2279{
2280 int i;
2281 int bits, elt_off, bit_off;
2282 long elt_total_bit_offset;
d2e4a39e
AS
2283 struct type *elt_type;
2284 struct value *v;
14f9c5c9
AS
2285
2286 bits = 0;
2287 elt_total_bit_offset = 0;
df407dfe 2288 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2289 for (i = 0; i < arity; i += 1)
14f9c5c9 2290 {
78134374 2291 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2292 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2293 error
2294 (_("attempt to do packed indexing of "
0963b4bd 2295 "something other than a packed array"));
14f9c5c9 2296 else
dda83cd7
SM
2297 {
2298 struct type *range_type = elt_type->index_type ();
2299 LONGEST lowerbound, upperbound;
2300 LONGEST idx;
2301
2302 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2303 {
2304 lim_warning (_("don't know bounds of array"));
2305 lowerbound = upperbound = 0;
2306 }
2307
2308 idx = pos_atr (ind[i]);
2309 if (idx < lowerbound || idx > upperbound)
2310 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2311 (long) idx);
dda83cd7
SM
2312 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2313 elt_total_bit_offset += (idx - lowerbound) * bits;
2314 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2315 }
14f9c5c9
AS
2316 }
2317 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2318 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2319
2320 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2321 bits, elt_type);
14f9c5c9
AS
2322 return v;
2323}
2324
4c4b4cd2 2325/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2326
2327static int
d2e4a39e 2328has_negatives (struct type *type)
14f9c5c9 2329{
78134374 2330 switch (type->code ())
d2e4a39e
AS
2331 {
2332 default:
2333 return 0;
2334 case TYPE_CODE_INT:
c6d940a9 2335 return !type->is_unsigned ();
d2e4a39e 2336 case TYPE_CODE_RANGE:
5537ddd0 2337 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2338 }
14f9c5c9 2339}
d2e4a39e 2340
f93fca70 2341/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2342 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2343 the unpacked buffer.
14f9c5c9 2344
5b639dea
JB
2345 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2346 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2347
f93fca70
JB
2348 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2349 zero otherwise.
14f9c5c9 2350
f93fca70 2351 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2352
f93fca70
JB
2353 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2354
2355static void
2356ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2357 gdb_byte *unpacked, int unpacked_len,
2358 int is_big_endian, int is_signed_type,
2359 int is_scalar)
2360{
a1c95e6b
JB
2361 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2362 int src_idx; /* Index into the source area */
2363 int src_bytes_left; /* Number of source bytes left to process. */
2364 int srcBitsLeft; /* Number of source bits left to move */
2365 int unusedLS; /* Number of bits in next significant
dda83cd7 2366 byte of source that are unused */
a1c95e6b 2367
a1c95e6b
JB
2368 int unpacked_idx; /* Index into the unpacked buffer */
2369 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2370
4c4b4cd2 2371 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2372 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2373 unsigned char sign;
a1c95e6b 2374
4c4b4cd2
PH
2375 /* Transmit bytes from least to most significant; delta is the direction
2376 the indices move. */
f93fca70 2377 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2378
5b639dea
JB
2379 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2380 bits from SRC. .*/
2381 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2382 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2383 bit_size, unpacked_len);
2384
14f9c5c9 2385 srcBitsLeft = bit_size;
086ca51f 2386 src_bytes_left = src_len;
f93fca70 2387 unpacked_bytes_left = unpacked_len;
14f9c5c9 2388 sign = 0;
f93fca70
JB
2389
2390 if (is_big_endian)
14f9c5c9 2391 {
086ca51f 2392 src_idx = src_len - 1;
f93fca70
JB
2393 if (is_signed_type
2394 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2395 sign = ~0;
d2e4a39e
AS
2396
2397 unusedLS =
dda83cd7
SM
2398 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2399 % HOST_CHAR_BIT;
14f9c5c9 2400
f93fca70
JB
2401 if (is_scalar)
2402 {
dda83cd7
SM
2403 accumSize = 0;
2404 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2405 }
2406 else
2407 {
dda83cd7
SM
2408 /* Non-scalar values must be aligned at a byte boundary... */
2409 accumSize =
2410 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2411 /* ... And are placed at the beginning (most-significant) bytes
2412 of the target. */
2413 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2414 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2415 }
14f9c5c9 2416 }
d2e4a39e 2417 else
14f9c5c9
AS
2418 {
2419 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2420
086ca51f 2421 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2422 unusedLS = bit_offset;
2423 accumSize = 0;
2424
f93fca70 2425 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2426 sign = ~0;
14f9c5c9 2427 }
d2e4a39e 2428
14f9c5c9 2429 accum = 0;
086ca51f 2430 while (src_bytes_left > 0)
14f9c5c9
AS
2431 {
2432 /* Mask for removing bits of the next source byte that are not
dda83cd7 2433 part of the value. */
d2e4a39e 2434 unsigned int unusedMSMask =
dda83cd7
SM
2435 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2436 1;
4c4b4cd2 2437 /* Sign-extend bits for this byte. */
14f9c5c9 2438 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2439
d2e4a39e 2440 accum |=
dda83cd7 2441 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2442 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2443 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2444 {
2445 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2446 accumSize -= HOST_CHAR_BIT;
2447 accum >>= HOST_CHAR_BIT;
2448 unpacked_bytes_left -= 1;
2449 unpacked_idx += delta;
2450 }
14f9c5c9
AS
2451 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2452 unusedLS = 0;
086ca51f
JB
2453 src_bytes_left -= 1;
2454 src_idx += delta;
14f9c5c9 2455 }
086ca51f 2456 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2457 {
2458 accum |= sign << accumSize;
db297a65 2459 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2460 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2461 if (accumSize < 0)
2462 accumSize = 0;
14f9c5c9 2463 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
14f9c5c9 2466 }
f93fca70
JB
2467}
2468
2469/* Create a new value of type TYPE from the contents of OBJ starting
2470 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2471 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2472 assigning through the result will set the field fetched from.
2473 VALADDR is ignored unless OBJ is NULL, in which case,
2474 VALADDR+OFFSET must address the start of storage containing the
2475 packed value. The value returned in this case is never an lval.
2476 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2477
2478struct value *
2479ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2480 long offset, int bit_offset, int bit_size,
dda83cd7 2481 struct type *type)
f93fca70
JB
2482{
2483 struct value *v;
bfb1c796 2484 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2485 gdb_byte *unpacked;
220475ed 2486 const int is_scalar = is_scalar_type (type);
d5a22e77 2487 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2488 gdb::byte_vector staging;
f93fca70
JB
2489
2490 type = ada_check_typedef (type);
2491
d0a9e810 2492 if (obj == NULL)
bfb1c796 2493 src = valaddr + offset;
d0a9e810 2494 else
bfb1c796 2495 src = value_contents (obj) + offset;
d0a9e810
JB
2496
2497 if (is_dynamic_type (type))
2498 {
2499 /* The length of TYPE might by dynamic, so we need to resolve
2500 TYPE in order to know its actual size, which we then use
2501 to create the contents buffer of the value we return.
2502 The difficulty is that the data containing our object is
2503 packed, and therefore maybe not at a byte boundary. So, what
2504 we do, is unpack the data into a byte-aligned buffer, and then
2505 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2506 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2507 staging.resize (staging_len);
d0a9e810
JB
2508
2509 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2510 staging.data (), staging.size (),
d0a9e810
JB
2511 is_big_endian, has_negatives (type),
2512 is_scalar);
b249d2c2 2513 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2514 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2515 {
2516 /* This happens when the length of the object is dynamic,
2517 and is actually smaller than the space reserved for it.
2518 For instance, in an array of variant records, the bit_size
2519 we're given is the array stride, which is constant and
2520 normally equal to the maximum size of its element.
2521 But, in reality, each element only actually spans a portion
2522 of that stride. */
2523 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2524 }
d0a9e810
JB
2525 }
2526
f93fca70
JB
2527 if (obj == NULL)
2528 {
2529 v = allocate_value (type);
bfb1c796 2530 src = valaddr + offset;
f93fca70
JB
2531 }
2532 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2533 {
0cafa88c 2534 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2535 gdb_byte *buf;
0cafa88c 2536
f93fca70 2537 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2538 buf = (gdb_byte *) alloca (src_len);
2539 read_memory (value_address (v), buf, src_len);
2540 src = buf;
f93fca70
JB
2541 }
2542 else
2543 {
2544 v = allocate_value (type);
bfb1c796 2545 src = value_contents (obj) + offset;
f93fca70
JB
2546 }
2547
2548 if (obj != NULL)
2549 {
2550 long new_offset = offset;
2551
2552 set_value_component_location (v, obj);
2553 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2554 set_value_bitsize (v, bit_size);
2555 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2556 {
f93fca70 2557 ++new_offset;
dda83cd7
SM
2558 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2559 }
f93fca70
JB
2560 set_value_offset (v, new_offset);
2561
2562 /* Also set the parent value. This is needed when trying to
2563 assign a new value (in inferior memory). */
2564 set_value_parent (v, obj);
2565 }
2566 else
2567 set_value_bitsize (v, bit_size);
bfb1c796 2568 unpacked = value_contents_writeable (v);
f93fca70
JB
2569
2570 if (bit_size == 0)
2571 {
2572 memset (unpacked, 0, TYPE_LENGTH (type));
2573 return v;
2574 }
2575
d5722aa2 2576 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2577 {
d0a9e810
JB
2578 /* Small short-cut: If we've unpacked the data into a buffer
2579 of the same size as TYPE's length, then we can reuse that,
2580 instead of doing the unpacking again. */
d5722aa2 2581 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2582 }
d0a9e810
JB
2583 else
2584 ada_unpack_from_contents (src, bit_offset, bit_size,
2585 unpacked, TYPE_LENGTH (type),
2586 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2587
14f9c5c9
AS
2588 return v;
2589}
d2e4a39e 2590
14f9c5c9
AS
2591/* Store the contents of FROMVAL into the location of TOVAL.
2592 Return a new value with the location of TOVAL and contents of
2593 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2594 floating-point or non-scalar types. */
14f9c5c9 2595
d2e4a39e
AS
2596static struct value *
2597ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2598{
df407dfe
AC
2599 struct type *type = value_type (toval);
2600 int bits = value_bitsize (toval);
14f9c5c9 2601
52ce6436
PH
2602 toval = ada_coerce_ref (toval);
2603 fromval = ada_coerce_ref (fromval);
2604
2605 if (ada_is_direct_array_type (value_type (toval)))
2606 toval = ada_coerce_to_simple_array (toval);
2607 if (ada_is_direct_array_type (value_type (fromval)))
2608 fromval = ada_coerce_to_simple_array (fromval);
2609
88e3b34b 2610 if (!deprecated_value_modifiable (toval))
323e0a4a 2611 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2612
d2e4a39e 2613 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2614 && bits > 0
78134374 2615 && (type->code () == TYPE_CODE_FLT
dda83cd7 2616 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2617 {
df407dfe
AC
2618 int len = (value_bitpos (toval)
2619 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2620 int from_size;
224c3ddb 2621 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2622 struct value *val;
42ae5230 2623 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2624
78134374 2625 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2626 fromval = value_cast (type, fromval);
14f9c5c9 2627
52ce6436 2628 read_memory (to_addr, buffer, len);
aced2898
PH
2629 from_size = value_bitsize (fromval);
2630 if (from_size == 0)
2631 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2632
d5a22e77 2633 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2634 ULONGEST from_offset = 0;
2635 if (is_big_endian && is_scalar_type (value_type (fromval)))
2636 from_offset = from_size - bits;
2637 copy_bitwise (buffer, value_bitpos (toval),
2638 value_contents (fromval), from_offset,
2639 bits, is_big_endian);
972daa01 2640 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2641
14f9c5c9 2642 val = value_copy (toval);
0fd88904 2643 memcpy (value_contents_raw (val), value_contents (fromval),
dda83cd7 2644 TYPE_LENGTH (type));
04624583 2645 deprecated_set_value_type (val, type);
d2e4a39e 2646
14f9c5c9
AS
2647 return val;
2648 }
2649
2650 return value_assign (toval, fromval);
2651}
2652
2653
7c512744
JB
2654/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2655 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2656 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2657 COMPONENT, and not the inferior's memory. The current contents
2658 of COMPONENT are ignored.
2659
2660 Although not part of the initial design, this function also works
2661 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2662 had a null address, and COMPONENT had an address which is equal to
2663 its offset inside CONTAINER. */
2664
52ce6436
PH
2665static void
2666value_assign_to_component (struct value *container, struct value *component,
2667 struct value *val)
2668{
2669 LONGEST offset_in_container =
42ae5230 2670 (LONGEST) (value_address (component) - value_address (container));
7c512744 2671 int bit_offset_in_container =
52ce6436
PH
2672 value_bitpos (component) - value_bitpos (container);
2673 int bits;
7c512744 2674
52ce6436
PH
2675 val = value_cast (value_type (component), val);
2676
2677 if (value_bitsize (component) == 0)
2678 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2679 else
2680 bits = value_bitsize (component);
2681
d5a22e77 2682 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2683 {
2684 int src_offset;
2685
2686 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2687 src_offset
2a62dfa9
JB
2688 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2689 else
2690 src_offset = 0;
a99bc3d2
JB
2691 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2692 value_bitpos (container) + bit_offset_in_container,
2693 value_contents (val), src_offset, bits, 1);
2a62dfa9 2694 }
52ce6436 2695 else
a99bc3d2
JB
2696 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2697 value_bitpos (container) + bit_offset_in_container,
2698 value_contents (val), 0, bits, 0);
7c512744
JB
2699}
2700
736ade86
XR
2701/* Determine if TYPE is an access to an unconstrained array. */
2702
d91e9ea8 2703bool
736ade86
XR
2704ada_is_access_to_unconstrained_array (struct type *type)
2705{
78134374 2706 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2707 && is_thick_pntr (ada_typedef_target_type (type)));
2708}
2709
4c4b4cd2
PH
2710/* The value of the element of array ARR at the ARITY indices given in IND.
2711 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2712 thereto. */
2713
d2e4a39e
AS
2714struct value *
2715ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2716{
2717 int k;
d2e4a39e
AS
2718 struct value *elt;
2719 struct type *elt_type;
14f9c5c9
AS
2720
2721 elt = ada_coerce_to_simple_array (arr);
2722
df407dfe 2723 elt_type = ada_check_typedef (value_type (elt));
78134374 2724 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2725 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2726 return value_subscript_packed (elt, arity, ind);
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
b9c50e9a
XR
2730 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2731
78134374 2732 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2733 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2734
2497b498 2735 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2736
2737 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2738 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2739 {
2740 /* The element is a typedef to an unconstrained array,
2741 except that the value_subscript call stripped the
2742 typedef layer. The typedef layer is GNAT's way to
2743 specify that the element is, at the source level, an
2744 access to the unconstrained array, rather than the
2745 unconstrained array. So, we need to restore that
2746 typedef layer, which we can do by forcing the element's
2747 type back to its original type. Otherwise, the returned
2748 value is going to be printed as the array, rather
2749 than as an access. Another symptom of the same issue
2750 would be that an expression trying to dereference the
2751 element would also be improperly rejected. */
2752 deprecated_set_value_type (elt, saved_elt_type);
2753 }
2754
2755 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2756 }
b9c50e9a 2757
14f9c5c9
AS
2758 return elt;
2759}
2760
deede10c
JB
2761/* Assuming ARR is a pointer to a GDB array, the value of the element
2762 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2763 Does not read the entire array into memory.
2764
2765 Note: Unlike what one would expect, this function is used instead of
2766 ada_value_subscript for basically all non-packed array types. The reason
2767 for this is that a side effect of doing our own pointer arithmetics instead
2768 of relying on value_subscript is that there is no implicit typedef peeling.
2769 This is important for arrays of array accesses, where it allows us to
2770 preserve the fact that the array's element is an array access, where the
2771 access part os encoded in a typedef layer. */
14f9c5c9 2772
2c0b251b 2773static struct value *
deede10c 2774ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2775{
2776 int k;
919e6dbe 2777 struct value *array_ind = ada_value_ind (arr);
deede10c 2778 struct type *type
919e6dbe
PMR
2779 = check_typedef (value_enclosing_type (array_ind));
2780
78134374 2781 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2782 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2783 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2784
2785 for (k = 0; k < arity; k += 1)
2786 {
2787 LONGEST lwb, upb;
14f9c5c9 2788
78134374 2789 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2790 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2791 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2792 value_copy (arr));
3d967001 2793 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2794 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2795 type = TYPE_TARGET_TYPE (type);
2796 }
2797
2798 return value_ind (arr);
2799}
2800
0b5d8877 2801/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2802 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2803 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2804 this array is LOW, as per Ada rules. */
0b5d8877 2805static struct value *
f5938064 2806ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2807 int low, int high)
0b5d8877 2808{
b0dd7688 2809 struct type *type0 = ada_check_typedef (type);
3d967001 2810 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2811 struct type *index_type
aa715135 2812 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2813 struct type *slice_type = create_array_type_with_stride
2814 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2815 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2816 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2817 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 2818 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
2819 CORE_ADDR base;
2820
6244c119
SM
2821 low_pos = discrete_position (base_index_type, low);
2822 base_low_pos = discrete_position (base_index_type, base_low);
2823
2824 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
2825 {
2826 warning (_("unable to get positions in slice, use bounds instead"));
2827 low_pos = low;
2828 base_low_pos = base_low;
2829 }
5b4ee69b 2830
7ff5b937
TT
2831 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2832 if (stride == 0)
2833 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2834
6244c119 2835 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 2836 return value_at_lazy (slice_type, base);
0b5d8877
PH
2837}
2838
2839
2840static struct value *
2841ada_value_slice (struct value *array, int low, int high)
2842{
b0dd7688 2843 struct type *type = ada_check_typedef (value_type (array));
3d967001 2844 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2845 struct type *index_type
3d967001 2846 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2847 struct type *slice_type = create_array_type_with_stride
2848 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2849 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2850 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
2851 gdb::optional<LONGEST> low_pos, high_pos;
2852
5b4ee69b 2853
6244c119
SM
2854 low_pos = discrete_position (base_index_type, low);
2855 high_pos = discrete_position (base_index_type, high);
2856
2857 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
2858 {
2859 warning (_("unable to get positions in slice, use bounds instead"));
2860 low_pos = low;
2861 high_pos = high;
2862 }
2863
2864 return value_cast (slice_type,
6244c119 2865 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
2866}
2867
14f9c5c9
AS
2868/* If type is a record type in the form of a standard GNAT array
2869 descriptor, returns the number of dimensions for type. If arr is a
2870 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2871 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2872
2873int
d2e4a39e 2874ada_array_arity (struct type *type)
14f9c5c9
AS
2875{
2876 int arity;
2877
2878 if (type == NULL)
2879 return 0;
2880
2881 type = desc_base_type (type);
2882
2883 arity = 0;
78134374 2884 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2885 return desc_arity (desc_bounds_type (type));
d2e4a39e 2886 else
78134374 2887 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2888 {
dda83cd7
SM
2889 arity += 1;
2890 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2891 }
d2e4a39e 2892
14f9c5c9
AS
2893 return arity;
2894}
2895
2896/* If TYPE is a record type in the form of a standard GNAT array
2897 descriptor or a simple array type, returns the element type for
2898 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2899 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2900
d2e4a39e
AS
2901struct type *
2902ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2903{
2904 type = desc_base_type (type);
2905
78134374 2906 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2907 {
2908 int k;
d2e4a39e 2909 struct type *p_array_type;
14f9c5c9 2910
556bdfd4 2911 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2912
2913 k = ada_array_arity (type);
2914 if (k == 0)
dda83cd7 2915 return NULL;
d2e4a39e 2916
4c4b4cd2 2917 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2918 if (nindices >= 0 && k > nindices)
dda83cd7 2919 k = nindices;
d2e4a39e 2920 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2921 {
2922 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2923 k -= 1;
2924 }
14f9c5c9
AS
2925 return p_array_type;
2926 }
78134374 2927 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2928 {
78134374 2929 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2930 {
2931 type = TYPE_TARGET_TYPE (type);
2932 nindices -= 1;
2933 }
14f9c5c9
AS
2934 return type;
2935 }
2936
2937 return NULL;
2938}
2939
4c4b4cd2 2940/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2941 Does not examine memory. Throws an error if N is invalid or TYPE
2942 is not an array type. NAME is the name of the Ada attribute being
2943 evaluated ('range, 'first, 'last, or 'length); it is used in building
2944 the error message. */
14f9c5c9 2945
1eea4ebd
UW
2946static struct type *
2947ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2948{
4c4b4cd2
PH
2949 struct type *result_type;
2950
14f9c5c9
AS
2951 type = desc_base_type (type);
2952
1eea4ebd
UW
2953 if (n < 0 || n > ada_array_arity (type))
2954 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2955
4c4b4cd2 2956 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2957 {
2958 int i;
2959
2960 for (i = 1; i < n; i += 1)
dda83cd7 2961 type = TYPE_TARGET_TYPE (type);
3d967001 2962 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2 2963 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2964 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2965 perhaps stabsread.c would make more sense. */
78134374 2966 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2967 result_type = NULL;
14f9c5c9 2968 }
d2e4a39e 2969 else
1eea4ebd
UW
2970 {
2971 result_type = desc_index_type (desc_bounds_type (type), n);
2972 if (result_type == NULL)
2973 error (_("attempt to take bound of something that is not an array"));
2974 }
2975
2976 return result_type;
14f9c5c9
AS
2977}
2978
2979/* Given that arr is an array type, returns the lower bound of the
2980 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2981 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2982 array-descriptor type. It works for other arrays with bounds supplied
2983 by run-time quantities other than discriminants. */
14f9c5c9 2984
abb68b3e 2985static LONGEST
fb5e3d5c 2986ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2987{
8a48ac95 2988 struct type *type, *index_type_desc, *index_type;
1ce677a4 2989 int i;
262452ec
JK
2990
2991 gdb_assert (which == 0 || which == 1);
14f9c5c9 2992
ad82864c
JB
2993 if (ada_is_constrained_packed_array_type (arr_type))
2994 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2995
4c4b4cd2 2996 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2997 return (LONGEST) - which;
14f9c5c9 2998
78134374 2999 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
3000 type = TYPE_TARGET_TYPE (arr_type);
3001 else
3002 type = arr_type;
3003
22c4c60c 3004 if (type->is_fixed_instance ())
bafffb51
JB
3005 {
3006 /* The array has already been fixed, so we do not need to
3007 check the parallel ___XA type again. That encoding has
3008 already been applied, so ignore it now. */
3009 index_type_desc = NULL;
3010 }
3011 else
3012 {
3013 index_type_desc = ada_find_parallel_type (type, "___XA");
3014 ada_fixup_array_indexes_type (index_type_desc);
3015 }
3016
262452ec 3017 if (index_type_desc != NULL)
940da03e 3018 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 3019 NULL);
262452ec 3020 else
8a48ac95
JB
3021 {
3022 struct type *elt_type = check_typedef (type);
3023
3024 for (i = 1; i < n; i++)
3025 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3026
3d967001 3027 index_type = elt_type->index_type ();
8a48ac95 3028 }
262452ec 3029
43bbcdc2
PH
3030 return
3031 (LONGEST) (which == 0
dda83cd7
SM
3032 ? ada_discrete_type_low_bound (index_type)
3033 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3034}
3035
3036/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3037 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3038 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3039 supplied by run-time quantities other than discriminants. */
14f9c5c9 3040
1eea4ebd 3041static LONGEST
4dc81987 3042ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3043{
eb479039
JB
3044 struct type *arr_type;
3045
78134374 3046 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3047 arr = value_ind (arr);
3048 arr_type = value_enclosing_type (arr);
14f9c5c9 3049
ad82864c
JB
3050 if (ada_is_constrained_packed_array_type (arr_type))
3051 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3052 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3053 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3054 else
1eea4ebd 3055 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3056}
3057
3058/* Given that arr is an array value, returns the length of the
3059 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3060 supplied by run-time quantities other than discriminants.
3061 Does not work for arrays indexed by enumeration types with representation
3062 clauses at the moment. */
14f9c5c9 3063
1eea4ebd 3064static LONGEST
d2e4a39e 3065ada_array_length (struct value *arr, int n)
14f9c5c9 3066{
aa715135
JG
3067 struct type *arr_type, *index_type;
3068 int low, high;
eb479039 3069
78134374 3070 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3071 arr = value_ind (arr);
3072 arr_type = value_enclosing_type (arr);
14f9c5c9 3073
ad82864c
JB
3074 if (ada_is_constrained_packed_array_type (arr_type))
3075 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3076
4c4b4cd2 3077 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3078 {
3079 low = ada_array_bound_from_type (arr_type, n, 0);
3080 high = ada_array_bound_from_type (arr_type, n, 1);
3081 }
14f9c5c9 3082 else
aa715135
JG
3083 {
3084 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3085 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3086 }
3087
f168693b 3088 arr_type = check_typedef (arr_type);
7150d33c 3089 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3090 if (index_type != NULL)
3091 {
3092 struct type *base_type;
78134374 3093 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3094 base_type = TYPE_TARGET_TYPE (index_type);
3095 else
3096 base_type = index_type;
3097
3098 low = pos_atr (value_from_longest (base_type, low));
3099 high = pos_atr (value_from_longest (base_type, high));
3100 }
3101 return high - low + 1;
4c4b4cd2
PH
3102}
3103
bff8c71f
TT
3104/* An array whose type is that of ARR_TYPE (an array type), with
3105 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3106 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3107
3108static struct value *
bff8c71f 3109empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3110{
b0dd7688 3111 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3112 struct type *index_type
3113 = create_static_range_type
dda83cd7 3114 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3115 high < low ? low - 1 : high);
b0dd7688 3116 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3117
0b5d8877 3118 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3119}
14f9c5c9 3120\f
d2e4a39e 3121
dda83cd7 3122 /* Name resolution */
14f9c5c9 3123
4c4b4cd2
PH
3124/* The "decoded" name for the user-definable Ada operator corresponding
3125 to OP. */
14f9c5c9 3126
d2e4a39e 3127static const char *
4c4b4cd2 3128ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3129{
3130 int i;
3131
4c4b4cd2 3132 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3133 {
3134 if (ada_opname_table[i].op == op)
dda83cd7 3135 return ada_opname_table[i].decoded;
14f9c5c9 3136 }
323e0a4a 3137 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3138}
3139
de93309a
SM
3140/* Returns true (non-zero) iff decoded name N0 should appear before N1
3141 in a listing of choices during disambiguation (see sort_choices, below).
3142 The idea is that overloadings of a subprogram name from the
3143 same package should sort in their source order. We settle for ordering
3144 such symbols by their trailing number (__N or $N). */
14f9c5c9 3145
de93309a
SM
3146static int
3147encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3148{
de93309a
SM
3149 if (N1 == NULL)
3150 return 0;
3151 else if (N0 == NULL)
3152 return 1;
3153 else
3154 {
3155 int k0, k1;
30b15541 3156
de93309a 3157 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3158 ;
de93309a 3159 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3160 ;
de93309a 3161 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3162 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3163 {
3164 int n0, n1;
3165
3166 n0 = k0;
3167 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3168 n0 -= 1;
3169 n1 = k1;
3170 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3171 n1 -= 1;
3172 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3173 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3174 }
de93309a
SM
3175 return (strcmp (N0, N1) < 0);
3176 }
14f9c5c9
AS
3177}
3178
de93309a
SM
3179/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3180 encoded names. */
14f9c5c9 3181
de93309a
SM
3182static void
3183sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3184{
14f9c5c9 3185 int i;
14f9c5c9 3186
de93309a 3187 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3188 {
de93309a
SM
3189 struct block_symbol sym = syms[i];
3190 int j;
3191
3192 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3193 {
3194 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3195 sym.symbol->linkage_name ()))
3196 break;
3197 syms[j + 1] = syms[j];
3198 }
de93309a
SM
3199 syms[j + 1] = sym;
3200 }
3201}
14f9c5c9 3202
de93309a
SM
3203/* Whether GDB should display formals and return types for functions in the
3204 overloads selection menu. */
3205static bool print_signatures = true;
4c4b4cd2 3206
de93309a
SM
3207/* Print the signature for SYM on STREAM according to the FLAGS options. For
3208 all but functions, the signature is just the name of the symbol. For
3209 functions, this is the name of the function, the list of types for formals
3210 and the return type (if any). */
4c4b4cd2 3211
de93309a
SM
3212static void
3213ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3214 const struct type_print_options *flags)
3215{
3216 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3217
987012b8 3218 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3219 if (!print_signatures
3220 || type == NULL
78134374 3221 || type->code () != TYPE_CODE_FUNC)
de93309a 3222 return;
4c4b4cd2 3223
1f704f76 3224 if (type->num_fields () > 0)
de93309a
SM
3225 {
3226 int i;
14f9c5c9 3227
de93309a 3228 fprintf_filtered (stream, " (");
1f704f76 3229 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3230 {
3231 if (i > 0)
3232 fprintf_filtered (stream, "; ");
940da03e 3233 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3234 flags);
3235 }
3236 fprintf_filtered (stream, ")");
3237 }
3238 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3239 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3240 {
3241 fprintf_filtered (stream, " return ");
3242 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3243 }
3244}
14f9c5c9 3245
de93309a
SM
3246/* Read and validate a set of numeric choices from the user in the
3247 range 0 .. N_CHOICES-1. Place the results in increasing
3248 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3249
de93309a
SM
3250 The user types choices as a sequence of numbers on one line
3251 separated by blanks, encoding them as follows:
14f9c5c9 3252
de93309a
SM
3253 + A choice of 0 means to cancel the selection, throwing an error.
3254 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3255 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3256
de93309a 3257 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3258
de93309a
SM
3259 ANNOTATION_SUFFIX, if present, is used to annotate the input
3260 prompts (for use with the -f switch). */
14f9c5c9 3261
de93309a
SM
3262static int
3263get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3264 int is_all_choice, const char *annotation_suffix)
de93309a 3265{
992a7040 3266 const char *args;
de93309a
SM
3267 const char *prompt;
3268 int n_chosen;
3269 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3270
de93309a
SM
3271 prompt = getenv ("PS2");
3272 if (prompt == NULL)
3273 prompt = "> ";
4c4b4cd2 3274
de93309a 3275 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3276
de93309a
SM
3277 if (args == NULL)
3278 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3279
de93309a 3280 n_chosen = 0;
4c4b4cd2 3281
de93309a
SM
3282 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3283 order, as given in args. Choices are validated. */
3284 while (1)
14f9c5c9 3285 {
de93309a
SM
3286 char *args2;
3287 int choice, j;
76a01679 3288
de93309a
SM
3289 args = skip_spaces (args);
3290 if (*args == '\0' && n_chosen == 0)
dda83cd7 3291 error_no_arg (_("one or more choice numbers"));
de93309a 3292 else if (*args == '\0')
dda83cd7 3293 break;
76a01679 3294
de93309a
SM
3295 choice = strtol (args, &args2, 10);
3296 if (args == args2 || choice < 0
dda83cd7
SM
3297 || choice > n_choices + first_choice - 1)
3298 error (_("Argument must be choice number"));
de93309a 3299 args = args2;
76a01679 3300
de93309a 3301 if (choice == 0)
dda83cd7 3302 error (_("cancelled"));
76a01679 3303
de93309a 3304 if (choice < first_choice)
dda83cd7
SM
3305 {
3306 n_chosen = n_choices;
3307 for (j = 0; j < n_choices; j += 1)
3308 choices[j] = j;
3309 break;
3310 }
de93309a 3311 choice -= first_choice;
76a01679 3312
de93309a 3313 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3314 {
3315 }
4c4b4cd2 3316
de93309a 3317 if (j < 0 || choice != choices[j])
dda83cd7
SM
3318 {
3319 int k;
4c4b4cd2 3320
dda83cd7
SM
3321 for (k = n_chosen - 1; k > j; k -= 1)
3322 choices[k + 1] = choices[k];
3323 choices[j + 1] = choice;
3324 n_chosen += 1;
3325 }
14f9c5c9
AS
3326 }
3327
de93309a
SM
3328 if (n_chosen > max_results)
3329 error (_("Select no more than %d of the above"), max_results);
3330
3331 return n_chosen;
14f9c5c9
AS
3332}
3333
de93309a
SM
3334/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3335 by asking the user (if necessary), returning the number selected,
3336 and setting the first elements of SYMS items. Error if no symbols
3337 selected. */
3338
3339/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3340 to be re-integrated one of these days. */
14f9c5c9
AS
3341
3342static int
de93309a 3343user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3344{
de93309a
SM
3345 int i;
3346 int *chosen = XALLOCAVEC (int , nsyms);
3347 int n_chosen;
3348 int first_choice = (max_results == 1) ? 1 : 2;
3349 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3350
de93309a
SM
3351 if (max_results < 1)
3352 error (_("Request to select 0 symbols!"));
3353 if (nsyms <= 1)
3354 return nsyms;
14f9c5c9 3355
de93309a
SM
3356 if (select_mode == multiple_symbols_cancel)
3357 error (_("\
3358canceled because the command is ambiguous\n\
3359See set/show multiple-symbol."));
14f9c5c9 3360
de93309a
SM
3361 /* If select_mode is "all", then return all possible symbols.
3362 Only do that if more than one symbol can be selected, of course.
3363 Otherwise, display the menu as usual. */
3364 if (select_mode == multiple_symbols_all && max_results > 1)
3365 return nsyms;
14f9c5c9 3366
de93309a
SM
3367 printf_filtered (_("[0] cancel\n"));
3368 if (max_results > 1)
3369 printf_filtered (_("[1] all\n"));
14f9c5c9 3370
de93309a 3371 sort_choices (syms, nsyms);
14f9c5c9 3372
de93309a
SM
3373 for (i = 0; i < nsyms; i += 1)
3374 {
3375 if (syms[i].symbol == NULL)
dda83cd7 3376 continue;
14f9c5c9 3377
de93309a 3378 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
dda83cd7
SM
3379 {
3380 struct symtab_and_line sal =
3381 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3382
de93309a
SM
3383 printf_filtered ("[%d] ", i + first_choice);
3384 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3385 &type_print_raw_options);
3386 if (sal.symtab == NULL)
3387 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3388 metadata_style.style ().ptr (), nullptr, sal.line);
3389 else
3390 printf_filtered
3391 (_(" at %ps:%d\n"),
3392 styled_string (file_name_style.style (),
3393 symtab_to_filename_for_display (sal.symtab)),
3394 sal.line);
dda83cd7
SM
3395 continue;
3396 }
76a01679 3397 else
dda83cd7
SM
3398 {
3399 int is_enumeral =
3400 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3401 && SYMBOL_TYPE (syms[i].symbol) != NULL
3402 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3403 struct symtab *symtab = NULL;
4c4b4cd2 3404
de93309a
SM
3405 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3406 symtab = symbol_symtab (syms[i].symbol);
3407
dda83cd7 3408 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3409 {
3410 printf_filtered ("[%d] ", i + first_choice);
3411 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3412 &type_print_raw_options);
3413 printf_filtered (_(" at %s:%d\n"),
3414 symtab_to_filename_for_display (symtab),
3415 SYMBOL_LINE (syms[i].symbol));
3416 }
dda83cd7
SM
3417 else if (is_enumeral
3418 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3419 {
3420 printf_filtered (("[%d] "), i + first_choice);
3421 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3422 gdb_stdout, -1, 0, &type_print_raw_options);
3423 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3424 syms[i].symbol->print_name ());
dda83cd7 3425 }
de93309a
SM
3426 else
3427 {
3428 printf_filtered ("[%d] ", i + first_choice);
3429 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3430 &type_print_raw_options);
3431
3432 if (symtab != NULL)
3433 printf_filtered (is_enumeral
3434 ? _(" in %s (enumeral)\n")
3435 : _(" at %s:?\n"),
3436 symtab_to_filename_for_display (symtab));
3437 else
3438 printf_filtered (is_enumeral
3439 ? _(" (enumeral)\n")
3440 : _(" at ?\n"));
3441 }
dda83cd7 3442 }
14f9c5c9 3443 }
14f9c5c9 3444
de93309a 3445 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3446 "overload-choice");
14f9c5c9 3447
de93309a
SM
3448 for (i = 0; i < n_chosen; i += 1)
3449 syms[i] = syms[chosen[i]];
14f9c5c9 3450
de93309a
SM
3451 return n_chosen;
3452}
14f9c5c9 3453
de93309a
SM
3454/* Resolve the operator of the subexpression beginning at
3455 position *POS of *EXPP. "Resolving" consists of replacing
3456 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3457 with their resolutions, replacing built-in operators with
3458 function calls to user-defined operators, where appropriate, and,
3459 when DEPROCEDURE_P is non-zero, converting function-valued variables
3460 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3461 are as in ada_resolve, above. */
14f9c5c9 3462
de93309a
SM
3463static struct value *
3464resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
dda83cd7 3465 struct type *context_type, int parse_completion,
de93309a 3466 innermost_block_tracker *tracker)
14f9c5c9 3467{
de93309a
SM
3468 int pc = *pos;
3469 int i;
3470 struct expression *exp; /* Convenience: == *expp. */
3471 enum exp_opcode op = (*expp)->elts[pc].opcode;
3472 struct value **argvec; /* Vector of operand types (alloca'ed). */
3473 int nargs; /* Number of operands. */
3474 int oplen;
14f9c5c9 3475
de93309a
SM
3476 argvec = NULL;
3477 nargs = 0;
3478 exp = expp->get ();
4c4b4cd2 3479
de93309a
SM
3480 /* Pass one: resolve operands, saving their types and updating *pos,
3481 if needed. */
3482 switch (op)
3483 {
3484 case OP_FUNCALL:
3485 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
dda83cd7
SM
3486 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3487 *pos += 7;
de93309a 3488 else
dda83cd7
SM
3489 {
3490 *pos += 3;
3491 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3492 }
de93309a
SM
3493 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3494 break;
14f9c5c9 3495
de93309a
SM
3496 case UNOP_ADDR:
3497 *pos += 1;
3498 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3499 break;
3500
3501 case UNOP_QUAL:
3502 *pos += 3;
3503 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3504 parse_completion, tracker);
3505 break;
3506
3507 case OP_ATR_MODULUS:
3508 case OP_ATR_SIZE:
3509 case OP_ATR_TAG:
3510 case OP_ATR_FIRST:
3511 case OP_ATR_LAST:
3512 case OP_ATR_LENGTH:
3513 case OP_ATR_POS:
3514 case OP_ATR_VAL:
3515 case OP_ATR_MIN:
3516 case OP_ATR_MAX:
3517 case TERNOP_IN_RANGE:
3518 case BINOP_IN_BOUNDS:
3519 case UNOP_IN_RANGE:
3520 case OP_AGGREGATE:
3521 case OP_OTHERS:
3522 case OP_CHOICES:
3523 case OP_POSITIONAL:
3524 case OP_DISCRETE_RANGE:
3525 case OP_NAME:
3526 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3527 *pos += oplen;
3528 break;
3529
3530 case BINOP_ASSIGN:
3531 {
dda83cd7
SM
3532 struct value *arg1;
3533
3534 *pos += 1;
3535 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3536 if (arg1 == NULL)
3537 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3538 else
3539 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
de93309a 3540 tracker);
dda83cd7 3541 break;
de93309a
SM
3542 }
3543
3544 case UNOP_CAST:
3545 *pos += 3;
3546 nargs = 1;
3547 break;
3548
3549 case BINOP_ADD:
3550 case BINOP_SUB:
3551 case BINOP_MUL:
3552 case BINOP_DIV:
3553 case BINOP_REM:
3554 case BINOP_MOD:
3555 case BINOP_EXP:
3556 case BINOP_CONCAT:
3557 case BINOP_LOGICAL_AND:
3558 case BINOP_LOGICAL_OR:
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3562
3563 case BINOP_EQUAL:
3564 case BINOP_NOTEQUAL:
3565 case BINOP_LESS:
3566 case BINOP_GTR:
3567 case BINOP_LEQ:
3568 case BINOP_GEQ:
3569
3570 case BINOP_REPEAT:
3571 case BINOP_SUBSCRIPT:
3572 case BINOP_COMMA:
3573 *pos += 1;
3574 nargs = 2;
3575 break;
3576
3577 case UNOP_NEG:
3578 case UNOP_PLUS:
3579 case UNOP_LOGICAL_NOT:
3580 case UNOP_ABS:
3581 case UNOP_IND:
3582 *pos += 1;
3583 nargs = 1;
3584 break;
3585
3586 case OP_LONG:
3587 case OP_FLOAT:
3588 case OP_VAR_VALUE:
3589 case OP_VAR_MSYM_VALUE:
3590 *pos += 4;
3591 break;
3592
3593 case OP_TYPE:
3594 case OP_BOOL:
3595 case OP_LAST:
3596 case OP_INTERNALVAR:
3597 *pos += 3;
3598 break;
3599
3600 case UNOP_MEMVAL:
3601 *pos += 3;
3602 nargs = 1;
3603 break;
3604
3605 case OP_REGISTER:
3606 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3607 break;
3608
3609 case STRUCTOP_STRUCT:
3610 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3611 nargs = 1;
3612 break;
3613
3614 case TERNOP_SLICE:
3615 *pos += 1;
3616 nargs = 3;
3617 break;
3618
3619 case OP_STRING:
3620 break;
3621
3622 default:
3623 error (_("Unexpected operator during name resolution"));
14f9c5c9 3624 }
14f9c5c9 3625
de93309a
SM
3626 argvec = XALLOCAVEC (struct value *, nargs + 1);
3627 for (i = 0; i < nargs; i += 1)
3628 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3629 tracker);
3630 argvec[i] = NULL;
3631 exp = expp->get ();
4c4b4cd2 3632
de93309a
SM
3633 /* Pass two: perform any resolution on principal operator. */
3634 switch (op)
14f9c5c9 3635 {
de93309a
SM
3636 default:
3637 break;
5b4ee69b 3638
de93309a
SM
3639 case OP_VAR_VALUE:
3640 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
3641 {
3642 std::vector<struct block_symbol> candidates;
3643 int n_candidates;
3644
3645 n_candidates =
3646 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3647 exp->elts[pc + 1].block, VAR_DOMAIN,
3648 &candidates);
3649
3650 if (n_candidates > 1)
3651 {
3652 /* Types tend to get re-introduced locally, so if there
3653 are any local symbols that are not types, first filter
3654 out all types. */
3655 int j;
3656 for (j = 0; j < n_candidates; j += 1)
3657 switch (SYMBOL_CLASS (candidates[j].symbol))
3658 {
3659 case LOC_REGISTER:
3660 case LOC_ARG:
3661 case LOC_REF_ARG:
3662 case LOC_REGPARM_ADDR:
3663 case LOC_LOCAL:
3664 case LOC_COMPUTED:
3665 goto FoundNonType;
3666 default:
3667 break;
3668 }
3669 FoundNonType:
3670 if (j < n_candidates)
3671 {
3672 j = 0;
3673 while (j < n_candidates)
3674 {
3675 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3676 {
3677 candidates[j] = candidates[n_candidates - 1];
3678 n_candidates -= 1;
3679 }
3680 else
3681 j += 1;
3682 }
3683 }
3684 }
3685
3686 if (n_candidates == 0)
3687 error (_("No definition found for %s"),
3688 exp->elts[pc + 2].symbol->print_name ());
3689 else if (n_candidates == 1)
3690 i = 0;
3691 else if (deprocedure_p
3692 && !is_nonfunction (candidates.data (), n_candidates))
3693 {
3694 i = ada_resolve_function
3695 (candidates.data (), n_candidates, NULL, 0,
3696 exp->elts[pc + 2].symbol->linkage_name (),
3697 context_type, parse_completion);
3698 if (i < 0)
3699 error (_("Could not find a match for %s"),
3700 exp->elts[pc + 2].symbol->print_name ());
3701 }
3702 else
3703 {
3704 printf_filtered (_("Multiple matches for %s\n"),
3705 exp->elts[pc + 2].symbol->print_name ());
3706 user_select_syms (candidates.data (), n_candidates, 1);
3707 i = 0;
3708 }
3709
3710 exp->elts[pc + 1].block = candidates[i].block;
3711 exp->elts[pc + 2].symbol = candidates[i].symbol;
de93309a 3712 tracker->update (candidates[i]);
dda83cd7 3713 }
14f9c5c9 3714
de93309a 3715 if (deprocedure_p
dda83cd7
SM
3716 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3717 == TYPE_CODE_FUNC))
3718 {
3719 replace_operator_with_call (expp, pc, 0, 4,
3720 exp->elts[pc + 2].symbol,
3721 exp->elts[pc + 1].block);
3722 exp = expp->get ();
3723 }
de93309a
SM
3724 break;
3725
3726 case OP_FUNCALL:
3727 {
dda83cd7
SM
3728 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3729 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3730 {
de93309a 3731 std::vector<struct block_symbol> candidates;
dda83cd7
SM
3732 int n_candidates;
3733
3734 n_candidates =
3735 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3736 exp->elts[pc + 4].block, VAR_DOMAIN,
3737 &candidates);
3738
3739 if (n_candidates == 1)
3740 i = 0;
3741 else
3742 {
3743 i = ada_resolve_function
3744 (candidates.data (), n_candidates,
3745 argvec, nargs,
3746 exp->elts[pc + 5].symbol->linkage_name (),
3747 context_type, parse_completion);
3748 if (i < 0)
3749 error (_("Could not find a match for %s"),
3750 exp->elts[pc + 5].symbol->print_name ());
3751 }
3752
3753 exp->elts[pc + 4].block = candidates[i].block;
3754 exp->elts[pc + 5].symbol = candidates[i].symbol;
de93309a 3755 tracker->update (candidates[i]);
dda83cd7 3756 }
de93309a
SM
3757 }
3758 break;
3759 case BINOP_ADD:
3760 case BINOP_SUB:
3761 case BINOP_MUL:
3762 case BINOP_DIV:
3763 case BINOP_REM:
3764 case BINOP_MOD:
3765 case BINOP_CONCAT:
3766 case BINOP_BITWISE_AND:
3767 case BINOP_BITWISE_IOR:
3768 case BINOP_BITWISE_XOR:
3769 case BINOP_EQUAL:
3770 case BINOP_NOTEQUAL:
3771 case BINOP_LESS:
3772 case BINOP_GTR:
3773 case BINOP_LEQ:
3774 case BINOP_GEQ:
3775 case BINOP_EXP:
3776 case UNOP_NEG:
3777 case UNOP_PLUS:
3778 case UNOP_LOGICAL_NOT:
3779 case UNOP_ABS:
3780 if (possible_user_operator_p (op, argvec))
dda83cd7 3781 {
de93309a 3782 std::vector<struct block_symbol> candidates;
dda83cd7 3783 int n_candidates;
d72413e6 3784
dda83cd7
SM
3785 n_candidates =
3786 ada_lookup_symbol_list (ada_decoded_op_name (op),
de93309a 3787 NULL, VAR_DOMAIN,
dda83cd7 3788 &candidates);
d72413e6 3789
dda83cd7 3790 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
de93309a
SM
3791 nargs, ada_decoded_op_name (op), NULL,
3792 parse_completion);
dda83cd7
SM
3793 if (i < 0)
3794 break;
d72413e6 3795
de93309a
SM
3796 replace_operator_with_call (expp, pc, nargs, 1,
3797 candidates[i].symbol,
3798 candidates[i].block);
dda83cd7
SM
3799 exp = expp->get ();
3800 }
de93309a 3801 break;
d72413e6 3802
de93309a
SM
3803 case OP_TYPE:
3804 case OP_REGISTER:
3805 return NULL;
d72413e6 3806 }
d72413e6 3807
de93309a
SM
3808 *pos = pc;
3809 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3810 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3811 exp->elts[pc + 1].objfile,
3812 exp->elts[pc + 2].msymbol);
3813 else
3814 return evaluate_subexp_type (exp, pos);
3815}
14f9c5c9 3816
de93309a
SM
3817/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3818 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3819 a non-pointer. */
3820/* The term "match" here is rather loose. The match is heuristic and
3821 liberal. */
14f9c5c9 3822
de93309a
SM
3823static int
3824ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3825{
de93309a
SM
3826 ftype = ada_check_typedef (ftype);
3827 atype = ada_check_typedef (atype);
14f9c5c9 3828
78134374 3829 if (ftype->code () == TYPE_CODE_REF)
de93309a 3830 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3831 if (atype->code () == TYPE_CODE_REF)
de93309a 3832 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3833
78134374 3834 switch (ftype->code ())
14f9c5c9 3835 {
de93309a 3836 default:
78134374 3837 return ftype->code () == atype->code ();
de93309a 3838 case TYPE_CODE_PTR:
78134374 3839 if (atype->code () == TYPE_CODE_PTR)
dda83cd7
SM
3840 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3841 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3842 else
dda83cd7
SM
3843 return (may_deref
3844 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
de93309a
SM
3845 case TYPE_CODE_INT:
3846 case TYPE_CODE_ENUM:
3847 case TYPE_CODE_RANGE:
78134374 3848 switch (atype->code ())
dda83cd7
SM
3849 {
3850 case TYPE_CODE_INT:
3851 case TYPE_CODE_ENUM:
3852 case TYPE_CODE_RANGE:
3853 return 1;
3854 default:
3855 return 0;
3856 }
d2e4a39e 3857
de93309a 3858 case TYPE_CODE_ARRAY:
78134374 3859 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3860 || ada_is_array_descriptor_type (atype));
14f9c5c9 3861
de93309a
SM
3862 case TYPE_CODE_STRUCT:
3863 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3864 return (atype->code () == TYPE_CODE_ARRAY
3865 || ada_is_array_descriptor_type (atype));
de93309a 3866 else
dda83cd7
SM
3867 return (atype->code () == TYPE_CODE_STRUCT
3868 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3869
de93309a
SM
3870 case TYPE_CODE_UNION:
3871 case TYPE_CODE_FLT:
78134374 3872 return (atype->code () == ftype->code ());
de93309a 3873 }
14f9c5c9
AS
3874}
3875
de93309a
SM
3876/* Return non-zero if the formals of FUNC "sufficiently match" the
3877 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3878 may also be an enumeral, in which case it is treated as a 0-
3879 argument function. */
14f9c5c9 3880
de93309a
SM
3881static int
3882ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3883{
3884 int i;
3885 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3886
de93309a 3887 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3888 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3889 return (n_actuals == 0);
78134374 3890 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3891 return 0;
14f9c5c9 3892
1f704f76 3893 if (func_type->num_fields () != n_actuals)
de93309a 3894 return 0;
14f9c5c9 3895
de93309a
SM
3896 for (i = 0; i < n_actuals; i += 1)
3897 {
3898 if (actuals[i] == NULL)
dda83cd7 3899 return 0;
de93309a 3900 else
dda83cd7
SM
3901 {
3902 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3903 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3904
dda83cd7
SM
3905 if (!ada_type_match (ftype, atype, 1))
3906 return 0;
3907 }
de93309a
SM
3908 }
3909 return 1;
3910}
d2e4a39e 3911
de93309a
SM
3912/* False iff function type FUNC_TYPE definitely does not produce a value
3913 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3914 FUNC_TYPE is not a valid function type with a non-null return type
3915 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3916
de93309a
SM
3917static int
3918return_match (struct type *func_type, struct type *context_type)
3919{
3920 struct type *return_type;
d2e4a39e 3921
de93309a
SM
3922 if (func_type == NULL)
3923 return 1;
14f9c5c9 3924
78134374 3925 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3926 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3927 else
3928 return_type = get_base_type (func_type);
3929 if (return_type == NULL)
3930 return 1;
76a01679 3931
de93309a 3932 context_type = get_base_type (context_type);
14f9c5c9 3933
78134374 3934 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3935 return context_type == NULL || return_type == context_type;
3936 else if (context_type == NULL)
78134374 3937 return return_type->code () != TYPE_CODE_VOID;
de93309a 3938 else
78134374 3939 return return_type->code () == context_type->code ();
de93309a 3940}
14f9c5c9 3941
14f9c5c9 3942
de93309a
SM
3943/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3944 function (if any) that matches the types of the NARGS arguments in
3945 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3946 that returns that type, then eliminate matches that don't. If
3947 CONTEXT_TYPE is void and there is at least one match that does not
3948 return void, eliminate all matches that do.
