]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb: Convert language la_collect_symbol_completion_matches field to a method
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
53a47a3e
TT
199static struct value *val_atr (struct type *, LONGEST);
200
d2e4a39e 201static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
14f9c5c9 205
108d56a4 206static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
207 struct type *);
208
0d5cff50 209static int find_struct_field (const char *, struct type *, int,
52ce6436 210 struct type **, int *, int *, int *, int *);
4c4b4cd2 211
d12307c1 212static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 213 struct value **, int, const char *,
2a612529 214 struct type *, int);
4c4b4cd2 215
4c4b4cd2
PH
216static int ada_is_direct_array_type (struct type *);
217
52ce6436
PH
218static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
222 struct expression *,
223 int *, enum noside);
52ce6436
PH
224
225static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
852dff6c
JB
249
250static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
251
252static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
4c4b4cd2
PH
255\f
256
ee01b665
JB
257/* The result of a symbol lookup to be stored in our symbol cache. */
258
259struct cache_entry
260{
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
fe978cb0 264 domain_enum domain;
ee01b665
JB
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273};
274
275/* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284#define HASH_SIZE 1009
285
286struct ada_symbol_cache
287{
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293};
294
295static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 296
4c4b4cd2 297/* Maximum-sized dynamic type. */
14f9c5c9
AS
298static unsigned int varsize_limit;
299
67cb5b2d 300static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
301#ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303#else
14f9c5c9 304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 305#endif
14f9c5c9 306
4c4b4cd2 307/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 308static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 309 = "__gnat_ada_main_program_name";
14f9c5c9 310
4c4b4cd2
PH
311/* Limit on the number of warnings to raise per expression evaluation. */
312static int warning_limit = 2;
313
314/* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316static int warnings_issued = 0;
317
318static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320};
321
322static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324};
325
c6044dd1
JB
326/* Maintenance-related settings for this module. */
327
328static struct cmd_list_element *maint_set_ada_cmdlist;
329static struct cmd_list_element *maint_show_ada_cmdlist;
330
c6044dd1
JB
331/* The "maintenance ada set/show ignore-descriptive-type" value. */
332
491144b5 333static bool ada_ignore_descriptive_types_p = false;
c6044dd1 334
e802dbe0
JB
335 /* Inferior-specific data. */
336
337/* Per-inferior data for this module. */
338
339struct ada_inferior_data
340{
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
f37b313d 345 struct type *tsd_type = nullptr;
3eecfa55
JB
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
f37b313d 350 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
351};
352
353/* Our key to this module's inferior data. */
f37b313d 354static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
355
356/* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364static struct ada_inferior_data *
365get_ada_inferior_data (struct inferior *inf)
366{
367 struct ada_inferior_data *data;
368
f37b313d 369 data = ada_inferior_data.get (inf);
e802dbe0 370 if (data == NULL)
f37b313d 371 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
372
373 return data;
374}
375
376/* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379static void
380ada_inferior_exit (struct inferior *inf)
381{
f37b313d 382 ada_inferior_data.clear (inf);
e802dbe0
JB
383}
384
ee01b665
JB
385
386 /* program-space-specific data. */
387
388/* This module's per-program-space data. */
389struct ada_pspace_data
390{
f37b313d
TT
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
ee01b665 397 /* The Ada symbol cache. */
f37b313d 398 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
399};
400
401/* Key to our per-program-space data. */
f37b313d 402static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
403
404/* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409static struct ada_pspace_data *
410get_ada_pspace_data (struct program_space *pspace)
411{
412 struct ada_pspace_data *data;
413
f37b313d 414 data = ada_pspace_data_handle.get (pspace);
ee01b665 415 if (data == NULL)
f37b313d 416 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
417
418 return data;
419}
420
4c4b4cd2
PH
421 /* Utilities */
422
720d1a40 423/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 424 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450static struct type *
451ada_typedef_target_type (struct type *type)
452{
78134374 453 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456}
457
41d27058
JB
458/* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462static const char *
463ada_unqualified_name (const char *decoded_name)
464{
2b0f535a
JB
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
41d27058
JB
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481}
482
39e7af3e 483/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 484
39e7af3e 485static std::string
41d27058
JB
486add_angle_brackets (const char *str)
487{
39e7af3e 488 return string_printf ("<%s>", str);
41d27058 489}
96d887e8 490