14f9c5c9 3949
de93309a
SM
3950 Asks the user if there is more than one match remaining. Returns -1
3951 if there is no such symbol or none is selected. NAME is used
3952 solely for messages. May re-arrange and modify SYMS in
3953 the process; the index returned is for the modified vector. */
14f9c5c9 3954
de93309a
SM
3955static int
3956ada_resolve_function (struct block_symbol syms[],
dda83cd7
SM
3957 int nsyms, struct value **args, int nargs,
3958 const char *name, struct type *context_type,
de93309a
SM
3959 int parse_completion)
3960{
3961 int fallback;
3962 int k;
3963 int m; /* Number of hits */
14f9c5c9 3964
de93309a
SM
3965 m = 0;
3966 /* In the first pass of the loop, we only accept functions matching
3967 context_type. If none are found, we add a second pass of the loop
3968 where every function is accepted. */
3969 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3970 {
3971 for (k = 0; k < nsyms; k += 1)
dda83cd7
SM
3972 {
3973 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3974
dda83cd7
SM
3975 if (ada_args_match (syms[k].symbol, args, nargs)
3976 && (fallback || return_match (type, context_type)))
3977 {
3978 syms[m] = syms[k];
3979 m += 1;
3980 }
3981 }
14f9c5c9
AS
3982 }
3983
de93309a
SM
3984 /* If we got multiple matches, ask the user which one to use. Don't do this
3985 interactive thing during completion, though, as the purpose of the
3986 completion is providing a list of all possible matches. Prompting the
3987 user to filter it down would be completely unexpected in this case. */
3988 if (m == 0)
3989 return -1;
3990 else if (m > 1 && !parse_completion)
3991 {
3992 printf_filtered (_("Multiple matches for %s\n"), name);
3993 user_select_syms (syms, m, 1);
3994 return 0;
3995 }
3996 return 0;
14f9c5c9
AS
3997}
3998
4c4b4cd2
PH
3999/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4000 on the function identified by SYM and BLOCK, and taking NARGS
4001 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4002
4003static void
e9d9f57e 4004replace_operator_with_call (expression_up *expp, int pc, int nargs,
dda83cd7
SM
4005 int oplen, struct symbol *sym,
4006 const struct block *block)
14f9c5c9 4007{
00158a68
TT
4008 /* We want to add 6 more elements (3 for funcall, 4 for function
4009 symbol, -OPLEN for operator being replaced) to the
4010 expression. */
e9d9f57e 4011 struct expression *exp = expp->get ();
00158a68 4012 int save_nelts = exp->nelts;
f51f9f1d
TV
4013 int extra_elts = 7 - oplen;
4014 exp->nelts += extra_elts;
14f9c5c9 4015
f51f9f1d
TV
4016 if (extra_elts > 0)
4017 exp->resize (exp->nelts);
00158a68
TT
4018 memmove (exp->elts + pc + 7, exp->elts + pc + oplen,
4019 EXP_ELEM_TO_BYTES (save_nelts - pc - oplen));
f51f9f1d
TV
4020 if (extra_elts < 0)
4021 exp->resize (exp->nelts);
14f9c5c9 4022
00158a68
TT
4023 exp->elts[pc].opcode = exp->elts[pc + 2].opcode = OP_FUNCALL;
4024 exp->elts[pc + 1].longconst = (LONGEST) nargs;
14f9c5c9 4025
00158a68
TT
4026 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
4027 exp->elts[pc + 4].block = block;
4028 exp->elts[pc + 5].symbol = sym;
d2e4a39e 4029}
14f9c5c9
AS
4030
4031/* Type-class predicates */
4032
4c4b4cd2
PH
4033/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4034 or FLOAT). */
14f9c5c9
AS
4035
4036static int
d2e4a39e 4037numeric_type_p (struct type *type)
14f9c5c9
AS
4038{
4039 if (type == NULL)
4040 return 0;
d2e4a39e
AS
4041 else
4042 {
78134374 4043 switch (type->code ())
dda83cd7
SM
4044 {
4045 case TYPE_CODE_INT:
4046 case TYPE_CODE_FLT:
4047 return 1;
4048 case TYPE_CODE_RANGE:
4049 return (type == TYPE_TARGET_TYPE (type)
4050 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4051 default:
4052 return 0;
4053 }
d2e4a39e 4054 }
14f9c5c9
AS
4055}
4056
4c4b4cd2 4057/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4058
4059static int
d2e4a39e 4060integer_type_p (struct type *type)
14f9c5c9
AS
4061{
4062 if (type == NULL)
4063 return 0;
d2e4a39e
AS
4064 else
4065 {
78134374 4066 switch (type->code ())
dda83cd7
SM
4067 {
4068 case TYPE_CODE_INT:
4069 return 1;
4070 case TYPE_CODE_RANGE:
4071 return (type == TYPE_TARGET_TYPE (type)
4072 || integer_type_p (TYPE_TARGET_TYPE (type)));
4073 default:
4074 return 0;
4075 }
d2e4a39e 4076 }
14f9c5c9
AS
4077}
4078
4c4b4cd2 4079/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4080
4081static int
d2e4a39e 4082scalar_type_p (struct type *type)
14f9c5c9
AS
4083{
4084 if (type == NULL)
4085 return 0;
d2e4a39e
AS
4086 else
4087 {
78134374 4088 switch (type->code ())
dda83cd7
SM
4089 {
4090 case TYPE_CODE_INT:
4091 case TYPE_CODE_RANGE:
4092 case TYPE_CODE_ENUM:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 default:
4096 return 0;
4097 }
d2e4a39e 4098 }
14f9c5c9
AS
4099}
4100
4c4b4cd2 4101/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4102
4103static int
d2e4a39e 4104discrete_type_p (struct type *type)
14f9c5c9
AS
4105{
4106 if (type == NULL)
4107 return 0;
d2e4a39e
AS
4108 else
4109 {
78134374 4110 switch (type->code ())
dda83cd7
SM
4111 {
4112 case TYPE_CODE_INT:
4113 case TYPE_CODE_RANGE:
4114 case TYPE_CODE_ENUM:
4115 case TYPE_CODE_BOOL:
4116 return 1;
4117 default:
4118 return 0;
4119 }
d2e4a39e 4120 }
14f9c5c9
AS
4121}
4122
4c4b4cd2
PH
4123/* Returns non-zero if OP with operands in the vector ARGS could be
4124 a user-defined function. Errs on the side of pre-defined operators
4125 (i.e., result 0). */
14f9c5c9
AS
4126
4127static int
d2e4a39e 4128possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4129{
76a01679 4130 struct type *type0 =
df407dfe 4131 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4132 struct type *type1 =
df407dfe 4133 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4134
4c4b4cd2
PH
4135 if (type0 == NULL)
4136 return 0;
4137
14f9c5c9
AS
4138 switch (op)
4139 {
4140 default:
4141 return 0;
4142
4143 case BINOP_ADD:
4144 case BINOP_SUB:
4145 case BINOP_MUL:
4146 case BINOP_DIV:
d2e4a39e 4147 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4148
4149 case BINOP_REM:
4150 case BINOP_MOD:
4151 case BINOP_BITWISE_AND:
4152 case BINOP_BITWISE_IOR:
4153 case BINOP_BITWISE_XOR:
d2e4a39e 4154 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4155
4156 case BINOP_EQUAL:
4157 case BINOP_NOTEQUAL:
4158 case BINOP_LESS:
4159 case BINOP_GTR:
4160 case BINOP_LEQ:
4161 case BINOP_GEQ:
d2e4a39e 4162 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4163
4164 case BINOP_CONCAT:
ee90b9ab 4165 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4166
4167 case BINOP_EXP:
d2e4a39e 4168 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4169
4170 case UNOP_NEG:
4171 case UNOP_PLUS:
4172 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4173 case UNOP_ABS:
4174 return (!numeric_type_p (type0));
14f9c5c9
AS
4175
4176 }
4177}
4178\f
dda83cd7 4179 /* Renaming */
14f9c5c9 4180
aeb5907d
JB
4181/* NOTES:
4182
4183 1. In the following, we assume that a renaming type's name may
4184 have an ___XD suffix. It would be nice if this went away at some
4185 point.
4186 2. We handle both the (old) purely type-based representation of
4187 renamings and the (new) variable-based encoding. At some point,
4188 it is devoutly to be hoped that the former goes away
4189 (FIXME: hilfinger-2007-07-09).
4190 3. Subprogram renamings are not implemented, although the XRS
4191 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4192
4193/* If SYM encodes a renaming,
4194
4195 <renaming> renames <renamed entity>,
4196
4197 sets *LEN to the length of the renamed entity's name,
4198 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4199 the string describing the subcomponent selected from the renamed
0963b4bd 4200 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4201 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4202 are undefined). Otherwise, returns a value indicating the category
4203 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4204 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4205 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4206 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4207 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4208 may be NULL, in which case they are not assigned.
4209
4210 [Currently, however, GCC does not generate subprogram renamings.] */
4211
4212enum ada_renaming_category
4213ada_parse_renaming (struct symbol *sym,
4214 const char **renamed_entity, int *len,
4215 const char **renaming_expr)
4216{
4217 enum ada_renaming_category kind;
4218 const char *info;
4219 const char *suffix;
4220
4221 if (sym == NULL)
4222 return ADA_NOT_RENAMING;
4223 switch (SYMBOL_CLASS (sym))
14f9c5c9 4224 {
aeb5907d
JB
4225 default:
4226 return ADA_NOT_RENAMING;
aeb5907d
JB
4227 case LOC_LOCAL:
4228 case LOC_STATIC:
4229 case LOC_COMPUTED:
4230 case LOC_OPTIMIZED_OUT:
987012b8 4231 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4232 if (info == NULL)
4233 return ADA_NOT_RENAMING;
4234 switch (info[5])
4235 {
4236 case '_':
4237 kind = ADA_OBJECT_RENAMING;
4238 info += 6;
4239 break;
4240 case 'E':
4241 kind = ADA_EXCEPTION_RENAMING;
4242 info += 7;
4243 break;
4244 case 'P':
4245 kind = ADA_PACKAGE_RENAMING;
4246 info += 7;
4247 break;
4248 case 'S':
4249 kind = ADA_SUBPROGRAM_RENAMING;
4250 info += 7;
4251 break;
4252 default:
4253 return ADA_NOT_RENAMING;
4254 }
14f9c5c9 4255 }
4c4b4cd2 4256
de93309a
SM
4257 if (renamed_entity != NULL)
4258 *renamed_entity = info;
4259 suffix = strstr (info, "___XE");
4260 if (suffix == NULL || suffix == info)
4261 return ADA_NOT_RENAMING;
4262 if (len != NULL)
4263 *len = strlen (info) - strlen (suffix);
4264 suffix += 5;
4265 if (renaming_expr != NULL)
4266 *renaming_expr = suffix;
4267 return kind;
4268}
4269
4270/* Compute the value of the given RENAMING_SYM, which is expected to
4271 be a symbol encoding a renaming expression. BLOCK is the block
4272 used to evaluate the renaming. */
4273
4274static struct value *
4275ada_read_renaming_var_value (struct symbol *renaming_sym,
4276 const struct block *block)
4277{
4278 const char *sym_name;
4279
987012b8 4280 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4281 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4282 return evaluate_expression (expr.get ());
4283}
4284\f
4285
dda83cd7 4286 /* Evaluation: Function Calls */
de93309a
SM
4287
4288/* Return an lvalue containing the value VAL. This is the identity on
4289 lvalues, and otherwise has the side-effect of allocating memory
4290 in the inferior where a copy of the value contents is copied. */
4291
4292static struct value *
4293ensure_lval (struct value *val)
4294{
4295 if (VALUE_LVAL (val) == not_lval
4296 || VALUE_LVAL (val) == lval_internalvar)
4297 {
4298 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4299 const CORE_ADDR addr =
dda83cd7 4300 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4301
4302 VALUE_LVAL (val) = lval_memory;
4303 set_value_address (val, addr);
4304 write_memory (addr, value_contents (val), len);
4305 }
4306
4307 return val;
4308}
4309
4310/* Given ARG, a value of type (pointer or reference to a)*
4311 structure/union, extract the component named NAME from the ultimate
4312 target structure/union and return it as a value with its
4313 appropriate type.
4314
4315 The routine searches for NAME among all members of the structure itself
4316 and (recursively) among all members of any wrapper members
4317 (e.g., '_parent').
4318
4319 If NO_ERR, then simply return NULL in case of error, rather than
4320 calling error. */
4321
4322static struct value *
4323ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4324{
4325 struct type *t, *t1;
4326 struct value *v;
4327 int check_tag;
4328
4329 v = NULL;
4330 t1 = t = ada_check_typedef (value_type (arg));
78134374 4331 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4332 {
4333 t1 = TYPE_TARGET_TYPE (t);
4334 if (t1 == NULL)
4335 goto BadValue;
4336 t1 = ada_check_typedef (t1);
78134374 4337 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4338 {
4339 arg = coerce_ref (arg);
4340 t = t1;
4341 }
de93309a
SM
4342 }
4343
78134374 4344 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4345 {
4346 t1 = TYPE_TARGET_TYPE (t);
4347 if (t1 == NULL)
4348 goto BadValue;
4349 t1 = ada_check_typedef (t1);
78134374 4350 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4351 {
4352 arg = value_ind (arg);
4353 t = t1;
4354 }
de93309a 4355 else
dda83cd7 4356 break;
de93309a 4357 }
aeb5907d 4358
78134374 4359 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4360 goto BadValue;
52ce6436 4361
de93309a
SM
4362 if (t1 == t)
4363 v = ada_search_struct_field (name, arg, 0, t);
4364 else
4365 {
4366 int bit_offset, bit_size, byte_offset;
4367 struct type *field_type;
4368 CORE_ADDR address;
a5ee536b 4369
78134374 4370 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4371 address = value_address (ada_value_ind (arg));
4372 else
4373 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4374
de93309a 4375 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4376 the case where the type is a reference to a tagged type, but
4377 we have to be careful to exclude pointers to tagged types.
4378 The latter should be shown as usual (as a pointer), whereas
4379 a reference should mostly be transparent to the user. */
14f9c5c9 4380
de93309a 4381 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4382 || (t1->code () == TYPE_CODE_REF
4383 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4384 {
4385 /* We first try to find the searched field in the current type.
de93309a 4386 If not found then let's look in the fixed type. */
14f9c5c9 4387
dda83cd7
SM
4388 if (!find_struct_field (name, t1, 0,
4389 &field_type, &byte_offset, &bit_offset,
4390 &bit_size, NULL))
de93309a
SM
4391 check_tag = 1;
4392 else
4393 check_tag = 0;
dda83cd7 4394 }
de93309a
SM
4395 else
4396 check_tag = 0;
c3e5cd34 4397
de93309a
SM
4398 /* Convert to fixed type in all cases, so that we have proper
4399 offsets to each field in unconstrained record types. */
4400 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4401 address, NULL, check_tag);
4402
24aa1b02
TT
4403 /* Resolve the dynamic type as well. */
4404 arg = value_from_contents_and_address (t1, nullptr, address);
4405 t1 = value_type (arg);
4406
de93309a 4407 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4408 &field_type, &byte_offset, &bit_offset,
4409 &bit_size, NULL))
4410 {
4411 if (bit_size != 0)
4412 {
4413 if (t->code () == TYPE_CODE_REF)
4414 arg = ada_coerce_ref (arg);
4415 else
4416 arg = ada_value_ind (arg);
4417 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4418 bit_offset, bit_size,
4419 field_type);
4420 }
4421 else
4422 v = value_at_lazy (field_type, address + byte_offset);
4423 }
c3e5cd34 4424 }
14f9c5c9 4425
de93309a
SM
4426 if (v != NULL || no_err)
4427 return v;
4428 else
4429 error (_("There is no member named %s."), name);
4430
4431 BadValue:
4432 if (no_err)
4433 return NULL;
4434 else
4435 error (_("Attempt to extract a component of "
4436 "a value that is not a record."));
14f9c5c9
AS
4437}
4438
4439/* Return the value ACTUAL, converted to be an appropriate value for a
4440 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4441 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4442 values not residing in memory, updating it as needed. */
14f9c5c9 4443
a93c0eb6 4444struct value *
40bc484c 4445ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4446{
df407dfe 4447 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4448 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4449 struct type *formal_target =
78134374 4450 formal_type->code () == TYPE_CODE_PTR
61ee279c 4451 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4452 struct type *actual_target =
78134374 4453 actual_type->code () == TYPE_CODE_PTR
61ee279c 4454 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4455
4c4b4cd2 4456 if (ada_is_array_descriptor_type (formal_target)
78134374 4457 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4458 return make_array_descriptor (formal_type, actual);
78134374
SM
4459 else if (formal_type->code () == TYPE_CODE_PTR
4460 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4461 {
a84a8a0d 4462 struct value *result;
5b4ee69b 4463
78134374 4464 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4465 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4466 result = desc_data (actual);
78134374 4467 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4468 {
4469 if (VALUE_LVAL (actual) != lval_memory)
4470 {
4471 struct value *val;
4472
4473 actual_type = ada_check_typedef (value_type (actual));
4474 val = allocate_value (actual_type);
4475 memcpy ((char *) value_contents_raw (val),
4476 (char *) value_contents (actual),
4477 TYPE_LENGTH (actual_type));
4478 actual = ensure_lval (val);
4479 }
4480 result = value_addr (actual);
4481 }
a84a8a0d
JB
4482 else
4483 return actual;
b1af9e97 4484 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4485 }
78134374 4486 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4487 return ada_value_ind (actual);
8344af1e
JB
4488 else if (ada_is_aligner_type (formal_type))
4489 {
4490 /* We need to turn this parameter into an aligner type
4491 as well. */
4492 struct value *aligner = allocate_value (formal_type);
4493 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4494
4495 value_assign_to_component (aligner, component, actual);
4496 return aligner;
4497 }
14f9c5c9
AS
4498
4499 return actual;
4500}
4501
438c98a1
JB
4502/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4503 type TYPE. This is usually an inefficient no-op except on some targets
4504 (such as AVR) where the representation of a pointer and an address
4505 differs. */
4506
4507static CORE_ADDR
4508value_pointer (struct value *value, struct type *type)
4509{
4510 struct gdbarch *gdbarch = get_type_arch (type);
4511 unsigned len = TYPE_LENGTH (type);
224c3ddb 4512 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4513 CORE_ADDR addr;
4514
4515 addr = value_address (value);
4516 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4517 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4518 return addr;
4519}
4520
14f9c5c9 4521
4c4b4cd2
PH
4522/* Push a descriptor of type TYPE for array value ARR on the stack at
4523 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4524 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4525 to-descriptor type rather than a descriptor type), a struct value *
4526 representing a pointer to this descriptor. */
14f9c5c9 4527
d2e4a39e 4528static struct value *
40bc484c 4529make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4530{
d2e4a39e
AS
4531 struct type *bounds_type = desc_bounds_type (type);
4532 struct type *desc_type = desc_base_type (type);
4533 struct value *descriptor = allocate_value (desc_type);
4534 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4535 int i;
d2e4a39e 4536
0963b4bd
MS
4537 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4538 i > 0; i -= 1)
14f9c5c9 4539 {
19f220c3
JK
4540 modify_field (value_type (bounds), value_contents_writeable (bounds),
4541 ada_array_bound (arr, i, 0),
4542 desc_bound_bitpos (bounds_type, i, 0),
4543 desc_bound_bitsize (bounds_type, i, 0));
4544 modify_field (value_type (bounds), value_contents_writeable (bounds),
4545 ada_array_bound (arr, i, 1),
4546 desc_bound_bitpos (bounds_type, i, 1),
4547 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4548 }
d2e4a39e 4549
40bc484c 4550 bounds = ensure_lval (bounds);
d2e4a39e 4551
19f220c3
JK
4552 modify_field (value_type (descriptor),
4553 value_contents_writeable (descriptor),
4554 value_pointer (ensure_lval (arr),
940da03e 4555 desc_type->field (0).type ()),
19f220c3
JK
4556 fat_pntr_data_bitpos (desc_type),
4557 fat_pntr_data_bitsize (desc_type));
4558
4559 modify_field (value_type (descriptor),
4560 value_contents_writeable (descriptor),
4561 value_pointer (bounds,
940da03e 4562 desc_type->field (1).type ()),
19f220c3
JK
4563 fat_pntr_bounds_bitpos (desc_type),
4564 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4565
40bc484c 4566 descriptor = ensure_lval (descriptor);
14f9c5c9 4567
78134374 4568 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4569 return value_addr (descriptor);
4570 else
4571 return descriptor;
4572}
14f9c5c9 4573\f
dda83cd7 4574 /* Symbol Cache Module */
3d9434b5 4575
3d9434b5 4576/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4577 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4578 on the type of entity being printed, the cache can make it as much
4579 as an order of magnitude faster than without it.
4580
4581 The descriptive type DWARF extension has significantly reduced
4582 the need for this cache, at least when DWARF is being used. However,
4583 even in this case, some expensive name-based symbol searches are still
4584 sometimes necessary - to find an XVZ variable, mostly. */
4585
ee01b665 4586/* Initialize the contents of SYM_CACHE. */
3d9434b5 4587
ee01b665
JB
4588static void
4589ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4590{
4591 obstack_init (&sym_cache->cache_space);
4592 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4593}
3d9434b5 4594
ee01b665
JB
4595/* Free the memory used by SYM_CACHE. */
4596
4597static void
4598ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4599{
ee01b665
JB
4600 obstack_free (&sym_cache->cache_space, NULL);
4601 xfree (sym_cache);
4602}
3d9434b5 4603
ee01b665
JB
4604/* Return the symbol cache associated to the given program space PSPACE.
4605 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4606
ee01b665
JB
4607static struct ada_symbol_cache *
4608ada_get_symbol_cache (struct program_space *pspace)
4609{
4610 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4611
66c168ae 4612 if (pspace_data->sym_cache == NULL)
ee01b665 4613 {
66c168ae
JB
4614 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4615 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4616 }
4617
66c168ae 4618 return pspace_data->sym_cache;
ee01b665 4619}
3d9434b5
JB
4620
4621/* Clear all entries from the symbol cache. */
4622
4623static void
4624ada_clear_symbol_cache (void)
4625{
ee01b665
JB
4626 struct ada_symbol_cache *sym_cache
4627 = ada_get_symbol_cache (current_program_space);
4628
4629 obstack_free (&sym_cache->cache_space, NULL);
4630 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4631}
4632
fe978cb0 4633/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4634 Return it if found, or NULL otherwise. */
4635
4636static struct cache_entry **
fe978cb0 4637find_entry (const char *name, domain_enum domain)
3d9434b5 4638{
ee01b665
JB
4639 struct ada_symbol_cache *sym_cache
4640 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4641 int h = msymbol_hash (name) % HASH_SIZE;
4642 struct cache_entry **e;
4643
ee01b665 4644 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4645 {
fe978cb0 4646 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4647 return e;
3d9434b5
JB
4648 }
4649 return NULL;
4650}
4651
fe978cb0 4652/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4653 Return 1 if found, 0 otherwise.
4654
4655 If an entry was found and SYM is not NULL, set *SYM to the entry's
4656 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4657
96d887e8 4658static int
fe978cb0 4659lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4660 struct symbol **sym, const struct block **block)
96d887e8 4661{
fe978cb0 4662 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4663
4664 if (e == NULL)
4665 return 0;
4666 if (sym != NULL)
4667 *sym = (*e)->sym;
4668 if (block != NULL)
4669 *block = (*e)->block;
4670 return 1;
96d887e8
PH
4671}
4672
3d9434b5 4673/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4674 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4675
96d887e8 4676static void
fe978cb0 4677cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4678 const struct block *block)
96d887e8 4679{
ee01b665
JB
4680 struct ada_symbol_cache *sym_cache
4681 = ada_get_symbol_cache (current_program_space);
3d9434b5 4682 int h;
3d9434b5
JB
4683 struct cache_entry *e;
4684
1994afbf
DE
4685 /* Symbols for builtin types don't have a block.
4686 For now don't cache such symbols. */
4687 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4688 return;
4689
3d9434b5
JB
4690 /* If the symbol is a local symbol, then do not cache it, as a search
4691 for that symbol depends on the context. To determine whether
4692 the symbol is local or not, we check the block where we found it
4693 against the global and static blocks of its associated symtab. */
4694 if (sym
08be3fe3 4695 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4696 GLOBAL_BLOCK) != block
08be3fe3 4697 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4698 STATIC_BLOCK) != block)
3d9434b5
JB
4699 return;
4700
4701 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4702 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4703 e->next = sym_cache->root[h];
4704 sym_cache->root[h] = e;
2ef5453b 4705 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4706 e->sym = sym;
fe978cb0 4707 e->domain = domain;
3d9434b5 4708 e->block = block;
96d887e8 4709}
4c4b4cd2 4710\f
dda83cd7 4711 /* Symbol Lookup */
4c4b4cd2 4712
b5ec771e
PA
4713/* Return the symbol name match type that should be used used when
4714 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4715
4716 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4717 for Ada lookups. */
c0431670 4718
b5ec771e
PA
4719static symbol_name_match_type
4720name_match_type_from_name (const char *lookup_name)
c0431670 4721{
b5ec771e
PA
4722 return (strstr (lookup_name, "__") == NULL
4723 ? symbol_name_match_type::WILD
4724 : symbol_name_match_type::FULL);
c0431670
JB
4725}
4726
4c4b4cd2
PH
4727/* Return the result of a standard (literal, C-like) lookup of NAME in
4728 given DOMAIN, visible from lexical block BLOCK. */
4729
4730static struct symbol *
4731standard_lookup (const char *name, const struct block *block,
dda83cd7 4732 domain_enum domain)
4c4b4cd2 4733{
acbd605d 4734 /* Initialize it just to avoid a GCC false warning. */
6640a367 4735 struct block_symbol sym = {};
4c4b4cd2 4736
d12307c1
PMR
4737 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4738 return sym.symbol;
a2cd4f14 4739 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4740 cache_symbol (name, domain, sym.symbol, sym.block);
4741 return sym.symbol;
4c4b4cd2
PH
4742}
4743
4744
4745/* Non-zero iff there is at least one non-function/non-enumeral symbol
4746 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4747 since they contend in overloading in the same way. */
4748static int
d12307c1 4749is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4750{
4751 int i;
4752
4753 for (i = 0; i < n; i += 1)
78134374 4754 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
dda83cd7
SM
4755 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4756 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4757 return 1;
4758
4759 return 0;
4760}
4761
4762/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4763 struct types. Otherwise, they may not. */
14f9c5c9
AS
4764
4765static int
d2e4a39e 4766equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4767{
d2e4a39e 4768 if (type0 == type1)
14f9c5c9 4769 return 1;
d2e4a39e 4770 if (type0 == NULL || type1 == NULL
78134374 4771 || type0->code () != type1->code ())
14f9c5c9 4772 return 0;
78134374
SM
4773 if ((type0->code () == TYPE_CODE_STRUCT
4774 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4775 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4776 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4777 return 1;
d2e4a39e 4778
14f9c5c9
AS
4779 return 0;
4780}
4781
4782/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4783 no more defined than that of SYM1. */
14f9c5c9
AS
4784
4785static int
d2e4a39e 4786lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4787{
4788 if (sym0 == sym1)
4789 return 1;
176620f1 4790 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4791 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4792 return 0;
4793
d2e4a39e 4794 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4795 {
4796 case LOC_UNDEF:
4797 return 1;
4798 case LOC_TYPEDEF:
4799 {
dda83cd7
SM
4800 struct type *type0 = SYMBOL_TYPE (sym0);
4801 struct type *type1 = SYMBOL_TYPE (sym1);
4802 const char *name0 = sym0->linkage_name ();
4803 const char *name1 = sym1->linkage_name ();
4804 int len0 = strlen (name0);
4805
4806 return
4807 type0->code () == type1->code ()
4808 && (equiv_types (type0, type1)
4809 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4810 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4811 }
4812 case LOC_CONST:
4813 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
dda83cd7 4814 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4815
4816 case LOC_STATIC:
4817 {
dda83cd7
SM
4818 const char *name0 = sym0->linkage_name ();
4819 const char *name1 = sym1->linkage_name ();
4820 return (strcmp (name0, name1) == 0
4821 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4822 }
4823
d2e4a39e
AS
4824 default:
4825 return 0;
14f9c5c9
AS
4826 }
4827}
4828
d12307c1 4829/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4830 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4831
4832static void
76a01679 4833add_defn_to_vec (struct obstack *obstackp,
dda83cd7
SM
4834 struct symbol *sym,
4835 const struct block *block)
14f9c5c9
AS
4836{
4837 int i;
d12307c1 4838 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4839
529cad9c
PH
4840 /* Do not try to complete stub types, as the debugger is probably
4841 already scanning all symbols matching a certain name at the
4842 time when this function is called. Trying to replace the stub
4843 type by its associated full type will cause us to restart a scan
4844 which may lead to an infinite recursion. Instead, the client
4845 collecting the matching symbols will end up collecting several
4846 matches, with at least one of them complete. It can then filter
4847 out the stub ones if needed. */
4848
4c4b4cd2
PH
4849 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4850 {
d12307c1 4851 if (lesseq_defined_than (sym, prevDefns[i].symbol))
dda83cd7 4852 return;
d12307c1 4853 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
dda83cd7
SM
4854 {
4855 prevDefns[i].symbol = sym;
4856 prevDefns[i].block = block;
4857 return;
4858 }
4c4b4cd2
PH
4859 }
4860
4861 {
d12307c1 4862 struct block_symbol info;
4c4b4cd2 4863
d12307c1 4864 info.symbol = sym;
4c4b4cd2 4865 info.block = block;
d12307c1 4866 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4867 }
4868}
4869
d12307c1
PMR
4870/* Number of block_symbol structures currently collected in current vector in
4871 OBSTACKP. */
4c4b4cd2 4872
76a01679
JB
4873static int
4874num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4875{
d12307c1 4876 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4877}
4878
d12307c1
PMR
4879/* Vector of block_symbol structures currently collected in current vector in
4880 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4881
d12307c1 4882static struct block_symbol *
4c4b4cd2
PH
4883defns_collected (struct obstack *obstackp, int finish)
4884{
4885 if (finish)
224c3ddb 4886 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4887 else
d12307c1 4888 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4889}
4890
7c7b6655
TT
4891/* Return a bound minimal symbol matching NAME according to Ada
4892 decoding rules. Returns an invalid symbol if there is no such
4893 minimal symbol. Names prefixed with "standard__" are handled
4894 specially: "standard__" is first stripped off, and only static and
4895 global symbols are searched. */
4c4b4cd2 4896
7c7b6655 4897struct bound_minimal_symbol
96d887e8 4898ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4899{
7c7b6655 4900 struct bound_minimal_symbol result;
4c4b4cd2 4901
7c7b6655
TT
4902 memset (&result, 0, sizeof (result));
4903
b5ec771e
PA
4904 symbol_name_match_type match_type = name_match_type_from_name (name);
4905 lookup_name_info lookup_name (name, match_type);
4906
4907 symbol_name_matcher_ftype *match_name
4908 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4909
2030c079 4910 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4911 {
7932255d 4912 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4913 {
c9d95fa3 4914 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4915 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4916 {
4917 result.minsym = msymbol;
4918 result.objfile = objfile;
4919 break;
4920 }
4921 }
4922 }
4c4b4cd2 4923
7c7b6655 4924 return result;
96d887e8 4925}
4c4b4cd2 4926
96d887e8
PH
4927/* For all subprograms that statically enclose the subprogram of the
4928 selected frame, add symbols matching identifier NAME in DOMAIN
4929 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4930 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4931 with a wildcard prefix. */
4c4b4cd2 4932
96d887e8
PH
4933static void
4934add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4935 const lookup_name_info &lookup_name,
4936 domain_enum domain)
96d887e8 4937{
96d887e8 4938}
14f9c5c9 4939
96d887e8
PH
4940/* True if TYPE is definitely an artificial type supplied to a symbol
4941 for which no debugging information was given in the symbol file. */
14f9c5c9 4942
96d887e8
PH
4943static int
4944is_nondebugging_type (struct type *type)
4945{
0d5cff50 4946 const char *name = ada_type_name (type);
5b4ee69b 4947
96d887e8
PH
4948 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4949}
4c4b4cd2 4950
8f17729f
JB
4951/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4952 that are deemed "identical" for practical purposes.
4953
4954 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4955 types and that their number of enumerals is identical (in other
1f704f76 4956 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4957
4958static int
4959ada_identical_enum_types_p (struct type *type1, struct type *type2)
4960{
4961 int i;
4962
4963 /* The heuristic we use here is fairly conservative. We consider
4964 that 2 enumerate types are identical if they have the same
4965 number of enumerals and that all enumerals have the same
4966 underlying value and name. */
4967
4968 /* All enums in the type should have an identical underlying value. */
1f704f76 4969 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4970 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4971 return 0;
4972
4973 /* All enumerals should also have the same name (modulo any numerical
4974 suffix). */
1f704f76 4975 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4976 {
0d5cff50
DE
4977 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4978 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4979 int len_1 = strlen (name_1);
4980 int len_2 = strlen (name_2);
4981
4982 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4983 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4984 if (len_1 != len_2
dda83cd7 4985 || strncmp (TYPE_FIELD_NAME (type1, i),
8f17729f
JB
4986 TYPE_FIELD_NAME (type2, i),
4987 len_1) != 0)
4988 return 0;
4989 }
4990
4991 return 1;
4992}
4993
4994/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4995 that are deemed "identical" for practical purposes. Sometimes,
4996 enumerals are not strictly identical, but their types are so similar
4997 that they can be considered identical.
4998
4999 For instance, consider the following code:
5000
5001 type Color is (Black, Red, Green, Blue, White);
5002 type RGB_Color is new Color range Red .. Blue;
5003
5004 Type RGB_Color is a subrange of an implicit type which is a copy
5005 of type Color. If we call that implicit type RGB_ColorB ("B" is
5006 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5007 As a result, when an expression references any of the enumeral
5008 by name (Eg. "print green"), the expression is technically
5009 ambiguous and the user should be asked to disambiguate. But
5010 doing so would only hinder the user, since it wouldn't matter
5011 what choice he makes, the outcome would always be the same.
5012 So, for practical purposes, we consider them as the same. */
5013
5014static int
54d343a2 5015symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5016{
5017 int i;
5018
5019 /* Before performing a thorough comparison check of each type,
5020 we perform a series of inexpensive checks. We expect that these
5021 checks will quickly fail in the vast majority of cases, and thus
5022 help prevent the unnecessary use of a more expensive comparison.
5023 Said comparison also expects us to make some of these checks
5024 (see ada_identical_enum_types_p). */
5025
5026 /* Quick check: All symbols should have an enum type. */
54d343a2 5027 for (i = 0; i < syms.size (); i++)
78134374 5028 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
5029 return 0;
5030
5031 /* Quick check: They should all have the same value. */
54d343a2 5032 for (i = 1; i < syms.size (); i++)
d12307c1 5033 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5034 return 0;
5035
5036 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5037 for (i = 1; i < syms.size (); i++)
1f704f76 5038 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
dda83cd7 5039 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
5040 return 0;
5041
5042 /* All the sanity checks passed, so we might have a set of
5043 identical enumeration types. Perform a more complete
5044 comparison of the type of each symbol. */
54d343a2 5045 for (i = 1; i < syms.size (); i++)
d12307c1 5046 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
dda83cd7 5047 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5048 return 0;
5049
5050 return 1;
5051}
5052
54d343a2 5053/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5054 duplicate other symbols in the list (The only case I know of where
5055 this happens is when object files containing stabs-in-ecoff are
5056 linked with files containing ordinary ecoff debugging symbols (or no
5057 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5058 Returns the number of items in the modified list. */
4c4b4cd2 5059
96d887e8 5060static int
54d343a2 5061remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5062{
5063 int i, j;
4c4b4cd2 5064
8f17729f
JB
5065 /* We should never be called with less than 2 symbols, as there
5066 cannot be any extra symbol in that case. But it's easy to
5067 handle, since we have nothing to do in that case. */
54d343a2
TT
5068 if (syms->size () < 2)
5069 return syms->size ();
8f17729f 5070
96d887e8 5071 i = 0;
54d343a2 5072 while (i < syms->size ())
96d887e8 5073 {
a35ddb44 5074 int remove_p = 0;
339c13b6
JB
5075
5076 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 5077 the get rid of the stub. */
339c13b6 5078
e46d3488 5079 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
dda83cd7
SM
5080 && (*syms)[i].symbol->linkage_name () != NULL)
5081 {
5082 for (j = 0; j < syms->size (); j++)
5083 {
5084 if (j != i
5085 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5086 && (*syms)[j].symbol->linkage_name () != NULL
5087 && strcmp ((*syms)[i].symbol->linkage_name (),
5088 (*syms)[j].symbol->linkage_name ()) == 0)
5089 remove_p = 1;
5090 }
5091 }
339c13b6
JB
5092
5093 /* Two symbols with the same name, same class and same address
dda83cd7 5094 should be identical. */
339c13b6 5095
987012b8 5096 else if ((*syms)[i].symbol->linkage_name () != NULL
dda83cd7
SM
5097 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5098 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5099 {
5100 for (j = 0; j < syms->size (); j += 1)
5101 {
5102 if (i != j
5103 && (*syms)[j].symbol->linkage_name () != NULL
5104 && strcmp ((*syms)[i].symbol->linkage_name (),
5105 (*syms)[j].symbol->linkage_name ()) == 0
5106 && SYMBOL_CLASS ((*syms)[i].symbol)
54d343a2 5107 == SYMBOL_CLASS ((*syms)[j].symbol)
dda83cd7
SM
5108 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5109 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5110 remove_p = 1;
5111 }
5112 }
339c13b6 5113
a35ddb44 5114 if (remove_p)
54d343a2 5115 syms->erase (syms->begin () + i);
1b788fb6
TT
5116 else
5117 i += 1;
14f9c5c9 5118 }
8f17729f
JB
5119
5120 /* If all the remaining symbols are identical enumerals, then
5121 just keep the first one and discard the rest.
5122
5123 Unlike what we did previously, we do not discard any entry
5124 unless they are ALL identical. This is because the symbol
5125 comparison is not a strict comparison, but rather a practical
5126 comparison. If all symbols are considered identical, then
5127 we can just go ahead and use the first one and discard the rest.
5128 But if we cannot reduce the list to a single element, we have
5129 to ask the user to disambiguate anyways. And if we have to
5130 present a multiple-choice menu, it's less confusing if the list
5131 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5132 if (symbols_are_identical_enums (*syms))
5133 syms->resize (1);
8f17729f 5134
54d343a2 5135 return syms->size ();
14f9c5c9
AS
5136}
5137
96d887e8
PH
5138/* Given a type that corresponds to a renaming entity, use the type name
5139 to extract the scope (package name or function name, fully qualified,
5140 and following the GNAT encoding convention) where this renaming has been
49d83361 5141 defined. */
4c4b4cd2 5142
49d83361 5143static std::string
96d887e8 5144xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5145{
96d887e8 5146 /* The renaming types adhere to the following convention:
0963b4bd 5147 <scope>__<rename>___<XR extension>.
96d887e8
PH
5148 So, to extract the scope, we search for the "___XR" extension,
5149 and then backtrack until we find the first "__". */
76a01679 5150
7d93a1e0 5151 const char *name = renaming_type->name ();
108d56a4
SM
5152 const char *suffix = strstr (name, "___XR");
5153 const char *last;
14f9c5c9 5154
96d887e8
PH
5155 /* Now, backtrack a bit until we find the first "__". Start looking
5156 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5157
96d887e8
PH
5158 for (last = suffix - 3; last > name; last--)
5159 if (last[0] == '_' && last[1] == '_')
5160 break;
76a01679 5161
96d887e8 5162 /* Make a copy of scope and return it. */
49d83361 5163 return std::string (name, last);
4c4b4cd2
PH
5164}
5165
96d887e8 5166/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5167
96d887e8
PH
5168static int
5169is_package_name (const char *name)
4c4b4cd2 5170{
96d887e8
PH
5171 /* Here, We take advantage of the fact that no symbols are generated
5172 for packages, while symbols are generated for each function.
5173 So the condition for NAME represent a package becomes equivalent
5174 to NAME not existing in our list of symbols. There is only one
5175 small complication with library-level functions (see below). */
4c4b4cd2 5176
96d887e8
PH
5177 /* If it is a function that has not been defined at library level,
5178 then we should be able to look it up in the symbols. */
5179 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5180 return 0;
14f9c5c9 5181
96d887e8
PH
5182 /* Library-level function names start with "_ada_". See if function
5183 "_ada_" followed by NAME can be found. */
14f9c5c9 5184
96d887e8 5185 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5186 functions names cannot contain "__" in them. */
96d887e8
PH
5187 if (strstr (name, "__") != NULL)
5188 return 0;
4c4b4cd2 5189
528e1572 5190 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5191
528e1572 5192 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5193}
14f9c5c9 5194
96d887e8 5195/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5196 not visible from FUNCTION_NAME. */
14f9c5c9 5197
96d887e8 5198static int
0d5cff50 5199old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5200{
aeb5907d
JB
5201 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5202 return 0;
5203
49d83361 5204 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5205
96d887e8 5206 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5207 if (is_package_name (scope.c_str ()))
5208 return 0;
14f9c5c9 5209
96d887e8
PH
5210 /* Check that the rename is in the current function scope by checking
5211 that its name starts with SCOPE. */
76a01679 5212
96d887e8
PH
5213 /* If the function name starts with "_ada_", it means that it is
5214 a library-level function. Strip this prefix before doing the
5215 comparison, as the encoding for the renaming does not contain
5216 this prefix. */
61012eef 5217 if (startswith (function_name, "_ada_"))
96d887e8 5218 function_name += 5;
f26caa11 5219
49d83361 5220 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5221}
5222
aeb5907d
JB
5223/* Remove entries from SYMS that corresponds to a renaming entity that
5224 is not visible from the function associated with CURRENT_BLOCK or
5225 that is superfluous due to the presence of more specific renaming
5226 information. Places surviving symbols in the initial entries of
5227 SYMS and returns the number of surviving symbols.
96d887e8
PH
5228
5229 Rationale:
aeb5907d
JB
5230 First, in cases where an object renaming is implemented as a
5231 reference variable, GNAT may produce both the actual reference
5232 variable and the renaming encoding. In this case, we discard the
5233 latter.
5234
5235 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5236 entity. Unfortunately, STABS currently does not support the definition
5237 of types that are local to a given lexical block, so all renamings types
5238 are emitted at library level. As a consequence, if an application
5239 contains two renaming entities using the same name, and a user tries to
5240 print the value of one of these entities, the result of the ada symbol
5241 lookup will also contain the wrong renaming type.
f26caa11 5242
96d887e8
PH
5243 This function partially covers for this limitation by attempting to
5244 remove from the SYMS list renaming symbols that should be visible
5245 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5246 method with the current information available. The implementation
5247 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5248
5249 - When the user tries to print a rename in a function while there
dda83cd7
SM
5250 is another rename entity defined in a package: Normally, the
5251 rename in the function has precedence over the rename in the
5252 package, so the latter should be removed from the list. This is
5253 currently not the case.
5254
96d887e8 5255 - This function will incorrectly remove valid renames if
dda83cd7
SM
5256 the CURRENT_BLOCK corresponds to a function which symbol name
5257 has been changed by an "Export" pragma. As a consequence,
5258 the user will be unable to print such rename entities. */
4c4b4cd2 5259
14f9c5c9 5260static int
54d343a2
TT
5261remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5262 const struct block *current_block)
4c4b4cd2
PH
5263{
5264 struct symbol *current_function;
0d5cff50 5265 const char *current_function_name;
4c4b4cd2 5266 int i;
aeb5907d
JB
5267 int is_new_style_renaming;
5268
5269 /* If there is both a renaming foo___XR... encoded as a variable and
5270 a simple variable foo in the same block, discard the latter.
0963b4bd 5271 First, zero out such symbols, then compress. */
aeb5907d 5272 is_new_style_renaming = 0;
54d343a2 5273 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5274 {
54d343a2
TT
5275 struct symbol *sym = (*syms)[i].symbol;
5276 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5277 const char *name;
5278 const char *suffix;
5279
5280 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5281 continue;
987012b8 5282 name = sym->linkage_name ();
aeb5907d
JB
5283 suffix = strstr (name, "___XR");
5284
5285 if (suffix != NULL)
5286 {
5287 int name_len = suffix - name;
5288 int j;
5b4ee69b 5289
aeb5907d 5290 is_new_style_renaming = 1;
54d343a2
TT
5291 for (j = 0; j < syms->size (); j += 1)
5292 if (i != j && (*syms)[j].symbol != NULL
987012b8 5293 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5294 name_len) == 0
54d343a2
TT
5295 && block == (*syms)[j].block)
5296 (*syms)[j].symbol = NULL;
aeb5907d
JB
5297 }
5298 }
5299 if (is_new_style_renaming)
5300 {
5301 int j, k;
5302
54d343a2
TT
5303 for (j = k = 0; j < syms->size (); j += 1)
5304 if ((*syms)[j].symbol != NULL)
aeb5907d 5305 {
54d343a2 5306 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5307 k += 1;
5308 }
5309 return k;
5310 }
4c4b4cd2
PH
5311
5312 /* Extract the function name associated to CURRENT_BLOCK.
5313 Abort if unable to do so. */
76a01679 5314
4c4b4cd2 5315 if (current_block == NULL)
54d343a2 5316 return syms->size ();
76a01679 5317
7f0df278 5318 current_function = block_linkage_function (current_block);
4c4b4cd2 5319 if (current_function == NULL)
54d343a2 5320 return syms->size ();
4c4b4cd2 5321
987012b8 5322 current_function_name = current_function->linkage_name ();
4c4b4cd2 5323 if (current_function_name == NULL)
54d343a2 5324 return syms->size ();
4c4b4cd2
PH
5325
5326 /* Check each of the symbols, and remove it from the list if it is
5327 a type corresponding to a renaming that is out of the scope of
5328 the current block. */
5329
5330 i = 0;
54d343a2 5331 while (i < syms->size ())
4c4b4cd2 5332 {
54d343a2 5333 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5334 == ADA_OBJECT_RENAMING
5335 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5336 current_function_name))
5337 syms->erase (syms->begin () + i);
4c4b4cd2 5338 else
dda83cd7 5339 i += 1;
4c4b4cd2
PH
5340 }
5341
54d343a2 5342 return syms->size ();
4c4b4cd2
PH
5343}
5344
339c13b6
JB
5345/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5346 whose name and domain match NAME and DOMAIN respectively.