e2b7af72
JB
491/* la_watch_location_expression for Ada. */
492
de93309a 493static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
494ada_watch_location_expression (struct type *type, CORE_ADDR addr)
495{
496 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
497 std::string name = type_to_string (type);
498 return gdb::unique_xmalloc_ptr<char>
499 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
500}
501
de93309a
SM
502/* Assuming V points to an array of S objects, make sure that it contains at
503 least M objects, updating V and S as necessary. */
504
505#define GROW_VECT(v, s, m) \
506 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
507
f27cf670 508/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 509 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 510 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 511
de93309a 512static void *
f27cf670 513grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 514{
d2e4a39e
AS
515 if (*size < min_size)
516 {
517 *size *= 2;
518 if (*size < min_size)
4c4b4cd2 519 *size = min_size;
f27cf670 520 vect = xrealloc (vect, *size * element_size);
d2e4a39e 521 }
f27cf670 522 return vect;
14f9c5c9
AS
523}
524
525/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 526 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
527
528static int
ebf56fd3 529field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
530{
531 int len = strlen (target);
5b4ee69b 532
d2e4a39e 533 return
4c4b4cd2
PH
534 (strncmp (field_name, target, len) == 0
535 && (field_name[len] == '\0'
61012eef 536 || (startswith (field_name + len, "___")
76a01679
JB
537 && strcmp (field_name + strlen (field_name) - 6,
538 "___XVN") != 0)));
14f9c5c9
AS
539}
540
541
872c8b51
JB
542/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
543 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
544 and return its index. This function also handles fields whose name
545 have ___ suffixes because the compiler sometimes alters their name
546 by adding such a suffix to represent fields with certain constraints.
547 If the field could not be found, return a negative number if
548 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
549
550int
551ada_get_field_index (const struct type *type, const char *field_name,
552 int maybe_missing)
553{
554 int fieldno;
872c8b51
JB
555 struct type *struct_type = check_typedef ((struct type *) type);
556
1f704f76 557 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 558 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
559 return fieldno;
560
561 if (!maybe_missing)
323e0a4a 562 error (_("Unable to find field %s in struct %s. Aborting"),
7d93a1e0 563 field_name, struct_type->name ());
4c4b4cd2
PH
564
565 return -1;
566}
567
568/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
569
570int
d2e4a39e 571ada_name_prefix_len (const char *name)
14f9c5c9
AS
572{
573 if (name == NULL)
574 return 0;
d2e4a39e 575 else
14f9c5c9 576 {
d2e4a39e 577 const char *p = strstr (name, "___");
5b4ee69b 578
14f9c5c9 579 if (p == NULL)
4c4b4cd2 580 return strlen (name);
14f9c5c9 581 else
4c4b4cd2 582 return p - name;
14f9c5c9
AS
583 }
584}
585
4c4b4cd2
PH
586/* Return non-zero if SUFFIX is a suffix of STR.
587 Return zero if STR is null. */
588
14f9c5c9 589static int
d2e4a39e 590is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
591{
592 int len1, len2;
5b4ee69b 593
14f9c5c9
AS
594 if (str == NULL)
595 return 0;
596 len1 = strlen (str);
597 len2 = strlen (suffix);
4c4b4cd2 598 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
599}
600
4c4b4cd2
PH
601/* The contents of value VAL, treated as a value of type TYPE. The
602 result is an lval in memory if VAL is. */
14f9c5c9 603
d2e4a39e 604static struct value *
4c4b4cd2 605coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 606{
61ee279c 607 type = ada_check_typedef (type);
df407dfe 608 if (value_type (val) == type)
4c4b4cd2 609 return val;
d2e4a39e 610 else
14f9c5c9 611 {
4c4b4cd2
PH
612 struct value *result;
613
614 /* Make sure that the object size is not unreasonable before
615 trying to allocate some memory for it. */
c1b5a1a6 616 ada_ensure_varsize_limit (type);
4c4b4cd2 617
41e8491f
JK
618 if (value_lazy (val)
619 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
620 result = allocate_value_lazy (type);
621 else
622 {
623 result = allocate_value (type);
9a0dc9e3 624 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 625 }
74bcbdf3 626 set_value_component_location (result, val);
9bbda503
AC
627 set_value_bitsize (result, value_bitsize (val));
628 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
629 if (VALUE_LVAL (result) == lval_memory)
630 set_value_address (result, value_address (val));
14f9c5c9
AS
631 return result;
632 }
633}
634
fc1a4b47
AC
635static const gdb_byte *
636cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
637{
638 if (valaddr == NULL)
639 return NULL;
640 else
641 return valaddr + offset;
642}
643
644static CORE_ADDR
ebf56fd3 645cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
646{
647 if (address == 0)
648 return 0;
d2e4a39e 649 else
14f9c5c9
AS
650 return address + offset;
651}
652
4c4b4cd2
PH
653/* Issue a warning (as for the definition of warning in utils.c, but
654 with exactly one argument rather than ...), unless the limit on the
655 number of warnings has passed during the evaluation of the current
656 expression. */
a2249542 657
77109804
AC
658/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
659 provided by "complaint". */
a0b31db1 660static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 661
14f9c5c9 662static void
a2249542 663lim_warning (const char *format, ...)
14f9c5c9 664{
a2249542 665 va_list args;
a2249542 666
5b4ee69b 667 va_start (args, format);
4c4b4cd2
PH
668 warnings_issued += 1;
669 if (warnings_issued <= warning_limit)
a2249542
MK
670 vwarning (format, args);
671
672 va_end (args);
4c4b4cd2
PH
673}
674
714e53ab
PH
675/* Issue an error if the size of an object of type T is unreasonable,
676 i.e. if it would be a bad idea to allocate a value of this type in
677 GDB. */
678
c1b5a1a6
JB
679void
680ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
681{
682 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 683 error (_("object size is larger than varsize-limit"));
714e53ab
PH
684}
685
0963b4bd 686/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 687static LONGEST
c3e5cd34 688max_of_size (int size)
4c4b4cd2 689{
76a01679 690 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 691
76a01679 692 return top_bit | (top_bit - 1);
4c4b4cd2
PH
693}
694
0963b4bd 695/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 696static LONGEST
c3e5cd34 697min_of_size (int size)
4c4b4cd2 698{
c3e5cd34 699 return -max_of_size (size) - 1;
4c4b4cd2
PH
700}
701
0963b4bd 702/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 703static ULONGEST
c3e5cd34 704umax_of_size (int size)
4c4b4cd2 705{
76a01679 706 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 707
76a01679 708 return top_bit | (top_bit - 1);
4c4b4cd2
PH
709}
710
0963b4bd 711/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
712static LONGEST
713max_of_type (struct type *t)
4c4b4cd2 714{
c3e5cd34
PH
715 if (TYPE_UNSIGNED (t))
716 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
717 else
718 return max_of_size (TYPE_LENGTH (t));
719}
720
0963b4bd 721/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
722static LONGEST
723min_of_type (struct type *t)
724{
725 if (TYPE_UNSIGNED (t))
726 return 0;
727 else
728 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
729}
730
731/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
732LONGEST
733ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 734{
b249d2c2 735 type = resolve_dynamic_type (type, {}, 0);
78134374 736 switch (type->code ())
4c4b4cd2
PH
737 {
738 case TYPE_CODE_RANGE:
690cc4eb 739 return TYPE_HIGH_BOUND (type);
4c4b4cd2 740 case TYPE_CODE_ENUM:
1f704f76 741 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
742 case TYPE_CODE_BOOL:
743 return 1;
744 case TYPE_CODE_CHAR:
76a01679 745 case TYPE_CODE_INT:
690cc4eb 746 return max_of_type (type);
4c4b4cd2 747 default:
43bbcdc2 748 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
749 }
750}
751
14e75d8e 752/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
753LONGEST
754ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 755{
b249d2c2 756 type = resolve_dynamic_type (type, {}, 0);
78134374 757 switch (type->code ())
4c4b4cd2
PH
758 {
759 case TYPE_CODE_RANGE:
690cc4eb 760 return TYPE_LOW_BOUND (type);
4c4b4cd2 761 case TYPE_CODE_ENUM:
14e75d8e 762 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
763 case TYPE_CODE_BOOL:
764 return 0;
765 case TYPE_CODE_CHAR:
76a01679 766 case TYPE_CODE_INT:
690cc4eb 767 return min_of_type (type);
4c4b4cd2 768 default:
43bbcdc2 769 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
770 }
771}
772
773/* The identity on non-range types. For range types, the underlying
76a01679 774 non-range scalar type. */
4c4b4cd2
PH
775
776static struct type *
18af8284 777get_base_type (struct type *type)
4c4b4cd2 778{
78134374 779 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 780 {
76a01679
JB
781 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
782 return type;
4c4b4cd2
PH
783 type = TYPE_TARGET_TYPE (type);
784 }
785 return type;
14f9c5c9 786}
41246937
JB
787
788/* Return a decoded version of the given VALUE. This means returning
789 a value whose type is obtained by applying all the GNAT-specific
85102364 790 encodings, making the resulting type a static but standard description
41246937
JB
791 of the initial type. */
792
793struct value *
794ada_get_decoded_value (struct value *value)
795{
796 struct type *type = ada_check_typedef (value_type (value));
797
798 if (ada_is_array_descriptor_type (type)
799 || (ada_is_constrained_packed_array_type (type)
78134374 800 && type->code () != TYPE_CODE_PTR))
41246937 801 {
78134374 802 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
41246937
JB
803 value = ada_coerce_to_simple_array_ptr (value);
804 else
805 value = ada_coerce_to_simple_array (value);
806 }
807 else
808 value = ada_to_fixed_value (value);
809
810 return value;
811}
812
813/* Same as ada_get_decoded_value, but with the given TYPE.