5347 If no match was found, then extend the search to "enclosing"
5348 routines (in other words, if we're inside a nested function,
5349 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5350 If WILD_MATCH_P is nonzero, perform the naming matching in
5351 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5352
5353 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5354
5355static void
b5ec771e
PA
5356ada_add_local_symbols (struct obstack *obstackp,
5357 const lookup_name_info &lookup_name,
5358 const struct block *block, domain_enum domain)
339c13b6
JB
5359{
5360 int block_depth = 0;
5361
5362 while (block != NULL)
5363 {
5364 block_depth += 1;
b5ec771e 5365 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5366
5367 /* If we found a non-function match, assume that's the one. */
5368 if (is_nonfunction (defns_collected (obstackp, 0),
dda83cd7
SM
5369 num_defns_collected (obstackp)))
5370 return;
339c13b6
JB
5371
5372 block = BLOCK_SUPERBLOCK (block);
5373 }
5374
5375 /* If no luck so far, try to find NAME as a local symbol in some lexically
5376 enclosing subprogram. */
5377 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5378 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5379}
5380
ccefe4c4 5381/* An object of this type is used as the user_data argument when
40658b94 5382 calling the map_matching_symbols method. */
ccefe4c4 5383
40658b94 5384struct match_data
ccefe4c4 5385{
40658b94 5386 struct objfile *objfile;
ccefe4c4 5387 struct obstack *obstackp;
40658b94
PH
5388 struct symbol *arg_sym;
5389 int found_sym;
ccefe4c4
TT
5390};
5391
199b4314
TT
5392/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5393 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5394 containing the obstack that collects the symbol list, the file that SYM
5395 must come from, a flag indicating whether a non-argument symbol has
5396 been found in the current block, and the last argument symbol
5397 passed in SYM within the current block (if any). When SYM is null,
5398 marking the end of a block, the argument symbol is added if no
5399 other has been found. */
ccefe4c4 5400
199b4314
TT
5401static bool
5402aux_add_nonlocal_symbols (struct block_symbol *bsym,
5403 struct match_data *data)
ccefe4c4 5404{
199b4314
TT
5405 const struct block *block = bsym->block;
5406 struct symbol *sym = bsym->symbol;
5407
40658b94
PH
5408 if (sym == NULL)
5409 {
5410 if (!data->found_sym && data->arg_sym != NULL)
5411 add_defn_to_vec (data->obstackp,
5412 fixup_symbol_section (data->arg_sym, data->objfile),
5413 block);
5414 data->found_sym = 0;
5415 data->arg_sym = NULL;
5416 }
5417 else
5418 {
5419 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5420 return true;
40658b94
PH
5421 else if (SYMBOL_IS_ARGUMENT (sym))
5422 data->arg_sym = sym;
5423 else
5424 {
5425 data->found_sym = 1;
5426 add_defn_to_vec (data->obstackp,
5427 fixup_symbol_section (sym, data->objfile),
5428 block);
5429 }
5430 }
199b4314 5431 return true;
40658b94
PH
5432}
5433
b5ec771e
PA
5434/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5435 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5436 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5437
5438static int
5439ada_add_block_renamings (struct obstack *obstackp,
5440 const struct block *block,
b5ec771e
PA
5441 const lookup_name_info &lookup_name,
5442 domain_enum domain)
22cee43f
PMR
5443{
5444 struct using_direct *renaming;
5445 int defns_mark = num_defns_collected (obstackp);
5446
b5ec771e
PA
5447 symbol_name_matcher_ftype *name_match
5448 = ada_get_symbol_name_matcher (lookup_name);
5449
22cee43f
PMR
5450 for (renaming = block_using (block);
5451 renaming != NULL;
5452 renaming = renaming->next)
5453 {
5454 const char *r_name;
22cee43f
PMR
5455
5456 /* Avoid infinite recursions: skip this renaming if we are actually
5457 already traversing it.
5458
5459 Currently, symbol lookup in Ada don't use the namespace machinery from
5460 C++/Fortran support: skip namespace imports that use them. */
5461 if (renaming->searched
5462 || (renaming->import_src != NULL
5463 && renaming->import_src[0] != '\0')
5464 || (renaming->import_dest != NULL
5465 && renaming->import_dest[0] != '\0'))
5466 continue;
5467 renaming->searched = 1;
5468
5469 /* TODO: here, we perform another name-based symbol lookup, which can
5470 pull its own multiple overloads. In theory, we should be able to do
5471 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5472 not a simple name. But in order to do this, we would need to enhance
5473 the DWARF reader to associate a symbol to this renaming, instead of a
5474 name. So, for now, we do something simpler: re-use the C++/Fortran
5475 namespace machinery. */
5476 r_name = (renaming->alias != NULL
5477 ? renaming->alias
5478 : renaming->declaration);
b5ec771e
PA
5479 if (name_match (r_name, lookup_name, NULL))
5480 {
5481 lookup_name_info decl_lookup_name (renaming->declaration,
5482 lookup_name.match_type ());
5483 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5484 1, NULL);
5485 }
22cee43f
PMR
5486 renaming->searched = 0;
5487 }
5488 return num_defns_collected (obstackp) != defns_mark;
5489}
5490
db230ce3
JB
5491/* Implements compare_names, but only applying the comparision using
5492 the given CASING. */
5b4ee69b 5493
40658b94 5494static int
db230ce3
JB
5495compare_names_with_case (const char *string1, const char *string2,
5496 enum case_sensitivity casing)
40658b94
PH
5497{
5498 while (*string1 != '\0' && *string2 != '\0')
5499 {
db230ce3
JB
5500 char c1, c2;
5501
40658b94
PH
5502 if (isspace (*string1) || isspace (*string2))
5503 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5504
5505 if (casing == case_sensitive_off)
5506 {
5507 c1 = tolower (*string1);
5508 c2 = tolower (*string2);
5509 }
5510 else
5511 {
5512 c1 = *string1;
5513 c2 = *string2;
5514 }
5515 if (c1 != c2)
40658b94 5516 break;
db230ce3 5517
40658b94
PH
5518 string1 += 1;
5519 string2 += 1;
5520 }
db230ce3 5521
40658b94
PH
5522 switch (*string1)
5523 {
5524 case '(':
5525 return strcmp_iw_ordered (string1, string2);
5526 case '_':
5527 if (*string2 == '\0')
5528 {
052874e8 5529 if (is_name_suffix (string1))
40658b94
PH
5530 return 0;
5531 else
1a1d5513 5532 return 1;
40658b94 5533 }
dbb8534f 5534 /* FALLTHROUGH */
40658b94
PH
5535 default:
5536 if (*string2 == '(')
5537 return strcmp_iw_ordered (string1, string2);
5538 else
db230ce3
JB
5539 {
5540 if (casing == case_sensitive_off)
5541 return tolower (*string1) - tolower (*string2);
5542 else
5543 return *string1 - *string2;
5544 }
40658b94 5545 }
ccefe4c4
TT
5546}
5547
db230ce3
JB
5548/* Compare STRING1 to STRING2, with results as for strcmp.
5549 Compatible with strcmp_iw_ordered in that...
5550
5551 strcmp_iw_ordered (STRING1, STRING2) <= 0
5552
5553 ... implies...
5554
5555 compare_names (STRING1, STRING2) <= 0
5556
5557 (they may differ as to what symbols compare equal). */
5558
5559static int
5560compare_names (const char *string1, const char *string2)
5561{
5562 int result;
5563
5564 /* Similar to what strcmp_iw_ordered does, we need to perform
5565 a case-insensitive comparison first, and only resort to
5566 a second, case-sensitive, comparison if the first one was
5567 not sufficient to differentiate the two strings. */
5568
5569 result = compare_names_with_case (string1, string2, case_sensitive_off);
5570 if (result == 0)
5571 result = compare_names_with_case (string1, string2, case_sensitive_on);
5572
5573 return result;
5574}
5575
b5ec771e
PA
5576/* Convenience function to get at the Ada encoded lookup name for
5577 LOOKUP_NAME, as a C string. */
5578
5579static const char *
5580ada_lookup_name (const lookup_name_info &lookup_name)
5581{
5582 return lookup_name.ada ().lookup_name ().c_str ();
5583}
5584
339c13b6 5585/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5586 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5587 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5588 symbols otherwise. */
339c13b6
JB
5589
5590static void
b5ec771e
PA
5591add_nonlocal_symbols (struct obstack *obstackp,
5592 const lookup_name_info &lookup_name,
5593 domain_enum domain, int global)
339c13b6 5594{
40658b94 5595 struct match_data data;
339c13b6 5596
6475f2fe 5597 memset (&data, 0, sizeof data);
ccefe4c4 5598 data.obstackp = obstackp;
339c13b6 5599
b5ec771e
PA
5600 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5601
199b4314
TT
5602 auto callback = [&] (struct block_symbol *bsym)
5603 {
5604 return aux_add_nonlocal_symbols (bsym, &data);
5605 };
5606
2030c079 5607 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5608 {
5609 data.objfile = objfile;
5610
b054970d
TT
5611 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5612 domain, global, callback,
5613 (is_wild_match
5614 ? NULL : compare_names));
22cee43f 5615
b669c953 5616 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5617 {
5618 const struct block *global_block
5619 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5620
b5ec771e
PA
5621 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5622 domain))
22cee43f
PMR
5623 data.found_sym = 1;
5624 }
40658b94
PH
5625 }
5626
5627 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5628 {
b5ec771e 5629 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5630 std::string bracket_name = std::string ("<_ada_") + name + '>';
5631 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5632
2030c079 5633 for (objfile *objfile : current_program_space->objfiles ())
dda83cd7 5634 {
40658b94 5635 data.objfile = objfile;
b054970d 5636 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5637 domain, global, callback,
b5ec771e 5638 compare_names);
40658b94
PH
5639 }
5640 }
339c13b6
JB
5641}
5642
b5ec771e
PA
5643/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5644 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5645 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5646
22cee43f
PMR
5647 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5648 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5649 is the one match returned (no other matches in that or
d9680e73 5650 enclosing blocks is returned). If there are any matches in or
22cee43f 5651 surrounding BLOCK, then these alone are returned.
4eeaa230 5652
b5ec771e
PA
5653 Names prefixed with "standard__" are handled specially:
5654 "standard__" is first stripped off (by the lookup_name
5655 constructor), and only static and global symbols are searched.
14f9c5c9 5656
22cee43f
PMR
5657 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5658 to lookup global symbols. */
5659
5660static void
5661ada_add_all_symbols (struct obstack *obstackp,
5662 const struct block *block,
b5ec771e 5663 const lookup_name_info &lookup_name,
22cee43f
PMR
5664 domain_enum domain,
5665 int full_search,
5666 int *made_global_lookup_p)
14f9c5c9
AS
5667{
5668 struct symbol *sym;
14f9c5c9 5669
22cee43f
PMR
5670 if (made_global_lookup_p)
5671 *made_global_lookup_p = 0;
339c13b6
JB
5672
5673 /* Special case: If the user specifies a symbol name inside package
5674 Standard, do a non-wild matching of the symbol name without
5675 the "standard__" prefix. This was primarily introduced in order
5676 to allow the user to specifically access the standard exceptions
5677 using, for instance, Standard.Constraint_Error when Constraint_Error
5678 is ambiguous (due to the user defining its own Constraint_Error
5679 entity inside its program). */
b5ec771e
PA
5680 if (lookup_name.ada ().standard_p ())
5681 block = NULL;
4c4b4cd2 5682
339c13b6 5683 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5684
4eeaa230
DE
5685 if (block != NULL)
5686 {
5687 if (full_search)
b5ec771e 5688 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5689 else
5690 {
5691 /* In the !full_search case we're are being called by
4009ee92 5692 iterate_over_symbols, and we don't want to search
4eeaa230 5693 superblocks. */
b5ec771e 5694 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5695 }
22cee43f
PMR
5696 if (num_defns_collected (obstackp) > 0 || !full_search)
5697 return;
4eeaa230 5698 }
d2e4a39e 5699
339c13b6
JB
5700 /* No non-global symbols found. Check our cache to see if we have
5701 already performed this search before. If we have, then return
5702 the same result. */
5703
b5ec771e
PA
5704 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5705 domain, &sym, &block))
4c4b4cd2
PH
5706 {
5707 if (sym != NULL)
b5ec771e 5708 add_defn_to_vec (obstackp, sym, block);
22cee43f 5709 return;
4c4b4cd2 5710 }
14f9c5c9 5711
22cee43f
PMR
5712 if (made_global_lookup_p)
5713 *made_global_lookup_p = 1;
b1eedac9 5714
339c13b6
JB
5715 /* Search symbols from all global blocks. */
5716
b5ec771e 5717 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5718
4c4b4cd2 5719 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5720 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5721
22cee43f 5722 if (num_defns_collected (obstackp) == 0)
b5ec771e 5723 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5724}
5725
b5ec771e
PA
5726/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5727 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5728 matches.
54d343a2
TT
5729 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5730 found and the blocks and symbol tables (if any) in which they were
5731 found.
22cee43f
PMR
5732
5733 When full_search is non-zero, any non-function/non-enumeral
5734 symbol match within the nest of blocks whose innermost member is BLOCK,
5735 is the one match returned (no other matches in that or
5736 enclosing blocks is returned). If there are any matches in or
5737 surrounding BLOCK, then these alone are returned.
5738
5739 Names prefixed with "standard__" are handled specially: "standard__"
5740 is first stripped off, and only static and global symbols are searched. */
5741
5742static int
b5ec771e
PA
5743ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5744 const struct block *block,
22cee43f 5745 domain_enum domain,
54d343a2 5746 std::vector<struct block_symbol> *results,
22cee43f
PMR
5747 int full_search)
5748{
22cee43f
PMR
5749 int syms_from_global_search;
5750 int ndefns;
ec6a20c2 5751 auto_obstack obstack;
22cee43f 5752
ec6a20c2 5753 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5754 domain, full_search, &syms_from_global_search);
14f9c5c9 5755
ec6a20c2
JB
5756 ndefns = num_defns_collected (&obstack);
5757
54d343a2
TT
5758 struct block_symbol *base = defns_collected (&obstack, 1);
5759 for (int i = 0; i < ndefns; ++i)
5760 results->push_back (base[i]);
4c4b4cd2 5761
54d343a2 5762 ndefns = remove_extra_symbols (results);
4c4b4cd2 5763
b1eedac9 5764 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5765 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5766
b1eedac9 5767 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5768 cache_symbol (ada_lookup_name (lookup_name), domain,
5769 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5770
54d343a2 5771 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5772
14f9c5c9
AS
5773 return ndefns;
5774}
5775
b5ec771e 5776/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5777 in global scopes, returning the number of matches, and filling *RESULTS
5778 with (SYM,BLOCK) tuples.
ec6a20c2 5779
4eeaa230
DE
5780 See ada_lookup_symbol_list_worker for further details. */
5781
5782int
b5ec771e 5783ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5784 domain_enum domain,
5785 std::vector<struct block_symbol> *results)
4eeaa230 5786{
b5ec771e
PA
5787 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5788 lookup_name_info lookup_name (name, name_match_type);
5789
5790 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5791}
5792
4e5c77fe
JB
5793/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5794 to 1, but choosing the first symbol found if there are multiple
5795 choices.
5796
5e2336be
JB
5797 The result is stored in *INFO, which must be non-NULL.
5798 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5799
5800void
5801ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5802 domain_enum domain,
d12307c1 5803 struct block_symbol *info)
14f9c5c9 5804{
b5ec771e
PA
5805 /* Since we already have an encoded name, wrap it in '<>' to force a
5806 verbatim match. Otherwise, if the name happens to not look like
5807 an encoded name (because it doesn't include a "__"),
5808 ada_lookup_name_info would re-encode/fold it again, and that
5809 would e.g., incorrectly lowercase object renaming names like
5810 "R28b" -> "r28b". */
5811 std::string verbatim = std::string ("<") + name + '>';
5812
5e2336be 5813 gdb_assert (info != NULL);
65392b3e 5814 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5815}
aeb5907d
JB
5816
5817/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5818 scope and in global scopes, or NULL if none. NAME is folded and
5819 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5820 choosing the first symbol if there are multiple choices. */
4e5c77fe 5821
d12307c1 5822struct block_symbol
aeb5907d 5823ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5824 domain_enum domain)
aeb5907d 5825{
54d343a2 5826 std::vector<struct block_symbol> candidates;
f98fc17b 5827 int n_candidates;
f98fc17b
PA
5828
5829 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5830
5831 if (n_candidates == 0)
54d343a2 5832 return {};
f98fc17b
PA
5833
5834 block_symbol info = candidates[0];
5835 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5836 return info;
4c4b4cd2 5837}
14f9c5c9 5838
14f9c5c9 5839
4c4b4cd2
PH
5840/* True iff STR is a possible encoded suffix of a normal Ada name
5841 that is to be ignored for matching purposes. Suffixes of parallel
5842 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5843 are given by any of the regular expressions:
4c4b4cd2 5844
babe1480
JB
5845 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5846 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5847 TKB [subprogram suffix for task bodies]
babe1480 5848 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5849 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5850
5851 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5852 match is performed. This sequence is used to differentiate homonyms,
5853 is an optional part of a valid name suffix. */
4c4b4cd2 5854
14f9c5c9 5855static int
d2e4a39e 5856is_name_suffix (const char *str)
14f9c5c9
AS
5857{
5858 int k;
4c4b4cd2
PH
5859 const char *matching;
5860 const int len = strlen (str);
5861
babe1480
JB
5862 /* Skip optional leading __[0-9]+. */
5863
4c4b4cd2
PH
5864 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5865 {
babe1480
JB
5866 str += 3;
5867 while (isdigit (str[0]))
dda83cd7 5868 str += 1;
4c4b4cd2 5869 }
babe1480
JB
5870
5871 /* [.$][0-9]+ */
4c4b4cd2 5872
babe1480 5873 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5874 {
babe1480 5875 matching = str + 1;
4c4b4cd2 5876 while (isdigit (matching[0]))
dda83cd7 5877 matching += 1;
4c4b4cd2 5878 if (matching[0] == '\0')
dda83cd7 5879 return 1;
4c4b4cd2
PH
5880 }
5881
5882 /* ___[0-9]+ */
babe1480 5883
4c4b4cd2
PH
5884 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5885 {
5886 matching = str + 3;
5887 while (isdigit (matching[0]))
dda83cd7 5888 matching += 1;
4c4b4cd2 5889 if (matching[0] == '\0')
dda83cd7 5890 return 1;
4c4b4cd2
PH
5891 }
5892
9ac7f98e
JB
5893 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5894
5895 if (strcmp (str, "TKB") == 0)
5896 return 1;
5897
529cad9c
PH
5898#if 0
5899 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5900 with a N at the end. Unfortunately, the compiler uses the same
5901 convention for other internal types it creates. So treating
529cad9c 5902 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5903 some regressions. For instance, consider the case of an enumerated
5904 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5905 name ends with N.
5906 Having a single character like this as a suffix carrying some
0963b4bd 5907 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5908 to be something like "_N" instead. In the meantime, do not do
5909 the following check. */
5910 /* Protected Object Subprograms */
5911 if (len == 1 && str [0] == 'N')
5912 return 1;
5913#endif
5914
5915 /* _E[0-9]+[bs]$ */
5916 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5917 {
5918 matching = str + 3;
5919 while (isdigit (matching[0]))
dda83cd7 5920 matching += 1;
529cad9c 5921 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5922 && matching [1] == '\0')
5923 return 1;
529cad9c
PH
5924 }
5925
4c4b4cd2
PH
5926 /* ??? We should not modify STR directly, as we are doing below. This
5927 is fine in this case, but may become problematic later if we find
5928 that this alternative did not work, and want to try matching
5929 another one from the begining of STR. Since we modified it, we
5930 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5931 if (str[0] == 'X')
5932 {
5933 str += 1;
d2e4a39e 5934 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5935 {
5936 if (str[0] != 'n' && str[0] != 'b')
5937 return 0;
5938 str += 1;
5939 }
14f9c5c9 5940 }
babe1480 5941
14f9c5c9
AS
5942 if (str[0] == '\000')
5943 return 1;
babe1480 5944
d2e4a39e 5945 if (str[0] == '_')
14f9c5c9
AS
5946 {
5947 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5948 return 0;
d2e4a39e 5949 if (str[2] == '_')
dda83cd7
SM
5950 {
5951 if (strcmp (str + 3, "JM") == 0)
5952 return 1;
5953 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5954 the LJM suffix in favor of the JM one. But we will
5955 still accept LJM as a valid suffix for a reasonable
5956 amount of time, just to allow ourselves to debug programs
5957 compiled using an older version of GNAT. */
5958 if (strcmp (str + 3, "LJM") == 0)
5959 return 1;
5960 if (str[3] != 'X')
5961 return 0;
5962 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5963 || str[4] == 'U' || str[4] == 'P')
5964 return 1;
5965 if (str[4] == 'R' && str[5] != 'T')
5966 return 1;
5967 return 0;
5968 }
4c4b4cd2 5969 if (!isdigit (str[2]))
dda83cd7 5970 return 0;
4c4b4cd2 5971 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5972 if (!isdigit (str[k]) && str[k] != '_')
5973 return 0;
14f9c5c9
AS
5974 return 1;
5975 }
4c4b4cd2 5976 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5977 {
4c4b4cd2 5978 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5979 if (!isdigit (str[k]) && str[k] != '_')
5980 return 0;
14f9c5c9
AS
5981 return 1;
5982 }
5983 return 0;
5984}
d2e4a39e 5985
aeb5907d
JB
5986/* Return non-zero if the string starting at NAME and ending before
5987 NAME_END contains no capital letters. */
529cad9c
PH
5988
5989static int
5990is_valid_name_for_wild_match (const char *name0)
5991{
f945dedf 5992 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5993 int i;
5994
5823c3ef
JB
5995 /* If the decoded name starts with an angle bracket, it means that
5996 NAME0 does not follow the GNAT encoding format. It should then
5997 not be allowed as a possible wild match. */
5998 if (decoded_name[0] == '<')
5999 return 0;
6000
529cad9c
PH
6001 for (i=0; decoded_name[i] != '\0'; i++)
6002 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6003 return 0;
6004
6005 return 1;
6006}
6007
59c8a30b
JB
6008/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6009 character which could start a simple name. Assumes that *NAMEP points
6010 somewhere inside the string beginning at NAME0. */
4c4b4cd2 6011
14f9c5c9 6012static int
59c8a30b 6013advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 6014{
73589123 6015 const char *name = *namep;
5b4ee69b 6016
5823c3ef 6017 while (1)
14f9c5c9 6018 {
59c8a30b 6019 char t0, t1;
73589123
PH
6020
6021 t0 = *name;
6022 if (t0 == '_')
6023 {
6024 t1 = name[1];
6025 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6026 {
6027 name += 1;
61012eef 6028 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6029 break;
6030 else
6031 name += 1;
6032 }
aa27d0b3
JB
6033 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6034 || name[2] == target0))
73589123
PH
6035 {
6036 name += 2;
6037 break;
6038 }
6039 else
6040 return 0;
6041 }
6042 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6043 name += 1;
6044 else
5823c3ef 6045 return 0;
73589123
PH
6046 }
6047
6048 *namep = name;
6049 return 1;
6050}
6051
b5ec771e
PA
6052/* Return true iff NAME encodes a name of the form prefix.PATN.
6053 Ignores any informational suffixes of NAME (i.e., for which
6054 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6055 simple name. */
73589123 6056
b5ec771e 6057static bool
73589123
PH
6058wild_match (const char *name, const char *patn)
6059{
22e048c9 6060 const char *p;
73589123
PH
6061 const char *name0 = name;
6062
6063 while (1)
6064 {
6065 const char *match = name;
6066
6067 if (*name == *patn)
6068 {
6069 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6070 if (*p != *name)
6071 break;
6072 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6073 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6074
6075 if (name[-1] == '_')
6076 name -= 1;
6077 }
6078 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6079 return false;
96d887e8 6080 }
96d887e8
PH
6081}
6082
b5ec771e
PA
6083/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6084 any trailing suffixes that encode debugging information or leading
6085 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6086 information that is ignored). */
40658b94 6087
b5ec771e 6088static bool
c4d840bd
PH
6089full_match (const char *sym_name, const char *search_name)
6090{
b5ec771e
PA
6091 size_t search_name_len = strlen (search_name);
6092
6093 if (strncmp (sym_name, search_name, search_name_len) == 0
6094 && is_name_suffix (sym_name + search_name_len))
6095 return true;
6096
6097 if (startswith (sym_name, "_ada_")
6098 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6099 && is_name_suffix (sym_name + search_name_len + 5))
6100 return true;
c4d840bd 6101
b5ec771e
PA
6102 return false;
6103}
c4d840bd 6104
b5ec771e
PA
6105/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6106 *defn_symbols, updating the list of symbols in OBSTACKP (if
6107 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6108
6109static void
6110ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6111 const struct block *block,
6112 const lookup_name_info &lookup_name,
6113 domain_enum domain, struct objfile *objfile)
96d887e8 6114{
8157b174 6115 struct block_iterator iter;
96d887e8
PH
6116 /* A matching argument symbol, if any. */
6117 struct symbol *arg_sym;
6118 /* Set true when we find a matching non-argument symbol. */
6119 int found_sym;
6120 struct symbol *sym;
6121
6122 arg_sym = NULL;
6123 found_sym = 0;
b5ec771e
PA
6124 for (sym = block_iter_match_first (block, lookup_name, &iter);
6125 sym != NULL;
6126 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6127 {
c1b5c1eb 6128 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6129 {
6130 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6131 {
6132 if (SYMBOL_IS_ARGUMENT (sym))
6133 arg_sym = sym;
6134 else
6135 {
6136 found_sym = 1;
6137 add_defn_to_vec (obstackp,
6138 fixup_symbol_section (sym, objfile),
6139 block);
6140 }
6141 }
6142 }
96d887e8
PH
6143 }
6144
22cee43f
PMR
6145 /* Handle renamings. */
6146
b5ec771e 6147 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6148 found_sym = 1;
6149
96d887e8
PH
6150 if (!found_sym && arg_sym != NULL)
6151 {
76a01679 6152 add_defn_to_vec (obstackp,
dda83cd7
SM
6153 fixup_symbol_section (arg_sym, objfile),
6154 block);
96d887e8
PH
6155 }
6156
b5ec771e 6157 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6158 {
6159 arg_sym = NULL;
6160 found_sym = 0;
b5ec771e
PA
6161 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6162 const char *name = ada_lookup_name.c_str ();
6163 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6164
6165 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6166 {
dda83cd7
SM
6167 if (symbol_matches_domain (sym->language (),
6168 SYMBOL_DOMAIN (sym), domain))
6169 {
6170 int cmp;
6171
6172 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6173 if (cmp == 0)
6174 {
6175 cmp = !startswith (sym->linkage_name (), "_ada_");
6176 if (cmp == 0)
6177 cmp = strncmp (name, sym->linkage_name () + 5,
6178 name_len);
6179 }
6180
6181 if (cmp == 0
6182 && is_name_suffix (sym->linkage_name () + name_len + 5))
6183 {
2a2d4dc3
AS
6184 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6185 {
6186 if (SYMBOL_IS_ARGUMENT (sym))
6187 arg_sym = sym;
6188 else
6189 {
6190 found_sym = 1;
6191 add_defn_to_vec (obstackp,
6192 fixup_symbol_section (sym, objfile),
6193 block);
6194 }
6195 }
dda83cd7
SM
6196 }
6197 }
76a01679 6198 }
96d887e8
PH
6199
6200 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 6201 They aren't parameters, right? */
96d887e8 6202 if (!found_sym && arg_sym != NULL)
dda83cd7
SM
6203 {
6204 add_defn_to_vec (obstackp,
6205 fixup_symbol_section (arg_sym, objfile),
6206 block);
6207 }
96d887e8
PH
6208 }
6209}
6210\f
41d27058 6211
dda83cd7 6212 /* Symbol Completion */
41d27058 6213
b5ec771e 6214/* See symtab.h. */
41d27058 6215
b5ec771e
PA
6216bool
6217ada_lookup_name_info::matches
6218 (const char *sym_name,
6219 symbol_name_match_type match_type,
a207cff2 6220 completion_match_result *comp_match_res) const
41d27058 6221{
b5ec771e
PA
6222 bool match = false;
6223 const char *text = m_encoded_name.c_str ();
6224 size_t text_len = m_encoded_name.size ();
41d27058
JB
6225
6226 /* First, test against the fully qualified name of the symbol. */
6227
6228 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6229 match = true;
41d27058 6230
f945dedf 6231 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6232 if (match && !m_encoded_p)
41d27058
JB
6233 {
6234 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
6235 that iff we are doing a verbatim match, the decoded version
6236 of the symbol name starts with '<'. Otherwise, this symbol name
6237 is not a suitable completion. */
41d27058 6238
f945dedf 6239 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6240 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6241 }
6242
b5ec771e 6243 if (match && !m_verbatim_p)
41d27058
JB
6244 {
6245 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
6246 be done is to verify that the potentially matching symbol name
6247 does not include capital letters, because the ada-mode would
6248 not be able to understand these symbol names without the
6249 angle bracket notation. */
41d27058
JB
6250 const char *tmp;
6251
6252 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6253 if (*tmp != '\0')
b5ec771e 6254 match = false;
41d27058
JB
6255 }
6256
6257 /* Second: Try wild matching... */
6258
b5ec771e 6259 if (!match && m_wild_match_p)
41d27058
JB
6260 {
6261 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
6262 may represent an unqualified symbol name. We therefore must
6263 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6264 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6265
6266 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6267 match = true;
41d27058
JB
6268 }
6269
b5ec771e 6270 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6271
6272 if (!match)
b5ec771e 6273 return false;
41d27058 6274
a207cff2 6275 if (comp_match_res != NULL)
b5ec771e 6276 {
a207cff2 6277 std::string &match_str = comp_match_res->match.storage ();
41d27058 6278
b5ec771e 6279 if (!m_encoded_p)
a207cff2 6280 match_str = ada_decode (sym_name);
b5ec771e
PA
6281 else
6282 {
6283 if (m_verbatim_p)
6284 match_str = add_angle_brackets (sym_name);
6285 else
6286 match_str = sym_name;
41d27058 6287
b5ec771e 6288 }
a207cff2
PA
6289
6290 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6291 }
6292
b5ec771e 6293 return true;
41d27058
JB
6294}
6295
dda83cd7 6296 /* Field Access */
96d887e8 6297
73fb9985
JB
6298/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6299 for tagged types. */
6300
6301static int
6302ada_is_dispatch_table_ptr_type (struct type *type)
6303{
0d5cff50 6304 const char *name;
73fb9985 6305
78134374 6306 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6307 return 0;
6308
7d93a1e0 6309 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6310 if (name == NULL)
6311 return 0;
6312
6313 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6314}
6315
ac4a2da4
JG
6316/* Return non-zero if TYPE is an interface tag. */
6317
6318static int
6319ada_is_interface_tag (struct type *type)
6320{
7d93a1e0 6321 const char *name = type->name ();
ac4a2da4
JG
6322
6323 if (name == NULL)
6324 return 0;
6325
6326 return (strcmp (name, "ada__tags__interface_tag") == 0);
6327}
6328
963a6417
PH
6329/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6330 to be invisible to users. */
96d887e8 6331
963a6417
PH
6332int
6333ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6334{
1f704f76 6335 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6336 return 1;
ffde82bf 6337
73fb9985
JB
6338 /* Check the name of that field. */
6339 {
6340 const char *name = TYPE_FIELD_NAME (type, field_num);
6341
6342 /* Anonymous field names should not be printed.
6343 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6344 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6345 if (name == NULL)
6346 return 1;
6347
ffde82bf
JB
6348 /* Normally, fields whose name start with an underscore ("_")
6349 are fields that have been internally generated by the compiler,
6350 and thus should not be printed. The "_parent" field is special,
6351 however: This is a field internally generated by the compiler
6352 for tagged types, and it contains the components inherited from
6353 the parent type. This field should not be printed as is, but
6354 should not be ignored either. */
61012eef 6355 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6356 return 1;
6357 }
6358
ac4a2da4
JG
6359 /* If this is the dispatch table of a tagged type or an interface tag,
6360 then ignore. */
73fb9985 6361 if (ada_is_tagged_type (type, 1)
940da03e
SM
6362 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6363 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6364 return 1;
6365
6366 /* Not a special field, so it should not be ignored. */
6367 return 0;
963a6417 6368}
96d887e8 6369
963a6417 6370/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6371 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6372
963a6417
PH
6373int
6374ada_is_tagged_type (struct type *type, int refok)
6375{
988f6b3d 6376 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6377}
96d887e8 6378
963a6417 6379/* True iff TYPE represents the type of X'Tag */
96d887e8 6380
963a6417
PH
6381int
6382ada_is_tag_type (struct type *type)
6383{
460efde1
JB
6384 type = ada_check_typedef (type);
6385
78134374 6386 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6387 return 0;
6388 else
96d887e8 6389 {
963a6417 6390 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6391
963a6417 6392 return (name != NULL
dda83cd7 6393 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6394 }
96d887e8
PH
6395}
6396
963a6417 6397/* The type of the tag on VAL. */
76a01679 6398
de93309a 6399static struct type *
963a6417 6400ada_tag_type (struct value *val)
96d887e8 6401{
988f6b3d 6402 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6403}
96d887e8 6404
b50d69b5
JG
6405/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6406 retired at Ada 05). */
6407
6408static int
6409is_ada95_tag (struct value *tag)
6410{
6411 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6412}
6413
963a6417 6414/* The value of the tag on VAL. */
96d887e8 6415
de93309a 6416static struct value *
963a6417
PH
6417ada_value_tag (struct value *val)
6418{
03ee6b2e 6419 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6420}
6421
963a6417
PH
6422/* The value of the tag on the object of type TYPE whose contents are
6423 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6424 ADDRESS. */
96d887e8 6425
963a6417 6426static struct value *
10a2c479 6427value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6428 const gdb_byte *valaddr,
dda83cd7 6429 CORE_ADDR address)
96d887e8 6430{
b5385fc0 6431 int tag_byte_offset;
963a6417 6432 struct type *tag_type;
5b4ee69b 6433
963a6417 6434 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6435 NULL, NULL, NULL))
96d887e8 6436 {
fc1a4b47 6437 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6438 ? NULL
6439 : valaddr + tag_byte_offset);
963a6417 6440 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6441
963a6417 6442 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6443 }
963a6417
PH
6444 return NULL;
6445}
96d887e8 6446
963a6417
PH
6447static struct type *
6448type_from_tag (struct value *tag)
6449{
f5272a3b 6450 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6451
963a6417 6452 if (type_name != NULL)
5c4258f4 6453 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6454 return NULL;
6455}
96d887e8 6456
b50d69b5
JG
6457/* Given a value OBJ of a tagged type, return a value of this
6458 type at the base address of the object. The base address, as
6459 defined in Ada.Tags, it is the address of the primary tag of
6460 the object, and therefore where the field values of its full
6461 view can be fetched. */
6462
6463struct value *
6464ada_tag_value_at_base_address (struct value *obj)
6465{
b50d69b5
JG
6466 struct value *val;
6467 LONGEST offset_to_top = 0;
6468 struct type *ptr_type, *obj_type;
6469 struct value *tag;
6470 CORE_ADDR base_address;
6471
6472 obj_type = value_type (obj);
6473
6474 /* It is the responsability of the caller to deref pointers. */
6475
78134374 6476 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6477 return obj;
6478
6479 tag = ada_value_tag (obj);
6480 if (!tag)
6481 return obj;
6482
6483 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6484
6485 if (is_ada95_tag (tag))
6486 return obj;
6487
08f49010
XR
6488 ptr_type = language_lookup_primitive_type
6489 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6490 ptr_type = lookup_pointer_type (ptr_type);
6491 val = value_cast (ptr_type, tag);
6492 if (!val)
6493 return obj;
6494
6495 /* It is perfectly possible that an exception be raised while
6496 trying to determine the base address, just like for the tag;
6497 see ada_tag_name for more details. We do not print the error
6498 message for the same reason. */
6499
a70b8144 6500 try
b50d69b5
JG
6501 {
6502 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6503 }
6504
230d2906 6505 catch (const gdb_exception_error &e)
492d29ea
PA
6506 {
6507 return obj;
6508 }
b50d69b5
JG
6509
6510 /* If offset is null, nothing to do. */
6511
6512 if (offset_to_top == 0)
6513 return obj;
6514
6515 /* -1 is a special case in Ada.Tags; however, what should be done
6516 is not quite clear from the documentation. So do nothing for
6517 now. */
6518
6519 if (offset_to_top == -1)
6520 return obj;
6521
08f49010
XR
6522 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6523 from the base address. This was however incompatible with
6524 C++ dispatch table: C++ uses a *negative* value to *add*
6525 to the base address. Ada's convention has therefore been
6526 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6527 use the same convention. Here, we support both cases by
6528 checking the sign of OFFSET_TO_TOP. */
6529
6530 if (offset_to_top > 0)
6531 offset_to_top = -offset_to_top;
6532
6533 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6534 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6535
6536 /* Make sure that we have a proper tag at the new address.
6537 Otherwise, offset_to_top is bogus (which can happen when
6538 the object is not initialized yet). */
6539
6540 if (!tag)
6541 return obj;
6542
6543 obj_type = type_from_tag (tag);
6544
6545 if (!obj_type)
6546 return obj;
6547
6548 return value_from_contents_and_address (obj_type, NULL, base_address);
6549}
6550
1b611343
JB
6551/* Return the "ada__tags__type_specific_data" type. */
6552
6553static struct type *
6554ada_get_tsd_type (struct inferior *inf)
963a6417 6555{
1b611343 6556 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6557
1b611343
JB
6558 if (data->tsd_type == 0)
6559 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6560 return data->tsd_type;
6561}
529cad9c 6562
1b611343
JB
6563/* Return the TSD (type-specific data) associated to the given TAG.
6564 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6565
1b611343 6566 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6567
1b611343
JB
6568static struct value *
6569ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6570{
4c4b4cd2 6571 struct value *val;
1b611343 6572 struct type *type;
5b4ee69b 6573
1b611343
JB
6574 /* First option: The TSD is simply stored as a field of our TAG.
6575 Only older versions of GNAT would use this format, but we have
6576 to test it first, because there are no visible markers for
6577 the current approach except the absence of that field. */
529cad9c 6578
1b611343
JB
6579 val = ada_value_struct_elt (tag, "tsd", 1);
6580 if (val)
6581 return val;
e802dbe0 6582
1b611343
JB
6583 /* Try the second representation for the dispatch table (in which
6584 there is no explicit 'tsd' field in the referent of the tag pointer,
6585 and instead the tsd pointer is stored just before the dispatch
6586 table. */
e802dbe0 6587
1b611343
JB
6588 type = ada_get_tsd_type (current_inferior());
6589 if (type == NULL)
6590 return NULL;
6591 type = lookup_pointer_type (lookup_pointer_type (type));
6592 val = value_cast (type, tag);
6593 if (val == NULL)
6594 return NULL;
6595 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6596}
6597
1b611343
JB
6598/* Given the TSD of a tag (type-specific data), return a string
6599 containing the name of the associated type.
6600
f5272a3b 6601 May return NULL if we are unable to determine the tag name. */
1b611343 6602
f5272a3b 6603static gdb::unique_xmalloc_ptr<char>
1b611343 6604ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6605{
529cad9c 6606 char *p;
1b611343 6607 struct value *val;
529cad9c 6608
1b611343 6609 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6610 if (val == NULL)
1b611343 6611 return NULL;
66920317
TT
6612 gdb::unique_xmalloc_ptr<char> buffer
6613 = target_read_string (value_as_address (val), INT_MAX);
6614 if (buffer == nullptr)
f5272a3b
TT
6615 return nullptr;
6616
6617 for (p = buffer.get (); *p != '\0'; ++p)
6618 {
6619 if (isalpha (*p))
6620 *p = tolower (*p);
6621 }
6622
6623 return buffer;
4c4b4cd2
PH
6624}
6625
6626/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6627 a C string.
6628
6629 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6630 determine the name of that tag. */
4c4b4cd2 6631
f5272a3b 6632gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6633ada_tag_name (struct value *tag)
6634{
f5272a3b 6635 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6636
df407dfe 6637 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6638 return NULL;
1b611343
JB
6639
6640 /* It is perfectly possible that an exception be raised while trying
6641 to determine the TAG's name, even under normal circumstances:
6642 The associated variable may be uninitialized or corrupted, for
6643 instance. We do not let any exception propagate past this point.
6644 instead we return NULL.
6645
6646 We also do not print the error message either (which often is very
6647 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6648 the caller print a more meaningful message if necessary. */
a70b8144 6649 try
1b611343
JB
6650 {
6651 struct value *tsd = ada_get_tsd_from_tag (tag);
6652
6653 if (tsd != NULL)
6654 name = ada_tag_name_from_tsd (tsd);
6655 }
230d2906 6656 catch (const gdb_exception_error &e)
492d29ea
PA
6657 {
6658 }
1b611343
JB
6659
6660 return name;
4c4b4cd2
PH
6661}
6662
6663/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6664
d2e4a39e 6665struct type *
ebf56fd3 6666ada_parent_type (struct type *type)
14f9c5c9
AS
6667{
6668 int i;
6669
61ee279c 6670 type = ada_check_typedef (type);
14f9c5c9 6671
78134374 6672 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6673 return NULL;
6674
1f704f76 6675 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6676 if (ada_is_parent_field (type, i))
0c1f74cf 6677 {
dda83cd7 6678 struct type *parent_type = type->field (i).type ();
0c1f74cf 6679
dda83cd7
SM
6680 /* If the _parent field is a pointer, then dereference it. */
6681 if (parent_type->code () == TYPE_CODE_PTR)
6682 parent_type = TYPE_TARGET_TYPE (parent_type);
6683 /* If there is a parallel XVS type, get the actual base type. */
6684 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6685
dda83cd7 6686 return ada_check_typedef (parent_type);
0c1f74cf 6687 }
14f9c5c9
AS
6688
6689 return NULL;
6690}
6691
4c4b4cd2
PH
6692/* True iff field number FIELD_NUM of structure type TYPE contains the
6693 parent-type (inherited) fields of a derived type. Assumes TYPE is
6694 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6695
6696int
ebf56fd3 6697ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6698{
61ee279c 6699 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6700
4c4b4cd2 6701 return (name != NULL
dda83cd7
SM
6702 && (startswith (name, "PARENT")
6703 || startswith (name, "_parent")));
14f9c5c9
AS
6704}
6705
4c4b4cd2 6706/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6707 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6708 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6709 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6710 structures. */
14f9c5c9
AS
6711
6712int
ebf56fd3 6713ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6714{
d2e4a39e 6715 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6716
dddc0e16
JB
6717 if (name != NULL && strcmp (name, "RETVAL") == 0)
6718 {
6719 /* This happens in functions with "out" or "in out" parameters
6720 which are passed by copy. For such functions, GNAT describes
6721 the function's return type as being a struct where the return
6722 value is in a field called RETVAL, and where the other "out"
6723 or "in out" parameters are fields of that struct. This is not
6724 a wrapper. */
6725 return 0;
6726 }
6727
d2e4a39e 6728 return (name != NULL
dda83cd7
SM
6729 && (startswith (name, "PARENT")
6730 || strcmp (name, "REP") == 0
6731 || startswith (name, "_parent")
6732 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6733}
6734
4c4b4cd2
PH
6735/* True iff field number FIELD_NUM of structure or union type TYPE
6736 is a variant wrapper. Assumes TYPE is a structure type with at least
6737 FIELD_NUM+1 fields. */
14f9c5c9
AS
6738
6739int
ebf56fd3 6740ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6741{
8ecb59f8
TT
6742 /* Only Ada types are eligible. */
6743 if (!ADA_TYPE_P (type))
6744 return 0;
6745
940da03e 6746 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6747
78134374
SM
6748 return (field_type->code () == TYPE_CODE_UNION
6749 || (is_dynamic_field (type, field_num)
6750 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6751 == TYPE_CODE_UNION)));
14f9c5c9
AS
6752}
6753
6754/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6755 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6756 returns the type of the controlling discriminant for the variant.
6757 May return NULL if the type could not be found. */
14f9c5c9 6758
d2e4a39e 6759struct type *
ebf56fd3 6760ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6761{
a121b7c1 6762 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6763
988f6b3d 6764 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6765}
6766
4c4b4cd2 6767/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6768 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6769 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6770
de93309a 6771static int
ebf56fd3 6772ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6773{
d2e4a39e 6774 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6775
14f9c5c9
AS
6776 return (name != NULL && name[0] == 'O');
6777}
6778
6779/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6780 returns the name of the discriminant controlling the variant.
6781 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6782
a121b7c1 6783const char *
ebf56fd3 6784ada_variant_discrim_name (struct type *type0)
14f9c5c9 6785{
d2e4a39e 6786 static char *result = NULL;
14f9c5c9 6787 static size_t result_len = 0;
d2e4a39e
AS
6788 struct type *type;
6789 const char *name;
6790 const char *discrim_end;
6791 const char *discrim_start;
14f9c5c9 6792
78134374 6793 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6794 type = TYPE_TARGET_TYPE (type0);
6795 else
6796 type = type0;
6797
6798 name = ada_type_name (type);
6799
6800 if (name == NULL || name[0] == '\000')
6801 return "";
6802
6803 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6804 discrim_end -= 1)
6805 {
61012eef 6806 if (startswith (discrim_end, "___XVN"))
dda83cd7 6807 break;
14f9c5c9
AS
6808 }
6809 if (discrim_end == name)
6810 return "";
6811
d2e4a39e 6812 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6813 discrim_start -= 1)
6814 {
d2e4a39e 6815 if (discrim_start == name + 1)
dda83cd7 6816 return "";
76a01679 6817 if ((discrim_start > name + 3
dda83cd7
SM
6818 && startswith (discrim_start - 3, "___"))
6819 || discrim_start[-1] == '.')
6820 break;
14f9c5c9
AS
6821 }
6822
6823 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6824 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6825 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6826 return result;
6827}
6828
4c4b4cd2
PH
6829/* Scan STR for a subtype-encoded number, beginning at position K.
6830 Put the position of the character just past the number scanned in
6831 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6832 Return 1 if there was a valid number at the given position, and 0
6833 otherwise. A "subtype-encoded" number consists of the absolute value
6834 in decimal, followed by the letter 'm' to indicate a negative number.
6835 Assumes 0m does not occur. */
14f9c5c9
AS
6836
6837int
d2e4a39e 6838ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6839{
6840 ULONGEST RU;
6841
d2e4a39e 6842 if (!isdigit (str[k]))
14f9c5c9
AS
6843 return 0;
6844
4c4b4cd2 6845 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6846 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6847 LONGEST. */
14f9c5c9
AS
6848 RU = 0;
6849 while (isdigit (str[k]))
6850 {
d2e4a39e 6851 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6852 k += 1;
6853 }
6854
d2e4a39e 6855 if (str[k] == 'm')
14f9c5c9
AS
6856 {
6857 if (R != NULL)
dda83cd7 6858 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6859 k += 1;
6860 }
6861 else if (R != NULL)
6862 *R = (LONGEST) RU;
6863
4c4b4cd2 6864 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6865 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6866 number representable as a LONGEST (although either would probably work
6867 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6868 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6869
6870 if (new_k != NULL)
6871 *new_k = k;
6872 return 1;
6873}
6874
4c4b4cd2
PH
6875/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6876 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6877 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6878
de93309a 6879static int
ebf56fd3 6880ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6881{
d2e4a39e 6882 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6883 int p;
6884
6885 p = 0;
6886 while (1)
6887 {
d2e4a39e 6888 switch (name[p])
dda83cd7
SM
6889 {
6890 case '\0':
6891 return 0;
6892 case 'S':
6893 {
6894 LONGEST W;
6895
6896 if (!ada_scan_number (name, p + 1, &W, &p))
6897 return 0;
6898 if (val == W)
6899 return 1;
6900 break;
6901 }
6902 case 'R':
6903 {
6904 LONGEST L, U;
6905
6906 if (!ada_scan_number (name, p + 1, &L, &p)
6907 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6908 return 0;
6909 if (val >= L && val <= U)
6910 return 1;
6911 break;
6912 }
6913 case 'O':
6914 return 1;
6915 default:
6916 return 0;
6917 }
4c4b4cd2
PH
6918 }
6919}
6920
0963b4bd 6921/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6922
6923/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6924 ARG_TYPE, extract and return the value of one of its (non-static)
6925 fields. FIELDNO says which field. Differs from value_primitive_field
6926 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6927
5eb68a39 6928struct value *
d2e4a39e 6929ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6930 struct type *arg_type)
14f9c5c9 6931{
14f9c5c9
AS
6932 struct type *type;
6933
61ee279c 6934 arg_type = ada_check_typedef (arg_type);
940da03e 6935 type = arg_type->field (fieldno).type ();
14f9c5c9 6936
4504bbde
TT
6937 /* Handle packed fields. It might be that the field is not packed
6938 relative to its containing structure, but the structure itself is
6939 packed; in this case we must take the bit-field path. */
6940 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6941 {
6942 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6943 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6944
0fd88904 6945 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
dda83cd7
SM
6946 offset + bit_pos / 8,
6947 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6948 }
6949 else
6950 return value_primitive_field (arg1, offset, fieldno, arg_type);
6951}
6952
52ce6436
PH
6953/* Find field with name NAME in object of type TYPE. If found,
6954 set the following for each argument that is non-null:
6955 - *FIELD_TYPE_P to the field's type;
6956 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6957 an object of that type;
6958 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6959 - *BIT_SIZE_P to its size in bits if the field is packed, and
6960 0 otherwise;
6961 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6962 fields up to but not including the desired field, or by the total
6963 number of fields if not found. A NULL value of NAME never
6964 matches; the function just counts visible fields in this case.