814 Because there is no associated actual value for this type,
815 the resulting type might be a best-effort approximation in
816 the case of dynamic types. */
817
818struct type *
819ada_get_decoded_type (struct type *type)
820{
821 type = to_static_fixed_type (type);
822 if (ada_is_constrained_packed_array_type (type))
823 type = ada_coerce_to_simple_array_type (type);
824 return type;
825}
826
4c4b4cd2 827\f
76a01679 828
4c4b4cd2 829 /* Language Selection */
14f9c5c9
AS
830
831/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 832 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 833
de93309a 834static enum language
ccefe4c4 835ada_update_initial_language (enum language lang)
14f9c5c9 836{
cafb3438 837 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 838 return language_ada;
14f9c5c9
AS
839
840 return lang;
841}
96d887e8
PH
842
843/* If the main procedure is written in Ada, then return its name.
844 The result is good until the next call. Return NULL if the main
845 procedure doesn't appear to be in Ada. */
846
847char *
848ada_main_name (void)
849{
3b7344d5 850 struct bound_minimal_symbol msym;
e83e4e24 851 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 852
96d887e8
PH
853 /* For Ada, the name of the main procedure is stored in a specific
854 string constant, generated by the binder. Look for that symbol,
855 extract its address, and then read that string. If we didn't find
856 that string, then most probably the main procedure is not written
857 in Ada. */
858 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
859
3b7344d5 860 if (msym.minsym != NULL)
96d887e8 861 {
66920317 862 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 863 if (main_program_name_addr == 0)
323e0a4a 864 error (_("Invalid address for Ada main program name."));
96d887e8 865
66920317 866 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 867 return main_program_name.get ();
96d887e8
PH
868 }
869
870 /* The main procedure doesn't seem to be in Ada. */
871 return NULL;
872}
14f9c5c9 873\f
4c4b4cd2 874 /* Symbols */
d2e4a39e 875
4c4b4cd2
PH
876/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
877 of NULLs. */
14f9c5c9 878
d2e4a39e
AS
879const struct ada_opname_map ada_opname_table[] = {
880 {"Oadd", "\"+\"", BINOP_ADD},
881 {"Osubtract", "\"-\"", BINOP_SUB},
882 {"Omultiply", "\"*\"", BINOP_MUL},
883 {"Odivide", "\"/\"", BINOP_DIV},
884 {"Omod", "\"mod\"", BINOP_MOD},
885 {"Orem", "\"rem\"", BINOP_REM},
886 {"Oexpon", "\"**\"", BINOP_EXP},
887 {"Olt", "\"<\"", BINOP_LESS},
888 {"Ole", "\"<=\"", BINOP_LEQ},
889 {"Ogt", "\">\"", BINOP_GTR},
890 {"Oge", "\">=\"", BINOP_GEQ},
891 {"Oeq", "\"=\"", BINOP_EQUAL},
892 {"One", "\"/=\"", BINOP_NOTEQUAL},
893 {"Oand", "\"and\"", BINOP_BITWISE_AND},
894 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
895 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
896 {"Oconcat", "\"&\"", BINOP_CONCAT},
897 {"Oabs", "\"abs\"", UNOP_ABS},
898 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
899 {"Oadd", "\"+\"", UNOP_PLUS},
900 {"Osubtract", "\"-\"", UNOP_NEG},
901 {NULL, NULL}
14f9c5c9
AS
902};
903
b5ec771e
PA
904/* The "encoded" form of DECODED, according to GNAT conventions. The
905 result is valid until the next call to ada_encode. If
906 THROW_ERRORS, throw an error if invalid operator name is found.
907 Otherwise, return NULL in that case. */
4c4b4cd2 908
b5ec771e
PA
909static char *
910ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 911{
4c4b4cd2
PH
912 static char *encoding_buffer = NULL;
913 static size_t encoding_buffer_size = 0;
d2e4a39e 914 const char *p;
14f9c5c9 915 int k;
d2e4a39e 916
4c4b4cd2 917 if (decoded == NULL)
14f9c5c9
AS
918 return NULL;
919
4c4b4cd2
PH
920 GROW_VECT (encoding_buffer, encoding_buffer_size,
921 2 * strlen (decoded) + 10);
14f9c5c9
AS
922
923 k = 0;
4c4b4cd2 924 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 925 {
cdc7bb92 926 if (*p == '.')