6965
828d5846
XR
6966 Notice that we need to handle when a tagged record hierarchy
6967 has some components with the same name, like in this scenario:
6968
6969 type Top_T is tagged record
dda83cd7
SM
6970 N : Integer := 1;
6971 U : Integer := 974;
6972 A : Integer := 48;
828d5846
XR
6973 end record;
6974
6975 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6976 N : Character := 'a';
6977 C : Integer := 3;
828d5846
XR
6978 end record;
6979
6980 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6981 N : Float := 4.0;
6982 C : Character := '5';
6983 X : Integer := 6;
6984 A : Character := 'J';
828d5846
XR
6985 end record;
6986
6987 Let's say we now have a variable declared and initialized as follow:
6988
6989 TC : Top_A := new Bottom_T;
6990
6991 And then we use this variable to call this function
6992
6993 procedure Assign (Obj: in out Top_T; TV : Integer);
6994
6995 as follow:
6996
6997 Assign (Top_T (B), 12);
6998
6999 Now, we're in the debugger, and we're inside that procedure
7000 then and we want to print the value of obj.c:
7001
7002 Usually, the tagged record or one of the parent type owns the
7003 component to print and there's no issue but in this particular
7004 case, what does it mean to ask for Obj.C? Since the actual
7005 type for object is type Bottom_T, it could mean two things: type
7006 component C from the Middle_T view, but also component C from
7007 Bottom_T. So in that "undefined" case, when the component is
7008 not found in the non-resolved type (which includes all the
7009 components of the parent type), then resolve it and see if we
7010 get better luck once expanded.
7011
7012 In the case of homonyms in the derived tagged type, we don't
7013 guaranty anything, and pick the one that's easiest for us
7014 to program.
7015
0963b4bd 7016 Returns 1 if found, 0 otherwise. */
52ce6436 7017
4c4b4cd2 7018static int
0d5cff50 7019find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
7020 struct type **field_type_p,
7021 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 7022 int *index_p)
4c4b4cd2
PH
7023{
7024 int i;
828d5846 7025 int parent_offset = -1;
4c4b4cd2 7026
61ee279c 7027 type = ada_check_typedef (type);
76a01679 7028
52ce6436
PH
7029 if (field_type_p != NULL)
7030 *field_type_p = NULL;
7031 if (byte_offset_p != NULL)
d5d6fca5 7032 *byte_offset_p = 0;
52ce6436
PH
7033 if (bit_offset_p != NULL)
7034 *bit_offset_p = 0;
7035 if (bit_size_p != NULL)
7036 *bit_size_p = 0;
7037
1f704f76 7038 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7039 {
7040 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7041 int fld_offset = offset + bit_pos / 8;
0d5cff50 7042 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7043
4c4b4cd2 7044 if (t_field_name == NULL)
dda83cd7 7045 continue;
4c4b4cd2 7046
828d5846 7047 else if (ada_is_parent_field (type, i))
dda83cd7 7048 {
828d5846
XR
7049 /* This is a field pointing us to the parent type of a tagged
7050 type. As hinted in this function's documentation, we give
7051 preference to fields in the current record first, so what
7052 we do here is just record the index of this field before
7053 we skip it. If it turns out we couldn't find our field
7054 in the current record, then we'll get back to it and search
7055 inside it whether the field might exist in the parent. */
7056
dda83cd7
SM
7057 parent_offset = i;
7058 continue;
7059 }
828d5846 7060
52ce6436 7061 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
7062 {
7063 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7064
52ce6436 7065 if (field_type_p != NULL)
940da03e 7066 *field_type_p = type->field (i).type ();
52ce6436
PH
7067 if (byte_offset_p != NULL)
7068 *byte_offset_p = fld_offset;
7069 if (bit_offset_p != NULL)
7070 *bit_offset_p = bit_pos % 8;
7071 if (bit_size_p != NULL)
7072 *bit_size_p = bit_size;
dda83cd7
SM
7073 return 1;
7074 }
4c4b4cd2 7075 else if (ada_is_wrapper_field (type, i))
dda83cd7 7076 {
940da03e 7077 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7078 field_type_p, byte_offset_p, bit_offset_p,
7079 bit_size_p, index_p))
dda83cd7
SM
7080 return 1;
7081 }
4c4b4cd2 7082 else if (ada_is_variant_part (type, i))
dda83cd7 7083 {
52ce6436
PH
7084 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7085 fixed type?? */
dda83cd7
SM
7086 int j;
7087 struct type *field_type
940da03e 7088 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7089
dda83cd7
SM
7090 for (j = 0; j < field_type->num_fields (); j += 1)
7091 {
7092 if (find_struct_field (name, field_type->field (j).type (),
7093 fld_offset
7094 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7095 field_type_p, byte_offset_p,
7096 bit_offset_p, bit_size_p, index_p))
7097 return 1;
7098 }
7099 }
52ce6436
PH
7100 else if (index_p != NULL)
7101 *index_p += 1;
4c4b4cd2 7102 }
828d5846
XR
7103
7104 /* Field not found so far. If this is a tagged type which
7105 has a parent, try finding that field in the parent now. */
7106
7107 if (parent_offset != -1)
7108 {
7109 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7110 int fld_offset = offset + bit_pos / 8;
7111
940da03e 7112 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
7113 fld_offset, field_type_p, byte_offset_p,
7114 bit_offset_p, bit_size_p, index_p))
7115 return 1;
828d5846
XR
7116 }
7117
4c4b4cd2
PH
7118 return 0;
7119}
7120
0963b4bd 7121/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7122
52ce6436
PH
7123static int
7124num_visible_fields (struct type *type)
7125{
7126 int n;
5b4ee69b 7127
52ce6436
PH
7128 n = 0;
7129 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7130 return n;
7131}
14f9c5c9 7132
4c4b4cd2 7133/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7134 and search in it assuming it has (class) type TYPE.
7135 If found, return value, else return NULL.
7136
828d5846
XR
7137 Searches recursively through wrapper fields (e.g., '_parent').
7138
7139 In the case of homonyms in the tagged types, please refer to the
7140 long explanation in find_struct_field's function documentation. */
14f9c5c9 7141
4c4b4cd2 7142static struct value *
108d56a4 7143ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 7144 struct type *type)
14f9c5c9
AS
7145{
7146 int i;
828d5846 7147 int parent_offset = -1;
14f9c5c9 7148
5b4ee69b 7149 type = ada_check_typedef (type);
1f704f76 7150 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7151 {
0d5cff50 7152 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7153
7154 if (t_field_name == NULL)
dda83cd7 7155 continue;
14f9c5c9 7156
828d5846 7157 else if (ada_is_parent_field (type, i))
dda83cd7 7158 {
828d5846
XR
7159 /* This is a field pointing us to the parent type of a tagged
7160 type. As hinted in this function's documentation, we give
7161 preference to fields in the current record first, so what
7162 we do here is just record the index of this field before
7163 we skip it. If it turns out we couldn't find our field
7164 in the current record, then we'll get back to it and search
7165 inside it whether the field might exist in the parent. */
7166
dda83cd7
SM
7167 parent_offset = i;
7168 continue;
7169 }
828d5846 7170
14f9c5c9 7171 else if (field_name_match (t_field_name, name))
dda83cd7 7172 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7173
7174 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7175 {
7176 struct value *v = /* Do not let indent join lines here. */
7177 ada_search_struct_field (name, arg,
7178 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7179 type->field (i).type ());
5b4ee69b 7180
dda83cd7
SM
7181 if (v != NULL)
7182 return v;
7183 }
14f9c5c9
AS
7184
7185 else if (ada_is_variant_part (type, i))
dda83cd7 7186 {
0963b4bd 7187 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
7188 int j;
7189 struct type *field_type = ada_check_typedef (type->field (i).type ());
7190 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
4c4b4cd2 7191
dda83cd7
SM
7192 for (j = 0; j < field_type->num_fields (); j += 1)
7193 {
7194 struct value *v = ada_search_struct_field /* Force line
0963b4bd 7195 break. */
dda83cd7
SM
7196 (name, arg,
7197 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7198 field_type->field (j).type ());
5b4ee69b 7199
dda83cd7
SM
7200 if (v != NULL)
7201 return v;
7202 }
7203 }
14f9c5c9 7204 }
828d5846
XR
7205
7206 /* Field not found so far. If this is a tagged type which
7207 has a parent, try finding that field in the parent now. */
7208
7209 if (parent_offset != -1)
7210 {
7211 struct value *v = ada_search_struct_field (
7212 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7213 type->field (parent_offset).type ());
828d5846
XR
7214
7215 if (v != NULL)
dda83cd7 7216 return v;
828d5846
XR
7217 }
7218
14f9c5c9
AS
7219 return NULL;
7220}
d2e4a39e 7221
52ce6436
PH
7222static struct value *ada_index_struct_field_1 (int *, struct value *,
7223 int, struct type *);
7224
7225
7226/* Return field #INDEX in ARG, where the index is that returned by
7227 * find_struct_field through its INDEX_P argument. Adjust the address
7228 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7229 * If found, return value, else return NULL. */
52ce6436
PH
7230
7231static struct value *
7232ada_index_struct_field (int index, struct value *arg, int offset,
7233 struct type *type)
7234{
7235 return ada_index_struct_field_1 (&index, arg, offset, type);
7236}
7237
7238
7239/* Auxiliary function for ada_index_struct_field. Like
7240 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7241 * *INDEX_P. */
52ce6436
PH
7242
7243static struct value *
7244ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7245 struct type *type)
7246{
7247 int i;
7248 type = ada_check_typedef (type);
7249
1f704f76 7250 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7251 {
7252 if (TYPE_FIELD_NAME (type, i) == NULL)
dda83cd7 7253 continue;
52ce6436 7254 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7255 {
7256 struct value *v = /* Do not let indent join lines here. */
7257 ada_index_struct_field_1 (index_p, arg,
52ce6436 7258 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7259 type->field (i).type ());
5b4ee69b 7260
dda83cd7
SM
7261 if (v != NULL)
7262 return v;
7263 }
52ce6436
PH
7264
7265 else if (ada_is_variant_part (type, i))
dda83cd7 7266 {
52ce6436 7267 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7268 find_struct_field. */
52ce6436 7269 error (_("Cannot assign this kind of variant record"));
dda83cd7 7270 }
52ce6436 7271 else if (*index_p == 0)
dda83cd7 7272 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
7273 else
7274 *index_p -= 1;
7275 }
7276 return NULL;
7277}
7278
3b4de39c 7279/* Return a string representation of type TYPE. */
99bbb428 7280
3b4de39c 7281static std::string
99bbb428
PA
7282type_as_string (struct type *type)
7283{
d7e74731 7284 string_file tmp_stream;
99bbb428 7285
d7e74731 7286 type_print (type, "", &tmp_stream, -1);
99bbb428 7287
d7e74731 7288 return std::move (tmp_stream.string ());
99bbb428
PA
7289}
7290
14f9c5c9 7291/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7292 If DISPP is non-null, add its byte displacement from the beginning of a
7293 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7294 work for packed fields).
7295
7296 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7297 followed by "___".
14f9c5c9 7298
0963b4bd 7299 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7300 be a (pointer or reference)+ to a struct or union, and the
7301 ultimate target type will be searched.
14f9c5c9
AS
7302
7303 Looks recursively into variant clauses and parent types.
7304
828d5846
XR
7305 In the case of homonyms in the tagged types, please refer to the
7306 long explanation in find_struct_field's function documentation.
7307
4c4b4cd2
PH
7308 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7309 TYPE is not a type of the right kind. */
14f9c5c9 7310
4c4b4cd2 7311static struct type *
a121b7c1 7312ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 7313 int noerr)
14f9c5c9
AS
7314{
7315 int i;
828d5846 7316 int parent_offset = -1;
14f9c5c9
AS
7317
7318 if (name == NULL)
7319 goto BadName;
7320
76a01679 7321 if (refok && type != NULL)
4c4b4cd2
PH
7322 while (1)
7323 {
dda83cd7
SM
7324 type = ada_check_typedef (type);
7325 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7326 break;
7327 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7328 }
14f9c5c9 7329
76a01679 7330 if (type == NULL
78134374
SM
7331 || (type->code () != TYPE_CODE_STRUCT
7332 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7333 {
4c4b4cd2 7334 if (noerr)
dda83cd7 7335 return NULL;
99bbb428 7336
3b4de39c
PA
7337 error (_("Type %s is not a structure or union type"),
7338 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7339 }
7340
7341 type = to_static_fixed_type (type);
7342
1f704f76 7343 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7344 {
0d5cff50 7345 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7346 struct type *t;
d2e4a39e 7347
14f9c5c9 7348 if (t_field_name == NULL)
dda83cd7 7349 continue;
14f9c5c9 7350
828d5846 7351 else if (ada_is_parent_field (type, i))
dda83cd7 7352 {
828d5846
XR
7353 /* This is a field pointing us to the parent type of a tagged
7354 type. As hinted in this function's documentation, we give
7355 preference to fields in the current record first, so what
7356 we do here is just record the index of this field before
7357 we skip it. If it turns out we couldn't find our field
7358 in the current record, then we'll get back to it and search
7359 inside it whether the field might exist in the parent. */
7360
dda83cd7
SM
7361 parent_offset = i;
7362 continue;
7363 }
828d5846 7364
14f9c5c9 7365 else if (field_name_match (t_field_name, name))
940da03e 7366 return type->field (i).type ();
14f9c5c9
AS
7367
7368 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7369 {
7370 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7371 0, 1);
7372 if (t != NULL)
988f6b3d 7373 return t;
dda83cd7 7374 }
14f9c5c9
AS
7375
7376 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7377 {
7378 int j;
7379 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7380
dda83cd7
SM
7381 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7382 {
b1f33ddd 7383 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7384 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7385 generates these for unchecked variant types. Revisit
dda83cd7 7386 if the compiler changes this practice. */
0d5cff50 7387 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7388
b1f33ddd
JB
7389 if (v_field_name != NULL
7390 && field_name_match (v_field_name, name))
940da03e 7391 t = field_type->field (j).type ();
b1f33ddd 7392 else
940da03e 7393 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7394 name, 0, 1);
b1f33ddd 7395
dda83cd7 7396 if (t != NULL)
988f6b3d 7397 return t;
dda83cd7
SM
7398 }
7399 }
14f9c5c9
AS
7400
7401 }
7402
828d5846
XR
7403 /* Field not found so far. If this is a tagged type which
7404 has a parent, try finding that field in the parent now. */
7405
7406 if (parent_offset != -1)
7407 {
dda83cd7 7408 struct type *t;
828d5846 7409
dda83cd7
SM
7410 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7411 name, 0, 1);
7412 if (t != NULL)
828d5846
XR
7413 return t;
7414 }
7415
14f9c5c9 7416BadName:
d2e4a39e 7417 if (!noerr)
14f9c5c9 7418 {
2b2798cc 7419 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7420
7421 error (_("Type %s has no component named %s"),
3b4de39c 7422 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7423 }
7424
7425 return NULL;
7426}
7427
b1f33ddd
JB
7428/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7429 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7430 represents an unchecked union (that is, the variant part of a
0963b4bd 7431 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7432
7433static int
7434is_unchecked_variant (struct type *var_type, struct type *outer_type)
7435{
a121b7c1 7436 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7437
988f6b3d 7438 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7439}
7440
7441
14f9c5c9 7442/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7443 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7444 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7445
d2e4a39e 7446int
d8af9068 7447ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7448{
7449 int others_clause;
7450 int i;
a121b7c1 7451 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7452 struct value *discrim;
14f9c5c9
AS
7453 LONGEST discrim_val;
7454
012370f6
TT
7455 /* Using plain value_from_contents_and_address here causes problems
7456 because we will end up trying to resolve a type that is currently
7457 being constructed. */
0c281816
JB
7458 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7459 if (discrim == NULL)
14f9c5c9 7460 return -1;
0c281816 7461 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7462
7463 others_clause = -1;
1f704f76 7464 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7465 {
7466 if (ada_is_others_clause (var_type, i))
dda83cd7 7467 others_clause = i;
14f9c5c9 7468 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7469 return i;
14f9c5c9
AS
7470 }
7471
7472 return others_clause;
7473}
d2e4a39e 7474\f
14f9c5c9
AS
7475
7476
dda83cd7 7477 /* Dynamic-Sized Records */
14f9c5c9
AS
7478
7479/* Strategy: The type ostensibly attached to a value with dynamic size
7480 (i.e., a size that is not statically recorded in the debugging
7481 data) does not accurately reflect the size or layout of the value.
7482 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7483 conventional types that are constructed on the fly. */
14f9c5c9
AS
7484
7485/* There is a subtle and tricky problem here. In general, we cannot
7486 determine the size of dynamic records without its data. However,
7487 the 'struct value' data structure, which GDB uses to represent
7488 quantities in the inferior process (the target), requires the size
7489 of the type at the time of its allocation in order to reserve space
7490 for GDB's internal copy of the data. That's why the
7491 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7492 rather than struct value*s.
14f9c5c9
AS
7493
7494 However, GDB's internal history variables ($1, $2, etc.) are
7495 struct value*s containing internal copies of the data that are not, in
7496 general, the same as the data at their corresponding addresses in
7497 the target. Fortunately, the types we give to these values are all
7498 conventional, fixed-size types (as per the strategy described
7499 above), so that we don't usually have to perform the
7500 'to_fixed_xxx_type' conversions to look at their values.
7501 Unfortunately, there is one exception: if one of the internal
7502 history variables is an array whose elements are unconstrained
7503 records, then we will need to create distinct fixed types for each
7504 element selected. */
7505
7506/* The upshot of all of this is that many routines take a (type, host
7507 address, target address) triple as arguments to represent a value.
7508 The host address, if non-null, is supposed to contain an internal
7509 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7510 target at the target address. */
14f9c5c9
AS
7511
7512/* Assuming that VAL0 represents a pointer value, the result of
7513 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7514 dynamic-sized types. */
14f9c5c9 7515
d2e4a39e
AS
7516struct value *
7517ada_value_ind (struct value *val0)
14f9c5c9 7518{
c48db5ca 7519 struct value *val = value_ind (val0);
5b4ee69b 7520
b50d69b5
JG
7521 if (ada_is_tagged_type (value_type (val), 0))
7522 val = ada_tag_value_at_base_address (val);
7523
4c4b4cd2 7524 return ada_to_fixed_value (val);
14f9c5c9
AS
7525}
7526
7527/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7528 qualifiers on VAL0. */
7529
d2e4a39e
AS
7530static struct value *
7531ada_coerce_ref (struct value *val0)
7532{
78134374 7533 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7534 {
7535 struct value *val = val0;
5b4ee69b 7536
994b9211 7537 val = coerce_ref (val);
b50d69b5
JG
7538
7539 if (ada_is_tagged_type (value_type (val), 0))
7540 val = ada_tag_value_at_base_address (val);
7541
4c4b4cd2 7542 return ada_to_fixed_value (val);
d2e4a39e
AS
7543 }
7544 else
14f9c5c9
AS
7545 return val0;
7546}
7547
4c4b4cd2 7548/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7549
7550static unsigned int
ebf56fd3 7551field_alignment (struct type *type, int f)
14f9c5c9 7552{
d2e4a39e 7553 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7554 int len;
14f9c5c9
AS
7555 int align_offset;
7556
64a1bf19
JB
7557 /* The field name should never be null, unless the debugging information
7558 is somehow malformed. In this case, we assume the field does not
7559 require any alignment. */
7560 if (name == NULL)
7561 return 1;
7562
7563 len = strlen (name);
7564
4c4b4cd2
PH
7565 if (!isdigit (name[len - 1]))
7566 return 1;
14f9c5c9 7567
d2e4a39e 7568 if (isdigit (name[len - 2]))
14f9c5c9
AS
7569 align_offset = len - 2;
7570 else
7571 align_offset = len - 1;
7572
61012eef 7573 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7574 return TARGET_CHAR_BIT;
7575
4c4b4cd2
PH
7576 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7577}
7578
852dff6c 7579/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7580
852dff6c
JB
7581static struct symbol *
7582ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7583{
7584 struct symbol *sym;
7585
7586 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7587 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7588 return sym;
7589
4186eb54
KS
7590 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7591 return sym;
14f9c5c9
AS
7592}
7593
dddfab26
UW
7594/* Find a type named NAME. Ignores ambiguity. This routine will look
7595 solely for types defined by debug info, it will not search the GDB
7596 primitive types. */
4c4b4cd2 7597
852dff6c 7598static struct type *
ebf56fd3 7599ada_find_any_type (const char *name)
14f9c5c9 7600{
852dff6c 7601 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7602
14f9c5c9 7603 if (sym != NULL)
dddfab26 7604 return SYMBOL_TYPE (sym);
14f9c5c9 7605
dddfab26 7606 return NULL;
14f9c5c9
AS
7607}
7608
739593e0
JB
7609/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7610 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7611 symbol, in which case it is returned. Otherwise, this looks for
7612 symbols whose name is that of NAME_SYM suffixed with "___XR".
7613 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7614
c0e70c62
TT
7615static bool
7616ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7617{
987012b8 7618 const char *name = name_sym->linkage_name ();
c0e70c62 7619 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7620}
7621
14f9c5c9 7622/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7623 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7624 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7625 otherwise return 0. */
7626
14f9c5c9 7627int
d2e4a39e 7628ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7629{
7630 if (type1 == NULL)
7631 return 1;
7632 else if (type0 == NULL)
7633 return 0;
78134374 7634 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7635 return 1;
78134374 7636 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7637 return 0;
7d93a1e0 7638 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7639 return 1;
ad82864c 7640 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7641 return 1;
4c4b4cd2 7642 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7643 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7644 return 1;
aeb5907d
JB
7645 else
7646 {
7d93a1e0
SM
7647 const char *type0_name = type0->name ();
7648 const char *type1_name = type1->name ();
aeb5907d
JB
7649
7650 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7651 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7652 return 1;
7653 }
14f9c5c9
AS
7654 return 0;
7655}
7656
e86ca25f
TT
7657/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7658 null. */
4c4b4cd2 7659
0d5cff50 7660const char *
d2e4a39e 7661ada_type_name (struct type *type)
14f9c5c9 7662{
d2e4a39e 7663 if (type == NULL)
14f9c5c9 7664 return NULL;
7d93a1e0 7665 return type->name ();
14f9c5c9
AS
7666}
7667
b4ba55a1
JB
7668/* Search the list of "descriptive" types associated to TYPE for a type
7669 whose name is NAME. */
7670
7671static struct type *
7672find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7673{
931e5bc3 7674 struct type *result, *tmp;
b4ba55a1 7675
c6044dd1
JB
7676 if (ada_ignore_descriptive_types_p)
7677 return NULL;
7678
b4ba55a1
JB
7679 /* If there no descriptive-type info, then there is no parallel type
7680 to be found. */
7681 if (!HAVE_GNAT_AUX_INFO (type))
7682 return NULL;
7683
7684 result = TYPE_DESCRIPTIVE_TYPE (type);
7685 while (result != NULL)
7686 {
0d5cff50 7687 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7688
7689 if (result_name == NULL)
dda83cd7
SM
7690 {
7691 warning (_("unexpected null name on descriptive type"));
7692 return NULL;
7693 }
b4ba55a1
JB
7694
7695 /* If the names match, stop. */
7696 if (strcmp (result_name, name) == 0)
7697 break;
7698
7699 /* Otherwise, look at the next item on the list, if any. */
7700 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7701 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7702 else
7703 tmp = NULL;
7704
7705 /* If not found either, try after having resolved the typedef. */
7706 if (tmp != NULL)
7707 result = tmp;
b4ba55a1 7708 else
931e5bc3 7709 {
f168693b 7710 result = check_typedef (result);
931e5bc3
JG
7711 if (HAVE_GNAT_AUX_INFO (result))
7712 result = TYPE_DESCRIPTIVE_TYPE (result);
7713 else
7714 result = NULL;
7715 }
b4ba55a1
JB
7716 }
7717
7718 /* If we didn't find a match, see whether this is a packed array. With
7719 older compilers, the descriptive type information is either absent or
7720 irrelevant when it comes to packed arrays so the above lookup fails.
7721 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7722 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7723 return ada_find_any_type (name);
7724
7725 return result;
7726}
7727
7728/* Find a parallel type to TYPE with the specified NAME, using the
7729 descriptive type taken from the debugging information, if available,
7730 and otherwise using the (slower) name-based method. */
7731
7732static struct type *
7733ada_find_parallel_type_with_name (struct type *type, const char *name)
7734{
7735 struct type *result = NULL;
7736
7737 if (HAVE_GNAT_AUX_INFO (type))
7738 result = find_parallel_type_by_descriptive_type (type, name);
7739 else
7740 result = ada_find_any_type (name);
7741
7742 return result;
7743}
7744
7745/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7746 SUFFIX to the name of TYPE. */
14f9c5c9 7747
d2e4a39e 7748struct type *
ebf56fd3 7749ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7750{
0d5cff50 7751 char *name;
fe978cb0 7752 const char *type_name = ada_type_name (type);
14f9c5c9 7753 int len;
d2e4a39e 7754
fe978cb0 7755 if (type_name == NULL)
14f9c5c9
AS
7756 return NULL;
7757
fe978cb0 7758 len = strlen (type_name);
14f9c5c9 7759
b4ba55a1 7760 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7761
fe978cb0 7762 strcpy (name, type_name);
14f9c5c9
AS
7763 strcpy (name + len, suffix);
7764
b4ba55a1 7765 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7766}
7767
14f9c5c9 7768/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7769 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7770
d2e4a39e
AS
7771static struct type *
7772dynamic_template_type (struct type *type)
14f9c5c9 7773{
61ee279c 7774 type = ada_check_typedef (type);
14f9c5c9 7775
78134374 7776 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7777 || ada_type_name (type) == NULL)
14f9c5c9 7778 return NULL;
d2e4a39e 7779 else
14f9c5c9
AS
7780 {
7781 int len = strlen (ada_type_name (type));
5b4ee69b 7782
4c4b4cd2 7783 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7784 return type;
14f9c5c9 7785 else
dda83cd7 7786 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7787 }
7788}
7789
7790/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7791 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7792
d2e4a39e
AS
7793static int
7794is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7795{
7796 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7797
d2e4a39e 7798 return name != NULL
940da03e 7799 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7800 && strstr (name, "___XVL") != NULL;
7801}
7802
4c4b4cd2
PH
7803/* The index of the variant field of TYPE, or -1 if TYPE does not
7804 represent a variant record type. */
14f9c5c9 7805
d2e4a39e 7806static int
4c4b4cd2 7807variant_field_index (struct type *type)
14f9c5c9
AS
7808{
7809 int f;
7810
78134374 7811 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7812 return -1;
7813
1f704f76 7814 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7815 {
7816 if (ada_is_variant_part (type, f))
dda83cd7 7817 return f;
4c4b4cd2
PH
7818 }
7819 return -1;
14f9c5c9
AS
7820}
7821
4c4b4cd2
PH
7822/* A record type with no fields. */
7823
d2e4a39e 7824static struct type *
fe978cb0 7825empty_record (struct type *templ)
14f9c5c9 7826{
fe978cb0 7827 struct type *type = alloc_type_copy (templ);
5b4ee69b 7828
67607e24 7829 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7830 INIT_NONE_SPECIFIC (type);
d0e39ea2 7831 type->set_name ("<empty>");
14f9c5c9
AS
7832 TYPE_LENGTH (type) = 0;
7833 return type;
7834}
7835
7836/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7837 the value of type TYPE at VALADDR or ADDRESS (see comments at
7838 the beginning of this section) VAL according to GNAT conventions.
7839 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7840 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7841 an outer-level type (i.e., as opposed to a branch of a variant.) A
7842 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7843 of the variant.
14f9c5c9 7844
4c4b4cd2
PH
7845 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7846 length are not statically known are discarded. As a consequence,
7847 VALADDR, ADDRESS and DVAL0 are ignored.
7848
7849 NOTE: Limitations: For now, we assume that dynamic fields and
7850 variants occupy whole numbers of bytes. However, they need not be
7851 byte-aligned. */
7852
7853struct type *
10a2c479 7854ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7855 const gdb_byte *valaddr,
dda83cd7
SM
7856 CORE_ADDR address, struct value *dval0,
7857 int keep_dynamic_fields)
14f9c5c9 7858{
d2e4a39e
AS
7859 struct value *mark = value_mark ();
7860 struct value *dval;
7861 struct type *rtype;
14f9c5c9 7862 int nfields, bit_len;
4c4b4cd2 7863 int variant_field;
14f9c5c9 7864 long off;
d94e4f4f 7865 int fld_bit_len;
14f9c5c9
AS
7866 int f;
7867
4c4b4cd2
PH
7868 /* Compute the number of fields in this record type that are going
7869 to be processed: unless keep_dynamic_fields, this includes only
7870 fields whose position and length are static will be processed. */
7871 if (keep_dynamic_fields)
1f704f76 7872 nfields = type->num_fields ();
4c4b4cd2
PH
7873 else
7874 {
7875 nfields = 0;
1f704f76 7876 while (nfields < type->num_fields ()
dda83cd7
SM
7877 && !ada_is_variant_part (type, nfields)
7878 && !is_dynamic_field (type, nfields))
7879 nfields++;
4c4b4cd2
PH
7880 }
7881
e9bb382b 7882 rtype = alloc_type_copy (type);
67607e24 7883 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7884 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7885 rtype->set_num_fields (nfields);
3cabb6b0
SM
7886 rtype->set_fields
7887 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7888 rtype->set_name (ada_type_name (type));
9cdd0d12 7889 rtype->set_is_fixed_instance (true);
14f9c5c9 7890
d2e4a39e
AS
7891 off = 0;
7892 bit_len = 0;
4c4b4cd2
PH
7893 variant_field = -1;
7894
14f9c5c9
AS
7895 for (f = 0; f < nfields; f += 1)
7896 {
a89febbd 7897 off = align_up (off, field_alignment (type, f))
6c038f32 7898 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7899 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7900 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7901
d2e4a39e 7902 if (ada_is_variant_part (type, f))
dda83cd7
SM
7903 {
7904 variant_field = f;
7905 fld_bit_len = 0;
7906 }
14f9c5c9 7907 else if (is_dynamic_field (type, f))
dda83cd7 7908 {
284614f0
JB
7909 const gdb_byte *field_valaddr = valaddr;
7910 CORE_ADDR field_address = address;
7911 struct type *field_type =
940da03e 7912 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7913
dda83cd7 7914 if (dval0 == NULL)
b5304971
JG
7915 {
7916 /* rtype's length is computed based on the run-time
7917 value of discriminants. If the discriminants are not
7918 initialized, the type size may be completely bogus and
0963b4bd 7919 GDB may fail to allocate a value for it. So check the
b5304971 7920 size first before creating the value. */
c1b5a1a6 7921 ada_ensure_varsize_limit (rtype);
012370f6
TT
7922 /* Using plain value_from_contents_and_address here
7923 causes problems because we will end up trying to
7924 resolve a type that is currently being
7925 constructed. */
7926 dval = value_from_contents_and_address_unresolved (rtype,
7927 valaddr,
7928 address);
9f1f738a 7929 rtype = value_type (dval);
b5304971 7930 }
dda83cd7
SM
7931 else
7932 dval = dval0;
4c4b4cd2 7933
284614f0
JB
7934 /* If the type referenced by this field is an aligner type, we need
7935 to unwrap that aligner type, because its size might not be set.
7936 Keeping the aligner type would cause us to compute the wrong
7937 size for this field, impacting the offset of the all the fields
7938 that follow this one. */
7939 if (ada_is_aligner_type (field_type))
7940 {
7941 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7942
7943 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7944 field_address = cond_offset_target (field_address, field_offset);
7945 field_type = ada_aligned_type (field_type);
7946 }
7947
7948 field_valaddr = cond_offset_host (field_valaddr,
7949 off / TARGET_CHAR_BIT);
7950 field_address = cond_offset_target (field_address,
7951 off / TARGET_CHAR_BIT);
7952
7953 /* Get the fixed type of the field. Note that, in this case,
7954 we do not want to get the real type out of the tag: if
7955 the current field is the parent part of a tagged record,
7956 we will get the tag of the object. Clearly wrong: the real
7957 type of the parent is not the real type of the child. We
7958 would end up in an infinite loop. */
7959 field_type = ada_get_base_type (field_type);
7960 field_type = ada_to_fixed_type (field_type, field_valaddr,
7961 field_address, dval, 0);
27f2a97b
JB
7962 /* If the field size is already larger than the maximum
7963 object size, then the record itself will necessarily
7964 be larger than the maximum object size. We need to make
7965 this check now, because the size might be so ridiculously
7966 large (due to an uninitialized variable in the inferior)
7967 that it would cause an overflow when adding it to the
7968 record size. */
c1b5a1a6 7969 ada_ensure_varsize_limit (field_type);
284614f0 7970
5d14b6e5 7971 rtype->field (f).set_type (field_type);
dda83cd7 7972 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7973 /* The multiplication can potentially overflow. But because
7974 the field length has been size-checked just above, and
7975 assuming that the maximum size is a reasonable value,
7976 an overflow should not happen in practice. So rather than
7977 adding overflow recovery code to this already complex code,
7978 we just assume that it's not going to happen. */
dda83cd7
SM
7979 fld_bit_len =
7980 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7981 }
14f9c5c9 7982 else
dda83cd7 7983 {
5ded5331
JB
7984 /* Note: If this field's type is a typedef, it is important
7985 to preserve the typedef layer.
7986
7987 Otherwise, we might be transforming a typedef to a fat
7988 pointer (encoding a pointer to an unconstrained array),
7989 into a basic fat pointer (encoding an unconstrained
7990 array). As both types are implemented using the same
7991 structure, the typedef is the only clue which allows us
7992 to distinguish between the two options. Stripping it
7993 would prevent us from printing this field appropriately. */
dda83cd7
SM
7994 rtype->field (f).set_type (type->field (f).type ());
7995 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7996 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7997 fld_bit_len =
7998 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7999 else
5ded5331 8000 {
940da03e 8001 struct type *field_type = type->field (f).type ();
5ded5331
JB
8002
8003 /* We need to be careful of typedefs when computing
8004 the length of our field. If this is a typedef,
8005 get the length of the target type, not the length
8006 of the typedef. */
78134374 8007 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
8008 field_type = ada_typedef_target_type (field_type);
8009
dda83cd7
SM
8010 fld_bit_len =
8011 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 8012 }
dda83cd7 8013 }
14f9c5c9 8014 if (off + fld_bit_len > bit_len)
dda83cd7 8015 bit_len = off + fld_bit_len;
d94e4f4f 8016 off += fld_bit_len;
4c4b4cd2 8017 TYPE_LENGTH (rtype) =
dda83cd7 8018 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8019 }
4c4b4cd2
PH
8020
8021 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8022 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8023 the record. This can happen in the presence of representation
8024 clauses. */
8025 if (variant_field >= 0)
8026 {
8027 struct type *branch_type;
8028
8029 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8030
8031 if (dval0 == NULL)
9f1f738a 8032 {
012370f6
TT
8033 /* Using plain value_from_contents_and_address here causes
8034 problems because we will end up trying to resolve a type
8035 that is currently being constructed. */
8036 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8037 address);
9f1f738a
SA
8038 rtype = value_type (dval);
8039 }
4c4b4cd2 8040 else
dda83cd7 8041 dval = dval0;
4c4b4cd2
PH
8042
8043 branch_type =
dda83cd7
SM
8044 to_fixed_variant_branch_type
8045 (type->field (variant_field).type (),
8046 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8047 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 8048 if (branch_type == NULL)
dda83cd7
SM
8049 {
8050 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8051 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8052 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 8053 }
4c4b4cd2 8054 else
dda83cd7
SM
8055 {
8056 rtype->field (variant_field).set_type (branch_type);
8057 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8058 fld_bit_len =
8059 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8060 TARGET_CHAR_BIT;
8061 if (off + fld_bit_len > bit_len)
8062 bit_len = off + fld_bit_len;
8063 TYPE_LENGTH (rtype) =
8064 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8065 }
4c4b4cd2
PH
8066 }
8067
714e53ab
PH
8068 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8069 should contain the alignment of that record, which should be a strictly
8070 positive value. If null or negative, then something is wrong, most
8071 probably in the debug info. In that case, we don't round up the size
0963b4bd 8072 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8073 the current RTYPE length might be good enough for our purposes. */
8074 if (TYPE_LENGTH (type) <= 0)
8075 {
7d93a1e0 8076 if (rtype->name ())
cc1defb1 8077 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8078 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8079 else
cc1defb1
KS
8080 warning (_("Invalid type size for <unnamed> detected: %s."),
8081 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8082 }
8083 else
8084 {
a89febbd
TT
8085 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8086 TYPE_LENGTH (type));
714e53ab 8087 }
14f9c5c9
AS
8088
8089 value_free_to_mark (mark);
d2e4a39e 8090 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8091 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8092 return rtype;
8093}
8094
4c4b4cd2
PH
8095/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8096 of 1. */
14f9c5c9 8097
d2e4a39e 8098static struct type *
fc1a4b47 8099template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8100 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
8101{
8102 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 8103 address, dval0, 1);
4c4b4cd2
PH
8104}
8105
8106/* An ordinary record type in which ___XVL-convention fields and
8107 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8108 static approximations, containing all possible fields. Uses
8109 no runtime values. Useless for use in values, but that's OK,
8110 since the results are used only for type determinations. Works on both
8111 structs and unions. Representation note: to save space, we memorize
8112 the result of this function in the TYPE_TARGET_TYPE of the
8113 template type. */
8114
8115static struct type *
8116template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8117{
8118 struct type *type;
8119 int nfields;
8120 int f;
8121
9e195661 8122 /* No need no do anything if the input type is already fixed. */
22c4c60c 8123 if (type0->is_fixed_instance ())
9e195661
PMR
8124 return type0;
8125
8126 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8127 if (TYPE_TARGET_TYPE (type0) != NULL)
8128 return TYPE_TARGET_TYPE (type0);
8129
9e195661 8130 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8131 type = type0;
1f704f76 8132 nfields = type0->num_fields ();
9e195661
PMR
8133
8134 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8135 recompute all over next time. */
8136 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8137
8138 for (f = 0; f < nfields; f += 1)
8139 {
940da03e 8140 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8141 struct type *new_type;
14f9c5c9 8142
4c4b4cd2 8143 if (is_dynamic_field (type0, f))
460efde1
JB
8144 {
8145 field_type = ada_check_typedef (field_type);
dda83cd7 8146 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 8147 }
14f9c5c9 8148 else
dda83cd7 8149 new_type = static_unwrap_type (field_type);
9e195661
PMR
8150
8151 if (new_type != field_type)
8152 {
8153 /* Clone TYPE0 only the first time we get a new field type. */
8154 if (type == type0)
8155 {
8156 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8157 type->set_code (type0->code ());
8ecb59f8 8158 INIT_NONE_SPECIFIC (type);
5e33d5f4 8159 type->set_num_fields (nfields);
3cabb6b0
SM
8160
8161 field *fields =
8162 ((struct field *)
8163 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8164 memcpy (fields, type0->fields (),
9e195661 8165 sizeof (struct field) * nfields);
3cabb6b0
SM
8166 type->set_fields (fields);
8167
d0e39ea2 8168 type->set_name (ada_type_name (type0));
9cdd0d12 8169 type->set_is_fixed_instance (true);
9e195661
PMR
8170 TYPE_LENGTH (type) = 0;
8171 }
5d14b6e5 8172 type->field (f).set_type (new_type);
9e195661
PMR
8173 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8174 }
14f9c5c9 8175 }
9e195661 8176
14f9c5c9
AS
8177 return type;
8178}
8179
4c4b4cd2 8180/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8181 whose address in memory is ADDRESS, returns a revision of TYPE,
8182 which should be a non-dynamic-sized record, in which the variant
8183 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8184 for discriminant values in DVAL0, which can be NULL if the record
8185 contains the necessary discriminant values. */
8186
d2e4a39e 8187static struct type *
fc1a4b47 8188to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 8189 CORE_ADDR address, struct value *dval0)
14f9c5c9 8190{
d2e4a39e 8191 struct value *mark = value_mark ();
4c4b4cd2 8192 struct value *dval;
d2e4a39e 8193 struct type *rtype;
14f9c5c9 8194 struct type *branch_type;
1f704f76 8195 int nfields = type->num_fields ();
4c4b4cd2 8196 int variant_field = variant_field_index (type);
14f9c5c9 8197
4c4b4cd2 8198 if (variant_field == -1)
14f9c5c9
AS
8199 return type;
8200
4c4b4cd2 8201 if (dval0 == NULL)
9f1f738a
SA
8202 {
8203 dval = value_from_contents_and_address (type, valaddr, address);
8204 type = value_type (dval);
8205 }
4c4b4cd2
PH
8206 else
8207 dval = dval0;
8208
e9bb382b 8209 rtype = alloc_type_copy (type);
67607e24 8210 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8211 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8212 rtype->set_num_fields (nfields);
3cabb6b0
SM
8213
8214 field *fields =
d2e4a39e 8215 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8216 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8217 rtype->set_fields (fields);
8218
d0e39ea2 8219 rtype->set_name (ada_type_name (type));
9cdd0d12 8220 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
8221 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8222
4c4b4cd2 8223 branch_type = to_fixed_variant_branch_type
940da03e 8224 (type->field (variant_field).type (),
d2e4a39e 8225 cond_offset_host (valaddr,
dda83cd7
SM
8226 TYPE_FIELD_BITPOS (type, variant_field)
8227 / TARGET_CHAR_BIT),
d2e4a39e 8228 cond_offset_target (address,
dda83cd7
SM
8229 TYPE_FIELD_BITPOS (type, variant_field)
8230 / TARGET_CHAR_BIT), dval);
d2e4a39e 8231 if (branch_type == NULL)
14f9c5c9 8232 {
4c4b4cd2 8233 int f;
5b4ee69b 8234
4c4b4cd2 8235 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 8236 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8237 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8238 }
8239 else
8240 {
5d14b6e5 8241 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8242 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8243 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8244 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8245 }
940da03e 8246 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8247
4c4b4cd2 8248 value_free_to_mark (mark);
14f9c5c9
AS
8249 return rtype;
8250}
8251
8252/* An ordinary record type (with fixed-length fields) that describes
8253 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8254 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8255 should be in DVAL, a record value; it may be NULL if the object
8256 at ADDR itself contains any necessary discriminant values.
8257 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8258 values from the record are needed. Except in the case that DVAL,
8259 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8260 unchecked) is replaced by a particular branch of the variant.
8261
8262 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8263 is questionable and may be removed. It can arise during the
8264 processing of an unconstrained-array-of-record type where all the
8265 variant branches have exactly the same size. This is because in
8266 such cases, the compiler does not bother to use the XVS convention
8267 when encoding the record. I am currently dubious of this
8268 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8269
d2e4a39e 8270static struct type *
fc1a4b47 8271to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 8272 CORE_ADDR address, struct value *dval)
14f9c5c9 8273{
d2e4a39e 8274 struct type *templ_type;
14f9c5c9 8275
22c4c60c 8276 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8277 return type0;
8278
d2e4a39e 8279 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8280
8281 if (templ_type != NULL)
8282 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8283 else if (variant_field_index (type0) >= 0)
8284 {
8285 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 8286 return type0;
4c4b4cd2 8287 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 8288 dval);
4c4b4cd2 8289 }
14f9c5c9
AS
8290 else
8291 {
9cdd0d12 8292 type0->set_is_fixed_instance (true);
14f9c5c9
AS
8293 return type0;
8294 }
8295
8296}
8297
8298/* An ordinary record type (with fixed-length fields) that describes
8299 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8300 union type. Any necessary discriminants' values should be in DVAL,
8301 a record value. That is, this routine selects the appropriate
8302 branch of the union at ADDR according to the discriminant value
b1f33ddd 8303 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8304 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8305
d2e4a39e 8306static struct type *
fc1a4b47 8307to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 8308 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8309{
8310 int which;
d2e4a39e
AS
8311 struct type *templ_type;
8312 struct type *var_type;
14f9c5c9 8313
78134374 8314 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8315 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8316 else
14f9c5c9
AS
8317 var_type = var_type0;
8318
8319 templ_type = ada_find_parallel_type (var_type, "___XVU");
8320
8321 if (templ_type != NULL)
8322 var_type = templ_type;
8323
b1f33ddd
JB
8324 if (is_unchecked_variant (var_type, value_type (dval)))
8325 return var_type0;
d8af9068 8326 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8327
8328 if (which < 0)
e9bb382b 8329 return empty_record (var_type);
14f9c5c9 8330 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8331 return to_fixed_record_type
940da03e 8332 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8333 valaddr, address, dval);
940da03e 8334 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8335 return
8336 to_fixed_record_type
940da03e 8337 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8338 else
940da03e 8339 return var_type->field (which).type ();
14f9c5c9
AS
8340}
8341
8908fca5
JB
8342/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8343 ENCODING_TYPE, a type following the GNAT conventions for discrete
8344 type encodings, only carries redundant information. */
8345
8346static int
8347ada_is_redundant_range_encoding (struct type *range_type,
8348 struct type *encoding_type)
8349{
108d56a4 8350 const char *bounds_str;
8908fca5
JB
8351 int n;
8352 LONGEST lo, hi;
8353
78134374 8354 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8355
78134374
SM
8356 if (get_base_type (range_type)->code ()
8357 != get_base_type (encoding_type)->code ())
005e2509
JB
8358 {
8359 /* The compiler probably used a simple base type to describe
8360 the range type instead of the range's actual base type,
8361 expecting us to get the real base type from the encoding
8362 anyway. In this situation, the encoding cannot be ignored
8363 as redundant. */
8364 return 0;
8365 }
8366
8908fca5
JB
8367 if (is_dynamic_type (range_type))
8368 return 0;
8369
7d93a1e0 8370 if (encoding_type->name () == NULL)
8908fca5
JB
8371 return 0;
8372
7d93a1e0 8373 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8374 if (bounds_str == NULL)
8375 return 0;
8376
8377 n = 8; /* Skip "___XDLU_". */
8378 if (!ada_scan_number (bounds_str, n, &lo, &n))
8379 return 0;
5537ddd0 8380 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8381 return 0;
8382
8383 n += 2; /* Skip the "__" separator between the two bounds. */
8384 if (!ada_scan_number (bounds_str, n, &hi, &n))
8385 return 0;
5537ddd0 8386 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8387 return 0;
8388
8389 return 1;
8390}
8391
8392/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8393 a type following the GNAT encoding for describing array type
8394 indices, only carries redundant information. */
8395
8396static int
8397ada_is_redundant_index_type_desc (struct type *array_type,
8398 struct type *desc_type)
8399{
8400 struct type *this_layer = check_typedef (array_type);
8401 int i;
8402
1f704f76 8403 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8404 {
3d967001 8405 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8406 desc_type->field (i).type ()))
8908fca5
JB
8407 return 0;
8408 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8409 }
8410
8411 return 1;
8412}
8413
14f9c5c9
AS
8414/* Assuming that TYPE0 is an array type describing the type of a value
8415 at ADDR, and that DVAL describes a record containing any
8416 discriminants used in TYPE0, returns a type for the value that
8417 contains no dynamic components (that is, no components whose sizes
8418 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8419 true, gives an error message if the resulting type's size is over
4c4b4cd2 8420 varsize_limit. */
14f9c5c9 8421
d2e4a39e
AS
8422static struct type *
8423to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8424 int ignore_too_big)
14f9c5c9 8425{
d2e4a39e
AS
8426 struct type *index_type_desc;
8427 struct type *result;
ad82864c 8428 int constrained_packed_array_p;
931e5bc3 8429 static const char *xa_suffix = "___XA";
14f9c5c9 8430
b0dd7688 8431 type0 = ada_check_typedef (type0);
22c4c60c 8432 if (type0->is_fixed_instance ())
4c4b4cd2 8433 return type0;
14f9c5c9 8434
ad82864c
JB
8435 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8436 if (constrained_packed_array_p)
75fd6a26
TT
8437 {
8438 type0 = decode_constrained_packed_array_type (type0);
8439 if (type0 == nullptr)
8440 error (_("could not decode constrained packed array type"));
8441 }
284614f0 8442
931e5bc3
JG
8443 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8444
8445 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8446 encoding suffixed with 'P' may still be generated. If so,
8447 it should be used to find the XA type. */
8448
8449 if (index_type_desc == NULL)
8450 {
1da0522e 8451 const char *type_name = ada_type_name (type0);
931e5bc3 8452
1da0522e 8453 if (type_name != NULL)
931e5bc3 8454 {
1da0522e 8455 const int len = strlen (type_name);
931e5bc3
JG
8456 char *name = (char *) alloca (len + strlen (xa_suffix));
8457
1da0522e 8458 if (type_name[len - 1] == 'P')
931e5bc3 8459 {
1da0522e 8460 strcpy (name, type_name);
931e5bc3
JG
8461 strcpy (name + len - 1, xa_suffix);
8462 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8463 }
8464 }
8465 }
8466
28c85d6c 8467 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8468 if (index_type_desc != NULL
8469 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8470 {
8471 /* Ignore this ___XA parallel type, as it does not bring any
8472 useful information. This allows us to avoid creating fixed
8473 versions of the array's index types, which would be identical
8474 to the original ones. This, in turn, can also help avoid
8475 the creation of fixed versions of the array itself. */
8476 index_type_desc = NULL;
8477 }
8478
14f9c5c9
AS
8479 if (index_type_desc == NULL)
8480 {
61ee279c 8481 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8482
14f9c5c9 8483 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8484 depend on the contents of the array in properly constructed
8485 debugging data. */
529cad9c 8486 /* Create a fixed version of the array element type.
dda83cd7
SM
8487 We're not providing the address of an element here,
8488 and thus the actual object value cannot be inspected to do
8489 the conversion. This should not be a problem, since arrays of
8490 unconstrained objects are not allowed. In particular, all
8491 the elements of an array of a tagged type should all be of
8492 the same type specified in the debugging info. No need to
8493 consult the object tag. */
1ed6ede0 8494 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8495
284614f0
JB
8496 /* Make sure we always create a new array type when dealing with
8497 packed array types, since we're going to fix-up the array
8498 type length and element bitsize a little further down. */
ad82864c 8499 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8500 result = type0;
14f9c5c9 8501 else
dda83cd7
SM
8502 result = create_array_type (alloc_type_copy (type0),
8503 elt_type, type0->index_type ());
14f9c5c9
AS
8504 }
8505 else
8506 {
8507 int i;
8508 struct type *elt_type0;
8509
8510 elt_type0 = type0;
1f704f76 8511 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8512 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8513
8514 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8515 depend on the contents of the array in properly constructed
8516 debugging data. */
529cad9c 8517 /* Create a fixed version of the array element type.
dda83cd7
SM
8518 We're not providing the address of an element here,
8519 and thus the actual object value cannot be inspected to do
8520 the conversion. This should not be a problem, since arrays of
8521 unconstrained objects are not allowed. In particular, all
8522 the elements of an array of a tagged type should all be of
8523 the same type specified in the debugging info. No need to
8524 consult the object tag. */
1ed6ede0 8525 result =
dda83cd7 8526 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8527
8528 elt_type0 = type0;
1f704f76 8529 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8530 {
8531 struct type *range_type =
8532 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8533
dda83cd7
SM
8534 result = create_array_type (alloc_type_copy (elt_type0),
8535 result, range_type);
1ce677a4 8536 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8537 }
d2e4a39e 8538 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
dda83cd7 8539 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8540 }
8541
2e6fda7d
JB
8542 /* We want to preserve the type name. This can be useful when
8543 trying to get the type name of a value that has already been
8544 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8545 result->set_name (type0->name ());
2e6fda7d 8546
ad82864c 8547 if (constrained_packed_array_p)
284614f0
JB
8548 {
8549 /* So far, the resulting type has been created as if the original
8550 type was a regular (non-packed) array type. As a result, the
8551 bitsize of the array elements needs to be set again, and the array
8552 length needs to be recomputed based on that bitsize. */
8553 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8554 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8555
8556 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8557 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8558 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8559 TYPE_LENGTH (result)++;
284614f0
JB
8560 }
8561
9cdd0d12 8562 result->set_is_fixed_instance (true);
14f9c5c9 8563 return result;
d2e4a39e 8564}
14f9c5c9
AS
8565
8566
8567/* A standard type (containing no dynamically sized components)
8568 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8569 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8570 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8571 ADDRESS or in VALADDR contains these discriminants.
8572
1ed6ede0
JB
8573 If CHECK_TAG is not null, in the case of tagged types, this function
8574 attempts to locate the object's tag and use it to compute the actual
8575 type. However, when ADDRESS is null, we cannot use it to determine the
8576 location of the tag, and therefore compute the tagged type's actual type.
8577 So we return the tagged type without consulting the tag. */
529cad9c 8578
f192137b
JB
8579static struct type *
8580ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8581 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8582{
61ee279c 8583 type = ada_check_typedef (type);
8ecb59f8
TT
8584
8585 /* Only un-fixed types need to be handled here. */
8586 if (!HAVE_GNAT_AUX_INFO (type))
8587 return type;
8588
78134374 8589 switch (type->code ())
d2e4a39e
AS
8590 {
8591 default:
14f9c5c9 8592 return type;
d2e4a39e 8593 case TYPE_CODE_STRUCT:
4c4b4cd2 8594 {
dda83cd7
SM
8595 struct type *static_type = to_static_fixed_type (type);
8596 struct type *fixed_record_type =
8597 to_fixed_record_type (type, valaddr, address, NULL);
8598
8599 /* If STATIC_TYPE is a tagged type and we know the object's address,
8600 then we can determine its tag, and compute the object's actual
8601 type from there. Note that we have to use the fixed record
8602 type (the parent part of the record may have dynamic fields
8603 and the way the location of _tag is expressed may depend on
8604 them). */
8605
8606 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8607 {
b50d69b5
JG
8608 struct value *tag =
8609 value_tag_from_contents_and_address
8610 (fixed_record_type,
8611 valaddr,
8612 address);
8613 struct type *real_type = type_from_tag (tag);
8614 struct value *obj =
8615 value_from_contents_and_address (fixed_record_type,
8616 valaddr,
8617 address);
dda83cd7
SM
8618 fixed_record_type = value_type (obj);
8619 if (real_type != NULL)
8620 return to_fixed_record_type
b50d69b5
JG
8621 (real_type, NULL,
8622 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8623 }
8624
8625 /* Check to see if there is a parallel ___XVZ variable.
8626 If there is, then it provides the actual size of our type. */
8627 else if (ada_type_name (fixed_record_type) != NULL)
8628 {
8629 const char *name = ada_type_name (fixed_record_type);
8630 char *xvz_name
224c3ddb 8631 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8632 bool xvz_found = false;
dda83cd7 8633 LONGEST size;
4af88198 8634
dda83cd7 8635 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8636 try
eccab96d
JB
8637 {
8638 xvz_found = get_int_var_value (xvz_name, size);
8639 }
230d2906 8640 catch (const gdb_exception_error &except)
eccab96d
JB
8641 {
8642 /* We found the variable, but somehow failed to read
8643 its value. Rethrow the same error, but with a little
8644 bit more information, to help the user understand
8645 what went wrong (Eg: the variable might have been
8646 optimized out). */
8647 throw_error (except.error,
8648 _("unable to read value of %s (%s)"),
3d6e9d23 8649 xvz_name, except.what ());
eccab96d 8650 }
eccab96d 8651
dda83cd7
SM
8652 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8653 {
8654 fixed_record_type = copy_type (fixed_record_type);
8655 TYPE_LENGTH (fixed_record_type) = size;
8656
8657 /* The FIXED_RECORD_TYPE may have be a stub. We have
8658 observed this when the debugging info is STABS, and
8659 apparently it is something that is hard to fix.
8660
8661 In practice, we don't need the actual type definition
8662 at all, because the presence of the XVZ variable allows us
8663 to assume that there must be a XVS type as well, which we
8664 should be able to use later, when we need the actual type
8665 definition.
8666
8667 In the meantime, pretend that the "fixed" type we are
8668 returning is NOT a stub, because this can cause trouble
8669 when using this type to create new types targeting it.
8670 Indeed, the associated creation routines often check
8671 whether the target type is a stub and will try to replace
8672 it, thus using a type with the wrong size. This, in turn,
8673 might cause the new type to have the wrong size too.
8674 Consider the case of an array, for instance, where the size
8675 of the array is computed from the number of elements in
8676 our array multiplied by the size of its element. */
b4b73759 8677 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8678 }
8679 }
8680 return fixed_record_type;
4c4b4cd2 8681 }
d2e4a39e 8682 case TYPE_CODE_ARRAY:
4c4b4cd2 8683 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8684 case TYPE_CODE_UNION:
8685 if (dval == NULL)
dda83cd7 8686 return type;
d2e4a39e 8687 else
dda83cd7 8688 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8689 }
14f9c5c9
AS
8690}
8691
f192137b
JB
8692/* The same as ada_to_fixed_type_1, except that it preserves the type
8693 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8694
8695 The typedef layer needs be preserved in order to differentiate between
8696 arrays and array pointers when both types are implemented using the same
8697 fat pointer. In the array pointer case, the pointer is encoded as
8698 a typedef of the pointer type. For instance, considering:
8699
8700 type String_Access is access String;
8701 S1 : String_Access := null;
8702
8703 To the debugger, S1 is defined as a typedef of type String. But
8704 to the user, it is a pointer. So if the user tries to print S1,
8705 we should not dereference the array, but print the array address
8706 instead.
8707
8708 If we didn't preserve the typedef layer, we would lose the fact that
8709 the type is to be presented as a pointer (needs de-reference before
8710 being printed). And we would also use the source-level type name. */
f192137b
JB
8711
8712struct type *
8713ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8714 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8715
8716{
8717 struct type *fixed_type =
8718 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8719
96dbd2c1
JB
8720 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8721 then preserve the typedef layer.
8722
8723 Implementation note: We can only check the main-type portion of
8724 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8725 from TYPE now returns a type that has the same instance flags
8726 as TYPE. For instance, if TYPE is a "typedef const", and its
8727 target type is a "struct", then the typedef elimination will return
8728 a "const" version of the target type. See check_typedef for more
8729 details about how the typedef layer elimination is done.
8730
8731 brobecker/2010-11-19: It seems to me that the only case where it is
8732 useful to preserve the typedef layer is when dealing with fat pointers.
8733 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8734 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8735 because we call check_typedef/ada_check_typedef pretty much everywhere.
8736 */
78134374 8737 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8738 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8739 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8740 return type;
8741
8742 return fixed_type;
8743}
8744
14f9c5c9 8745/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8746 TYPE0, but based on no runtime data. */
14f9c5c9 8747
d2e4a39e
AS
8748static struct type *
8749to_static_fixed_type (struct type *type0)
14f9c5c9 8750{
d2e4a39e 8751 struct type *type;
14f9c5c9
AS
8752
8753 if (type0 == NULL)
8754 return NULL;
8755
22c4c60c 8756 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8757 return type0;
8758
61ee279c 8759 type0 = ada_check_typedef (type0);
d2e4a39e 8760
78134374 8761 switch (type0->code ())
14f9c5c9
AS
8762 {
8763 default:
8764 return type0;
8765 case TYPE_CODE_STRUCT:
8766 type = dynamic_template_type (type0);
d2e4a39e 8767 if (type != NULL)
dda83cd7 8768 return template_to_static_fixed_type (type);
4c4b4cd2 8769 else
dda83cd7 8770 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8771 case TYPE_CODE_UNION:
8772 type = ada_find_parallel_type (type0, "___XVU");
8773 if (type != NULL)
dda83cd7 8774 return template_to_static_fixed_type (type);
4c4b4cd2 8775 else
dda83cd7 8776 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8777 }
8778}
8779
4c4b4cd2
PH
8780/* A static approximation of TYPE with all type wrappers removed. */
8781
d2e4a39e
AS
8782static struct type *
8783static_unwrap_type (struct type *type)
14f9c5c9
AS
8784{
8785 if (ada_is_aligner_type (type))
8786 {
940da03e 8787 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8788 if (ada_type_name (type1) == NULL)
d0e39ea2 8789 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8790
8791 return static_unwrap_type (type1);
8792 }
d2e4a39e 8793 else
14f9c5c9 8794 {
d2e4a39e 8795 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8796
d2e4a39e 8797 if (raw_real_type == type)
dda83cd7 8798 return type;
14f9c5c9 8799 else
dda83cd7 8800 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8801 }
8802}
8803
8804/* In some cases, incomplete and private types require
4c4b4cd2 8805 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8806 type Foo;
8807 type FooP is access Foo;
8808 V: FooP;
8809 type Foo is array ...;
4c4b4cd2 8810 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8811 cross-references to such types, we instead substitute for FooP a
8812 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8813 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8814
8815/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8816 exists, otherwise TYPE. */
8817
d2e4a39e 8818struct type *
61ee279c 8819ada_check_typedef (struct type *type)
14f9c5c9 8820{
727e3d2e
JB
8821 if (type == NULL)
8822 return NULL;
8823
736ade86
XR
8824 /* If our type is an access to an unconstrained array, which is encoded
8825 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8826 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8827 what allows us to distinguish between fat pointers that represent
8828 array types, and fat pointers that represent array access types
8829 (in both cases, the compiler implements them as fat pointers). */
736ade86 8830 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8831 return type;
8832
f168693b 8833 type = check_typedef (type);
78134374 8834 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8835 || !type->is_stub ()
7d93a1e0 8836 || type->name () == NULL)
14f9c5c9 8837 return type;
d2e4a39e 8838 else
14f9c5c9 8839 {
7d93a1e0 8840 const char *name = type->name ();
d2e4a39e 8841 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8842
05e522ef 8843 if (type1 == NULL)
dda83cd7 8844 return type;
05e522ef
JB
8845
8846 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8847 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8848 types, only for the typedef-to-array types). If that's the case,
8849 strip the typedef layer. */
78134374 8850 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8851 type1 = ada_check_typedef (type1);
8852
8853 return type1;
14f9c5c9
AS
8854 }
8855}
8856
8857/* A value representing the data at VALADDR/ADDRESS as described by
8858 type TYPE0, but with a standard (static-sized) type that correctly
8859 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8860 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8861 creation of struct values]. */
14f9c5c9 8862
4c4b4cd2
PH
8863static struct value *
8864ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8865 struct value *val0)
14f9c5c9 8866{
1ed6ede0 8867 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8868
14f9c5c9
AS
8869 if (type == type0 && val0 != NULL)
8870 return val0;
cc0e770c
JB
8871
8872 if (VALUE_LVAL (val0) != lval_memory)
8873 {
8874 /* Our value does not live in memory; it could be a convenience
8875 variable, for instance. Create a not_lval value using val0's
8876 contents. */
8877 return value_from_contents (type, value_contents (val0));
8878 }
8879
8880 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8881}
8882
8883/* A value representing VAL, but with a standard (static-sized) type
8884 that correctly describes it. Does not necessarily create a new
8885 value. */
8886
0c3acc09 8887struct value *
4c4b4cd2
PH
8888ada_to_fixed_value (struct value *val)
8889{
c48db5ca 8890 val = unwrap_value (val);
d8ce9127 8891 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8892 return val;
14f9c5c9 8893}
d2e4a39e 8894\f
14f9c5c9 8895
14f9c5c9
AS
8896/* Attributes */
8897
4c4b4cd2
PH
8898/* Table mapping attribute numbers to names.
8899 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8900
27087b7f 8901static const char * const attribute_names[] = {
14f9c5c9
AS
8902 "<?>",
8903
d2e4a39e 8904 "first",
14f9c5c9
AS
8905 "last",
8906 "length",
8907 "image",
14f9c5c9
AS
8908 "max",
8909 "min",
4c4b4cd2
PH
8910 "modulus",
8911 "pos",
8912 "size",
8913 "tag",
14f9c5c9 8914 "val",
14f9c5c9
AS
8915 0
8916};
8917
de93309a 8918static const char *
4c4b4cd2 8919ada_attribute_name (enum exp_opcode n)
14f9c5c9 8920{
4c4b4cd2
PH
8921 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8922 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8923 else
8924 return attribute_names[0];
8925}
8926
4c4b4cd2 8927/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8928
4c4b4cd2
PH
8929static LONGEST
8930pos_atr (struct value *arg)
14f9c5c9 8931{
24209737
PH
8932 struct value *val = coerce_ref (arg);
8933 struct type *type = value_type (val);
14f9c5c9 8934
d2e4a39e 8935 if (!discrete_type_p (type))
323e0a4a 8936 error (_("'POS only defined on discrete types"));
14f9c5c9 8937
6244c119
SM
8938 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8939 if (!result.has_value ())
aa715135 8940 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8941
6244c119 8942 return *result;
4c4b4cd2
PH
8943}
8944
8945static struct value *
3cb382c9 8946value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8947{
3cb382c9 8948 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8949}
8950
4c4b4cd2 8951/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8952
d2e4a39e 8953static struct value *
53a47a3e 8954val_atr (struct type *type, LONGEST val)
14f9c5c9 8955{
53a47a3e 8956 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8957 if (type->code () == TYPE_CODE_RANGE)
8958 type = TYPE_TARGET_TYPE (type);
78134374 8959 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8960 {
53a47a3e 8961 if (val < 0 || val >= type->num_fields ())
dda83cd7 8962 error (_("argument to 'VAL out of range"));
53a47a3e 8963 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8964 }
53a47a3e
TT
8965 return value_from_longest (type, val);
8966}
8967
8968static struct value *
8969value_val_atr (struct type *type, struct value *arg)
8970{
8971 if (!discrete_type_p (type))
8972 error (_("'VAL only defined on discrete types"));
8973 if (!integer_type_p (value_type (arg)))
8974 error (_("'VAL requires integral argument"));
8975
8976 return val_atr (type, value_as_long (arg));
14f9c5c9 8977}
14f9c5c9 8978\f
d2e4a39e 8979
dda83cd7 8980 /* Evaluation */
14f9c5c9 8981
4c4b4cd2
PH
8982/* True if TYPE appears to be an Ada character type.
8983 [At the moment, this is true only for Character and Wide_Character;
8984 It is a heuristic test that could stand improvement]. */
14f9c5c9 8985
fc913e53 8986bool
d2e4a39e 8987ada_is_character_type (struct type *type)
14f9c5c9 8988{
7b9f71f2
JB
8989 const char *name;
8990
8991 /* If the type code says it's a character, then assume it really is,
8992 and don't check any further. */
78134374 8993 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8994 return true;
7b9f71f2
JB
8995
8996 /* Otherwise, assume it's a character type iff it is a discrete type
8997 with a known character type name. */
8998 name = ada_type_name (type);
8999 return (name != NULL
dda83cd7
SM
9000 && (type->code () == TYPE_CODE_INT
9001 || type->code () == TYPE_CODE_RANGE)
9002 && (strcmp (name, "character") == 0
9003 || strcmp (name, "wide_character") == 0
9004 || strcmp (name, "wide_wide_character") == 0
9005 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9006}
9007
4c4b4cd2 9008/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9009
fc913e53 9010bool
ebf56fd3 9011ada_is_string_type (struct type *type)
14f9c5c9 9012{
61ee279c 9013 type = ada_check_typedef (type);
d2e4a39e 9014 if (type != NULL
78134374 9015 && type->code () != TYPE_CODE_PTR
76a01679 9016 && (ada_is_simple_array_type (type)
dda83cd7 9017 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9018 && ada_array_arity (type) == 1)
9019 {
9020 struct type *elttype = ada_array_element_type (type, 1);
9021
9022 return ada_is_character_type (elttype);
9023 }
d2e4a39e 9024 else
fc913e53 9025 return false;
14f9c5c9
AS
9026}
9027
5bf03f13
JB
9028/* The compiler sometimes provides a parallel XVS type for a given
9029 PAD type. Normally, it is safe to follow the PAD type directly,
9030 but older versions of the compiler have a bug that causes the offset
9031 of its "F" field to be wrong. Following that field in that case
9032 would lead to incorrect results, but this can be worked around
9033 by ignoring the PAD type and using the associated XVS type instead.
9034
9035 Set to True if the debugger should trust the contents of PAD types.
9036 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9037static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9038
9039/* True if TYPE is a struct type introduced by the compiler to force the
9040 alignment of a value. Such types have a single field with a
4c4b4cd2 9041 distinctive name. */
14f9c5c9
AS
9042
9043int
ebf56fd3 9044ada_is_aligner_type (struct type *type)
14f9c5c9 9045{
61ee279c 9046 type = ada_check_typedef (type);
714e53ab 9047
5bf03f13 9048 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9049 return 0;
9050
78134374 9051 return (type->code () == TYPE_CODE_STRUCT
dda83cd7
SM
9052 && type->num_fields () == 1
9053 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9054}
9055
9056/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9057 the parallel type. */
14f9c5c9 9058
d2e4a39e
AS
9059struct type *
9060ada_get_base_type (struct type *raw_type)
14f9c5c9 9061{
d2e4a39e
AS
9062 struct type *real_type_namer;
9063 struct type *raw_real_type;
14f9c5c9 9064
78134374 9065 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9066 return raw_type;
9067
284614f0
JB
9068 if (ada_is_aligner_type (raw_type))
9069 /* The encoding specifies that we should always use the aligner type.
9070 So, even if this aligner type has an associated XVS type, we should
9071 simply ignore it.
9072
9073 According to the compiler gurus, an XVS type parallel to an aligner
9074 type may exist because of a stabs limitation. In stabs, aligner
9075 types are empty because the field has a variable-sized type, and
9076 thus cannot actually be used as an aligner type. As a result,
9077 we need the associated parallel XVS type to decode the type.
9078 Since the policy in the compiler is to not change the internal
9079 representation based on the debugging info format, we sometimes
9080 end up having a redundant XVS type parallel to the aligner type. */
9081 return raw_type;
9082
14f9c5c9 9083 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9084 if (real_type_namer == NULL
78134374 9085 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9086 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9087 return raw_type;
9088
940da03e 9089 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9090 {
9091 /* This is an older encoding form where the base type needs to be
85102364 9092 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9093 more efficient. */
9094 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9095 if (raw_real_type == NULL)
9096 return raw_type;
9097 else
9098 return raw_real_type;
9099 }
9100
9101 /* The field in our XVS type is a reference to the base type. */
940da03e 9102 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9103}
14f9c5c9 9104
4c4b4cd2 9105/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9106
d2e4a39e
AS
9107struct type *
9108ada_aligned_type (struct type *type)
14f9c5c9
AS
9109{
9110 if (ada_is_aligner_type (type))
940da03e 9111 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9112 else
9113 return ada_get_base_type (type);
9114}
9115
9116
9117/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9118 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9119
fc1a4b47
AC
9120const gdb_byte *
9121ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9122{
d2e4a39e 9123 if (ada_is_aligner_type (type))
940da03e 9124 return ada_aligned_value_addr (type->field (0).type (),
dda83cd7
SM
9125 valaddr +
9126 TYPE_FIELD_BITPOS (type,
9127 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9128 else
9129 return valaddr;
9130}
9131
4c4b4cd2
PH
9132
9133
14f9c5c9 9134/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9135 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9136const char *
9137ada_enum_name (const char *name)
14f9c5c9 9138{
4c4b4cd2
PH
9139 static char *result;
9140 static size_t result_len = 0;
e6a959d6 9141 const char *tmp;
14f9c5c9 9142
4c4b4cd2
PH
9143 /* First, unqualify the enumeration name:
9144 1. Search for the last '.' character. If we find one, then skip
177b42fe 9145 all the preceding characters, the unqualified name starts
76a01679 9146 right after that dot.
4c4b4cd2 9147 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9148 translates dots into "__". Search forward for double underscores,
9149 but stop searching when we hit an overloading suffix, which is
9150 of the form "__" followed by digits. */
4c4b4cd2 9151
c3e5cd34
PH
9152 tmp = strrchr (name, '.');
9153 if (tmp != NULL)
4c4b4cd2
PH
9154 name = tmp + 1;
9155 else
14f9c5c9 9156 {
4c4b4cd2 9157 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
9158 {
9159 if (isdigit (tmp[2]))
9160 break;
9161 else
9162 name = tmp + 2;
9163 }
14f9c5c9
AS
9164 }
9165
9166 if (name[0] == 'Q')
9167 {
14f9c5c9 9168 int v;
5b4ee69b 9169
14f9c5c9 9170 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
9171 {
9172 if (sscanf (name + 2, "%x", &v) != 1)
9173 return name;
9174 }
272560b5
TT
9175 else if (((name[1] >= '0' && name[1] <= '9')
9176 || (name[1] >= 'a' && name[1] <= 'z'))
9177 && name[2] == '\0')
9178 {
9179 GROW_VECT (result, result_len, 4);
9180 xsnprintf (result, result_len, "'%c'", name[1]);
9181 return result;
9182 }
14f9c5c9 9183 else
dda83cd7 9184 return name;
14f9c5c9 9185
4c4b4cd2 9186 GROW_VECT (result, result_len, 16);
14f9c5c9 9187 if (isascii (v) && isprint (v))
dda83cd7 9188 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9189 else if (name[1] == 'U')
dda83cd7 9190 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9191 else
dda83cd7 9192 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9193
9194 return result;
9195 }
d2e4a39e 9196 else
4c4b4cd2 9197 {
c3e5cd34
PH
9198 tmp = strstr (name, "__");
9199 if (tmp == NULL)
9200 tmp = strstr (name, "$");
9201 if (tmp != NULL)
dda83cd7
SM
9202 {
9203 GROW_VECT (result, result_len, tmp - name + 1);
9204 strncpy (result, name, tmp - name);
9205 result[tmp - name] = '\0';
9206 return result;
9207 }
4c4b4cd2
PH
9208
9209 return name;
9210 }
14f9c5c9
AS
9211}
9212
14f9c5c9
AS
9213/* Evaluate the subexpression of EXP starting at *POS as for
9214 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9215 expression. */
14f9c5c9 9216
d2e4a39e
AS
9217static struct value *
9218evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9219{
fe1fe7ea 9220 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9221}
9222
9223/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9224 value it wraps. */
14f9c5c9 9225
d2e4a39e
AS
9226static struct value *
9227unwrap_value (struct value *val)
14f9c5c9 9228{
df407dfe 9229 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9230
14f9c5c9
AS
9231 if (ada_is_aligner_type (type))
9232 {
de4d072f 9233 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9234 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9235
14f9c5c9 9236 if (ada_type_name (val_type) == NULL)
d0e39ea2 9237 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9238
9239 return unwrap_value (v);
9240 }
d2e4a39e 9241 else
14f9c5c9 9242 {
d2e4a39e 9243 struct type *raw_real_type =
dda83cd7 9244 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9245
5bf03f13
JB
9246 /* If there is no parallel XVS or XVE type, then the value is
9247 already unwrapped. Return it without further modification. */
9248 if ((type == raw_real_type)
9249 && ada_find_parallel_type (type, "___XVE") == NULL)
9250 return val;
14f9c5c9 9251
d2e4a39e 9252 return
dda83cd7
SM
9253 coerce_unspec_val_to_type
9254 (val, ada_to_fixed_type (raw_real_type, 0,
9255 value_address (val),
9256 NULL, 1));
14f9c5c9
AS
9257 }
9258}
d2e4a39e
AS
9259
9260static struct value *
75f24e86 9261cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9262{
db99d0d0
JB
9263 struct value *scale
9264 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
50eff16b 9265 arg = value_cast (value_type (scale), arg);
14f9c5c9 9266
50eff16b
UW
9267 arg = value_binop (arg, scale, BINOP_MUL);
9268 return value_cast (type, arg);
14f9c5c9
AS
9269}
9270
d2e4a39e 9271static struct value *
75f24e86 9272cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9273{
50eff16b
UW
9274 if (type == value_type (arg))
9275 return arg;
5b4ee69b 9276
75f24e86 9277 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
b2188a06 9278 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
75f24e86 9279 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
50eff16b
UW
9280 else
9281 arg = value_cast (value_type (scale), arg);
9282
9283 arg = value_binop (arg, scale, BINOP_DIV);
9284 return value_cast (type, arg);
14f9c5c9
AS
9285}
9286
d99dcf51
JB
9287/* Given two array types T1 and T2, return nonzero iff both arrays
9288 contain the same number of elements. */
9289
9290static int
9291ada_same_array_size_p (struct type *t1, struct type *t2)
9292{
9293 LONGEST lo1, hi1, lo2, hi2;
9294
9295 /* Get the array bounds in order to verify that the size of
9296 the two arrays match. */
9297 if (!get_array_bounds (t1, &lo1, &hi1)
9298 || !get_array_bounds (t2, &lo2, &hi2))
9299 error (_("unable to determine array bounds"));
9300
9301 /* To make things easier for size comparison, normalize a bit
9302 the case of empty arrays by making sure that the difference
9303 between upper bound and lower bound is always -1. */
9304 if (lo1 > hi1)
9305 hi1 = lo1 - 1;
9306 if (lo2 > hi2)
9307 hi2 = lo2 - 1;
9308
9309 return (hi1 - lo1 == hi2 - lo2);
9310}
9311
9312/* Assuming that VAL is an array of integrals, and TYPE represents
9313 an array with the same number of elements, but with wider integral
9314 elements, return an array "casted" to TYPE. In practice, this
9315 means that the returned array is built by casting each element
9316 of the original array into TYPE's (wider) element type. */
9317
9318static struct value *
9319ada_promote_array_of_integrals (struct type *type, struct value *val)
9320{
9321 struct type *elt_type = TYPE_TARGET_TYPE (type);
9322 LONGEST lo, hi;
9323 struct value *res;
9324 LONGEST i;
9325
9326 /* Verify that both val and type are arrays of scalars, and
9327 that the size of val's elements is smaller than the size
9328 of type's element. */
78134374 9329 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9330 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9331 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9332 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9333 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9334 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9335
9336 if (!get_array_bounds (type, &lo, &hi))
9337 error (_("unable to determine array bounds"));
9338
9339 res = allocate_value (type);
9340
9341 /* Promote each array element. */
9342 for (i = 0; i < hi - lo + 1; i++)
9343 {
9344 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9345
9346 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9347 value_contents_all (elt), TYPE_LENGTH (elt_type));
9348 }
9349
9350 return res;
9351}
9352
4c4b4cd2
PH
9353/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9354 return the converted value. */
9355
d2e4a39e
AS
9356static struct value *
9357coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9358{
df407dfe 9359 struct type *type2 = value_type (val);
5b4ee69b 9360
14f9c5c9
AS
9361 if (type == type2)
9362 return val;
9363
61ee279c
PH
9364 type2 = ada_check_typedef (type2);
9365 type = ada_check_typedef (type);
14f9c5c9 9366
78134374
SM
9367 if (type2->code () == TYPE_CODE_PTR
9368 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9369 {
9370 val = ada_value_ind (val);
df407dfe 9371 type2 = value_type (val);
14f9c5c9
AS
9372 }
9373
78134374
SM
9374 if (type2->code () == TYPE_CODE_ARRAY
9375 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9376 {
d99dcf51
JB
9377 if (!ada_same_array_size_p (type, type2))
9378 error (_("cannot assign arrays of different length"));
9379
9380 if (is_integral_type (TYPE_TARGET_TYPE (type))
9381 && is_integral_type (TYPE_TARGET_TYPE (type2))
9382 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9383 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9384 {
9385 /* Allow implicit promotion of the array elements to
9386 a wider type. */
9387 return ada_promote_array_of_integrals (type, val);
9388 }
9389
9390 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
9391 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9392 error (_("Incompatible types in assignment"));
04624583 9393 deprecated_set_value_type (val, type);
14f9c5c9 9394 }
d2e4a39e 9395 return val;
14f9c5c9
AS
9396}
9397
4c4b4cd2
PH
9398static struct value *
9399ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9400{
9401 struct value *val;
9402 struct type *type1, *type2;
9403 LONGEST v, v1, v2;
9404
994b9211
AC
9405 arg1 = coerce_ref (arg1);
9406 arg2 = coerce_ref (arg2);
18af8284
JB
9407 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9408 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9409
78134374
SM
9410 if (type1->code () != TYPE_CODE_INT
9411 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9412 return value_binop (arg1, arg2, op);
9413
76a01679 9414 switch (op)
4c4b4cd2
PH
9415 {
9416 case BINOP_MOD:
9417 case BINOP_DIV:
9418 case BINOP_REM:
9419 break;
9420 default:
9421 return value_binop (arg1, arg2, op);
9422 }
9423
9424 v2 = value_as_long (arg2);
9425 if (v2 == 0)
323e0a4a 9426 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2 9427
c6d940a9 9428 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9429 return value_binop (arg1, arg2, op);
9430
9431 v1 = value_as_long (arg1);
9432 switch (op)
9433 {
9434 case BINOP_DIV:
9435 v = v1 / v2;
76a01679 9436 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9437 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9438 break;
9439 case BINOP_REM:
9440 v = v1 % v2;
76a01679 9441 if (v * v1 < 0)
dda83cd7 9442 v -= v2;
4c4b4cd2
PH
9443 break;
9444 default:
9445 /* Should not reach this point. */
9446 v = 0;
9447 }
9448
9449 val = allocate_value (type1);
990a07ab 9450 store_unsigned_integer (value_contents_raw (val),
dda83cd7 9451 TYPE_LENGTH (value_type (val)),
34877895 9452 type_byte_order (type1), v);
4c4b4cd2
PH
9453 return val;
9454}
9455
9456static int
9457ada_value_equal (struct value *arg1, struct value *arg2)
9458{
df407dfe
AC
9459 if (ada_is_direct_array_type (value_type (arg1))
9460 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9461 {
79e8fcaa
JB
9462 struct type *arg1_type, *arg2_type;
9463
f58b38bf 9464 /* Automatically dereference any array reference before
dda83cd7 9465 we attempt to perform the comparison. */
f58b38bf
JB
9466 arg1 = ada_coerce_ref (arg1);
9467 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9468
4c4b4cd2
PH
9469 arg1 = ada_coerce_to_simple_array (arg1);
9470 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9471
9472 arg1_type = ada_check_typedef (value_type (arg1));
9473 arg2_type = ada_check_typedef (value_type (arg2));
9474
78134374 9475 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9476 || arg2_type->code () != TYPE_CODE_ARRAY)
9477 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9478 /* FIXME: The following works only for types whose
dda83cd7
SM
9479 representations use all bits (no padding or undefined bits)
9480 and do not have user-defined equality. */
79e8fcaa
JB
9481 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9482 && memcmp (value_contents (arg1), value_contents (arg2),
9483 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9484 }
9485 return value_equal (arg1, arg2);
9486}
9487
52ce6436
PH
9488/* Total number of component associations in the aggregate starting at
9489 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9490 OP_AGGREGATE. */
52ce6436
PH
9491
9492static int
9493num_component_specs (struct expression *exp, int pc)
9494{
9495 int n, m, i;
5b4ee69b 9496
52ce6436
PH
9497 m = exp->elts[pc + 1].longconst;
9498 pc += 3;
9499 n = 0;
9500 for (i = 0; i < m; i += 1)
9501 {
9502 switch (exp->elts[pc].opcode)
9503 {
9504 default:
9505 n += 1;
9506 break;
9507 case OP_CHOICES:
9508 n += exp->elts[pc + 1].longconst;
9509 break;
9510 }
9511 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9512 }
9513 return n;
9514}
9515
9516/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9517 component of LHS (a simple array or a record), updating *POS past
9518 the expression, assuming that LHS is contained in CONTAINER. Does
9519 not modify the inferior's memory, nor does it modify LHS (unless
9520 LHS == CONTAINER). */
9521
9522static void
9523assign_component (struct value *container, struct value *lhs, LONGEST index,
9524 struct expression *exp, int *pos)
9525{
9526 struct value *mark = value_mark ();
9527 struct value *elt;
0e2da9f0 9528 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9529
78134374 9530 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9531 {
22601c15
UW
9532 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9533 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9534
52ce6436
PH
9535 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9536 }
9537 else
9538 {
9539 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9540 elt = ada_to_fixed_value (elt);
52ce6436
PH
9541 }
9542
9543 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9544 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9545 else
9546 value_assign_to_component (container, elt,
9547 ada_evaluate_subexp (NULL, exp, pos,
9548 EVAL_NORMAL));
9549
9550 value_free_to_mark (mark);
9551}
9552
9553/* Assuming that LHS represents an lvalue having a record or array
9554 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9555 of that aggregate's value to LHS, advancing *POS past the
9556 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9557 lvalue containing LHS (possibly LHS itself). Does not modify
9558 the inferior's memory, nor does it modify the contents of
0963b4bd 9559 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9560
9561static struct value *
9562assign_aggregate (struct value *container,
9563 struct value *lhs, struct expression *exp,
9564 int *pos, enum noside noside)
9565{
9566 struct type *lhs_type;
9567 int n = exp->elts[*pos+1].longconst;
9568 LONGEST low_index, high_index;
9569 int num_specs;
9570 LONGEST *indices;
9571 int max_indices, num_indices;
52ce6436 9572 int i;
52ce6436
PH
9573
9574 *pos += 3;
9575 if (noside != EVAL_NORMAL)
9576 {
52ce6436
PH
9577 for (i = 0; i < n; i += 1)
9578 ada_evaluate_subexp (NULL, exp, pos, noside);
9579 return container;
9580 }
9581
9582 container = ada_coerce_ref (container);
9583 if (ada_is_direct_array_type (value_type (container)))
9584 container = ada_coerce_to_simple_array (container);
9585 lhs = ada_coerce_ref (lhs);
9586 if (!deprecated_value_modifiable (lhs))
9587 error (_("Left operand of assignment is not a modifiable lvalue."));
9588
0e2da9f0 9589 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9590 if (ada_is_direct_array_type (lhs_type))
9591 {
9592 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9593 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9594 low_index = lhs_type->bounds ()->low.const_val ();
9595 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9596 }
78134374 9597 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9598 {
9599 low_index = 0;
9600 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9601 }
9602 else
9603 error (_("Left-hand side must be array or record."));
9604
9605 num_specs = num_component_specs (exp, *pos - 3);
9606 max_indices = 4 * num_specs + 4;
8d749320 9607 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9608 indices[0] = indices[1] = low_index - 1;
9609 indices[2] = indices[3] = high_index + 1;
9610 num_indices = 4;
9611
9612 for (i = 0; i < n; i += 1)
9613 {
9614 switch (exp->elts[*pos].opcode)
9615 {
1fbf5ada
JB
9616 case OP_CHOICES:
9617 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9618 &num_indices, max_indices,
9619 low_index, high_index);
9620 break;
9621 case OP_POSITIONAL:
9622 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9623 &num_indices, max_indices,
9624 low_index, high_index);
1fbf5ada
JB
9625 break;
9626 case OP_OTHERS:
9627 if (i != n-1)
9628 error (_("Misplaced 'others' clause"));
9629 aggregate_assign_others (container, lhs, exp, pos, indices,
9630 num_indices, low_index, high_index);
9631 break;
9632 default:
9633 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9634 }
9635 }
9636
9637 return container;
9638}
9639
9640/* Assign into the component of LHS indexed by the OP_POSITIONAL
9641 construct at *POS, updating *POS past the construct, given that
9642 the positions are relative to lower bound LOW, where HIGH is the
9643 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9644 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9645 assign_aggregate. */
52ce6436
PH
9646static void
9647aggregate_assign_positional (struct value *container,
9648 struct value *lhs, struct expression *exp,
9649 int *pos, LONGEST *indices, int *num_indices,
9650 int max_indices, LONGEST low, LONGEST high)
9651{
9652 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9653
9654 if (ind - 1 == high)
e1d5a0d2 9655 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9656 if (ind <= high)
9657 {
9658 add_component_interval (ind, ind, indices, num_indices, max_indices);
9659 *pos += 3;
9660 assign_component (container, lhs, ind, exp, pos);
9661 }
9662 else
9663 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9664}
9665
9666/* Assign into the components of LHS indexed by the OP_CHOICES
9667 construct at *POS, updating *POS past the construct, given that
9668 the allowable indices are LOW..HIGH. Record the indices assigned
9669 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9670 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9671static void
9672aggregate_assign_from_choices (struct value *container,
9673 struct value *lhs, struct expression *exp,
9674 int *pos, LONGEST *indices, int *num_indices,
9675 int max_indices, LONGEST low, LONGEST high)
9676{
9677 int j;
9678 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9679 int choice_pos, expr_pc;
9680 int is_array = ada_is_direct_array_type (value_type (lhs));
9681
9682 choice_pos = *pos += 3;
9683
9684 for (j = 0; j < n_choices; j += 1)
9685 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9686 expr_pc = *pos;
9687 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9688
9689 for (j = 0; j < n_choices; j += 1)
9690 {
9691 LONGEST lower, upper;
9692 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9693
52ce6436
PH
9694 if (op == OP_DISCRETE_RANGE)
9695 {
9696 choice_pos += 1;
9697 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9698 EVAL_NORMAL));
9699 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9700 EVAL_NORMAL));
9701 }
9702 else if (is_array)
9703 {
9704 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9705 EVAL_NORMAL));
9706 upper = lower;
9707 }
9708 else
9709 {
9710 int ind;
0d5cff50 9711 const char *name;
5b4ee69b 9712
52ce6436
PH
9713 switch (op)
9714 {
9715 case OP_NAME:
9716 name = &exp->elts[choice_pos + 2].string;
9717 break;
9718 case OP_VAR_VALUE:
987012b8 9719 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9720 break;
9721 default:
9722 error (_("Invalid record component association."));
9723 }
9724 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9725 ind = 0;
9726 if (! find_struct_field (name, value_type (lhs), 0,
9727 NULL, NULL, NULL, NULL, &ind))
9728 error (_("Unknown component name: %s."), name);
9729 lower = upper = ind;
9730 }
9731
9732 if (lower <= upper && (lower < low || upper > high))
9733 error (_("Index in component association out of bounds."));
9734
9735 add_component_interval (lower, upper, indices, num_indices,
9736 max_indices);
9737 while (lower <= upper)
9738 {
9739 int pos1;
5b4ee69b 9740
52ce6436
PH
9741 pos1 = expr_pc;
9742 assign_component (container, lhs, lower, exp, &pos1);
9743 lower += 1;
9744 }
9745 }
9746}
9747
9748/* Assign the value of the expression in the OP_OTHERS construct in
9749 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9750 have not been previously assigned. The index intervals already assigned
9751 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9752 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9753static void
9754aggregate_assign_others (struct value *container,
9755 struct value *lhs, struct expression *exp,
9756 int *pos, LONGEST *indices, int num_indices,
9757 LONGEST low, LONGEST high)
9758{
9759 int i;
5ce64950 9760 int expr_pc = *pos + 1;
52ce6436
PH
9761
9762 for (i = 0; i < num_indices - 2; i += 2)
9763 {
9764 LONGEST ind;
5b4ee69b 9765
52ce6436
PH
9766 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9767 {
5ce64950 9768 int localpos;
5b4ee69b 9769
5ce64950
MS
9770 localpos = expr_pc;
9771 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9772 }
9773 }
9774 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9775}
9776
9777/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9778 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9779 modifying *SIZE as needed. It is an error if *SIZE exceeds
9780 MAX_SIZE. The resulting intervals do not overlap. */
9781static void
9782add_component_interval (LONGEST low, LONGEST high,
9783 LONGEST* indices, int *size, int max_size)
9784{
9785 int i, j;
5b4ee69b 9786
52ce6436
PH
9787 for (i = 0; i < *size; i += 2) {
9788 if (high >= indices[i] && low <= indices[i + 1])
9789 {
9790 int kh;
5b4ee69b 9791
52ce6436
PH
9792 for (kh = i + 2; kh < *size; kh += 2)
9793 if (high < indices[kh])
9794 break;
9795 if (low < indices[i])
9796 indices[i] = low;
9797 indices[i + 1] = indices[kh - 1];
9798 if (high > indices[i + 1])
9799 indices[i + 1] = high;
9800 memcpy (indices + i + 2, indices + kh, *size - kh);
9801 *size -= kh - i - 2;
9802 return;
9803 }
9804 else if (high < indices[i])
9805 break;
9806 }
9807
9808 if (*size == max_size)
9809 error (_("Internal error: miscounted aggregate components."));
9810 *size += 2;
9811 for (j = *size-1; j >= i+2; j -= 1)
9812 indices[j] = indices[j - 2];
9813 indices[i] = low;
9814 indices[i + 1] = high;
9815}
9816
6e48bd2c
JB
9817/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9818 is different. */
9819
9820static struct value *
b7e22850 9821ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9822{
9823 if (type == ada_check_typedef (value_type (arg2)))
9824 return arg2;
9825
b2188a06 9826 if (ada_is_gnat_encoded_fixed_point_type (type))
75f24e86 9827 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c 9828
b2188a06 9829 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
75f24e86 9830 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c
JB
9831
9832 return value_cast (type, arg2);
9833}
9834
284614f0
JB
9835/* Evaluating Ada expressions, and printing their result.
9836 ------------------------------------------------------
9837
21649b50
JB
9838 1. Introduction:
9839 ----------------
9840
284614f0
JB
9841 We usually evaluate an Ada expression in order to print its value.
9842 We also evaluate an expression in order to print its type, which
9843 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9844 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9845 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9846 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9847 similar.
9848
9849 Evaluating expressions is a little more complicated for Ada entities
9850 than it is for entities in languages such as C. The main reason for
9851 this is that Ada provides types whose definition might be dynamic.
9852 One example of such types is variant records. Or another example
9853 would be an array whose bounds can only be known at run time.
9854
9855 The following description is a general guide as to what should be
9856 done (and what should NOT be done) in order to evaluate an expression
9857 involving such types, and when. This does not cover how the semantic
9858 information is encoded by GNAT as this is covered separatly. For the
9859 document used as the reference for the GNAT encoding, see exp_dbug.ads
9860 in the GNAT sources.
9861
9862 Ideally, we should embed each part of this description next to its
9863 associated code. Unfortunately, the amount of code is so vast right
9864 now that it's hard to see whether the code handling a particular
9865 situation might be duplicated or not. One day, when the code is
9866 cleaned up, this guide might become redundant with the comments
9867 inserted in the code, and we might want to remove it.
9868
21649b50
JB
9869 2. ``Fixing'' an Entity, the Simple Case:
9870 -----------------------------------------
9871
284614f0
JB
9872 When evaluating Ada expressions, the tricky issue is that they may
9873 reference entities whose type contents and size are not statically
9874 known. Consider for instance a variant record:
9875
9876 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9877 case Empty is
9878 when True => null;
9879 when False => Value : Integer;
9880 end case;
284614f0
JB
9881 end record;
9882 Yes : Rec := (Empty => False, Value => 1);
9883 No : Rec := (empty => True);
9884
9885 The size and contents of that record depends on the value of the
9886 descriminant (Rec.Empty). At this point, neither the debugging
9887 information nor the associated type structure in GDB are able to
9888 express such dynamic types. So what the debugger does is to create
9889 "fixed" versions of the type that applies to the specific object.
30baf67b 9890 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9891 which means creating its associated fixed type.
9892
9893 Example: when printing the value of variable "Yes" above, its fixed
9894 type would look like this:
9895
9896 type Rec is record
dda83cd7
SM
9897 Empty : Boolean;
9898 Value : Integer;
284614f0
JB
9899 end record;
9900
9901 On the other hand, if we printed the value of "No", its fixed type
9902 would become:
9903
9904 type Rec is record
dda83cd7 9905 Empty : Boolean;
284614f0
JB
9906 end record;
9907
9908 Things become a little more complicated when trying to fix an entity
9909 with a dynamic type that directly contains another dynamic type,
9910 such as an array of variant records, for instance. There are
9911 two possible cases: Arrays, and records.
9912
21649b50
JB
9913 3. ``Fixing'' Arrays:
9914 ---------------------
9915
9916 The type structure in GDB describes an array in terms of its bounds,
9917 and the type of its elements. By design, all elements in the array
9918 have the same type and we cannot represent an array of variant elements
9919 using the current type structure in GDB. When fixing an array,
9920 we cannot fix the array element, as we would potentially need one
9921 fixed type per element of the array. As a result, the best we can do
9922 when fixing an array is to produce an array whose bounds and size
9923 are correct (allowing us to read it from memory), but without having
9924 touched its element type. Fixing each element will be done later,
9925 when (if) necessary.
9926
9927 Arrays are a little simpler to handle than records, because the same
9928 amount of memory is allocated for each element of the array, even if
1b536f04 9929 the amount of space actually used by each element differs from element
21649b50 9930 to element. Consider for instance the following array of type Rec:
284614f0
JB
9931
9932 type Rec_Array is array (1 .. 2) of Rec;
9933
1b536f04
JB
9934 The actual amount of memory occupied by each element might be different
9935 from element to element, depending on the value of their discriminant.
21649b50 9936 But the amount of space reserved for each element in the array remains
1b536f04 9937 fixed regardless. So we simply need to compute that size using
21649b50
JB
9938 the debugging information available, from which we can then determine
9939 the array size (we multiply the number of elements of the array by
9940 the size of each element).
9941
9942 The simplest case is when we have an array of a constrained element
9943 type. For instance, consider the following type declarations:
9944
dda83cd7
SM
9945 type Bounded_String (Max_Size : Integer) is
9946 Length : Integer;
9947 Buffer : String (1 .. Max_Size);
9948 end record;
9949 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9950
9951 In this case, the compiler describes the array as an array of
9952 variable-size elements (identified by its XVS suffix) for which
9953 the size can be read in the parallel XVZ variable.
9954
9955 In the case of an array of an unconstrained element type, the compiler
9956 wraps the array element inside a private PAD type. This type should not
9957 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9958 that we also use the adjective "aligner" in our code to designate
9959 these wrapper types.
9960
1b536f04 9961 In some cases, the size allocated for each element is statically
21649b50
JB
9962 known. In that case, the PAD type already has the correct size,
9963 and the array element should remain unfixed.