4c4b4cd2
PH
927 {
928 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
929 k += 2;
930 }
14f9c5c9 931 else if (*p == '"')
4c4b4cd2
PH
932 {
933 const struct ada_opname_map *mapping;
934
935 for (mapping = ada_opname_table;
1265e4aa 936 mapping->encoded != NULL
61012eef 937 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
938 ;
939 if (mapping->encoded == NULL)
b5ec771e
PA
940 {
941 if (throw_errors)
942 error (_("invalid Ada operator name: %s"), p);
943 else
944 return NULL;
945 }
4c4b4cd2
PH
946 strcpy (encoding_buffer + k, mapping->encoded);
947 k += strlen (mapping->encoded);
948 break;
949 }
d2e4a39e 950 else
4c4b4cd2
PH
951 {
952 encoding_buffer[k] = *p;
953 k += 1;
954 }
14f9c5c9
AS
955 }
956
4c4b4cd2
PH
957 encoding_buffer[k] = '\0';
958 return encoding_buffer;
14f9c5c9
AS
959}
960
b5ec771e
PA
961/* The "encoded" form of DECODED, according to GNAT conventions.
962 The result is valid until the next call to ada_encode. */
963
964char *
965ada_encode (const char *decoded)
966{
967 return ada_encode_1 (decoded, true);
968}
969
14f9c5c9 970/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
971 quotes, unfolded, but with the quotes stripped away. Result good
972 to next call. */
973
de93309a 974static char *
e0802d59 975ada_fold_name (gdb::string_view name)
14f9c5c9 976{
d2e4a39e 977 static char *fold_buffer = NULL;
14f9c5c9
AS
978 static size_t fold_buffer_size = 0;
979
e0802d59 980 int len = name.size ();
d2e4a39e 981 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
982
983 if (name[0] == '\'')
984 {
e0802d59 985 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 986 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
987 }
988 else
989 {
990 int i;
5b4ee69b 991
14f9c5c9 992 for (i = 0; i <= len; i += 1)
4c4b4cd2 993 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
994 }
995
996 return fold_buffer;
997}
998
529cad9c
PH
999/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1000
1001static int
1002is_lower_alphanum (const char c)
1003{
1004 return (isdigit (c) || (isalpha (c) && islower (c)));
1005}
1006
c90092fe
JB
1007/* ENCODED is the linkage name of a symbol and LEN contains its length.
1008 This function saves in LEN the length of that same symbol name but
1009 without either of these suffixes:
29480c32
JB
1010 . .{DIGIT}+
1011 . ${DIGIT}+
1012 . ___{DIGIT}+
1013 . __{DIGIT}+.
c90092fe 1014
29480c32
JB
1015 These are suffixes introduced by the compiler for entities such as
1016 nested subprogram for instance, in order to avoid name clashes.
1017 They do not serve any purpose for the debugger. */
1018
1019static void
1020ada_remove_trailing_digits (const char *encoded, int *len)
1021{
1022 if (*len > 1 && isdigit (encoded[*len - 1]))
1023 {
1024 int i = *len - 2;
5b4ee69b 1025
29480c32
JB
1026 while (i > 0 && isdigit (encoded[i]))
1027 i--;
1028 if (i >= 0 && encoded[i] == '.')
1029 *len = i;
1030 else if (i >= 0 && encoded[i] == '$')
1031 *len = i;
61012eef 1032 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1033 *len = i - 2;
61012eef 1034 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1035 *len = i - 1;
1036 }
1037}
1038
1039/* Remove the suffix introduced by the compiler for protected object
1040 subprograms. */
1041
1042static void
1043ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1044{
1045 /* Remove trailing N. */
1046
1047 /* Protected entry subprograms are broken into two
1048 separate subprograms: The first one is unprotected, and has
1049 a 'N' suffix; the second is the protected version, and has
0963b4bd 1050 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1051 the protection. Since the P subprograms are internally generated,
1052 we leave these names undecoded, giving the user a clue that this
1053 entity is internal. */
1054
1055 if (*len > 1
1056 && encoded[*len - 1] == 'N'
1057 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1058 *len = *len - 1;
1059}
1060
1061/* If ENCODED follows the GNAT entity encoding conventions, then return
1062 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1063 replaced by ENCODED. */
14f9c5c9 1064
f945dedf 1065std::string
4c4b4cd2 1066ada_decode (const char *encoded)
14f9c5c9
AS
1067{
1068 int i, j;
1069 int len0;
d2e4a39e 1070 const char *p;
14f9c5c9 1071 int at_start_name;
f945dedf 1072 std::string decoded;
d2e4a39e 1073
0d81f350
JG
1074 /* With function descriptors on PPC64, the value of a symbol named
1075 ".FN", if it exists, is the entry point of the function "FN". */
1076 if (encoded[0] == '.')
1077 encoded += 1;
1078
29480c32
JB
1079 /* The name of the Ada main procedure starts with "_ada_".
1080 This prefix is not part of the decoded name, so skip this part
1081 if we see this prefix. */
61012eef 1082 if (startswith (encoded, "_ada_"))
4c4b4cd2 1083 encoded += 5;
14f9c5c9 1084
29480c32
JB
1085 /* If the name starts with '_', then it is not a properly encoded
1086 name, so do not attempt to decode it. Similarly, if the name
1087 starts with '<', the name should not be decoded. */
4c4b4cd2 1088 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1089 goto Suppress;
1090
4c4b4cd2 1091 len0 = strlen (encoded);
4c4b4cd2 1092
29480c32
JB
1093 ada_remove_trailing_digits (encoded, &len0);
1094 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1095
4c4b4cd2
PH
1096 /* Remove the ___X.* suffix if present. Do not forget to verify that
1097 the suffix is located before the current "end" of ENCODED. We want
1098 to avoid re-matching parts of ENCODED that have previously been
1099 marked as discarded (by decrementing LEN0). */
1100 p = strstr (encoded, "___");
1101 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1102 {
1103 if (p[3] == 'X')
4c4b4cd2 1104 len0 = p - encoded;
14f9c5c9 1105 else
4c4b4cd2 1106 goto Suppress;
14f9c5c9 1107 }
4c4b4cd2 1108
29480c32
JB
1109 /* Remove any trailing TKB suffix. It tells us that this symbol
1110 is for the body of a task, but that information does not actually
1111 appear in the decoded name. */
1112
61012eef 1113 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1114 len0 -= 3;
76a01679 1115
a10967fa
JB
1116 /* Remove any trailing TB suffix. The TB suffix is slightly different
1117 from the TKB suffix because it is used for non-anonymous task
1118 bodies. */
1119
61012eef 1120 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1121 len0 -= 2;
1122
29480c32
JB
1123 /* Remove trailing "B" suffixes. */
1124 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1125
61012eef 1126 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1127 len0 -= 1;
1128
4c4b4cd2 1129 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1130
f945dedf 1131 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1132
29480c32
JB
1133 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1134
4c4b4cd2 1135 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1136 {
4c4b4cd2
PH
1137 i = len0 - 2;
1138 while ((i >= 0 && isdigit (encoded[i]))
1139 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1140 i -= 1;
1141 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1142 len0 = i - 1;
1143 else if (encoded[i] == '$')
1144 len0 = i;
d2e4a39e 1145 }
14f9c5c9 1146
29480c32
JB
1147 /* The first few characters that are not alphabetic are not part
1148 of any encoding we use, so we can copy them over verbatim. */
1149
4c4b4cd2
PH
1150 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1151 decoded[j] = encoded[i];
14f9c5c9
AS
1152
1153 at_start_name = 1;
1154 while (i < len0)
1155 {
29480c32 1156 /* Is this a symbol function? */
4c4b4cd2
PH
1157 if (at_start_name && encoded[i] == 'O')
1158 {
1159 int k;
5b4ee69b 1160
4c4b4cd2
PH
1161 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1162 {
1163 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1164 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1165 op_len - 1) == 0)
1166 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1167 {
f945dedf 1168 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1169 at_start_name = 0;
1170 i += op_len;
1171 j += strlen (ada_opname_table[k].decoded);
1172 break;
1173 }
1174 }
1175 if (ada_opname_table[k].encoded != NULL)
1176 continue;
1177 }
14f9c5c9
AS
1178 at_start_name = 0;
1179
529cad9c
PH
1180 /* Replace "TK__" with "__", which will eventually be translated
1181 into "." (just below). */
1182
61012eef 1183 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1184 i += 2;
529cad9c 1185
29480c32
JB
1186 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1187 be translated into "." (just below). These are internal names
1188 generated for anonymous blocks inside which our symbol is nested. */
1189
1190 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1191 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1192 && isdigit (encoded [i+4]))
1193 {
1194 int k = i + 5;
1195
1196 while (k < len0 && isdigit (encoded[k]))
1197 k++; /* Skip any extra digit. */
1198
1199 /* Double-check that the "__B_{DIGITS}+" sequence we found
1200 is indeed followed by "__". */
1201 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1202 i = k;
1203 }
1204
529cad9c
PH
1205 /* Remove _E{DIGITS}+[sb] */
1206
1207 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1208 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1209 one implements the actual entry code, and has a suffix following
1210 the convention above; the second one implements the barrier and
1211 uses the same convention as above, except that the 'E' is replaced
1212 by a 'B'.