9964
9965 But there are cases when this size is not statically known.
9966 For instance, assuming that "Five" is an integer variable:
284614f0 9967
dda83cd7
SM
9968 type Dynamic is array (1 .. Five) of Integer;
9969 type Wrapper (Has_Length : Boolean := False) is record
9970 Data : Dynamic;
9971 case Has_Length is
9972 when True => Length : Integer;
9973 when False => null;
9974 end case;
9975 end record;
9976 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9977
dda83cd7
SM
9978 Hello : Wrapper_Array := (others => (Has_Length => True,
9979 Data => (others => 17),
9980 Length => 1));
284614f0
JB
9981
9982
9983 The debugging info would describe variable Hello as being an
9984 array of a PAD type. The size of that PAD type is not statically
9985 known, but can be determined using a parallel XVZ variable.
9986 In that case, a copy of the PAD type with the correct size should
9987 be used for the fixed array.
9988
21649b50
JB
9989 3. ``Fixing'' record type objects:
9990 ----------------------------------
9991
9992 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9993 record types. In this case, in order to compute the associated
9994 fixed type, we need to determine the size and offset of each of
9995 its components. This, in turn, requires us to compute the fixed
9996 type of each of these components.
9997
9998 Consider for instance the example:
9999
dda83cd7
SM
10000 type Bounded_String (Max_Size : Natural) is record
10001 Str : String (1 .. Max_Size);
10002 Length : Natural;
10003 end record;
10004 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
10005
10006 In that case, the position of field "Length" depends on the size
10007 of field Str, which itself depends on the value of the Max_Size
21649b50 10008 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10009 we need to fix the type of field Str. Therefore, fixing a variant
10010 record requires us to fix each of its components.
10011
10012 However, if a component does not have a dynamic size, the component
10013 should not be fixed. In particular, fields that use a PAD type
10014 should not fixed. Here is an example where this might happen
10015 (assuming type Rec above):
10016
10017 type Container (Big : Boolean) is record
dda83cd7
SM
10018 First : Rec;
10019 After : Integer;
10020 case Big is
10021 when True => Another : Integer;
10022 when False => null;
10023 end case;
284614f0
JB
10024 end record;
10025 My_Container : Container := (Big => False,
dda83cd7
SM
10026 First => (Empty => True),
10027 After => 42);
284614f0
JB
10028
10029 In that example, the compiler creates a PAD type for component First,
10030 whose size is constant, and then positions the component After just
10031 right after it. The offset of component After is therefore constant
10032 in this case.
10033
10034 The debugger computes the position of each field based on an algorithm
10035 that uses, among other things, the actual position and size of the field
21649b50
JB
10036 preceding it. Let's now imagine that the user is trying to print
10037 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10038 end up computing the offset of field After based on the size of the
10039 fixed version of field First. And since in our example First has
10040 only one actual field, the size of the fixed type is actually smaller
10041 than the amount of space allocated to that field, and thus we would
10042 compute the wrong offset of field After.
10043
21649b50
JB
10044 To make things more complicated, we need to watch out for dynamic
10045 components of variant records (identified by the ___XVL suffix in
10046 the component name). Even if the target type is a PAD type, the size
10047 of that type might not be statically known. So the PAD type needs
10048 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10049 we might end up with the wrong size for our component. This can be
10050 observed with the following type declarations:
284614f0 10051
dda83cd7
SM
10052 type Octal is new Integer range 0 .. 7;
10053 type Octal_Array is array (Positive range <>) of Octal;
10054 pragma Pack (Octal_Array);
284614f0 10055
dda83cd7
SM
10056 type Octal_Buffer (Size : Positive) is record
10057 Buffer : Octal_Array (1 .. Size);
10058 Length : Integer;
10059 end record;
284614f0
JB
10060
10061 In that case, Buffer is a PAD type whose size is unset and needs
10062 to be computed by fixing the unwrapped type.
10063
21649b50
JB
10064 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10065 ----------------------------------------------------------
10066
10067 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10068 thus far, be actually fixed?
10069
10070 The answer is: Only when referencing that element. For instance
10071 when selecting one component of a record, this specific component
10072 should be fixed at that point in time. Or when printing the value
10073 of a record, each component should be fixed before its value gets
10074 printed. Similarly for arrays, the element of the array should be
10075 fixed when printing each element of the array, or when extracting
10076 one element out of that array. On the other hand, fixing should
10077 not be performed on the elements when taking a slice of an array!
10078
31432a67 10079 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10080 size of each field is that we end up also miscomputing the size
10081 of the containing type. This can have adverse results when computing
10082 the value of an entity. GDB fetches the value of an entity based
10083 on the size of its type, and thus a wrong size causes GDB to fetch
10084 the wrong amount of memory. In the case where the computed size is
10085 too small, GDB fetches too little data to print the value of our
31432a67 10086 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10087 past the buffer containing the data =:-o. */
10088
ced9779b
JB
10089/* Evaluate a subexpression of EXP, at index *POS, and return a value
10090 for that subexpression cast to TO_TYPE. Advance *POS over the
10091 subexpression. */
10092
10093static value *
10094ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10095 enum noside noside, struct type *to_type)
10096{
10097 int pc = *pos;
10098
10099 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10100 || exp->elts[pc].opcode == OP_VAR_VALUE)
10101 {
10102 (*pos) += 4;
10103
10104 value *val;
10105 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
dda83cd7
SM
10106 {
10107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10108 return value_zero (to_type, not_lval);
10109
10110 val = evaluate_var_msym_value (noside,
10111 exp->elts[pc + 1].objfile,
10112 exp->elts[pc + 2].msymbol);
10113 }
ced9779b 10114 else
dda83cd7
SM
10115 val = evaluate_var_value (noside,
10116 exp->elts[pc + 1].block,
10117 exp->elts[pc + 2].symbol);
ced9779b
JB
10118
10119 if (noside == EVAL_SKIP)
dda83cd7 10120 return eval_skip_value (exp);
ced9779b
JB
10121
10122 val = ada_value_cast (to_type, val);
10123
10124 /* Follow the Ada language semantics that do not allow taking
10125 an address of the result of a cast (view conversion in Ada). */
10126 if (VALUE_LVAL (val) == lval_memory)
dda83cd7
SM
10127 {
10128 if (value_lazy (val))
10129 value_fetch_lazy (val);
10130 VALUE_LVAL (val) = not_lval;
10131 }
ced9779b
JB
10132 return val;
10133 }
10134
10135 value *val = evaluate_subexp (to_type, exp, pos, noside);
10136 if (noside == EVAL_SKIP)
10137 return eval_skip_value (exp);
10138 return ada_value_cast (to_type, val);
10139}
10140
284614f0
JB
10141/* Implement the evaluate_exp routine in the exp_descriptor structure
10142 for the Ada language. */
10143
52ce6436 10144static struct value *
ebf56fd3 10145ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
dda83cd7 10146 int *pos, enum noside noside)
14f9c5c9
AS
10147{
10148 enum exp_opcode op;
b5385fc0 10149 int tem;
14f9c5c9 10150 int pc;
5ec18f2b 10151 int preeval_pos;
14f9c5c9
AS
10152 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10153 struct type *type;
52ce6436 10154 int nargs, oplen;
d2e4a39e 10155 struct value **argvec;
14f9c5c9 10156
d2e4a39e
AS
10157 pc = *pos;
10158 *pos += 1;
14f9c5c9
AS
10159 op = exp->elts[pc].opcode;
10160
d2e4a39e 10161 switch (op)
14f9c5c9
AS
10162 {
10163 default:
10164 *pos -= 1;
6e48bd2c 10165 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10166
10167 if (noside == EVAL_NORMAL)
10168 arg1 = unwrap_value (arg1);
6e48bd2c 10169
edd079d9 10170 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
dda83cd7
SM
10171 then we need to perform the conversion manually, because
10172 evaluate_subexp_standard doesn't do it. This conversion is
10173 necessary in Ada because the different kinds of float/fixed
10174 types in Ada have different representations.
6e48bd2c 10175
dda83cd7
SM
10176 Similarly, we need to perform the conversion from OP_LONG
10177 ourselves. */
edd079d9 10178 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
dda83cd7 10179 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10180
10181 return arg1;
4c4b4cd2
PH
10182
10183 case OP_STRING:
10184 {
dda83cd7
SM
10185 struct value *result;
10186
10187 *pos -= 1;
10188 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10189 /* The result type will have code OP_STRING, bashed there from
10190 OP_ARRAY. Bash it back. */
10191 if (value_type (result)->code () == TYPE_CODE_STRING)
10192 value_type (result)->set_code (TYPE_CODE_ARRAY);
10193 return result;
4c4b4cd2 10194 }
14f9c5c9
AS
10195
10196 case UNOP_CAST:
10197 (*pos) += 2;
10198 type = exp->elts[pc + 1].type;
ced9779b 10199 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10200
4c4b4cd2
PH
10201 case UNOP_QUAL:
10202 (*pos) += 2;
10203 type = exp->elts[pc + 1].type;
10204 return ada_evaluate_subexp (type, exp, pos, noside);
10205
14f9c5c9 10206 case BINOP_ASSIGN:
fe1fe7ea 10207 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
52ce6436
PH
10208 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10209 {
10210 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10211 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10212 return arg1;
10213 return ada_value_assign (arg1, arg1);
10214 }
003f3813 10215 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
dda83cd7
SM
10216 except if the lhs of our assignment is a convenience variable.
10217 In the case of assigning to a convenience variable, the lhs
10218 should be exactly the result of the evaluation of the rhs. */
003f3813
JB
10219 type = value_type (arg1);
10220 if (VALUE_LVAL (arg1) == lval_internalvar)
dda83cd7 10221 type = NULL;
003f3813 10222 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10223 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10224 return arg1;
f411722c
TT
10225 if (VALUE_LVAL (arg1) == lval_internalvar)
10226 {
10227 /* Nothing. */
10228 }
b2188a06 10229 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10230 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
b2188a06 10231 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
dda83cd7
SM
10232 error
10233 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10234 else
dda83cd7 10235 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10236 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10237
10238 case BINOP_ADD:
10239 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10240 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10241 if (noside == EVAL_SKIP)
dda83cd7 10242 goto nosideret;
78134374 10243 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10244 return (value_from_longest
10245 (value_type (arg1),
10246 value_as_long (arg1) + value_as_long (arg2)));
78134374 10247 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10248 return (value_from_longest
10249 (value_type (arg2),
10250 value_as_long (arg1) + value_as_long (arg2)));
b2188a06 10251 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
dda83cd7
SM
10252 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10253 && value_type (arg1) != value_type (arg2))
10254 error (_("Operands of fixed-point addition must have the same type"));
b7789565 10255 /* Do the addition, and cast the result to the type of the first
dda83cd7
SM
10256 argument. We cannot cast the result to a reference type, so if
10257 ARG1 is a reference type, find its underlying type. */
b7789565 10258 type = value_type (arg1);
78134374 10259 while (type->code () == TYPE_CODE_REF)
dda83cd7 10260 type = TYPE_TARGET_TYPE (type);
f44316fa 10261 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10262 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10263
10264 case BINOP_SUB:
10265 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10266 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10267 if (noside == EVAL_SKIP)
dda83cd7 10268 goto nosideret;
78134374 10269 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10270 return (value_from_longest
10271 (value_type (arg1),
10272 value_as_long (arg1) - value_as_long (arg2)));
78134374 10273 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10274 return (value_from_longest
10275 (value_type (arg2),
10276 value_as_long (arg1) - value_as_long (arg2)));
b2188a06 10277 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
dda83cd7
SM
10278 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10279 && value_type (arg1) != value_type (arg2))
10280 error (_("Operands of fixed-point subtraction "
0963b4bd 10281 "must have the same type"));
b7789565 10282 /* Do the substraction, and cast the result to the type of the first
dda83cd7
SM
10283 argument. We cannot cast the result to a reference type, so if
10284 ARG1 is a reference type, find its underlying type. */
b7789565 10285 type = value_type (arg1);
78134374 10286 while (type->code () == TYPE_CODE_REF)
dda83cd7 10287 type = TYPE_TARGET_TYPE (type);
f44316fa 10288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10289 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10290
10291 case BINOP_MUL:
10292 case BINOP_DIV:
e1578042
JB
10293 case BINOP_REM:
10294 case BINOP_MOD:
fe1fe7ea
SM
10295 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10296 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10297 if (noside == EVAL_SKIP)
dda83cd7 10298 goto nosideret;
e1578042 10299 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10300 {
10301 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10302 return value_zero (value_type (arg1), not_lval);
10303 }
14f9c5c9 10304 else
dda83cd7
SM
10305 {
10306 type = builtin_type (exp->gdbarch)->builtin_double;
10307 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10308 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10309 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10310 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10311 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10312 return ada_value_binop (arg1, arg2, op);
10313 }
4c4b4cd2 10314
4c4b4cd2
PH
10315 case BINOP_EQUAL:
10316 case BINOP_NOTEQUAL:
fe1fe7ea 10317 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
df407dfe 10318 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10319 if (noside == EVAL_SKIP)
dda83cd7 10320 goto nosideret;
4c4b4cd2 10321 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10322 tem = 0;
4c4b4cd2 10323 else
f44316fa
UW
10324 {
10325 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10326 tem = ada_value_equal (arg1, arg2);
10327 }
4c4b4cd2 10328 if (op == BINOP_NOTEQUAL)
dda83cd7 10329 tem = !tem;
fbb06eb1
UW
10330 type = language_bool_type (exp->language_defn, exp->gdbarch);
10331 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10332
10333 case UNOP_NEG:
fe1fe7ea 10334 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10335 if (noside == EVAL_SKIP)
dda83cd7 10336 goto nosideret;
b2188a06 10337 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10338 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10339 else
f44316fa
UW
10340 {
10341 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10342 return value_neg (arg1);
10343 }
4c4b4cd2 10344
2330c6c6
JB
10345 case BINOP_LOGICAL_AND:
10346 case BINOP_LOGICAL_OR:
10347 case UNOP_LOGICAL_NOT:
000d5124 10348 {
dda83cd7 10349 struct value *val;
000d5124 10350
dda83cd7
SM
10351 *pos -= 1;
10352 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1 10353 type = language_bool_type (exp->language_defn, exp->gdbarch);
dda83cd7 10354 return value_cast (type, val);
000d5124 10355 }
2330c6c6
JB
10356
10357 case BINOP_BITWISE_AND:
10358 case BINOP_BITWISE_IOR:
10359 case BINOP_BITWISE_XOR:
000d5124 10360 {
dda83cd7 10361 struct value *val;
000d5124 10362
fe1fe7ea
SM
10363 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10364 *pos = pc;
dda83cd7 10365 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
000d5124 10366
dda83cd7 10367 return value_cast (value_type (arg1), val);
000d5124 10368 }
2330c6c6 10369
14f9c5c9
AS
10370 case OP_VAR_VALUE:
10371 *pos -= 1;
6799def4 10372
14f9c5c9 10373 if (noside == EVAL_SKIP)
dda83cd7
SM
10374 {
10375 *pos += 4;
10376 goto nosideret;
10377 }
da5c522f
JB
10378
10379 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
10380 /* Only encountered when an unresolved symbol occurs in a
10381 context other than a function call, in which case, it is
10382 invalid. */
10383 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10384 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10385
10386 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10387 {
10388 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10389 /* Check to see if this is a tagged type. We also need to handle
10390 the case where the type is a reference to a tagged type, but
10391 we have to be careful to exclude pointers to tagged types.
10392 The latter should be shown as usual (as a pointer), whereas
10393 a reference should mostly be transparent to the user. */
10394 if (ada_is_tagged_type (type, 0)
10395 || (type->code () == TYPE_CODE_REF
10396 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10397 {
10398 /* Tagged types are a little special in the fact that the real
10399 type is dynamic and can only be determined by inspecting the
10400 object's tag. This means that we need to get the object's
10401 value first (EVAL_NORMAL) and then extract the actual object
10402 type from its tag.
10403
10404 Note that we cannot skip the final step where we extract
10405 the object type from its tag, because the EVAL_NORMAL phase
10406 results in dynamic components being resolved into fixed ones.
10407 This can cause problems when trying to print the type
10408 description of tagged types whose parent has a dynamic size:
10409 We use the type name of the "_parent" component in order
10410 to print the name of the ancestor type in the type description.
10411 If that component had a dynamic size, the resolution into
10412 a fixed type would result in the loss of that type name,
10413 thus preventing us from printing the name of the ancestor
10414 type in the type description. */
fe1fe7ea 10415 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
0d72a7c3 10416
78134374 10417 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10418 {
10419 struct type *actual_type;
10420
10421 actual_type = type_from_tag (ada_value_tag (arg1));
10422 if (actual_type == NULL)
10423 /* If, for some reason, we were unable to determine
10424 the actual type from the tag, then use the static
10425 approximation that we just computed as a fallback.
10426 This can happen if the debugging information is
10427 incomplete, for instance. */
10428 actual_type = type;
10429 return value_zero (actual_type, not_lval);
10430 }
10431 else
10432 {
10433 /* In the case of a ref, ada_coerce_ref takes care
10434 of determining the actual type. But the evaluation
10435 should return a ref as it should be valid to ask
10436 for its address; so rebuild a ref after coerce. */
10437 arg1 = ada_coerce_ref (arg1);
a65cfae5 10438 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10439 }
10440 }
0c1f74cf 10441
84754697
JB
10442 /* Records and unions for which GNAT encodings have been
10443 generated need to be statically fixed as well.
10444 Otherwise, non-static fixing produces a type where
10445 all dynamic properties are removed, which prevents "ptype"
10446 from being able to completely describe the type.
10447 For instance, a case statement in a variant record would be
10448 replaced by the relevant components based on the actual
10449 value of the discriminants. */
78134374 10450 if ((type->code () == TYPE_CODE_STRUCT
84754697 10451 && dynamic_template_type (type) != NULL)
78134374 10452 || (type->code () == TYPE_CODE_UNION
84754697
JB
10453 && ada_find_parallel_type (type, "___XVU") != NULL))
10454 {
10455 *pos += 4;
10456 return value_zero (to_static_fixed_type (type), not_lval);
10457 }
dda83cd7 10458 }
da5c522f
JB
10459
10460 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10461 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10462
10463 case OP_FUNCALL:
10464 (*pos) += 2;
10465
10466 /* Allocate arg vector, including space for the function to be
dda83cd7 10467 called in argvec[0] and a terminating NULL. */
4c4b4cd2 10468 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10469 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10470
10471 if (exp->elts[*pos].opcode == OP_VAR_VALUE
dda83cd7
SM
10472 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10473 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10474 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2 10475 else
dda83cd7
SM
10476 {
10477 for (tem = 0; tem <= nargs; tem += 1)
fe1fe7ea
SM
10478 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10479 argvec[tem] = 0;
4c4b4cd2 10480
dda83cd7
SM
10481 if (noside == EVAL_SKIP)
10482 goto nosideret;
10483 }
4c4b4cd2 10484
ad82864c
JB
10485 if (ada_is_constrained_packed_array_type
10486 (desc_base_type (value_type (argvec[0]))))
dda83cd7 10487 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10488 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
dda83cd7
SM
10489 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10490 /* This is a packed array that has already been fixed, and
284614f0
JB
10491 therefore already coerced to a simple array. Nothing further
10492 to do. */
dda83cd7 10493 ;
78134374 10494 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10495 {
10496 /* Make sure we dereference references so that all the code below
10497 feels like it's really handling the referenced value. Wrapping
10498 types (for alignment) may be there, so make sure we strip them as
10499 well. */
10500 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10501 }
78134374 10502 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10503 && VALUE_LVAL (argvec[0]) == lval_memory)
10504 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10505
df407dfe 10506 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10507
10508 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10509 them. So, if this is an array typedef (encoding use for array
10510 access types encoded as fat pointers), strip it now. */
78134374 10511 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10512 type = ada_typedef_target_type (type);
10513
78134374 10514 if (type->code () == TYPE_CODE_PTR)
dda83cd7
SM
10515 {
10516 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10517 {
10518 case TYPE_CODE_FUNC:
10519 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10520 break;
10521 case TYPE_CODE_ARRAY:
10522 break;
10523 case TYPE_CODE_STRUCT:
10524 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10525 argvec[0] = ada_value_ind (argvec[0]);
10526 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10527 break;
10528 default:
10529 error (_("cannot subscript or call something of type `%s'"),
10530 ada_type_name (value_type (argvec[0])));
10531 break;
10532 }
10533 }
4c4b4cd2 10534
78134374 10535 switch (type->code ())
dda83cd7
SM
10536 {
10537 case TYPE_CODE_FUNC:
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10539 {
7022349d
PA
10540 if (TYPE_TARGET_TYPE (type) == NULL)
10541 error_call_unknown_return_type (NULL);
10542 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10543 }
e71585ff
PA
10544 return call_function_by_hand (argvec[0], NULL,
10545 gdb::make_array_view (argvec + 1,
10546 nargs));
c8ea1972
PH
10547 case TYPE_CODE_INTERNAL_FUNCTION:
10548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10549 /* We don't know anything about what the internal
10550 function might return, but we have to return
10551 something. */
10552 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10553 not_lval);
10554 else
10555 return call_internal_function (exp->gdbarch, exp->language_defn,
10556 argvec[0], nargs, argvec + 1);
10557
dda83cd7
SM
10558 case TYPE_CODE_STRUCT:
10559 {
10560 int arity;
10561
10562 arity = ada_array_arity (type);
10563 type = ada_array_element_type (type, nargs);
10564 if (type == NULL)
10565 error (_("cannot subscript or call a record"));
10566 if (arity != nargs)
10567 error (_("wrong number of subscripts; expecting %d"), arity);
10568 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10569 return value_zero (ada_aligned_type (type), lval_memory);
10570 return
10571 unwrap_value (ada_value_subscript
10572 (argvec[0], nargs, argvec + 1));
10573 }
10574 case TYPE_CODE_ARRAY:
10575 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10576 {
10577 type = ada_array_element_type (type, nargs);
10578 if (type == NULL)
10579 error (_("element type of array unknown"));
10580 else
10581 return value_zero (ada_aligned_type (type), lval_memory);
10582 }
10583 return
10584 unwrap_value (ada_value_subscript
10585 (ada_coerce_to_simple_array (argvec[0]),
10586 nargs, argvec + 1));
10587 case TYPE_CODE_PTR: /* Pointer to array */
10588 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10589 {
deede10c 10590 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
dda83cd7
SM
10591 type = ada_array_element_type (type, nargs);
10592 if (type == NULL)
10593 error (_("element type of array unknown"));
10594 else
10595 return value_zero (ada_aligned_type (type), lval_memory);
10596 }
10597 return
10598 unwrap_value (ada_value_ptr_subscript (argvec[0],
deede10c 10599 nargs, argvec + 1));
4c4b4cd2 10600
dda83cd7
SM
10601 default:
10602 error (_("Attempt to index or call something other than an "
e1d5a0d2 10603 "array or function"));
dda83cd7 10604 }
4c4b4cd2
PH
10605
10606 case TERNOP_SLICE:
10607 {
fe1fe7ea
SM
10608 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10609 struct value *low_bound_val
10610 = evaluate_subexp (nullptr, exp, pos, noside);
10611 struct value *high_bound_val
10612 = evaluate_subexp (nullptr, exp, pos, noside);
10613 LONGEST low_bound;
dda83cd7
SM
10614 LONGEST high_bound;
10615
10616 low_bound_val = coerce_ref (low_bound_val);
10617 high_bound_val = coerce_ref (high_bound_val);
10618 low_bound = value_as_long (low_bound_val);
10619 high_bound = value_as_long (high_bound_val);
10620
10621 if (noside == EVAL_SKIP)
10622 goto nosideret;
10623
10624 /* If this is a reference to an aligner type, then remove all
10625 the aligners. */
10626 if (value_type (array)->code () == TYPE_CODE_REF
10627 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10628 TYPE_TARGET_TYPE (value_type (array)) =
10629 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10630
c9a28cbe 10631 if (ada_is_any_packed_array_type (value_type (array)))
dda83cd7
SM
10632 error (_("cannot slice a packed array"));
10633
10634 /* If this is a reference to an array or an array lvalue,
10635 convert to a pointer. */
10636 if (value_type (array)->code () == TYPE_CODE_REF
10637 || (value_type (array)->code () == TYPE_CODE_ARRAY
10638 && VALUE_LVAL (array) == lval_memory))
10639 array = value_addr (array);
10640
10641 if (noside == EVAL_AVOID_SIDE_EFFECTS
10642 && ada_is_array_descriptor_type (ada_check_typedef
10643 (value_type (array))))
10644 return empty_array (ada_type_of_array (array, 0), low_bound,
bff8c71f 10645 high_bound);
4c4b4cd2 10646
dda83cd7
SM
10647 array = ada_coerce_to_simple_array_ptr (array);
10648
10649 /* If we have more than one level of pointer indirection,
10650 dereference the value until we get only one level. */
10651 while (value_type (array)->code () == TYPE_CODE_PTR
10652 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10653 == TYPE_CODE_PTR))
10654 array = value_ind (array);
10655
10656 /* Make sure we really do have an array type before going further,
10657 to avoid a SEGV when trying to get the index type or the target
10658 type later down the road if the debug info generated by
10659 the compiler is incorrect or incomplete. */
10660 if (!ada_is_simple_array_type (value_type (array)))
10661 error (_("cannot take slice of non-array"));
10662
10663 if (ada_check_typedef (value_type (array))->code ()
10664 == TYPE_CODE_PTR)
10665 {
10666 struct type *type0 = ada_check_typedef (value_type (array));
10667
10668 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10669 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10670 else
10671 {
10672 struct type *arr_type0 =
10673 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10674
10675 return ada_value_slice_from_ptr (array, arr_type0,
10676 longest_to_int (low_bound),
10677 longest_to_int (high_bound));
10678 }
10679 }
10680 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10681 return array;
10682 else if (high_bound < low_bound)
10683 return empty_array (value_type (array), low_bound, high_bound);
10684 else
10685 return ada_value_slice (array, longest_to_int (low_bound),
529cad9c 10686 longest_to_int (high_bound));
4c4b4cd2 10687 }
14f9c5c9 10688
4c4b4cd2
PH
10689 case UNOP_IN_RANGE:
10690 (*pos) += 2;
fe1fe7ea 10691 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8008e265 10692 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10693
14f9c5c9 10694 if (noside == EVAL_SKIP)
dda83cd7 10695 goto nosideret;
14f9c5c9 10696
78134374 10697 switch (type->code ())
dda83cd7
SM
10698 {
10699 default:
10700 lim_warning (_("Membership test incompletely implemented; "
e1d5a0d2 10701 "always returns true"));
fbb06eb1
UW
10702 type = language_bool_type (exp->language_defn, exp->gdbarch);
10703 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2 10704
dda83cd7 10705 case TYPE_CODE_RANGE:
5537ddd0
SM
10706 arg2 = value_from_longest (type,
10707 type->bounds ()->low.const_val ());
10708 arg3 = value_from_longest (type,
10709 type->bounds ()->high.const_val ());
f44316fa
UW
10710 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10712 type = language_bool_type (exp->language_defn, exp->gdbarch);
10713 return
10714 value_from_longest (type,
dda83cd7
SM
10715 (value_less (arg1, arg3)
10716 || value_equal (arg1, arg3))
10717 && (value_less (arg2, arg1)
10718 || value_equal (arg2, arg1)));
10719 }
4c4b4cd2
PH
10720
10721 case BINOP_IN_BOUNDS:
14f9c5c9 10722 (*pos) += 2;
fe1fe7ea
SM
10723 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10724 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10725
4c4b4cd2 10726 if (noside == EVAL_SKIP)
dda83cd7 10727 goto nosideret;
14f9c5c9 10728
4c4b4cd2 10729 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10730 {
10731 type = language_bool_type (exp->language_defn, exp->gdbarch);
10732 return value_zero (type, not_lval);
10733 }
14f9c5c9 10734
4c4b4cd2 10735 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10736
1eea4ebd
UW
10737 type = ada_index_type (value_type (arg2), tem, "range");
10738 if (!type)
10739 type = value_type (arg1);
14f9c5c9 10740
1eea4ebd
UW
10741 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10742 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10743
f44316fa
UW
10744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10745 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10746 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10747 return
dda83cd7
SM
10748 value_from_longest (type,
10749 (value_less (arg1, arg3)
10750 || value_equal (arg1, arg3))
10751 && (value_less (arg2, arg1)
10752 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10753
10754 case TERNOP_IN_RANGE:
fe1fe7ea
SM
10755 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10756 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10757 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2
PH
10758
10759 if (noside == EVAL_SKIP)
dda83cd7 10760 goto nosideret;
4c4b4cd2 10761
f44316fa
UW
10762 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10764 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10765 return
dda83cd7
SM
10766 value_from_longest (type,
10767 (value_less (arg1, arg3)
10768 || value_equal (arg1, arg3))
10769 && (value_less (arg2, arg1)
10770 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10771
10772 case OP_ATR_FIRST:
10773 case OP_ATR_LAST:
10774 case OP_ATR_LENGTH:
10775 {
dda83cd7 10776 struct type *type_arg;
5b4ee69b 10777
dda83cd7
SM
10778 if (exp->elts[*pos].opcode == OP_TYPE)
10779 {
fe1fe7ea
SM
10780 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10781 arg1 = NULL;
dda83cd7
SM
10782 type_arg = check_typedef (exp->elts[pc + 2].type);
10783 }
10784 else
10785 {
fe1fe7ea
SM
10786 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10787 type_arg = NULL;
dda83cd7 10788 }
76a01679 10789
dda83cd7
SM
10790 if (exp->elts[*pos].opcode != OP_LONG)
10791 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10792 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10793 *pos += 4;
76a01679 10794
dda83cd7
SM
10795 if (noside == EVAL_SKIP)
10796 goto nosideret;
680e1bee
TT
10797 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 {
10799 if (type_arg == NULL)
10800 type_arg = value_type (arg1);
76a01679 10801
dda83cd7 10802 if (ada_is_constrained_packed_array_type (type_arg))
680e1bee
TT
10803 type_arg = decode_constrained_packed_array_type (type_arg);
10804
10805 if (!discrete_type_p (type_arg))
10806 {
10807 switch (op)
10808 {
10809 default: /* Should never happen. */
10810 error (_("unexpected attribute encountered"));
10811 case OP_ATR_FIRST:
10812 case OP_ATR_LAST:
10813 type_arg = ada_index_type (type_arg, tem,
10814 ada_attribute_name (op));
10815 break;
10816 case OP_ATR_LENGTH:
10817 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10818 break;
10819 }
10820 }
10821
10822 return value_zero (type_arg, not_lval);
10823 }
dda83cd7
SM
10824 else if (type_arg == NULL)
10825 {
10826 arg1 = ada_coerce_ref (arg1);
76a01679 10827
dda83cd7
SM
10828 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10829 arg1 = ada_coerce_to_simple_array (arg1);
76a01679 10830
dda83cd7 10831 if (op == OP_ATR_LENGTH)
1eea4ebd 10832 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10833 else
10834 {
10835 type = ada_index_type (value_type (arg1), tem,
10836 ada_attribute_name (op));
10837 if (type == NULL)
10838 type = builtin_type (exp->gdbarch)->builtin_int;
10839 }
76a01679 10840
dda83cd7
SM
10841 switch (op)
10842 {
10843 default: /* Should never happen. */
10844 error (_("unexpected attribute encountered"));
10845 case OP_ATR_FIRST:
10846 return value_from_longest
1eea4ebd 10847 (type, ada_array_bound (arg1, tem, 0));
dda83cd7
SM
10848 case OP_ATR_LAST:
10849 return value_from_longest
1eea4ebd 10850 (type, ada_array_bound (arg1, tem, 1));
dda83cd7
SM
10851 case OP_ATR_LENGTH:
10852 return value_from_longest
1eea4ebd 10853 (type, ada_array_length (arg1, tem));
dda83cd7
SM
10854 }
10855 }
10856 else if (discrete_type_p (type_arg))
10857 {
10858 struct type *range_type;
10859 const char *name = ada_type_name (type_arg);
10860
10861 range_type = NULL;
10862 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10863 range_type = to_fixed_range_type (type_arg, NULL);
10864 if (range_type == NULL)
10865 range_type = type_arg;
10866 switch (op)
10867 {
10868 default:
10869 error (_("unexpected attribute encountered"));
10870 case OP_ATR_FIRST:
690cc4eb 10871 return value_from_longest
43bbcdc2 10872 (range_type, ada_discrete_type_low_bound (range_type));
dda83cd7
SM
10873 case OP_ATR_LAST:
10874 return value_from_longest
43bbcdc2 10875 (range_type, ada_discrete_type_high_bound (range_type));
dda83cd7
SM
10876 case OP_ATR_LENGTH:
10877 error (_("the 'length attribute applies only to array types"));
10878 }
10879 }
10880 else if (type_arg->code () == TYPE_CODE_FLT)
10881 error (_("unimplemented type attribute"));
10882 else
10883 {
10884 LONGEST low, high;
10885
10886 if (ada_is_constrained_packed_array_type (type_arg))
10887 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10888
aa4fb036 10889 if (op == OP_ATR_LENGTH)
1eea4ebd 10890 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10891 else
10892 {
10893 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10894 if (type == NULL)
10895 type = builtin_type (exp->gdbarch)->builtin_int;
10896 }
1eea4ebd 10897
dda83cd7
SM
10898 switch (op)
10899 {
10900 default:
10901 error (_("unexpected attribute encountered"));
10902 case OP_ATR_FIRST:
10903 low = ada_array_bound_from_type (type_arg, tem, 0);
10904 return value_from_longest (type, low);
10905 case OP_ATR_LAST:
10906 high = ada_array_bound_from_type (type_arg, tem, 1);
10907 return value_from_longest (type, high);
10908 case OP_ATR_LENGTH:
10909 low = ada_array_bound_from_type (type_arg, tem, 0);
10910 high = ada_array_bound_from_type (type_arg, tem, 1);
10911 return value_from_longest (type, high - low + 1);
10912 }
10913 }
14f9c5c9
AS
10914 }
10915
4c4b4cd2 10916 case OP_ATR_TAG:
fe1fe7ea 10917 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10918 if (noside == EVAL_SKIP)
dda83cd7 10919 goto nosideret;
4c4b4cd2
PH
10920
10921 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10922 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10923
10924 return ada_value_tag (arg1);
10925
10926 case OP_ATR_MIN:
10927 case OP_ATR_MAX:
fe1fe7ea
SM
10928 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10929 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10930 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10931 if (noside == EVAL_SKIP)
dda83cd7 10932 goto nosideret;
d2e4a39e 10933 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10934 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10935 else
f44316fa
UW
10936 {
10937 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10938 return value_binop (arg1, arg2,
10939 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10940 }
14f9c5c9 10941
4c4b4cd2
PH
10942 case OP_ATR_MODULUS:
10943 {
dda83cd7 10944 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10945
fe1fe7ea
SM
10946 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10947 if (noside == EVAL_SKIP)
dda83cd7 10948 goto nosideret;
4c4b4cd2 10949
dda83cd7
SM
10950 if (!ada_is_modular_type (type_arg))
10951 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10952
dda83cd7
SM
10953 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10954 ada_modulus (type_arg));
4c4b4cd2
PH
10955 }
10956
10957
10958 case OP_ATR_POS:
fe1fe7ea
SM
10959 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10960 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10961 if (noside == EVAL_SKIP)
dda83cd7 10962 goto nosideret;
3cb382c9
UW
10963 type = builtin_type (exp->gdbarch)->builtin_int;
10964 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10965 return value_zero (type, not_lval);
14f9c5c9 10966 else
3cb382c9 10967 return value_pos_atr (type, arg1);
14f9c5c9 10968
4c4b4cd2 10969 case OP_ATR_SIZE:
fe1fe7ea 10970 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8c1c099f
JB
10971 type = value_type (arg1);
10972
10973 /* If the argument is a reference, then dereference its type, since
dda83cd7
SM
10974 the user is really asking for the size of the actual object,
10975 not the size of the pointer. */
78134374 10976 if (type->code () == TYPE_CODE_REF)
dda83cd7 10977 type = TYPE_TARGET_TYPE (type);
8c1c099f 10978
4c4b4cd2 10979 if (noside == EVAL_SKIP)
dda83cd7 10980 goto nosideret;
4c4b4cd2 10981 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10982 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10983 else
dda83cd7
SM
10984 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10985 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10986
10987 case OP_ATR_VAL:
fe1fe7ea
SM
10988 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10989 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10990 type = exp->elts[pc + 2].type;
14f9c5c9 10991 if (noside == EVAL_SKIP)
dda83cd7 10992 goto nosideret;
4c4b4cd2 10993 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10994 return value_zero (type, not_lval);
4c4b4cd2 10995 else
dda83cd7 10996 return value_val_atr (type, arg1);
4c4b4cd2
PH
10997
10998 case BINOP_EXP:
fe1fe7ea
SM
10999 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11000 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 11001 if (noside == EVAL_SKIP)
dda83cd7 11002 goto nosideret;
4c4b4cd2 11003 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11004 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11005 else
f44316fa
UW
11006 {
11007 /* For integer exponentiation operations,
11008 only promote the first argument. */
11009 if (is_integral_type (value_type (arg2)))
11010 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11011 else
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013
11014 return value_binop (arg1, arg2, op);
11015 }
4c4b4cd2
PH
11016
11017 case UNOP_PLUS:
fe1fe7ea 11018 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 11019 if (noside == EVAL_SKIP)
dda83cd7 11020 goto nosideret;
4c4b4cd2 11021 else
dda83cd7 11022 return arg1;
4c4b4cd2
PH
11023
11024 case UNOP_ABS:
fe1fe7ea 11025 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 11026 if (noside == EVAL_SKIP)
dda83cd7 11027 goto nosideret;
f44316fa 11028 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11029 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
dda83cd7 11030 return value_neg (arg1);
14f9c5c9 11031 else
dda83cd7 11032 return arg1;
14f9c5c9
AS
11033
11034 case UNOP_IND:
5ec18f2b 11035 preeval_pos = *pos;
fe1fe7ea 11036 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11037 if (noside == EVAL_SKIP)
dda83cd7 11038 goto nosideret;
df407dfe 11039 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11041 {
11042 if (ada_is_array_descriptor_type (type))
11043 /* GDB allows dereferencing GNAT array descriptors. */
11044 {
11045 struct type *arrType = ada_type_of_array (arg1, 0);
11046
11047 if (arrType == NULL)
11048 error (_("Attempt to dereference null array pointer."));
11049 return value_at_lazy (arrType, 0);
11050 }
11051 else if (type->code () == TYPE_CODE_PTR
11052 || type->code () == TYPE_CODE_REF
11053 /* In C you can dereference an array to get the 1st elt. */
11054 || type->code () == TYPE_CODE_ARRAY)
11055 {
11056 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11057 only be determined by inspecting the object's tag.
11058 This means that we need to evaluate completely the
11059 expression in order to get its type. */
5ec18f2b 11060
78134374
SM
11061 if ((type->code () == TYPE_CODE_REF
11062 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11063 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11064 {
fe1fe7ea
SM
11065 arg1
11066 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11067 type = value_type (ada_value_ind (arg1));
11068 }
11069 else
11070 {
11071 type = to_static_fixed_type
11072 (ada_aligned_type
11073 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11074 }
c1b5a1a6 11075 ada_ensure_varsize_limit (type);
dda83cd7
SM
11076 return value_zero (type, lval_memory);
11077 }
11078 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11079 {
11080 /* GDB allows dereferencing an int. */
11081 if (expect_type == NULL)
11082 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11083 lval_memory);
11084 else
11085 {
11086 expect_type =
11087 to_static_fixed_type (ada_aligned_type (expect_type));
11088 return value_zero (expect_type, lval_memory);
11089 }
11090 }
dda83cd7
SM
11091 else
11092 error (_("Attempt to take contents of a non-pointer value."));
11093 }
0963b4bd 11094 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11095 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11096
78134374 11097 if (type->code () == TYPE_CODE_INT)
dda83cd7
SM
11098 /* GDB allows dereferencing an int. If we were given
11099 the expect_type, then use that as the target type.
11100 Otherwise, assume that the target type is an int. */
11101 {
11102 if (expect_type != NULL)
96967637
JB
11103 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11104 arg1));
11105 else
11106 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11107 (CORE_ADDR) value_as_address (arg1));
dda83cd7 11108 }
6b0d7253 11109
4c4b4cd2 11110 if (ada_is_array_descriptor_type (type))
dda83cd7
SM
11111 /* GDB allows dereferencing GNAT array descriptors. */
11112 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11113 else
dda83cd7 11114 return ada_value_ind (arg1);
14f9c5c9
AS
11115
11116 case STRUCTOP_STRUCT:
11117 tem = longest_to_int (exp->elts[pc + 1].longconst);
11118 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11119 preeval_pos = *pos;
fe1fe7ea 11120 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11121 if (noside == EVAL_SKIP)
dda83cd7 11122 goto nosideret;
14f9c5c9 11123 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11124 {
11125 struct type *type1 = value_type (arg1);
5b4ee69b 11126
dda83cd7
SM
11127 if (ada_is_tagged_type (type1, 1))
11128 {
11129 type = ada_lookup_struct_elt_type (type1,
11130 &exp->elts[pc + 2].string,
11131 1, 1);
5ec18f2b
JG
11132
11133 /* If the field is not found, check if it exists in the
11134 extension of this object's type. This means that we
11135 need to evaluate completely the expression. */
11136
dda83cd7 11137 if (type == NULL)
5ec18f2b 11138 {
fe1fe7ea
SM
11139 arg1
11140 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11141 arg1 = ada_value_struct_elt (arg1,
11142 &exp->elts[pc + 2].string,
11143 0);
11144 arg1 = unwrap_value (arg1);
11145 type = value_type (ada_to_fixed_value (arg1));
11146 }
dda83cd7
SM
11147 }
11148 else
11149 type =
11150 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11151 0);
11152
11153 return value_zero (ada_aligned_type (type), lval_memory);
11154 }
14f9c5c9 11155 else
a579cd9a
MW
11156 {
11157 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11158 arg1 = unwrap_value (arg1);
11159 return ada_to_fixed_value (arg1);
11160 }
284614f0 11161
14f9c5c9 11162 case OP_TYPE:
4c4b4cd2 11163 /* The value is not supposed to be used. This is here to make it
dda83cd7 11164 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11165 (*pos) += 2;
11166 if (noside == EVAL_SKIP)
dda83cd7 11167 goto nosideret;
14f9c5c9 11168 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11169 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11170 else
dda83cd7 11171 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11172
11173 case OP_AGGREGATE:
11174 case OP_CHOICES:
11175 case OP_OTHERS:
11176 case OP_DISCRETE_RANGE:
11177 case OP_POSITIONAL:
11178 case OP_NAME:
11179 if (noside == EVAL_NORMAL)
11180 switch (op)
11181 {
11182 case OP_NAME:
11183 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11184 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11185 case OP_AGGREGATE:
11186 error (_("Aggregates only allowed on the right of an assignment"));
11187 default:
0963b4bd
MS
11188 internal_error (__FILE__, __LINE__,
11189 _("aggregate apparently mangled"));
52ce6436
PH
11190 }
11191
11192 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11193 *pos += oplen - 1;
11194 for (tem = 0; tem < nargs; tem += 1)
11195 ada_evaluate_subexp (NULL, exp, pos, noside);
11196 goto nosideret;
14f9c5c9
AS
11197 }
11198
11199nosideret:
ced9779b 11200 return eval_skip_value (exp);
14f9c5c9 11201}
14f9c5c9 11202\f
d2e4a39e 11203
dda83cd7 11204 /* Fixed point */
14f9c5c9
AS
11205
11206/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11207 type name that encodes the 'small and 'delta information.
4c4b4cd2 11208 Otherwise, return NULL. */
14f9c5c9 11209
d2e4a39e 11210static const char *
60bd1d53 11211gnat_encoded_fixed_point_type_info (struct type *type)
14f9c5c9 11212{
d2e4a39e 11213 const char *name = ada_type_name (type);
78134374 11214 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11215
d2e4a39e
AS
11216 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11217 {
14f9c5c9 11218 const char *tail = strstr (name, "___XF_");
5b4ee69b 11219
14f9c5c9 11220 if (tail == NULL)
dda83cd7 11221 return NULL;
d2e4a39e 11222 else
dda83cd7 11223 return tail + 5;
14f9c5c9
AS
11224 }
11225 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
60bd1d53 11226 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11227 else
11228 return NULL;
11229}
11230
4c4b4cd2 11231/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11232
11233int
b2188a06 11234ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11235{
60bd1d53 11236 return gnat_encoded_fixed_point_type_info (type) != NULL;
14f9c5c9
AS
11237}
11238
4c4b4cd2
PH
11239/* Return non-zero iff TYPE represents a System.Address type. */
11240
11241int
11242ada_is_system_address_type (struct type *type)
11243{
7d93a1e0 11244 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11245}
11246
14f9c5c9 11247/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11248 type, return the target floating-point type to be used to represent
11249 of this type during internal computation. */
11250
11251static struct type *
11252ada_scaling_type (struct type *type)
11253{
11254 return builtin_type (get_type_arch (type))->builtin_long_double;
11255}
11256
11257/* Assuming that TYPE is the representation of an Ada fixed-point
11258 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11259 delta cannot be determined. */
14f9c5c9 11260
50eff16b 11261struct value *
b2188a06 11262gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11263{
60bd1d53 11264 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11265 struct type *scale_type = ada_scaling_type (type);
11266
11267 long long num, den;
11268
11269 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11270 return nullptr;
d2e4a39e 11271 else
50eff16b
UW
11272 return value_binop (value_from_longest (scale_type, num),
11273 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11274}
11275
b2188a06
JB
11276/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11277 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11278
50eff16b 11279struct value *
75f24e86 11280gnat_encoded_fixed_point_scaling_factor (struct type *type)
14f9c5c9 11281{
60bd1d53 11282 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11283 struct type *scale_type = ada_scaling_type (type);
11284
11285 long long num0, den0, num1, den1;
14f9c5c9 11286 int n;
d2e4a39e 11287
50eff16b 11288 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11289 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11290
11291 if (n < 2)
50eff16b 11292 return value_from_longest (scale_type, 1);
14f9c5c9 11293 else if (n == 4)
50eff16b
UW
11294 return value_binop (value_from_longest (scale_type, num1),
11295 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11296 else
50eff16b
UW
11297 return value_binop (value_from_longest (scale_type, num0),
11298 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11299}
11300
14f9c5c9 11301\f
d2e4a39e 11302
dda83cd7 11303 /* Range types */
14f9c5c9
AS
11304
11305/* Scan STR beginning at position K for a discriminant name, and
11306 return the value of that discriminant field of DVAL in *PX. If
11307 PNEW_K is not null, put the position of the character beyond the
11308 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11309 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11310
11311static int
108d56a4 11312scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 11313 int *pnew_k)
14f9c5c9
AS
11314{
11315 static char *bound_buffer = NULL;
11316 static size_t bound_buffer_len = 0;
5da1a4d3 11317 const char *pstart, *pend, *bound;
d2e4a39e 11318 struct value *bound_val;
14f9c5c9
AS
11319
11320 if (dval == NULL || str == NULL || str[k] == '\0')
11321 return 0;
11322
5da1a4d3
SM
11323 pstart = str + k;
11324 pend = strstr (pstart, "__");
14f9c5c9
AS
11325 if (pend == NULL)
11326 {
5da1a4d3 11327 bound = pstart;
14f9c5c9
AS
11328 k += strlen (bound);
11329 }
d2e4a39e 11330 else
14f9c5c9 11331 {
5da1a4d3
SM
11332 int len = pend - pstart;
11333
11334 /* Strip __ and beyond. */
11335 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11336 strncpy (bound_buffer, pstart, len);
11337 bound_buffer[len] = '\0';
11338
14f9c5c9 11339 bound = bound_buffer;
d2e4a39e 11340 k = pend - str;
14f9c5c9 11341 }
d2e4a39e 11342
df407dfe 11343 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11344 if (bound_val == NULL)
11345 return 0;
11346
11347 *px = value_as_long (bound_val);
11348 if (pnew_k != NULL)
11349 *pnew_k = k;
11350 return 1;
11351}
11352
11353/* Value of variable named NAME in the current environment. If
11354 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11355 otherwise causes an error with message ERR_MSG. */
11356
d2e4a39e 11357static struct value *
edb0c9cb 11358get_var_value (const char *name, const char *err_msg)
14f9c5c9 11359{
b5ec771e 11360 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11361
54d343a2 11362 std::vector<struct block_symbol> syms;
b5ec771e
PA
11363 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11364 get_selected_block (0),
11365 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11366
11367 if (nsyms != 1)
11368 {
11369 if (err_msg == NULL)
dda83cd7 11370 return 0;
14f9c5c9 11371 else
dda83cd7 11372 error (("%s"), err_msg);
14f9c5c9
AS
11373 }
11374
54d343a2 11375 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11376}
d2e4a39e 11377
edb0c9cb
PA
11378/* Value of integer variable named NAME in the current environment.