1213
1214 Just as above, we do not decode the name of barrier functions
1215 to give the user a clue that the code he is debugging has been
1216 internally generated. */
1217
1218 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1219 && isdigit (encoded[i+2]))
1220 {
1221 int k = i + 3;
1222
1223 while (k < len0 && isdigit (encoded[k]))
1224 k++;
1225
1226 if (k < len0
1227 && (encoded[k] == 'b' || encoded[k] == 's'))
1228 {
1229 k++;
1230 /* Just as an extra precaution, make sure that if this
1231 suffix is followed by anything else, it is a '_'.
1232 Otherwise, we matched this sequence by accident. */
1233 if (k == len0
1234 || (k < len0 && encoded[k] == '_'))
1235 i = k;
1236 }
1237 }
1238
1239 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1240 the GNAT front-end in protected object subprograms. */
1241
1242 if (i < len0 + 3
1243 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1244 {
1245 /* Backtrack a bit up until we reach either the begining of
1246 the encoded name, or "__". Make sure that we only find
1247 digits or lowercase characters. */
1248 const char *ptr = encoded + i - 1;
1249
1250 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1251 ptr--;
1252 if (ptr < encoded
1253 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1254 i++;
1255 }
1256
4c4b4cd2
PH
1257 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1258 {
29480c32
JB
1259 /* This is a X[bn]* sequence not separated from the previous
1260 part of the name with a non-alpha-numeric character (in other
1261 words, immediately following an alpha-numeric character), then
1262 verify that it is placed at the end of the encoded name. If
1263 not, then the encoding is not valid and we should abort the
1264 decoding. Otherwise, just skip it, it is used in body-nested
1265 package names. */
4c4b4cd2
PH
1266 do
1267 i += 1;
1268 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1269 if (i < len0)
1270 goto Suppress;
1271 }
cdc7bb92 1272 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1273 {
29480c32 1274 /* Replace '__' by '.'. */
4c4b4cd2
PH
1275 decoded[j] = '.';
1276 at_start_name = 1;
1277 i += 2;
1278 j += 1;
1279 }
14f9c5c9 1280 else
4c4b4cd2 1281 {
29480c32
JB
1282 /* It's a character part of the decoded name, so just copy it
1283 over. */
4c4b4cd2
PH
1284 decoded[j] = encoded[i];
1285 i += 1;
1286 j += 1;
1287 }
14f9c5c9 1288 }
f945dedf 1289 decoded.resize (j);
14f9c5c9 1290
29480c32
JB
1291 /* Decoded names should never contain any uppercase character.
1292 Double-check this, and abort the decoding if we find one. */
1293
f945dedf 1294 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1295 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1296 goto Suppress;
1297
f945dedf 1298 return decoded;
14f9c5c9
AS
1299
1300Suppress:
4c4b4cd2 1301 if (encoded[0] == '<')
f945dedf 1302 decoded = encoded;
14f9c5c9 1303 else
f945dedf 1304 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1305 return decoded;
1306
1307}
1308
1309/* Table for keeping permanent unique copies of decoded names. Once
1310 allocated, names in this table are never released. While this is a
1311 storage leak, it should not be significant unless there are massive
1312 changes in the set of decoded names in successive versions of a
1313 symbol table loaded during a single session. */
1314static struct htab *decoded_names_store;
1315
1316/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1317 in the language-specific part of GSYMBOL, if it has not been
1318 previously computed. Tries to save the decoded name in the same
1319 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1320 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1321 GSYMBOL).