11379 If no such variable is found, returns false. Otherwise, sets VALUE
11380 to the variable's value and returns true. */
4c4b4cd2 11381
edb0c9cb
PA
11382bool
11383get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11384{
4c4b4cd2 11385 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11386
14f9c5c9 11387 if (var_val == 0)
edb0c9cb
PA
11388 return false;
11389
11390 value = value_as_long (var_val);
11391 return true;
14f9c5c9 11392}
d2e4a39e 11393
14f9c5c9
AS
11394
11395/* Return a range type whose base type is that of the range type named
11396 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11397 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11398 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11399 corresponding range type from debug information; fall back to using it
11400 if symbol lookup fails. If a new type must be created, allocate it
11401 like ORIG_TYPE was. The bounds information, in general, is encoded
11402 in NAME, the base type given in the named range type. */
14f9c5c9 11403
d2e4a39e 11404static struct type *
28c85d6c 11405to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11406{
0d5cff50 11407 const char *name;
14f9c5c9 11408 struct type *base_type;
108d56a4 11409 const char *subtype_info;
14f9c5c9 11410
28c85d6c 11411 gdb_assert (raw_type != NULL);
7d93a1e0 11412 gdb_assert (raw_type->name () != NULL);
dddfab26 11413
78134374 11414 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11415 base_type = TYPE_TARGET_TYPE (raw_type);
11416 else
11417 base_type = raw_type;
11418
7d93a1e0 11419 name = raw_type->name ();
14f9c5c9
AS
11420 subtype_info = strstr (name, "___XD");
11421 if (subtype_info == NULL)
690cc4eb 11422 {
43bbcdc2
PH
11423 LONGEST L = ada_discrete_type_low_bound (raw_type);
11424 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11425
690cc4eb
PH
11426 if (L < INT_MIN || U > INT_MAX)
11427 return raw_type;
11428 else
0c9c3474
SA
11429 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11430 L, U);
690cc4eb 11431 }
14f9c5c9
AS
11432 else
11433 {
11434 static char *name_buf = NULL;
11435 static size_t name_len = 0;
11436 int prefix_len = subtype_info - name;
11437 LONGEST L, U;
11438 struct type *type;
108d56a4 11439 const char *bounds_str;
14f9c5c9
AS
11440 int n;
11441
11442 GROW_VECT (name_buf, name_len, prefix_len + 5);
11443 strncpy (name_buf, name, prefix_len);
11444 name_buf[prefix_len] = '\0';
11445
11446 subtype_info += 5;
11447 bounds_str = strchr (subtype_info, '_');
11448 n = 1;
11449
d2e4a39e 11450 if (*subtype_info == 'L')
dda83cd7
SM
11451 {
11452 if (!ada_scan_number (bounds_str, n, &L, &n)
11453 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11454 return raw_type;
11455 if (bounds_str[n] == '_')
11456 n += 2;
11457 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11458 n += 1;
11459 subtype_info += 1;
11460 }
d2e4a39e 11461 else
dda83cd7
SM
11462 {
11463 strcpy (name_buf + prefix_len, "___L");
11464 if (!get_int_var_value (name_buf, L))
11465 {
11466 lim_warning (_("Unknown lower bound, using 1."));
11467 L = 1;
11468 }
11469 }
14f9c5c9 11470
d2e4a39e 11471 if (*subtype_info == 'U')
dda83cd7
SM
11472 {
11473 if (!ada_scan_number (bounds_str, n, &U, &n)
11474 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11475 return raw_type;
11476 }
d2e4a39e 11477 else
dda83cd7
SM
11478 {
11479 strcpy (name_buf + prefix_len, "___U");
11480 if (!get_int_var_value (name_buf, U))
11481 {
11482 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11483 U = L;
11484 }
11485 }
14f9c5c9 11486
0c9c3474
SA
11487 type = create_static_range_type (alloc_type_copy (raw_type),
11488 base_type, L, U);
f5a91472 11489 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11490 to match the size of the base_type, which is not what we want.
11491 Set it back to the original range type's length. */
f5a91472 11492 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11493 type->set_name (name);
14f9c5c9
AS
11494 return type;
11495 }
11496}
11497
4c4b4cd2
PH
11498/* True iff NAME is the name of a range type. */
11499
14f9c5c9 11500int
d2e4a39e 11501ada_is_range_type_name (const char *name)
14f9c5c9
AS
11502{
11503 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11504}
14f9c5c9 11505\f
d2e4a39e 11506
dda83cd7 11507 /* Modular types */
4c4b4cd2
PH
11508
11509/* True iff TYPE is an Ada modular type. */
14f9c5c9 11510
14f9c5c9 11511int
d2e4a39e 11512ada_is_modular_type (struct type *type)
14f9c5c9 11513{
18af8284 11514 struct type *subranged_type = get_base_type (type);
14f9c5c9 11515
78134374 11516 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11517 && subranged_type->code () == TYPE_CODE_INT
11518 && subranged_type->is_unsigned ());
14f9c5c9
AS
11519}
11520
4c4b4cd2
PH
11521/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11522
61ee279c 11523ULONGEST
0056e4d5 11524ada_modulus (struct type *type)
14f9c5c9 11525{
5e500d33
SM
11526 const dynamic_prop &high = type->bounds ()->high;
11527
11528 if (high.kind () == PROP_CONST)
11529 return (ULONGEST) high.const_val () + 1;
11530
11531 /* If TYPE is unresolved, the high bound might be a location list. Return
11532 0, for lack of a better value to return. */
11533 return 0;
14f9c5c9 11534}
d2e4a39e 11535\f
f7f9143b
JB
11536
11537/* Ada exception catchpoint support:
11538 ---------------------------------
11539
11540 We support 3 kinds of exception catchpoints:
11541 . catchpoints on Ada exceptions
11542 . catchpoints on unhandled Ada exceptions
11543 . catchpoints on failed assertions
11544
11545 Exceptions raised during failed assertions, or unhandled exceptions
11546 could perfectly be caught with the general catchpoint on Ada exceptions.
11547 However, we can easily differentiate these two special cases, and having
11548 the option to distinguish these two cases from the rest can be useful
11549 to zero-in on certain situations.
11550
11551 Exception catchpoints are a specialized form of breakpoint,
11552 since they rely on inserting breakpoints inside known routines
11553 of the GNAT runtime. The implementation therefore uses a standard
11554 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11555 of breakpoint_ops.
11556
0259addd
JB
11557 Support in the runtime for exception catchpoints have been changed
11558 a few times already, and these changes affect the implementation
11559 of these catchpoints. In order to be able to support several
11560 variants of the runtime, we use a sniffer that will determine
28010a5d 11561 the runtime variant used by the program being debugged. */
f7f9143b 11562
82eacd52
JB
11563/* Ada's standard exceptions.
11564
11565 The Ada 83 standard also defined Numeric_Error. But there so many
11566 situations where it was unclear from the Ada 83 Reference Manual
11567 (RM) whether Constraint_Error or Numeric_Error should be raised,
11568 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11569 Interpretation saying that anytime the RM says that Numeric_Error
11570 should be raised, the implementation may raise Constraint_Error.
11571 Ada 95 went one step further and pretty much removed Numeric_Error
11572 from the list of standard exceptions (it made it a renaming of
11573 Constraint_Error, to help preserve compatibility when compiling
11574 an Ada83 compiler). As such, we do not include Numeric_Error from
11575 this list of standard exceptions. */
3d0b0fa3 11576
27087b7f 11577static const char * const standard_exc[] = {
3d0b0fa3
JB
11578 "constraint_error",
11579 "program_error",
11580 "storage_error",
11581 "tasking_error"
11582};
11583
0259addd
JB
11584typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11585
11586/* A structure that describes how to support exception catchpoints
11587 for a given executable. */
11588
11589struct exception_support_info
11590{
11591 /* The name of the symbol to break on in order to insert
11592 a catchpoint on exceptions. */
11593 const char *catch_exception_sym;
11594
11595 /* The name of the symbol to break on in order to insert
11596 a catchpoint on unhandled exceptions. */
11597 const char *catch_exception_unhandled_sym;
11598
11599 /* The name of the symbol to break on in order to insert
11600 a catchpoint on failed assertions. */
11601 const char *catch_assert_sym;
11602
9f757bf7
XR
11603 /* The name of the symbol to break on in order to insert
11604 a catchpoint on exception handling. */
11605 const char *catch_handlers_sym;
11606
0259addd
JB
11607 /* Assuming that the inferior just triggered an unhandled exception
11608 catchpoint, this function is responsible for returning the address
11609 in inferior memory where the name of that exception is stored.
11610 Return zero if the address could not be computed. */
11611 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11612};
11613
11614static CORE_ADDR ada_unhandled_exception_name_addr (void);
11615static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11616
11617/* The following exception support info structure describes how to
11618 implement exception catchpoints with the latest version of the
ca683e3a 11619 Ada runtime (as of 2019-08-??). */
0259addd
JB
11620
11621static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11622{
11623 "__gnat_debug_raise_exception", /* catch_exception_sym */
11624 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11625 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11626 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11627 ada_unhandled_exception_name_addr
11628};
11629
11630/* The following exception support info structure describes how to
11631 implement exception catchpoints with an earlier version of the
11632 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11633
11634static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11635{
11636 "__gnat_debug_raise_exception", /* catch_exception_sym */
11637 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11638 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11639 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11640 ada_unhandled_exception_name_addr
11641};
11642
11643/* The following exception support info structure describes how to
11644 implement exception catchpoints with a slightly older version
11645 of the Ada runtime. */
11646
11647static const struct exception_support_info exception_support_info_fallback =
11648{
11649 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11650 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11651 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11652 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11653 ada_unhandled_exception_name_addr_from_raise
11654};
11655
f17011e0
JB
11656/* Return nonzero if we can detect the exception support routines
11657 described in EINFO.
11658
11659 This function errors out if an abnormal situation is detected
11660 (for instance, if we find the exception support routines, but
11661 that support is found to be incomplete). */
11662
11663static int
11664ada_has_this_exception_support (const struct exception_support_info *einfo)
11665{
11666 struct symbol *sym;
11667
11668 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11669 that should be compiled with debugging information. As a result, we
11670 expect to find that symbol in the symtabs. */
11671
11672 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11673 if (sym == NULL)
a6af7abe
JB
11674 {
11675 /* Perhaps we did not find our symbol because the Ada runtime was
11676 compiled without debugging info, or simply stripped of it.
11677 It happens on some GNU/Linux distributions for instance, where
11678 users have to install a separate debug package in order to get
11679 the runtime's debugging info. In that situation, let the user
11680 know why we cannot insert an Ada exception catchpoint.
11681
11682 Note: Just for the purpose of inserting our Ada exception
11683 catchpoint, we could rely purely on the associated minimal symbol.
11684 But we would be operating in degraded mode anyway, since we are
11685 still lacking the debugging info needed later on to extract
11686 the name of the exception being raised (this name is printed in
11687 the catchpoint message, and is also used when trying to catch
11688 a specific exception). We do not handle this case for now. */
3b7344d5 11689 struct bound_minimal_symbol msym
1c8e84b0
JB
11690 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11691
3b7344d5 11692 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11693 error (_("Your Ada runtime appears to be missing some debugging "
11694 "information.\nCannot insert Ada exception catchpoint "
11695 "in this configuration."));
11696
11697 return 0;
11698 }
f17011e0
JB
11699
11700 /* Make sure that the symbol we found corresponds to a function. */
11701
11702 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11703 {
11704 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11705 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11706 return 0;
11707 }
11708
11709 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11710 if (sym == NULL)
11711 {
11712 struct bound_minimal_symbol msym
11713 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11714
11715 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11716 error (_("Your Ada runtime appears to be missing some debugging "
11717 "information.\nCannot insert Ada exception catchpoint "
11718 "in this configuration."));
11719
11720 return 0;
11721 }
11722
11723 /* Make sure that the symbol we found corresponds to a function. */
11724
11725 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11726 {
11727 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11728 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11729 return 0;
11730 }
f17011e0
JB
11731
11732 return 1;
11733}
11734
0259addd
JB
11735/* Inspect the Ada runtime and determine which exception info structure
11736 should be used to provide support for exception catchpoints.
11737
3eecfa55
JB
11738 This function will always set the per-inferior exception_info,
11739 or raise an error. */
0259addd
JB
11740
11741static void
11742ada_exception_support_info_sniffer (void)
11743{
3eecfa55 11744 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11745
11746 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11747 if (data->exception_info != NULL)
0259addd
JB
11748 return;
11749
11750 /* Check the latest (default) exception support info. */
f17011e0 11751 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11752 {
3eecfa55 11753 data->exception_info = &default_exception_support_info;
0259addd
JB
11754 return;
11755 }
11756
ca683e3a
AO
11757 /* Try the v0 exception suport info. */
11758 if (ada_has_this_exception_support (&exception_support_info_v0))
11759 {
11760 data->exception_info = &exception_support_info_v0;
11761 return;
11762 }
11763
0259addd 11764 /* Try our fallback exception suport info. */
f17011e0 11765 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11766 {
3eecfa55 11767 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11768 return;
11769 }
11770
11771 /* Sometimes, it is normal for us to not be able to find the routine
11772 we are looking for. This happens when the program is linked with
11773 the shared version of the GNAT runtime, and the program has not been
11774 started yet. Inform the user of these two possible causes if
11775 applicable. */
11776
ccefe4c4 11777 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11778 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11779
11780 /* If the symbol does not exist, then check that the program is
11781 already started, to make sure that shared libraries have been
11782 loaded. If it is not started, this may mean that the symbol is
11783 in a shared library. */
11784
e99b03dc 11785 if (inferior_ptid.pid () == 0)
0259addd
JB
11786 error (_("Unable to insert catchpoint. Try to start the program first."));
11787
11788 /* At this point, we know that we are debugging an Ada program and
11789 that the inferior has been started, but we still are not able to
0963b4bd 11790 find the run-time symbols. That can mean that we are in
0259addd
JB
11791 configurable run time mode, or that a-except as been optimized
11792 out by the linker... In any case, at this point it is not worth
11793 supporting this feature. */
11794
7dda8cff 11795 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11796}
11797
f7f9143b
JB
11798/* True iff FRAME is very likely to be that of a function that is
11799 part of the runtime system. This is all very heuristic, but is
11800 intended to be used as advice as to what frames are uninteresting
11801 to most users. */
11802
11803static int
11804is_known_support_routine (struct frame_info *frame)
11805{
692465f1 11806 enum language func_lang;
f7f9143b 11807 int i;
f35a17b5 11808 const char *fullname;
f7f9143b 11809
4ed6b5be
JB
11810 /* If this code does not have any debugging information (no symtab),
11811 This cannot be any user code. */
f7f9143b 11812
51abb421 11813 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11814 if (sal.symtab == NULL)
11815 return 1;
11816
4ed6b5be
JB
11817 /* If there is a symtab, but the associated source file cannot be
11818 located, then assume this is not user code: Selecting a frame
11819 for which we cannot display the code would not be very helpful
11820 for the user. This should also take care of case such as VxWorks
11821 where the kernel has some debugging info provided for a few units. */
f7f9143b 11822
f35a17b5
JK
11823 fullname = symtab_to_fullname (sal.symtab);
11824 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11825 return 1;
11826
85102364 11827 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11828 We also check the name of the objfile against the name of some
11829 known system libraries that sometimes come with debugging info
11830 too. */
11831
f7f9143b
JB
11832 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11833 {
11834 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11835 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11836 return 1;
eb822aa6 11837 if (SYMTAB_OBJFILE (sal.symtab) != NULL
dda83cd7
SM
11838 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11839 return 1;
f7f9143b
JB
11840 }
11841
4ed6b5be 11842 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11843
c6dc63a1
TT
11844 gdb::unique_xmalloc_ptr<char> func_name
11845 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11846 if (func_name == NULL)
11847 return 1;
11848
11849 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11850 {
11851 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11852 if (re_exec (func_name.get ()))
11853 return 1;
f7f9143b
JB
11854 }
11855
11856 return 0;
11857}
11858
11859/* Find the first frame that contains debugging information and that is not
11860 part of the Ada run-time, starting from FI and moving upward. */
11861
0ef643c8 11862void
f7f9143b
JB
11863ada_find_printable_frame (struct frame_info *fi)
11864{
11865 for (; fi != NULL; fi = get_prev_frame (fi))
11866 {
11867 if (!is_known_support_routine (fi))
dda83cd7
SM
11868 {
11869 select_frame (fi);
11870 break;
11871 }
f7f9143b
JB
11872 }
11873
11874}
11875
11876/* Assuming that the inferior just triggered an unhandled exception
11877 catchpoint, return the address in inferior memory where the name
11878 of the exception is stored.
11879
11880 Return zero if the address could not be computed. */
11881
11882static CORE_ADDR
11883ada_unhandled_exception_name_addr (void)
0259addd
JB
11884{
11885 return parse_and_eval_address ("e.full_name");
11886}
11887
11888/* Same as ada_unhandled_exception_name_addr, except that this function
11889 should be used when the inferior uses an older version of the runtime,
11890 where the exception name needs to be extracted from a specific frame
11891 several frames up in the callstack. */
11892
11893static CORE_ADDR
11894ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11895{
11896 int frame_level;
11897 struct frame_info *fi;
3eecfa55 11898 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11899
11900 /* To determine the name of this exception, we need to select
11901 the frame corresponding to RAISE_SYM_NAME. This frame is
11902 at least 3 levels up, so we simply skip the first 3 frames
11903 without checking the name of their associated function. */
11904 fi = get_current_frame ();
11905 for (frame_level = 0; frame_level < 3; frame_level += 1)
11906 if (fi != NULL)
11907 fi = get_prev_frame (fi);
11908
11909 while (fi != NULL)
11910 {
692465f1
JB
11911 enum language func_lang;
11912
c6dc63a1
TT
11913 gdb::unique_xmalloc_ptr<char> func_name
11914 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11915 if (func_name != NULL)
11916 {
dda83cd7 11917 if (strcmp (func_name.get (),
55b87a52
KS
11918 data->exception_info->catch_exception_sym) == 0)
11919 break; /* We found the frame we were looking for... */
55b87a52 11920 }
fb44b1a7 11921 fi = get_prev_frame (fi);
f7f9143b
JB
11922 }
11923
11924 if (fi == NULL)
11925 return 0;
11926
11927 select_frame (fi);
11928 return parse_and_eval_address ("id.full_name");
11929}
11930
11931/* Assuming the inferior just triggered an Ada exception catchpoint
11932 (of any type), return the address in inferior memory where the name
11933 of the exception is stored, if applicable.
11934
45db7c09
PA
11935 Assumes the selected frame is the current frame.
11936
f7f9143b
JB
11937 Return zero if the address could not be computed, or if not relevant. */
11938
11939static CORE_ADDR
761269c8 11940ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11941 struct breakpoint *b)
f7f9143b 11942{
3eecfa55
JB
11943 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11944
f7f9143b
JB
11945 switch (ex)
11946 {
761269c8 11947 case ada_catch_exception:
dda83cd7
SM
11948 return (parse_and_eval_address ("e.full_name"));
11949 break;
f7f9143b 11950
761269c8 11951 case ada_catch_exception_unhandled:
dda83cd7
SM
11952 return data->exception_info->unhandled_exception_name_addr ();
11953 break;
9f757bf7
XR
11954
11955 case ada_catch_handlers:
dda83cd7 11956 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11957 name. */
dda83cd7 11958 break;
9f757bf7 11959
761269c8 11960 case ada_catch_assert:
dda83cd7
SM
11961 return 0; /* Exception name is not relevant in this case. */
11962 break;
f7f9143b
JB
11963
11964 default:
dda83cd7
SM
11965 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11966 break;
f7f9143b
JB
11967 }
11968
11969 return 0; /* Should never be reached. */
11970}
11971
e547c119
JB
11972/* Assuming the inferior is stopped at an exception catchpoint,
11973 return the message which was associated to the exception, if
11974 available. Return NULL if the message could not be retrieved.
11975
e547c119
JB
11976 Note: The exception message can be associated to an exception
11977 either through the use of the Raise_Exception function, or
11978 more simply (Ada 2005 and later), via:
11979
11980 raise Exception_Name with "exception message";
11981
11982 */
11983
6f46ac85 11984static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11985ada_exception_message_1 (void)
11986{
11987 struct value *e_msg_val;
e547c119 11988 int e_msg_len;
e547c119
JB
11989
11990 /* For runtimes that support this feature, the exception message
11991 is passed as an unbounded string argument called "message". */
11992 e_msg_val = parse_and_eval ("message");
11993 if (e_msg_val == NULL)
11994 return NULL; /* Exception message not supported. */
11995
11996 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11997 gdb_assert (e_msg_val != NULL);
11998 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11999
12000 /* If the message string is empty, then treat it as if there was
12001 no exception message. */
12002 if (e_msg_len <= 0)
12003 return NULL;
12004
15f3b077
TT
12005 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12006 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12007 e_msg_len);
12008 e_msg.get ()[e_msg_len] = '\0';
12009
12010 return e_msg;
e547c119
JB
12011}
12012
12013/* Same as ada_exception_message_1, except that all exceptions are
12014 contained here (returning NULL instead). */
12015
6f46ac85 12016static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12017ada_exception_message (void)
12018{
6f46ac85 12019 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12020
a70b8144 12021 try
e547c119
JB
12022 {
12023 e_msg = ada_exception_message_1 ();
12024 }
230d2906 12025 catch (const gdb_exception_error &e)
e547c119 12026 {
6f46ac85 12027 e_msg.reset (nullptr);
e547c119 12028 }
e547c119
JB
12029
12030 return e_msg;
12031}
12032
f7f9143b
JB
12033/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12034 any error that ada_exception_name_addr_1 might cause to be thrown.
12035 When an error is intercepted, a warning with the error message is printed,
12036 and zero is returned. */
12037
12038static CORE_ADDR
761269c8 12039ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 12040 struct breakpoint *b)
f7f9143b 12041{
f7f9143b
JB
12042 CORE_ADDR result = 0;
12043
a70b8144 12044 try
f7f9143b
JB
12045 {
12046 result = ada_exception_name_addr_1 (ex, b);
12047 }
12048
230d2906 12049 catch (const gdb_exception_error &e)
f7f9143b 12050 {
3d6e9d23 12051 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12052 return 0;
12053 }
12054
12055 return result;
12056}
12057
cb7de75e 12058static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12059 (const char *excep_string,
12060 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12061
12062/* Ada catchpoints.
12063
12064 In the case of catchpoints on Ada exceptions, the catchpoint will
12065 stop the target on every exception the program throws. When a user
12066 specifies the name of a specific exception, we translate this
12067 request into a condition expression (in text form), and then parse
12068 it into an expression stored in each of the catchpoint's locations.
12069 We then use this condition to check whether the exception that was
12070 raised is the one the user is interested in. If not, then the
12071 target is resumed again. We store the name of the requested
12072 exception, in order to be able to re-set the condition expression
12073 when symbols change. */
12074
12075/* An instance of this type is used to represent an Ada catchpoint
5625a286 12076 breakpoint location. */
28010a5d 12077
5625a286 12078class ada_catchpoint_location : public bp_location
28010a5d 12079{
5625a286 12080public:
5f486660 12081 ada_catchpoint_location (breakpoint *owner)
f06f1252 12082 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12083 {}
28010a5d
PA
12084
12085 /* The condition that checks whether the exception that was raised
12086 is the specific exception the user specified on catchpoint
12087 creation. */
4d01a485 12088 expression_up excep_cond_expr;
28010a5d
PA
12089};
12090
c1fc2657 12091/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12092
c1fc2657 12093struct ada_catchpoint : public breakpoint
28010a5d 12094{
37f6a7f4
TT
12095 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12096 : m_kind (kind)
12097 {
12098 }
12099
28010a5d 12100 /* The name of the specific exception the user specified. */
bc18fbb5 12101 std::string excep_string;
37f6a7f4
TT
12102
12103 /* What kind of catchpoint this is. */
12104 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12105};
12106
12107/* Parse the exception condition string in the context of each of the
12108 catchpoint's locations, and store them for later evaluation. */
12109
12110static void
9f757bf7 12111create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 12112 enum ada_exception_catchpoint_kind ex)
28010a5d 12113{
fccf9de1
TT
12114 struct bp_location *bl;
12115
28010a5d 12116 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12117 if (c->excep_string.empty ())
28010a5d
PA
12118 return;
12119
12120 /* Same if there are no locations... */
c1fc2657 12121 if (c->loc == NULL)
28010a5d
PA
12122 return;
12123
fccf9de1
TT
12124 /* Compute the condition expression in text form, from the specific
12125 expection we want to catch. */
12126 std::string cond_string
12127 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12128
fccf9de1
TT
12129 /* Iterate over all the catchpoint's locations, and parse an
12130 expression for each. */
12131 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12132 {
12133 struct ada_catchpoint_location *ada_loc
fccf9de1 12134 = (struct ada_catchpoint_location *) bl;
4d01a485 12135 expression_up exp;
28010a5d 12136
fccf9de1 12137 if (!bl->shlib_disabled)
28010a5d 12138 {
bbc13ae3 12139 const char *s;
28010a5d 12140
cb7de75e 12141 s = cond_string.c_str ();
a70b8144 12142 try
28010a5d 12143 {
fccf9de1
TT
12144 exp = parse_exp_1 (&s, bl->address,
12145 block_for_pc (bl->address),
036e657b 12146 0);
28010a5d 12147 }
230d2906 12148 catch (const gdb_exception_error &e)
849f2b52
JB
12149 {
12150 warning (_("failed to reevaluate internal exception condition "
12151 "for catchpoint %d: %s"),
3d6e9d23 12152 c->number, e.what ());
849f2b52 12153 }
28010a5d
PA
12154 }
12155
b22e99fd 12156 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12157 }
28010a5d
PA
12158}
12159
28010a5d
PA
12160/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12161 structure for all exception catchpoint kinds. */
12162
12163static struct bp_location *
37f6a7f4 12164allocate_location_exception (struct breakpoint *self)
28010a5d 12165{
5f486660 12166 return new ada_catchpoint_location (self);
28010a5d
PA
12167}
12168
12169/* Implement the RE_SET method in the breakpoint_ops structure for all
12170 exception catchpoint kinds. */
12171
12172static void
37f6a7f4 12173re_set_exception (struct breakpoint *b)
28010a5d
PA
12174{
12175 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12176
12177 /* Call the base class's method. This updates the catchpoint's
12178 locations. */
2060206e 12179 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12180
12181 /* Reparse the exception conditional expressions. One for each
12182 location. */
37f6a7f4 12183 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12184}
12185
12186/* Returns true if we should stop for this breakpoint hit. If the
12187 user specified a specific exception, we only want to cause a stop
12188 if the program thrown that exception. */
12189
12190static int
12191should_stop_exception (const struct bp_location *bl)
12192{
12193 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12194 const struct ada_catchpoint_location *ada_loc
12195 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12196 int stop;
12197
37f6a7f4
TT
12198 struct internalvar *var = lookup_internalvar ("_ada_exception");
12199 if (c->m_kind == ada_catch_assert)
12200 clear_internalvar (var);
12201 else
12202 {
12203 try
12204 {
12205 const char *expr;
12206
12207 if (c->m_kind == ada_catch_handlers)
12208 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12209 ".all.occurrence.id");
12210 else
12211 expr = "e";
12212
12213 struct value *exc = parse_and_eval (expr);
12214 set_internalvar (var, exc);
12215 }
12216 catch (const gdb_exception_error &ex)
12217 {
12218 clear_internalvar (var);
12219 }
12220 }
12221
28010a5d 12222 /* With no specific exception, should always stop. */
bc18fbb5 12223 if (c->excep_string.empty ())
28010a5d
PA
12224 return 1;
12225
12226 if (ada_loc->excep_cond_expr == NULL)
12227 {
12228 /* We will have a NULL expression if back when we were creating
12229 the expressions, this location's had failed to parse. */
12230 return 1;
12231 }
12232
12233 stop = 1;
a70b8144 12234 try
28010a5d
PA
12235 {
12236 struct value *mark;
12237
12238 mark = value_mark ();
4d01a485 12239 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12240 value_free_to_mark (mark);
12241 }
230d2906 12242 catch (const gdb_exception &ex)
492d29ea
PA
12243 {
12244 exception_fprintf (gdb_stderr, ex,
12245 _("Error in testing exception condition:\n"));
12246 }
492d29ea 12247
28010a5d
PA
12248 return stop;
12249}
12250
12251/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12252 for all exception catchpoint kinds. */
12253
12254static void
37f6a7f4 12255check_status_exception (bpstat bs)
28010a5d
PA
12256{
12257 bs->stop = should_stop_exception (bs->bp_location_at);
12258}
12259
f7f9143b
JB
12260/* Implement the PRINT_IT method in the breakpoint_ops structure
12261 for all exception catchpoint kinds. */
12262
12263static enum print_stop_action
37f6a7f4 12264print_it_exception (bpstat bs)
f7f9143b 12265{
79a45e25 12266 struct ui_out *uiout = current_uiout;
348d480f
PA
12267 struct breakpoint *b = bs->breakpoint_at;
12268
956a9fb9 12269 annotate_catchpoint (b->number);
f7f9143b 12270
112e8700 12271 if (uiout->is_mi_like_p ())
f7f9143b 12272 {
112e8700 12273 uiout->field_string ("reason",
956a9fb9 12274 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12275 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12276 }
12277
112e8700
SM
12278 uiout->text (b->disposition == disp_del
12279 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12280 uiout->field_signed ("bkptno", b->number);
112e8700 12281 uiout->text (", ");
f7f9143b 12282
45db7c09
PA
12283 /* ada_exception_name_addr relies on the selected frame being the
12284 current frame. Need to do this here because this function may be
12285 called more than once when printing a stop, and below, we'll
12286 select the first frame past the Ada run-time (see
12287 ada_find_printable_frame). */
12288 select_frame (get_current_frame ());
12289
37f6a7f4
TT
12290 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12291 switch (c->m_kind)
f7f9143b 12292 {
761269c8
JB
12293 case ada_catch_exception:
12294 case ada_catch_exception_unhandled:
9f757bf7 12295 case ada_catch_handlers:
956a9fb9 12296 {
37f6a7f4 12297 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12298 char exception_name[256];
12299
12300 if (addr != 0)
12301 {
c714b426
PA
12302 read_memory (addr, (gdb_byte *) exception_name,
12303 sizeof (exception_name) - 1);
956a9fb9
JB
12304 exception_name [sizeof (exception_name) - 1] = '\0';
12305 }
12306 else
12307 {
12308 /* For some reason, we were unable to read the exception
12309 name. This could happen if the Runtime was compiled
12310 without debugging info, for instance. In that case,
12311 just replace the exception name by the generic string
12312 "exception" - it will read as "an exception" in the
12313 notification we are about to print. */
967cff16 12314 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12315 }
12316 /* In the case of unhandled exception breakpoints, we print
12317 the exception name as "unhandled EXCEPTION_NAME", to make
12318 it clearer to the user which kind of catchpoint just got
12319 hit. We used ui_out_text to make sure that this extra
12320 info does not pollute the exception name in the MI case. */
37f6a7f4 12321 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12322 uiout->text ("unhandled ");
12323 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12324 }
12325 break;
761269c8 12326 case ada_catch_assert:
956a9fb9
JB
12327 /* In this case, the name of the exception is not really
12328 important. Just print "failed assertion" to make it clearer
12329 that his program just hit an assertion-failure catchpoint.
12330 We used ui_out_text because this info does not belong in
12331 the MI output. */
112e8700 12332 uiout->text ("failed assertion");
956a9fb9 12333 break;
f7f9143b 12334 }
e547c119 12335
6f46ac85 12336 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12337 if (exception_message != NULL)
12338 {
e547c119 12339 uiout->text (" (");
6f46ac85 12340 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12341 uiout->text (")");
e547c119
JB
12342 }
12343
112e8700 12344 uiout->text (" at ");
956a9fb9 12345 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12346
12347 return PRINT_SRC_AND_LOC;
12348}
12349
12350/* Implement the PRINT_ONE method in the breakpoint_ops structure
12351 for all exception catchpoint kinds. */
12352
12353static void
37f6a7f4 12354print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12355{
79a45e25 12356 struct ui_out *uiout = current_uiout;
28010a5d 12357 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12358 struct value_print_options opts;
12359
12360 get_user_print_options (&opts);
f06f1252 12361
79a45b7d 12362 if (opts.addressprint)
f06f1252 12363 uiout->field_skip ("addr");
f7f9143b
JB
12364
12365 annotate_field (5);
37f6a7f4 12366 switch (c->m_kind)
f7f9143b 12367 {
761269c8 12368 case ada_catch_exception:
dda83cd7
SM
12369 if (!c->excep_string.empty ())
12370 {
bc18fbb5
TT
12371 std::string msg = string_printf (_("`%s' Ada exception"),
12372 c->excep_string.c_str ());
28010a5d 12373
dda83cd7
SM
12374 uiout->field_string ("what", msg);
12375 }
12376 else
12377 uiout->field_string ("what", "all Ada exceptions");
12378
12379 break;
f7f9143b 12380
761269c8 12381 case ada_catch_exception_unhandled:
dda83cd7
SM
12382 uiout->field_string ("what", "unhandled Ada exceptions");
12383 break;
f7f9143b 12384
9f757bf7 12385 case ada_catch_handlers:
dda83cd7
SM
12386 if (!c->excep_string.empty ())
12387 {
9f757bf7
XR
12388 uiout->field_fmt ("what",
12389 _("`%s' Ada exception handlers"),
bc18fbb5 12390 c->excep_string.c_str ());
dda83cd7
SM
12391 }
12392 else
9f757bf7 12393 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 12394 break;
9f757bf7 12395
761269c8 12396 case ada_catch_assert:
dda83cd7
SM
12397 uiout->field_string ("what", "failed Ada assertions");
12398 break;
f7f9143b
JB
12399
12400 default:
dda83cd7
SM
12401 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12402 break;
f7f9143b
JB
12403 }
12404}
12405
12406/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12407 for all exception catchpoint kinds. */
12408
12409static void
37f6a7f4 12410print_mention_exception (struct breakpoint *b)
f7f9143b 12411{
28010a5d 12412 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12413 struct ui_out *uiout = current_uiout;
28010a5d 12414
112e8700 12415 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 12416 : _("Catchpoint "));
381befee 12417 uiout->field_signed ("bkptno", b->number);
112e8700 12418 uiout->text (": ");
00eb2c4a 12419
37f6a7f4 12420 switch (c->m_kind)
f7f9143b 12421 {
761269c8 12422 case ada_catch_exception:
dda83cd7 12423 if (!c->excep_string.empty ())
00eb2c4a 12424 {
862d101a 12425 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12426 c->excep_string.c_str ());
862d101a 12427 uiout->text (info.c_str ());
00eb2c4a 12428 }
dda83cd7
SM
12429 else
12430 uiout->text (_("all Ada exceptions"));
12431 break;
f7f9143b 12432
761269c8 12433 case ada_catch_exception_unhandled:
dda83cd7
SM
12434 uiout->text (_("unhandled Ada exceptions"));
12435 break;
9f757bf7
XR
12436
12437 case ada_catch_handlers:
dda83cd7 12438 if (!c->excep_string.empty ())
9f757bf7
XR
12439 {
12440 std::string info
12441 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12442 c->excep_string.c_str ());
9f757bf7
XR
12443 uiout->text (info.c_str ());
12444 }
dda83cd7
SM
12445 else
12446 uiout->text (_("all Ada exceptions handlers"));
12447 break;
9f757bf7 12448
761269c8 12449 case ada_catch_assert:
dda83cd7
SM
12450 uiout->text (_("failed Ada assertions"));
12451 break;
f7f9143b
JB
12452
12453 default:
dda83cd7
SM
12454 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12455 break;
f7f9143b
JB
12456 }
12457}
12458
6149aea9
PA
12459/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12460 for all exception catchpoint kinds. */
12461
12462static void
37f6a7f4 12463print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12464{
28010a5d
PA
12465 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12466
37f6a7f4 12467 switch (c->m_kind)
6149aea9 12468 {
761269c8 12469 case ada_catch_exception:
6149aea9 12470 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12471 if (!c->excep_string.empty ())
12472 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12473 break;
12474
761269c8 12475 case ada_catch_exception_unhandled:
78076abc 12476 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12477 break;
12478
9f757bf7
XR
12479 case ada_catch_handlers:
12480 fprintf_filtered (fp, "catch handlers");
12481 break;
12482
761269c8 12483 case ada_catch_assert:
6149aea9
PA
12484 fprintf_filtered (fp, "catch assert");
12485 break;
12486
12487 default:
12488 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12489 }
d9b3f62e 12490 print_recreate_thread (b, fp);
6149aea9
PA
12491}
12492
37f6a7f4 12493/* Virtual tables for various breakpoint types. */
2060206e 12494static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12495static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12496static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12497static struct breakpoint_ops catch_handlers_breakpoint_ops;
12498
f06f1252
TT
12499/* See ada-lang.h. */
12500
12501bool
12502is_ada_exception_catchpoint (breakpoint *bp)
12503{
12504 return (bp->ops == &catch_exception_breakpoint_ops
12505 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12506 || bp->ops == &catch_assert_breakpoint_ops
12507 || bp->ops == &catch_handlers_breakpoint_ops);
12508}
12509
f7f9143b
JB
12510/* Split the arguments specified in a "catch exception" command.
12511 Set EX to the appropriate catchpoint type.
28010a5d 12512 Set EXCEP_STRING to the name of the specific exception if
5845583d 12513 specified by the user.
9f757bf7
XR
12514 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12515 "catch handlers" command. False otherwise.
5845583d
JB
12516 If a condition is found at the end of the arguments, the condition
12517 expression is stored in COND_STRING (memory must be deallocated
12518 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12519
12520static void
a121b7c1 12521catch_ada_exception_command_split (const char *args,
9f757bf7 12522 bool is_catch_handlers_cmd,
dda83cd7 12523 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12524 std::string *excep_string,
12525 std::string *cond_string)
f7f9143b 12526{
bc18fbb5 12527 std::string exception_name;
f7f9143b 12528
bc18fbb5
TT
12529 exception_name = extract_arg (&args);
12530 if (exception_name == "if")
5845583d
JB
12531 {
12532 /* This is not an exception name; this is the start of a condition
12533 expression for a catchpoint on all exceptions. So, "un-get"
12534 this token, and set exception_name to NULL. */
bc18fbb5 12535 exception_name.clear ();
5845583d
JB
12536 args -= 2;
12537 }
f7f9143b 12538
5845583d 12539 /* Check to see if we have a condition. */
f7f9143b 12540
f1735a53 12541 args = skip_spaces (args);
61012eef 12542 if (startswith (args, "if")
5845583d
JB
12543 && (isspace (args[2]) || args[2] == '\0'))
12544 {
12545 args += 2;
f1735a53 12546 args = skip_spaces (args);
5845583d
JB
12547
12548 if (args[0] == '\0')
dda83cd7 12549 error (_("Condition missing after `if' keyword"));
bc18fbb5 12550 *cond_string = args;
5845583d
JB
12551
12552 args += strlen (args);
12553 }
12554
12555 /* Check that we do not have any more arguments. Anything else
12556 is unexpected. */
f7f9143b
JB
12557
12558 if (args[0] != '\0')
12559 error (_("Junk at end of expression"));
12560
9f757bf7
XR
12561 if (is_catch_handlers_cmd)
12562 {
12563 /* Catch handling of exceptions. */
12564 *ex = ada_catch_handlers;
12565 *excep_string = exception_name;
12566 }
bc18fbb5 12567 else if (exception_name.empty ())
f7f9143b
JB
12568 {
12569 /* Catch all exceptions. */
761269c8 12570 *ex = ada_catch_exception;
bc18fbb5 12571 excep_string->clear ();
f7f9143b 12572 }
bc18fbb5 12573 else if (exception_name == "unhandled")
f7f9143b
JB
12574 {
12575 /* Catch unhandled exceptions. */
761269c8 12576 *ex = ada_catch_exception_unhandled;
bc18fbb5 12577 excep_string->clear ();
f7f9143b
JB
12578 }
12579 else
12580 {
12581 /* Catch a specific exception. */
761269c8 12582 *ex = ada_catch_exception;
28010a5d 12583 *excep_string = exception_name;
f7f9143b
JB
12584 }
12585}
12586
12587/* Return the name of the symbol on which we should break in order to
12588 implement a catchpoint of the EX kind. */
12589
12590static const char *
761269c8 12591ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12592{
3eecfa55
JB
12593 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12594
12595 gdb_assert (data->exception_info != NULL);
0259addd 12596
f7f9143b
JB
12597 switch (ex)
12598 {
761269c8 12599 case ada_catch_exception:
dda83cd7
SM
12600 return (data->exception_info->catch_exception_sym);
12601 break;
761269c8 12602 case ada_catch_exception_unhandled:
dda83cd7
SM
12603 return (data->exception_info->catch_exception_unhandled_sym);
12604 break;
761269c8 12605 case ada_catch_assert:
dda83cd7
SM
12606 return (data->exception_info->catch_assert_sym);
12607 break;
9f757bf7 12608 case ada_catch_handlers:
dda83cd7
SM
12609 return (data->exception_info->catch_handlers_sym);
12610 break;
f7f9143b 12611 default:
dda83cd7
SM
12612 internal_error (__FILE__, __LINE__,
12613 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12614 }
12615}
12616
12617/* Return the breakpoint ops "virtual table" used for catchpoints
12618 of the EX kind. */
12619
c0a91b2b 12620static const struct breakpoint_ops *
761269c8 12621ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12622{
12623 switch (ex)
12624 {
761269c8 12625 case ada_catch_exception:
dda83cd7
SM
12626 return (&catch_exception_breakpoint_ops);
12627 break;
761269c8 12628 case ada_catch_exception_unhandled:
dda83cd7
SM
12629 return (&catch_exception_unhandled_breakpoint_ops);
12630 break;
761269c8 12631 case ada_catch_assert:
dda83cd7
SM
12632 return (&catch_assert_breakpoint_ops);
12633 break;
9f757bf7 12634 case ada_catch_handlers:
dda83cd7
SM
12635 return (&catch_handlers_breakpoint_ops);
12636 break;
f7f9143b 12637 default:
dda83cd7
SM
12638 internal_error (__FILE__, __LINE__,
12639 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12640 }
12641}
12642
12643/* Return the condition that will be used to match the current exception
12644 being raised with the exception that the user wants to catch. This
12645 assumes that this condition is used when the inferior just triggered
12646 an exception catchpoint.
cb7de75e 12647 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12648
cb7de75e 12649static std::string
9f757bf7 12650ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12651 enum ada_exception_catchpoint_kind ex)
f7f9143b 12652{
3d0b0fa3 12653 int i;
fccf9de1 12654 bool is_standard_exc = false;
cb7de75e 12655 std::string result;
9f757bf7
XR
12656
12657 if (ex == ada_catch_handlers)
12658 {
12659 /* For exception handlers catchpoints, the condition string does
dda83cd7 12660 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12661 result = ("long_integer (GNAT_GCC_exception_Access"
12662 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12663 }
12664 else
fccf9de1 12665 result = "long_integer (e)";
3d0b0fa3 12666
0963b4bd 12667 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12668 runtime units that have been compiled without debugging info; if
28010a5d 12669 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12670 exception (e.g. "constraint_error") then, during the evaluation
12671 of the condition expression, the symbol lookup on this name would
0963b4bd 12672 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12673 may then be set only on user-defined exceptions which have the
12674 same not-fully-qualified name (e.g. my_package.constraint_error).
12675
12676 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12677 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12678 exception constraint_error" is rewritten into "catch exception
12679 standard.constraint_error".
12680
85102364 12681 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12682 the inferior program, then the only way to specify this exception as a
12683 breakpoint condition is to use its fully-qualified named:
fccf9de1 12684 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12685
12686 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12687 {
28010a5d 12688 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12689 {
fccf9de1 12690 is_standard_exc = true;
9f757bf7 12691 break;
3d0b0fa3
JB
12692 }
12693 }
9f757bf7 12694
fccf9de1
TT
12695 result += " = ";
12696
12697 if (is_standard_exc)
12698 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12699 else
12700 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12701
9f757bf7 12702 return result;
f7f9143b
JB
12703}
12704
12705/* Return the symtab_and_line that should be used to insert an exception
12706 catchpoint of the TYPE kind.
12707
28010a5d
PA
12708 ADDR_STRING returns the name of the function where the real
12709 breakpoint that implements the catchpoints is set, depending on the
12710 type of catchpoint we need to create. */
f7f9143b
JB
12711
12712static struct symtab_and_line
bc18fbb5 12713ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12714 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12715{
12716 const char *sym_name;
12717 struct symbol *sym;
f7f9143b 12718
0259addd
JB
12719 /* First, find out which exception support info to use. */
12720 ada_exception_support_info_sniffer ();
12721
12722 /* Then lookup the function on which we will break in order to catch
f7f9143b 12723 the Ada exceptions requested by the user. */
f7f9143b
JB
12724 sym_name = ada_exception_sym_name (ex);
12725 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12726
57aff202
JB
12727 if (sym == NULL)
12728 error (_("Catchpoint symbol not found: %s"), sym_name);
12729
12730 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12731 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12732
12733 /* Set ADDR_STRING. */
cc12f4a8 12734 *addr_string = sym_name;
f7f9143b 12735
f7f9143b 12736 /* Set OPS. */
4b9eee8c 12737 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12738
f17011e0 12739 return find_function_start_sal (sym, 1);
f7f9143b
JB
12740}
12741
b4a5b78b 12742/* Create an Ada exception catchpoint.
f7f9143b 12743
b4a5b78b 12744 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12745
bc18fbb5 12746 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12747 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12748 of the exception to which this catchpoint applies.
2df4d1d5 12749
bc18fbb5 12750 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12751
b4a5b78b
JB
12752 TEMPFLAG, if nonzero, means that the underlying breakpoint
12753 should be temporary.
28010a5d 12754
b4a5b78b 12755 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12756
349774ef 12757void
28010a5d 12758create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12759 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12760 const std::string &excep_string,
56ecd069 12761 const std::string &cond_string,
28010a5d 12762 int tempflag,
349774ef 12763 int disabled,
28010a5d
PA
12764 int from_tty)
12765{
cc12f4a8 12766 std::string addr_string;
b4a5b78b 12767 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12768 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12769
37f6a7f4 12770 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12771 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12772 ops, tempflag, disabled, from_tty);
28010a5d 12773 c->excep_string = excep_string;
9f757bf7 12774 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12775 if (!cond_string.empty ())
733d554a 12776 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12777 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12778}
12779
9ac4176b
PA
12780/* Implement the "catch exception" command. */
12781
12782static void
eb4c3f4a 12783catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12784 struct cmd_list_element *command)
12785{
a121b7c1 12786 const char *arg = arg_entry;
9ac4176b
PA
12787 struct gdbarch *gdbarch = get_current_arch ();
12788 int tempflag;
761269c8 12789 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12790 std::string excep_string;
56ecd069 12791 std::string cond_string;
9ac4176b
PA
12792
12793 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12794
12795 if (!arg)
12796 arg = "";
9f757bf7 12797 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12798 &cond_string);
9f757bf7
XR
12799 create_ada_exception_catchpoint (gdbarch, ex_kind,
12800 excep_string, cond_string,
12801 tempflag, 1 /* enabled */,
12802 from_tty);
12803}
12804
12805/* Implement the "catch handlers" command. */
12806
12807static void
12808catch_ada_handlers_command (const char *arg_entry, int from_tty,
12809 struct cmd_list_element *command)
12810{
12811 const char *arg = arg_entry;
12812 struct gdbarch *gdbarch = get_current_arch ();
12813 int tempflag;
12814 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12815 std::string excep_string;
56ecd069 12816 std::string cond_string;
9f757bf7
XR
12817
12818 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12819
12820 if (!arg)
12821 arg = "";
12822 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12823 &cond_string);
b4a5b78b
JB
12824 create_ada_exception_catchpoint (gdbarch, ex_kind,
12825 excep_string, cond_string,
349774ef
JB
12826 tempflag, 1 /* enabled */,
12827 from_tty);
9ac4176b
PA
12828}
12829
71bed2db
TT
12830/* Completion function for the Ada "catch" commands. */
12831
12832static void
12833catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12834 const char *text, const char *word)
12835{
12836 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12837
12838 for (const ada_exc_info &info : exceptions)
12839 {
12840 if (startswith (info.name, word))
b02f78f9 12841 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12842 }
12843}
12844
b4a5b78b 12845/* Split the arguments specified in a "catch assert" command.
5845583d 12846
b4a5b78b
JB
12847 ARGS contains the command's arguments (or the empty string if
12848 no arguments were passed).
5845583d
JB
12849
12850 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12851 (the memory needs to be deallocated after use). */
5845583d 12852
b4a5b78b 12853static void
56ecd069 12854catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12855{
f1735a53 12856 args = skip_spaces (args);
f7f9143b 12857
5845583d 12858 /* Check whether a condition was provided. */
61012eef 12859 if (startswith (args, "if")
5845583d 12860 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12861 {
5845583d 12862 args += 2;
f1735a53 12863 args = skip_spaces (args);
5845583d 12864 if (args[0] == '\0')
dda83cd7 12865 error (_("condition missing after `if' keyword"));
56ecd069 12866 cond_string.assign (args);
f7f9143b
JB
12867 }
12868
5845583d
JB
12869 /* Otherwise, there should be no other argument at the end of
12870 the command. */
12871 else if (args[0] != '\0')
12872 error (_("Junk at end of arguments."));
f7f9143b
JB
12873}
12874
9ac4176b
PA
12875/* Implement the "catch assert" command. */
12876
12877static void
eb4c3f4a 12878catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12879 struct cmd_list_element *command)
12880{
a121b7c1 12881 const char *arg = arg_entry;
9ac4176b
PA
12882 struct gdbarch *gdbarch = get_current_arch ();
12883 int tempflag;
56ecd069 12884 std::string cond_string;
9ac4176b
PA
12885
12886 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12887
12888 if (!arg)
12889 arg = "";
56ecd069 12890 catch_ada_assert_command_split (arg, cond_string);
761269c8 12891 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12892 "", cond_string,
349774ef
JB
12893 tempflag, 1 /* enabled */,
12894 from_tty);
9ac4176b 12895}
778865d3
JB
12896
12897/* Return non-zero if the symbol SYM is an Ada exception object. */
12898
12899static int
12900ada_is_exception_sym (struct symbol *sym)
12901{
7d93a1e0 12902 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12903
12904 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
dda83cd7
SM
12905 && SYMBOL_CLASS (sym) != LOC_BLOCK
12906 && SYMBOL_CLASS (sym) != LOC_CONST
12907 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12908 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12909}
12910
12911/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12912 Ada exception object. This matches all exceptions except the ones
12913 defined by the Ada language. */
12914
12915static int
12916ada_is_non_standard_exception_sym (struct symbol *sym)
12917{
12918 int i;
12919
12920 if (!ada_is_exception_sym (sym))
12921 return 0;
12922
12923 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12924 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12925 return 0; /* A standard exception. */
12926
12927 /* Numeric_Error is also a standard exception, so exclude it.
12928 See the STANDARD_EXC description for more details as to why
12929 this exception is not listed in that array. */
987012b8 12930 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12931 return 0;
12932
12933 return 1;
12934}
12935
ab816a27 12936/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12937 objects.
12938
12939 The comparison is determined first by exception name, and then
12940 by exception address. */
12941
ab816a27 12942bool
cc536b21 12943ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12944{
778865d3
JB
12945 int result;
12946
ab816a27
TT
12947 result = strcmp (name, other.name);
12948 if (result < 0)
12949 return true;
12950 if (result == 0 && addr < other.addr)
12951 return true;
12952 return false;
12953}
778865d3 12954
ab816a27 12955bool
cc536b21 12956ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12957{
12958 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12959}
12960
12961/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12962 routine, but keeping the first SKIP elements untouched.
12963
12964 All duplicates are also removed. */
12965
12966static void
ab816a27 12967sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12968 int skip)
12969{
ab816a27
TT
12970 std::sort (exceptions->begin () + skip, exceptions->end ());
12971 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12972 exceptions->end ());
778865d3
JB
12973}
12974
778865d3
JB
12975/* Add all exceptions defined by the Ada standard whose name match
12976 a regular expression.
12977
12978 If PREG is not NULL, then this regexp_t object is used to
12979 perform the symbol name matching. Otherwise, no name-based
12980 filtering is performed.
12981
12982 EXCEPTIONS is a vector of exceptions to which matching exceptions
12983 gets pushed. */
12984
12985static void
2d7cc5c7 12986ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12987 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12988{
12989 int i;
12990
12991 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12992 {
12993 if (preg == NULL
2d7cc5c7 12994 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12995 {
12996 struct bound_minimal_symbol msymbol
12997 = ada_lookup_simple_minsym (standard_exc[i]);
12998
12999 if (msymbol.minsym != NULL)
13000 {
13001 struct ada_exc_info info
77e371c0 13002 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13003
ab816a27 13004 exceptions->push_back (info);
778865d3
JB
13005 }
13006 }
13007 }
13008}
13009
13010/* Add all Ada exceptions defined locally and accessible from the given
13011 FRAME.
13012
13013 If PREG is not NULL, then this regexp_t object is used to
13014 perform the symbol name matching. Otherwise, no name-based
13015 filtering is performed.
13016
13017 EXCEPTIONS is a vector of exceptions to which matching exceptions
13018 gets pushed. */
13019
13020static void
2d7cc5c7
PA
13021ada_add_exceptions_from_frame (compiled_regex *preg,
13022 struct frame_info *frame,
ab816a27 13023 std::vector<ada_exc_info> *exceptions)
778865d3 13024{
3977b71f 13025 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13026
13027 while (block != 0)
13028 {
13029 struct block_iterator iter;
13030 struct symbol *sym;
13031
13032 ALL_BLOCK_SYMBOLS (block, iter, sym)
13033 {
13034 switch (SYMBOL_CLASS (sym))
13035 {
13036 case LOC_TYPEDEF:
13037 case LOC_BLOCK:
13038 case LOC_CONST:
13039 break;
13040 default:
13041 if (ada_is_exception_sym (sym))
13042 {
987012b8 13043 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13044 SYMBOL_VALUE_ADDRESS (sym)};
13045
ab816a27 13046 exceptions->push_back (info);
778865d3
JB
13047 }
13048 }
13049 }
13050 if (BLOCK_FUNCTION (block) != NULL)
13051 break;
13052 block = BLOCK_SUPERBLOCK (block);
13053 }
13054}
13055
14bc53a8
PA
13056/* Return true if NAME matches PREG or if PREG is NULL. */
13057
13058static bool
2d7cc5c7 13059name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13060{
13061 return (preg == NULL
f945dedf 13062 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13063}
13064
778865d3
JB
13065/* Add all exceptions defined globally whose name name match
13066 a regular expression, excluding standard exceptions.
13067
13068 The reason we exclude standard exceptions is that they need
13069 to be handled separately: Standard exceptions are defined inside
13070 a runtime unit which is normally not compiled with debugging info,
13071 and thus usually do not show up in our symbol search. However,
13072 if the unit was in fact built with debugging info, we need to
13073 exclude them because they would duplicate the entry we found
13074 during the special loop that specifically searches for those
13075 standard exceptions.
13076
13077 If PREG is not NULL, then this regexp_t object is used to
13078 perform the symbol name matching. Otherwise, no name-based
13079 filtering is performed.
13080
13081 EXCEPTIONS is a vector of exceptions to which matching exceptions
13082 gets pushed. */
13083
13084static void
2d7cc5c7 13085ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13086 std::vector<ada_exc_info> *exceptions)
778865d3 13087{
14bc53a8
PA
13088 /* In Ada, the symbol "search name" is a linkage name, whereas the
13089 regular expression used to do the matching refers to the natural
13090 name. So match against the decoded name. */
13091 expand_symtabs_matching (NULL,
b5ec771e 13092 lookup_name_info::match_any (),
14bc53a8
PA
13093 [&] (const char *search_name)
13094 {
f945dedf
CB
13095 std::string decoded = ada_decode (search_name);
13096 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13097 },
13098 NULL,
13099 VARIABLES_DOMAIN);
778865d3 13100
2030c079 13101 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13102 {
b669c953 13103 for (compunit_symtab *s : objfile->compunits ())
778865d3 13104 {
d8aeb77f
TT
13105 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13106 int i;
778865d3 13107
d8aeb77f
TT
13108 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13109 {
582942f4 13110 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13111 struct block_iterator iter;
13112 struct symbol *sym;
778865d3 13113
d8aeb77f
TT
13114 ALL_BLOCK_SYMBOLS (b, iter, sym)
13115 if (ada_is_non_standard_exception_sym (sym)
987012b8 13116 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13117 {
13118 struct ada_exc_info info
987012b8 13119 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13120
13121 exceptions->push_back (info);
13122 }
13123 }
778865d3
JB
13124 }
13125 }
13126}
13127
13128/* Implements ada_exceptions_list with the regular expression passed
13129 as a regex_t, rather than a string.
13130
13131 If not NULL, PREG is used to filter out exceptions whose names
13132 do not match. Otherwise, all exceptions are listed. */
13133
ab816a27 13134static std::vector<ada_exc_info>
2d7cc5c7 13135ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13136{
ab816a27 13137 std::vector<ada_exc_info> result;
778865d3
JB
13138 int prev_len;
13139
13140 /* First, list the known standard exceptions. These exceptions
13141 need to be handled separately, as they are usually defined in
13142 runtime units that have been compiled without debugging info. */
13143
13144 ada_add_standard_exceptions (preg, &result);
13145
13146 /* Next, find all exceptions whose scope is local and accessible
13147 from the currently selected frame. */
13148
13149 if (has_stack_frames ())
13150 {
ab816a27 13151 prev_len = result.size ();
778865d3
JB
13152 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13153 &result);
ab816a27 13154 if (result.size () > prev_len)
778865d3
JB
13155 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13156 }
13157
13158 /* Add all exceptions whose scope is global. */
13159
ab816a27 13160 prev_len = result.size ();
778865d3 13161 ada_add_global_exceptions (preg, &result);
ab816a27 13162 if (result.size () > prev_len)
778865d3
JB
13163 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13164
778865d3
JB
13165 return result;
13166}
13167
13168/* Return a vector of ada_exc_info.
13169
13170 If REGEXP is NULL, all exceptions are included in the result.
13171 Otherwise, it should contain a valid regular expression,
13172 and only the exceptions whose names match that regular expression
13173 are included in the result.
13174
13175 The exceptions are sorted in the following order:
13176 - Standard exceptions (defined by the Ada language), in
13177 alphabetical order;
13178 - Exceptions only visible from the current frame, in
13179 alphabetical order;
13180 - Exceptions whose scope is global, in alphabetical order. */
13181
ab816a27 13182std::vector<ada_exc_info>
778865d3
JB
13183ada_exceptions_list (const char *regexp)
13184{
2d7cc5c7
PA
13185 if (regexp == NULL)
13186 return ada_exceptions_list_1 (NULL);
778865d3 13187
2d7cc5c7
PA
13188 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13189 return ada_exceptions_list_1 (&reg);
778865d3
JB
13190}
13191
13192/* Implement the "info exceptions" command. */
13193
13194static void
1d12d88f 13195info_exceptions_command (const char *regexp, int from_tty)
778865d3 13196{
778865d3 13197 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13198
ab816a27 13199 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13200
13201 if (regexp != NULL)
13202 printf_filtered
13203 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13204 else
13205 printf_filtered (_("All defined Ada exceptions:\n"));
13206
ab816a27
TT
13207 for (const ada_exc_info &info : exceptions)
13208 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13209}
13210
dda83cd7 13211 /* Operators */
4c4b4cd2
PH
13212/* Information about operators given special treatment in functions
13213 below. */
13214/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13215
13216#define ADA_OPERATORS \
13217 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13218 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13219 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13220 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13221 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13222 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13223 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13224 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13225 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13226 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13227 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13228 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13229 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13230 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13231 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13232 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13233 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13234 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13235 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13236
13237static void
554794dc
SDJ
13238ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13239 int *argsp)
4c4b4cd2
PH
13240{
13241 switch (exp->elts[pc - 1].opcode)
13242 {
76a01679 13243 default:
4c4b4cd2
PH
13244 operator_length_standard (exp, pc, oplenp, argsp);
13245 break;
13246
13247#define OP_DEFN(op, len, args, binop) \
13248 case op: *oplenp = len; *argsp = args; break;
13249 ADA_OPERATORS;
13250#undef OP_DEFN
52ce6436
PH
13251
13252 case OP_AGGREGATE:
13253 *oplenp = 3;
13254 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13255 break;
13256
13257 case OP_CHOICES:
13258 *oplenp = 3;
13259 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13260 break;
4c4b4cd2
PH
13261 }
13262}
13263
c0201579
JK
13264/* Implementation of the exp_descriptor method operator_check. */
13265
13266static int
13267ada_operator_check (struct expression *exp, int pos,
13268 int (*objfile_func) (struct objfile *objfile, void *data),
13269 void *data)
13270{
13271 const union exp_element *const elts = exp->elts;
13272 struct type *type = NULL;
13273
13274 switch (elts[pos].opcode)
13275 {
13276 case UNOP_IN_RANGE:
13277 case UNOP_QUAL:
13278 type = elts[pos + 1].type;
13279 break;
13280
13281 default:
13282 return operator_check_standard (exp, pos, objfile_func, data);
13283 }
13284
13285 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13286
13287 if (type && TYPE_OBJFILE (type)
13288 && (*objfile_func) (TYPE_OBJFILE (type), data))
13289 return 1;
13290
13291 return 0;
13292}
13293
4c4b4cd2
PH
13294/* As for operator_length, but assumes PC is pointing at the first
13295 element of the operator, and gives meaningful results only for the
52ce6436 13296 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13297
13298static void
76a01679 13299ada_forward_operator_length (struct expression *exp, int pc,
dda83cd7 13300 int *oplenp, int *argsp)
4c4b4cd2 13301{
76a01679 13302 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13303 {
13304 default:
13305 *oplenp = *argsp = 0;
13306 break;
52ce6436 13307
4c4b4cd2
PH
13308#define OP_DEFN(op, len, args, binop) \
13309 case op: *oplenp = len; *argsp = args; break;
13310 ADA_OPERATORS;
13311#undef OP_DEFN
52ce6436
PH
13312
13313 case OP_AGGREGATE:
13314 *oplenp = 3;
13315 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13316 break;
13317
13318 case OP_CHOICES:
13319 *oplenp = 3;
13320 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13321 break;
13322
13323 case OP_STRING:
13324 case OP_NAME:
13325 {
13326 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13327
52ce6436
PH
13328 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13329 *argsp = 0;
13330 break;
13331 }
4c4b4cd2
PH
13332 }
13333}
13334
13335static int
13336ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13337{
13338 enum exp_opcode op = exp->elts[elt].opcode;
13339 int oplen, nargs;
13340 int pc = elt;
13341 int i;
76a01679 13342
4c4b4cd2
PH
13343 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13344
76a01679 13345 switch (op)
4c4b4cd2 13346 {
76a01679 13347 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13348 case OP_ATR_FIRST:
13349 case OP_ATR_LAST:
13350 case OP_ATR_LENGTH:
13351 case OP_ATR_IMAGE:
13352 case OP_ATR_MAX:
13353 case OP_ATR_MIN:
13354 case OP_ATR_MODULUS:
13355 case OP_ATR_POS:
13356 case OP_ATR_SIZE:
13357 case OP_ATR_TAG:
13358 case OP_ATR_VAL:
13359 break;
13360
13361 case UNOP_IN_RANGE:
13362 case UNOP_QUAL:
323e0a4a
AC
13363 /* XXX: gdb_sprint_host_address, type_sprint */
13364 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13365 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13366 fprintf_filtered (stream, " (");
13367 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13368 fprintf_filtered (stream, ")");
13369 break;
13370 case BINOP_IN_BOUNDS:
52ce6436
PH
13371 fprintf_filtered (stream, " (%d)",
13372 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13373 break;
13374 case TERNOP_IN_RANGE:
13375 break;
13376
52ce6436
PH
13377 case OP_AGGREGATE:
13378 case OP_OTHERS:
13379 case OP_DISCRETE_RANGE:
13380 case OP_POSITIONAL:
13381 case OP_CHOICES:
13382 break;
13383
13384 case OP_NAME:
13385 case OP_STRING:
13386 {
13387 char *name = &exp->elts[elt + 2].string;
13388 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13389
52ce6436
PH
13390 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13391 break;
13392 }
13393
4c4b4cd2
PH
13394 default:
13395 return dump_subexp_body_standard (exp, stream, elt);
13396 }
13397
13398 elt += oplen;
13399 for (i = 0; i < nargs; i += 1)
13400 elt = dump_subexp (exp, stream, elt);
13401
13402 return elt;
13403}
13404
13405/* The Ada extension of print_subexp (q.v.). */
13406
76a01679
JB
13407static void
13408ada_print_subexp (struct expression *exp, int *pos,
dda83cd7 13409 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13410{
52ce6436 13411 int oplen, nargs, i;
4c4b4cd2
PH
13412 int pc = *pos;
13413 enum exp_opcode op = exp->elts[pc].opcode;
13414
13415 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13416
52ce6436 13417 *pos += oplen;
4c4b4cd2
PH
13418 switch (op)
13419 {
13420 default:
52ce6436 13421 *pos -= oplen;
4c4b4cd2
PH
13422 print_subexp_standard (exp, pos, stream, prec);
13423 return;
13424
13425 case OP_VAR_VALUE:
987012b8 13426 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13427 return;
13428
13429 case BINOP_IN_BOUNDS:
323e0a4a 13430 /* XXX: sprint_subexp */
4c4b4cd2 13431 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13432 fputs_filtered (" in ", stream);
4c4b4cd2 13433 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13434 fputs_filtered ("'range", stream);
4c4b4cd2 13435 if (exp->elts[pc + 1].longconst > 1)
dda83cd7
SM
13436 fprintf_filtered (stream, "(%ld)",
13437 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13438 return;
13439
13440 case TERNOP_IN_RANGE:
4c4b4cd2 13441 if (prec >= PREC_EQUAL)
dda83cd7 13442 fputs_filtered ("(", stream);
323e0a4a 13443 /* XXX: sprint_subexp */
4c4b4cd2 13444 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13445 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13446 print_subexp (exp, pos, stream, PREC_EQUAL);
13447 fputs_filtered (" .. ", stream);
13448 print_subexp (exp, pos, stream, PREC_EQUAL);
13449 if (prec >= PREC_EQUAL)
dda83cd7 13450 fputs_filtered (")", stream);
76a01679 13451 return;
4c4b4cd2
PH
13452
13453 case OP_ATR_FIRST:
13454 case OP_ATR_LAST:
13455 case OP_ATR_LENGTH:
13456 case OP_ATR_IMAGE:
13457 case OP_ATR_MAX:
13458 case OP_ATR_MIN:
13459 case OP_ATR_MODULUS:
13460 case OP_ATR_POS:
13461 case OP_ATR_SIZE:
13462 case OP_ATR_TAG:
13463 case OP_ATR_VAL:
4c4b4cd2 13464 if (exp->elts[*pos].opcode == OP_TYPE)
dda83cd7
SM
13465 {
13466 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13467 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
79d43c61 13468 &type_print_raw_options);
dda83cd7
SM
13469 *pos += 3;
13470 }
4c4b4cd2 13471 else
dda83cd7 13472 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13473 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13474 if (nargs > 1)
dda83cd7
SM
13475 {
13476 int tem;
13477
13478 for (tem = 1; tem < nargs; tem += 1)
13479 {
13480 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13481 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13482 }
13483 fputs_filtered (")", stream);
13484 }
4c4b4cd2 13485 return;
14f9c5c9 13486
4c4b4cd2 13487 case UNOP_QUAL:
4c4b4cd2
PH
13488 type_print (exp->elts[pc + 1].type, "", stream, 0);
13489 fputs_filtered ("'(", stream);
13490 print_subexp (exp, pos, stream, PREC_PREFIX);
13491 fputs_filtered (")", stream);
13492 return;
14f9c5c9 13493
4c4b4cd2 13494 case UNOP_IN_RANGE:
323e0a4a 13495 /* XXX: sprint_subexp */
4c4b4cd2 13496 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13497 fputs_filtered (" in ", stream);
79d43c61
TT
13498 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13499 &type_print_raw_options);
4c4b4cd2 13500 return;
52ce6436
PH
13501
13502 case OP_DISCRETE_RANGE:
13503 print_subexp (exp, pos, stream, PREC_SUFFIX);
13504 fputs_filtered ("..", stream);
13505 print_subexp (exp, pos, stream, PREC_SUFFIX);
13506 return;
13507
13508 case OP_OTHERS:
13509 fputs_filtered ("others => ", stream);
13510 print_subexp (exp, pos, stream, PREC_SUFFIX);
13511 return;
13512
13513 case OP_CHOICES:
13514 for (i = 0; i < nargs-1; i += 1)
13515 {
13516 if (i > 0)
13517 fputs_filtered ("|", stream);
13518 print_subexp (exp, pos, stream, PREC_SUFFIX);
13519 }
13520 fputs_filtered (" => ", stream);
13521 print_subexp (exp, pos, stream, PREC_SUFFIX);
13522 return;
13523
13524 case OP_POSITIONAL:
13525 print_subexp (exp, pos, stream, PREC_SUFFIX);
13526 return;
13527
13528 case OP_AGGREGATE:
13529 fputs_filtered ("(", stream);
13530 for (i = 0; i < nargs; i += 1)
13531 {
13532 if (i > 0)
13533 fputs_filtered (", ", stream);
13534 print_subexp (exp, pos, stream, PREC_SUFFIX);
13535 }
13536 fputs_filtered (")", stream);
13537 return;
4c4b4cd2
PH
13538 }
13539}
14f9c5c9
AS
13540
13541/* Table mapping opcodes into strings for printing operators
13542 and precedences of the operators. */
13543
d2e4a39e
AS
13544static const struct op_print ada_op_print_tab[] = {
13545 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13546 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13547 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13548 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13549 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13550 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13551 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13552 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13553 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13554 {">=", BINOP_GEQ, PREC_ORDER, 0},
13555 {">", BINOP_GTR, PREC_ORDER, 0},
13556 {"<", BINOP_LESS, PREC_ORDER, 0},
13557 {">>", BINOP_RSH, PREC_SHIFT, 0},
13558 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13559 {"+", BINOP_ADD, PREC_ADD, 0},
13560 {"-", BINOP_SUB, PREC_ADD, 0},
13561 {"&", BINOP_CONCAT, PREC_ADD, 0},
13562 {"*", BINOP_MUL, PREC_MUL, 0},
13563 {"/", BINOP_DIV, PREC_MUL, 0},
13564 {"rem", BINOP_REM, PREC_MUL, 0},
13565 {"mod", BINOP_MOD, PREC_MUL, 0},
13566 {"**", BINOP_EXP, PREC_REPEAT, 0},
13567 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13568 {"-", UNOP_NEG, PREC_PREFIX, 0},
13569 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13570 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13571 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13572 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13573 {".all", UNOP_IND, PREC_SUFFIX, 1},
13574 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13575 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13576 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9 13577};
6c038f32
PH
13578\f
13579 /* Language vector */
13580
6c038f32
PH
13581static const struct exp_descriptor ada_exp_descriptor = {
13582 ada_print_subexp,
13583 ada_operator_length,
c0201579 13584 ada_operator_check,
6c038f32
PH
13585 ada_dump_subexp_body,
13586 ada_evaluate_subexp
13587};
13588
b5ec771e
PA
13589/* symbol_name_matcher_ftype adapter for wild_match. */
13590
13591static bool
13592do_wild_match (const char *symbol_search_name,
13593 const lookup_name_info &lookup_name,
a207cff2 13594 completion_match_result *comp_match_res)
b5ec771e
PA
13595{
13596 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13597}
13598
13599/* symbol_name_matcher_ftype adapter for full_match. */
13600
13601static bool
13602do_full_match (const char *symbol_search_name,
13603 const lookup_name_info &lookup_name,
a207cff2 13604 completion_match_result *comp_match_res)
b5ec771e
PA
13605{
13606 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13607}
13608
a2cd4f14
JB
13609/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13610
13611static bool
13612do_exact_match (const char *symbol_search_name,
13613 const lookup_name_info &lookup_name,
13614 completion_match_result *comp_match_res)
13615{
13616 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13617}
13618
b5ec771e
PA
13619/* Build the Ada lookup name for LOOKUP_NAME. */
13620
13621ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13622{
e0802d59 13623 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13624
13625 if (user_name[0] == '<')
13626 {
13627 if (user_name.back () == '>')
e0802d59 13628 m_encoded_name
5ac58899 13629 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 13630 else
e0802d59 13631 m_encoded_name
5ac58899 13632 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
13633 m_encoded_p = true;
13634 m_verbatim_p = true;
13635 m_wild_match_p = false;
13636 m_standard_p = false;
13637 }
13638 else
13639 {
13640 m_verbatim_p = false;
13641
e0802d59 13642 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13643
13644 if (!m_encoded_p)
13645 {
e0802d59 13646 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
13647 m_encoded_name = ada_encode_1 (folded, false);
13648 if (m_encoded_name.empty ())
5ac58899 13649 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13650 }
13651 else
5ac58899 13652 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13653
13654 /* Handle the 'package Standard' special case. See description
13655 of m_standard_p. */
13656 if (startswith (m_encoded_name.c_str (), "standard__"))
13657 {
13658 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13659 m_standard_p = true;
13660 }
13661 else
13662 m_standard_p = false;
74ccd7f5 13663
b5ec771e
PA
13664 /* If the name contains a ".", then the user is entering a fully
13665 qualified entity name, and the match must not be done in wild
13666 mode. Similarly, if the user wants to complete what looks
13667 like an encoded name, the match must not be done in wild
13668 mode. Also, in the standard__ special case always do
13669 non-wild matching. */
13670 m_wild_match_p
13671 = (lookup_name.match_type () != symbol_name_match_type::FULL
13672 && !m_encoded_p
13673 && !m_standard_p
13674 && user_name.find ('.') == std::string::npos);
13675 }
13676}
13677
13678/* symbol_name_matcher_ftype method for Ada. This only handles
13679 completion mode. */
13680
13681static bool
13682ada_symbol_name_matches (const char *symbol_search_name,
13683 const lookup_name_info &lookup_name,
a207cff2 13684 completion_match_result *comp_match_res)
74ccd7f5 13685{
b5ec771e
PA
13686 return lookup_name.ada ().matches (symbol_search_name,
13687 lookup_name.match_type (),
a207cff2 13688 comp_match_res);
b5ec771e
PA
13689}
13690
de63c46b
PA
13691/* A name matcher that matches the symbol name exactly, with
13692 strcmp. */
13693
13694static bool
13695literal_symbol_name_matcher (const char *symbol_search_name,
13696 const lookup_name_info &lookup_name,
13697 completion_match_result *comp_match_res)
13698{
e0802d59 13699 gdb::string_view name_view = lookup_name.name ();
de63c46b 13700
e0802d59
TT
13701 if (lookup_name.completion_mode ()
13702 ? (strncmp (symbol_search_name, name_view.data (),
13703 name_view.size ()) == 0)
13704 : symbol_search_name == name_view)
de63c46b
PA
13705 {
13706 if (comp_match_res != NULL)
13707 comp_match_res->set_match (symbol_search_name);
13708 return true;
13709 }
13710 else
13711 return false;
13712}
13713
c9debfb9 13714/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13715 Ada. */
13716
13717static symbol_name_matcher_ftype *
13718ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13719{
de63c46b
PA
13720 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13721 return literal_symbol_name_matcher;
13722
b5ec771e
PA
13723 if (lookup_name.completion_mode ())
13724 return ada_symbol_name_matches;
74ccd7f5 13725 else
b5ec771e
PA
13726 {
13727 if (lookup_name.ada ().wild_match_p ())
13728 return do_wild_match;
a2cd4f14
JB
13729 else if (lookup_name.ada ().verbatim_p ())
13730 return do_exact_match;
b5ec771e
PA
13731 else
13732 return do_full_match;
13733 }
74ccd7f5
JB
13734}
13735
0874fd07
AB
13736/* Class representing the Ada language. */
13737
13738class ada_language : public language_defn
13739{
13740public:
13741 ada_language ()
0e25e767 13742 : language_defn (language_ada)
0874fd07 13743 { /* Nothing. */ }
5bd40f2a 13744
6f7664a9
AB
13745 /* See language.h. */
13746
13747 const char *name () const override
13748 { return "ada"; }
13749
13750 /* See language.h. */
13751
13752 const char *natural_name () const override
13753 { return "Ada"; }
13754
e171d6f1
AB
13755 /* See language.h. */
13756
13757 const std::vector<const char *> &filename_extensions () const override
13758 {
13759 static const std::vector<const char *> extensions
13760 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13761 return extensions;
13762 }
13763
5bd40f2a
AB
13764 /* Print an array element index using the Ada syntax. */
13765
13766 void print_array_index (struct type *index_type,
13767 LONGEST index,
13768 struct ui_file *stream,
13769 const value_print_options *options) const override
13770 {
13771 struct value *index_value = val_atr (index_type, index);
13772
00c696a6 13773 value_print (index_value, stream, options);
5bd40f2a
AB
13774 fprintf_filtered (stream, " => ");
13775 }
15e5fd35
AB
13776
13777 /* Implement the "read_var_value" language_defn method for Ada. */
13778
13779 struct value *read_var_value (struct symbol *var,
13780 const struct block *var_block,
13781 struct frame_info *frame) const override
13782 {
13783 /* The only case where default_read_var_value is not sufficient
13784 is when VAR is a renaming... */
13785 if (frame != nullptr)
13786 {
13787 const struct block *frame_block = get_frame_block (frame, NULL);
13788 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13789 return ada_read_renaming_var_value (var, frame_block);
13790 }
13791
13792 /* This is a typical case where we expect the default_read_var_value
13793 function to work. */
13794 return language_defn::read_var_value (var, var_block, frame);
13795 }
1fb314aa
AB
13796
13797 /* See language.h. */
13798 void language_arch_info (struct gdbarch *gdbarch,
13799 struct language_arch_info *lai) const override
13800 {
13801 const struct builtin_type *builtin = builtin_type (gdbarch);
13802
7bea47f0
AB
13803 /* Helper function to allow shorter lines below. */
13804 auto add = [&] (struct type *t)
13805 {
13806 lai->add_primitive_type (t);
13807 };
13808
13809 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13810 0, "integer"));
13811 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13812 0, "long_integer"));
13813 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13814 0, "short_integer"));
13815 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13816 0, "character");
13817 lai->set_string_char_type (char_type);
13818 add (char_type);
13819 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13820 "float", gdbarch_float_format (gdbarch)));
13821 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13822 "long_float", gdbarch_double_format (gdbarch)));
13823 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13824 0, "long_long_integer"));
13825 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13826 "long_long_float",
13827 gdbarch_long_double_format (gdbarch)));
13828 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13829 0, "natural"));
13830 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13831 0, "positive"));
13832 add (builtin->builtin_void);
13833
13834 struct type *system_addr_ptr
1fb314aa
AB
13835 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13836 "void"));
7bea47f0
AB
13837 system_addr_ptr->set_name ("system__address");
13838 add (system_addr_ptr);
1fb314aa
AB
13839
13840 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13841 type. This is a signed integral type whose size is the same as
13842 the size of addresses. */
7bea47f0
AB
13843 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13844 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13845 "storage_offset"));
1fb314aa 13846
7bea47f0 13847 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 13848 }
4009ee92
AB
13849
13850 /* See language.h. */
13851
13852 bool iterate_over_symbols
13853 (const struct block *block, const lookup_name_info &name,
13854 domain_enum domain,
13855 gdb::function_view<symbol_found_callback_ftype> callback) const override
13856 {
13857 std::vector<struct block_symbol> results;
13858
13859 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13860 for (block_symbol &sym : results)
13861 {
13862 if (!callback (&sym))
13863 return false;
13864 }
13865
13866 return true;
13867 }
6f827019
AB
13868
13869 /* See language.h. */
13870 bool sniff_from_mangled_name (const char *mangled,
13871 char **out) const override
13872 {
13873 std::string demangled = ada_decode (mangled);
13874
13875 *out = NULL;
13876
13877 if (demangled != mangled && demangled[0] != '<')
13878 {
13879 /* Set the gsymbol language to Ada, but still return 0.
13880 Two reasons for that:
13881
13882 1. For Ada, we prefer computing the symbol's decoded name
13883 on the fly rather than pre-compute it, in order to save
13884 memory (Ada projects are typically very large).
13885
13886 2. There are some areas in the definition of the GNAT
13887 encoding where, with a bit of bad luck, we might be able
13888 to decode a non-Ada symbol, generating an incorrect
13889 demangled name (Eg: names ending with "TB" for instance
13890 are identified as task bodies and so stripped from
13891 the decoded name returned).
13892
13893 Returning true, here, but not setting *DEMANGLED, helps us get
13894 a little bit of the best of both worlds. Because we're last,
13895 we should not affect any of the other languages that were
13896 able to demangle the symbol before us; we get to correctly
13897 tag Ada symbols as such; and even if we incorrectly tagged a
13898 non-Ada symbol, which should be rare, any routing through the
13899 Ada language should be transparent (Ada tries to behave much
13900 like C/C++ with non-Ada symbols). */
13901 return true;
13902 }
13903
13904 return false;
13905 }
fbfb0a46
AB
13906
13907 /* See language.h. */
13908
5399db93 13909 char *demangle_symbol (const char *mangled, int options) const override
0a50df5d
AB
13910 {
13911 return ada_la_decode (mangled, options);
13912 }
13913
13914 /* See language.h. */
13915
fbfb0a46
AB
13916 void print_type (struct type *type, const char *varstring,
13917 struct ui_file *stream, int show, int level,
13918 const struct type_print_options *flags) const override
13919 {
13920 ada_print_type (type, varstring, stream, show, level, flags);
13921 }
c9debfb9 13922
53fc67f8
AB
13923 /* See language.h. */
13924
13925 const char *word_break_characters (void) const override
13926 {
13927 return ada_completer_word_break_characters;
13928 }
13929
7e56227d
AB
13930 /* See language.h. */
13931
13932 void collect_symbol_completion_matches (completion_tracker &tracker,
13933 complete_symbol_mode mode,
13934 symbol_name_match_type name_match_type,
13935 const char *text, const char *word,
13936 enum type_code code) const override
13937 {
13938 struct symbol *sym;
13939 const struct block *b, *surrounding_static_block = 0;
13940 struct block_iterator iter;
13941
13942 gdb_assert (code == TYPE_CODE_UNDEF);
13943
13944 lookup_name_info lookup_name (text, name_match_type, true);
13945
13946 /* First, look at the partial symtab symbols. */
13947 expand_symtabs_matching (NULL,
13948 lookup_name,
13949 NULL,
13950 NULL,
13951 ALL_DOMAIN);
13952
13953 /* At this point scan through the misc symbol vectors and add each
13954 symbol you find to the list. Eventually we want to ignore
13955 anything that isn't a text symbol (everything else will be
13956 handled by the psymtab code above). */
13957
13958 for (objfile *objfile : current_program_space->objfiles ())
13959 {
13960 for (minimal_symbol *msymbol : objfile->msymbols ())
13961 {
13962 QUIT;
13963
13964 if (completion_skip_symbol (mode, msymbol))
13965 continue;
13966
13967 language symbol_language = msymbol->language ();
13968
13969 /* Ada minimal symbols won't have their language set to Ada. If
13970 we let completion_list_add_name compare using the
13971 default/C-like matcher, then when completing e.g., symbols in a
13972 package named "pck", we'd match internal Ada symbols like
13973 "pckS", which are invalid in an Ada expression, unless you wrap
13974 them in '<' '>' to request a verbatim match.
13975
13976 Unfortunately, some Ada encoded names successfully demangle as
13977 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13978 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13979 with the wrong language set. Paper over that issue here. */
13980 if (symbol_language == language_auto
13981 || symbol_language == language_cplus)
13982 symbol_language = language_ada;
13983
13984 completion_list_add_name (tracker,
13985 symbol_language,
13986 msymbol->linkage_name (),
13987 lookup_name, text, word);
13988 }
13989 }
13990
13991 /* Search upwards from currently selected frame (so that we can
13992 complete on local vars. */
13993
13994 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13995 {
13996 if (!BLOCK_SUPERBLOCK (b))
13997 surrounding_static_block = b; /* For elmin of dups */
13998
13999 ALL_BLOCK_SYMBOLS (b, iter, sym)
14000 {
14001 if (completion_skip_symbol (mode, sym))
14002 continue;
14003
14004 completion_list_add_name (tracker,
14005 sym->language (),
14006 sym->linkage_name (),
14007 lookup_name, text, word);
14008 }
14009 }
14010
14011 /* Go through the symtabs and check the externs and statics for
14012 symbols which match. */
14013
14014 for (objfile *objfile : current_program_space->objfiles ())
14015 {
14016 for (compunit_symtab *s : objfile->compunits ())
14017 {
14018 QUIT;
14019 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14020 ALL_BLOCK_SYMBOLS (b, iter, sym)
14021 {
14022 if (completion_skip_symbol (mode, sym))
14023 continue;
14024
14025 completion_list_add_name (tracker,
14026 sym->language (),
14027 sym->linkage_name (),
14028 lookup_name, text, word);
14029 }
14030 }
14031 }
14032
14033 for (objfile *objfile : current_program_space->objfiles ())
14034 {
14035 for (compunit_symtab *s : objfile->compunits ())
14036 {
14037 QUIT;
14038 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14039 /* Don't do this block twice. */
14040 if (b == surrounding_static_block)
14041 continue;
14042 ALL_BLOCK_SYMBOLS (b, iter, sym)
14043 {
14044 if (completion_skip_symbol (mode, sym))
14045 continue;
14046
14047 completion_list_add_name (tracker,
14048 sym->language (),
14049 sym->linkage_name (),
14050 lookup_name, text, word);
14051 }
14052 }
14053 }
14054 }
14055
f16a9f57
AB
14056 /* See language.h. */
14057
14058 gdb::unique_xmalloc_ptr<char> watch_location_expression
14059 (struct type *type, CORE_ADDR addr) const override
14060 {
14061 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14062 std::string name = type_to_string (type);
14063 return gdb::unique_xmalloc_ptr<char>
14064 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14065 }
14066
a1d1fa3e
AB
14067 /* See language.h. */
14068
14069 void value_print (struct value *val, struct ui_file *stream,
14070 const struct value_print_options *options) const override
14071 {
14072 return ada_value_print (val, stream, options);
14073 }
14074
ebe2334e
AB
14075 /* See language.h. */
14076
14077 void value_print_inner
14078 (struct value *val, struct ui_file *stream, int recurse,
14079 const struct value_print_options *options) const override
14080 {
14081 return ada_value_print_inner (val, stream, recurse, options);
14082 }
14083
a78a19b1
AB
14084 /* See language.h. */
14085
14086 struct block_symbol lookup_symbol_nonlocal
14087 (const char *name, const struct block *block,
14088 const domain_enum domain) const override
14089 {
14090 struct block_symbol sym;
14091
14092 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14093 if (sym.symbol != NULL)
14094 return sym;
14095
14096 /* If we haven't found a match at this point, try the primitive
14097 types. In other languages, this search is performed before
14098 searching for global symbols in order to short-circuit that
14099 global-symbol search if it happens that the name corresponds
14100 to a primitive type. But we cannot do the same in Ada, because
14101 it is perfectly legitimate for a program to declare a type which
14102 has the same name as a standard type. If looking up a type in
14103 that situation, we have traditionally ignored the primitive type
14104 in favor of user-defined types. This is why, unlike most other
14105 languages, we search the primitive types this late and only after
14106 having searched the global symbols without success. */
14107
14108 if (domain == VAR_DOMAIN)
14109 {
14110 struct gdbarch *gdbarch;
14111
14112 if (block == NULL)
14113 gdbarch = target_gdbarch ();
14114 else
14115 gdbarch = block_gdbarch (block);
14116 sym.symbol
14117 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14118 if (sym.symbol != NULL)
14119 return sym;
14120 }
14121
14122 return {};
14123 }
14124
87afa652
AB
14125 /* See language.h. */
14126
14127 int parser (struct parser_state *ps) const override
14128 {
14129 warnings_issued = 0;
14130 return ada_parse (ps);
14131 }
14132
1bf9c363
AB
14133 /* See language.h.
14134
14135 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14136 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14137 namespace) and converts operators that are user-defined into
14138 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14139 a preferred result type [at the moment, only type void has any
14140 effect---causing procedures to be preferred over functions in calls].
14141 A null CONTEXT_TYPE indicates that a non-void return type is
14142 preferred. May change (expand) *EXP. */
14143
14144 void post_parser (expression_up *expp, int void_context_p, int completing,
14145 innermost_block_tracker *tracker) const override
14146 {
14147 struct type *context_type = NULL;
14148 int pc = 0;
14149
14150 if (void_context_p)
14151 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14152
14153 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14154 }
14155
ec8cec5b
AB
14156 /* See language.h. */
14157
14158 void emitchar (int ch, struct type *chtype,
14159 struct ui_file *stream, int quoter) const override
14160 {
14161 ada_emit_char (ch, chtype, stream, quoter, 1);
14162 }
14163
52b50f2c
AB
14164 /* See language.h. */
14165
14166 void printchar (int ch, struct type *chtype,
14167 struct ui_file *stream) const override
14168 {
14169 ada_printchar (ch, chtype, stream);
14170 }
14171
d711ee67
AB
14172 /* See language.h. */
14173
14174 void printstr (struct ui_file *stream, struct type *elttype,
14175 const gdb_byte *string, unsigned int length,
14176 const char *encoding, int force_ellipses,
14177 const struct value_print_options *options) const override
14178 {
14179 ada_printstr (stream, elttype, string, length, encoding,
14180 force_ellipses, options);
14181 }
14182
4ffc13fb
AB
14183 /* See language.h. */
14184
14185 void print_typedef (struct type *type, struct symbol *new_symbol,
14186 struct ui_file *stream) const override
14187 {
14188 ada_print_typedef (type, new_symbol, stream);
14189 }
14190
39e7ecca
AB
14191 /* See language.h. */
14192
14193 bool is_string_type_p (struct type *type) const override
14194 {
14195 return ada_is_string_type (type);
14196 }
14197
22e3f3ed
AB
14198 /* See language.h. */
14199
14200 const char *struct_too_deep_ellipsis () const override
14201 { return "(...)"; }
39e7ecca 14202
67bd3fd5
AB
14203 /* See language.h. */
14204
14205 bool c_style_arrays_p () const override
14206 { return false; }
14207
d3355e4d
AB
14208 /* See language.h. */
14209
14210 bool store_sym_names_in_linkage_form_p () const override
14211 { return true; }
14212
b63a3f3f
AB
14213 /* See language.h. */
14214
14215 const struct lang_varobj_ops *varobj_ops () const override
14216 { return &ada_varobj_ops; }
14217
5aba6ebe
AB
14218 /* See language.h. */
14219
14220 const struct exp_descriptor *expression_ops () const override
14221 { return &ada_exp_descriptor; }
14222
b7c6e27d
AB
14223 /* See language.h. */
14224
14225 const struct op_print *opcode_print_table () const override
14226 { return ada_op_print_tab; }
14227
c9debfb9
AB
14228protected:
14229 /* See language.h. */
14230
14231 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14232 (const lookup_name_info &lookup_name) const override
14233 {
14234 return ada_get_symbol_name_matcher (lookup_name);
14235 }
0874fd07
AB
14236};
14237
14238/* Single instance of the Ada language class. */
14239
14240static ada_language ada_language_defn;
14241
5bf03f13
JB
14242/* Command-list for the "set/show ada" prefix command. */
14243static struct cmd_list_element *set_ada_list;
14244static struct cmd_list_element *show_ada_list;
14245
2060206e
PA
14246static void
14247initialize_ada_catchpoint_ops (void)
14248{
14249 struct breakpoint_ops *ops;
14250
14251 initialize_breakpoint_ops ();
14252
14253 ops = &catch_exception_breakpoint_ops;
14254 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14255 ops->allocate_location = allocate_location_exception;
14256 ops->re_set = re_set_exception;
14257 ops->check_status = check_status_exception;
14258 ops->print_it = print_it_exception;
14259 ops->print_one = print_one_exception;
14260 ops->print_mention = print_mention_exception;
14261 ops->print_recreate = print_recreate_exception;
2060206e
PA
14262
14263 ops = &catch_exception_unhandled_breakpoint_ops;
14264 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14265 ops->allocate_location = allocate_location_exception;
14266 ops->re_set = re_set_exception;
14267 ops->check_status = check_status_exception;
14268 ops->print_it = print_it_exception;
14269 ops->print_one = print_one_exception;
14270 ops->print_mention = print_mention_exception;
14271 ops->print_recreate = print_recreate_exception;
2060206e
PA
14272
14273 ops = &catch_assert_breakpoint_ops;
14274 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14275 ops->allocate_location = allocate_location_exception;
14276 ops->re_set = re_set_exception;
14277 ops->check_status = check_status_exception;
14278 ops->print_it = print_it_exception;
14279 ops->print_one = print_one_exception;
14280 ops->print_mention = print_mention_exception;
14281 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14282
14283 ops = &catch_handlers_breakpoint_ops;
14284 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14285 ops->allocate_location = allocate_location_exception;
14286 ops->re_set = re_set_exception;
14287 ops->check_status = check_status_exception;
14288 ops->print_it = print_it_exception;
14289 ops->print_one = print_one_exception;
14290 ops->print_mention = print_mention_exception;
14291 ops->print_recreate = print_recreate_exception;
2060206e
PA
14292}
14293
3d9434b5
JB
14294/* This module's 'new_objfile' observer. */
14295
14296static void
14297ada_new_objfile_observer (struct objfile *objfile)
14298{
14299 ada_clear_symbol_cache ();
14300}
14301
14302/* This module's 'free_objfile' observer. */
14303
14304static void
14305ada_free_objfile_observer (struct objfile *objfile)
14306{
14307 ada_clear_symbol_cache ();
14308}
14309
6c265988 14310void _initialize_ada_language ();
d2e4a39e 14311void
6c265988 14312_initialize_ada_language ()
14f9c5c9 14313{
2060206e
PA
14314 initialize_ada_catchpoint_ops ();
14315
0743fc83
TT
14316 add_basic_prefix_cmd ("ada", no_class,
14317 _("Prefix command for changing Ada-specific settings."),
14318 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14319
0743fc83
TT
14320 add_show_prefix_cmd ("ada", no_class,
14321 _("Generic command for showing Ada-specific settings."),
14322 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14323
14324 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 14325 &trust_pad_over_xvs, _("\
590042fc
PW
14326Enable or disable an optimization trusting PAD types over XVS types."), _("\
14327Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 14328 _("\
5bf03f13
JB
14329This is related to the encoding used by the GNAT compiler. The debugger\n\
14330should normally trust the contents of PAD types, but certain older versions\n\
14331of GNAT have a bug that sometimes causes the information in the PAD type\n\
14332to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14333work around this bug. It is always safe to turn this option \"off\", but\n\
14334this incurs a slight performance penalty, so it is recommended to NOT change\n\
14335this option to \"off\" unless necessary."),
dda83cd7 14336 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 14337
d72413e6
PMR
14338 add_setshow_boolean_cmd ("print-signatures", class_vars,
14339 &print_signatures, _("\
14340Enable or disable the output of formal and return types for functions in the \
590042fc 14341overloads selection menu."), _("\
d72413e6 14342Show whether the output of formal and return types for functions in the \
590042fc 14343overloads selection menu is activated."),
d72413e6
PMR
14344 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14345
9ac4176b
PA
14346 add_catch_command ("exception", _("\
14347Catch Ada exceptions, when raised.\n\
9bf7038b 14348Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14349Without any argument, stop when any Ada exception is raised.\n\
14350If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14351being raised does not have a handler (and will therefore lead to the task's\n\
14352termination).\n\
14353Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14354raised is the same as ARG.\n\
14355CONDITION is a boolean expression that is evaluated to see whether the\n\
14356exception should cause a stop."),
9ac4176b 14357 catch_ada_exception_command,
71bed2db 14358 catch_ada_completer,
9ac4176b
PA
14359 CATCH_PERMANENT,
14360 CATCH_TEMPORARY);
9f757bf7
XR
14361
14362 add_catch_command ("handlers", _("\
14363Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14364Usage: catch handlers [ARG] [if CONDITION]\n\
14365Without any argument, stop when any Ada exception is handled.\n\
14366With an argument, catch only exceptions with the given name.\n\
14367CONDITION is a boolean expression that is evaluated to see whether the\n\
14368exception should cause a stop."),
9f757bf7 14369 catch_ada_handlers_command,
dda83cd7 14370 catch_ada_completer,
9f757bf7
XR
14371 CATCH_PERMANENT,
14372 CATCH_TEMPORARY);
9ac4176b
PA
14373 add_catch_command ("assert", _("\
14374Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14375Usage: catch assert [if CONDITION]\n\
14376CONDITION is a boolean expression that is evaluated to see whether the\n\
14377exception should cause a stop."),
9ac4176b 14378 catch_assert_command,
dda83cd7 14379 NULL,
9ac4176b
PA
14380 CATCH_PERMANENT,
14381 CATCH_TEMPORARY);
14382
6c038f32 14383 varsize_limit = 65536;
3fcded8f
JB
14384 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14385 &varsize_limit, _("\
14386Set the maximum number of bytes allowed in a variable-size object."), _("\
14387Show the maximum number of bytes allowed in a variable-size object."), _("\
14388Attempts to access an object whose size is not a compile-time constant\n\
14389and exceeds this limit will cause an error."),
14390 NULL, NULL, &setlist, &showlist);
6c038f32 14391
778865d3
JB
14392 add_info ("exceptions", info_exceptions_command,
14393 _("\
14394List all Ada exception names.\n\
9bf7038b 14395Usage: info exceptions [REGEXP]\n\
778865d3
JB
14396If a regular expression is passed as an argument, only those matching\n\
14397the regular expression are listed."));
14398
0743fc83
TT
14399 add_basic_prefix_cmd ("ada", class_maintenance,
14400 _("Set Ada maintenance-related variables."),
14401 &maint_set_ada_cmdlist, "maintenance set ada ",
14402 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14403
0743fc83
TT
14404 add_show_prefix_cmd ("ada", class_maintenance,
14405 _("Show Ada maintenance-related variables."),
14406 &maint_show_ada_cmdlist, "maintenance show ada ",
14407 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14408
14409 add_setshow_boolean_cmd
14410 ("ignore-descriptive-types", class_maintenance,
14411 &ada_ignore_descriptive_types_p,
14412 _("Set whether descriptive types generated by GNAT should be ignored."),
14413 _("Show whether descriptive types generated by GNAT should be ignored."),
14414 _("\
14415When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14416DWARF attribute."),
14417 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14418
459a2e4c
TT
14419 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14420 NULL, xcalloc, xfree);
6b69afc4 14421
3d9434b5 14422 /* The ada-lang observers. */
76727919
TT
14423 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14424 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14425 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14426}