4c4b4cd2
PH
1322 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1323 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1324 when a decoded name is cached in it. */
4c4b4cd2 1325
45e6c716 1326const char *
f85f34ed 1327ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1328{
f85f34ed
TT
1329 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1330 const char **resultp =
615b3f62 1331 &gsymbol->language_specific.demangled_name;
5b4ee69b 1332
f85f34ed 1333 if (!gsymbol->ada_mangled)
4c4b4cd2 1334 {
4d4eaa30 1335 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1336 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1337
f85f34ed 1338 gsymbol->ada_mangled = 1;
5b4ee69b 1339
f85f34ed 1340 if (obstack != NULL)
f945dedf 1341 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1342 else
76a01679 1343 {
f85f34ed
TT
1344 /* Sometimes, we can't find a corresponding objfile, in
1345 which case, we put the result on the heap. Since we only
1346 decode when needed, we hope this usually does not cause a
1347 significant memory leak (FIXME). */
1348
76a01679 1349 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1350 decoded.c_str (), INSERT);
5b4ee69b 1351
76a01679 1352 if (*slot == NULL)
f945dedf 1353 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1354 *resultp = *slot;
1355 }
4c4b4cd2 1356 }
14f9c5c9 1357
4c4b4cd2
PH
1358 return *resultp;
1359}
76a01679 1360
2c0b251b 1361static char *
76a01679 1362ada_la_decode (const char *encoded, int options)
4c4b4cd2 1363{
f945dedf 1364 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1365}
1366
14f9c5c9 1367\f
d2e4a39e 1368
4c4b4cd2 1369 /* Arrays */
14f9c5c9 1370
28c85d6c
JB
1371/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1372 generated by the GNAT compiler to describe the index type used
1373 for each dimension of an array, check whether it follows the latest
1374 known encoding. If not, fix it up to conform to the latest encoding.
1375 Otherwise, do nothing. This function also does nothing if
1376 INDEX_DESC_TYPE is NULL.
1377
85102364 1378 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1379 Initially, the information would be provided through the name of each
1380 field of the structure type only, while the type of these fields was
1381 described as unspecified and irrelevant. The debugger was then expected
1382 to perform a global type lookup using the name of that field in order
1383 to get access to the full index type description. Because these global
1384 lookups can be very expensive, the encoding was later enhanced to make
1385 the global lookup unnecessary by defining the field type as being
1386 the full index type description.
1387
1388 The purpose of this routine is to allow us to support older versions
1389 of the compiler by detecting the use of the older encoding, and by
1390 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1391 we essentially replace each field's meaningless type by the associated
1392 index subtype). */
1393
1394void
1395ada_fixup_array_indexes_type (struct type *index_desc_type)
1396{
1397 int i;
1398
1399 if (index_desc_type == NULL)
1400 return;
1f704f76 1401 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1402
1403 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1404 to check one field only, no need to check them all). If not, return
1405 now.
1406
1407 If our INDEX_DESC_TYPE was generated using the older encoding,
1408 the field type should be a meaningless integer type whose name
1409 is not equal to the field name. */
940da03e
SM
1410 if (index_desc_type->field (0).type ()->name () != NULL
1411 && strcmp (index_desc_type->field (0).type ()->name (),
28c85d6c
JB
1412 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1413 return;
1414
1415 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1416 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1417 {
0d5cff50 1418 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1419 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1420
1421 if (raw_type)
5d14b6e5 1422 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1423 }
1424}
1425
4c4b4cd2
PH
1426/* The desc_* routines return primitive portions of array descriptors
1427 (fat pointers). */
14f9c5c9
AS
1428
1429/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1430 level of indirection, if needed. */
1431
d2e4a39e
AS
1432static struct type *
1433desc_base_type (struct type *type)
14f9c5c9
AS
1434{
1435 if (type == NULL)
1436 return NULL;
61ee279c 1437 type = ada_check_typedef (type);
78134374 1438 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1439 type = ada_typedef_target_type (type);
1440
1265e4aa 1441 if (type != NULL
78134374
SM
1442 && (type->code () == TYPE_CODE_PTR
1443 || type->code () == TYPE_CODE_REF))
61ee279c 1444 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1445 else
1446 return type;
1447}
1448
4c4b4cd2
PH
1449/* True iff TYPE indicates a "thin" array pointer type. */
1450
14f9c5c9 1451static int
d2e4a39e 1452is_thin_pntr (struct type *type)
14f9c5c9 1453{
d2e4a39e 1454 return
14f9c5c9
AS
1455 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1456 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1457}
1458
4c4b4cd2
PH
1459/* The descriptor type for thin pointer type TYPE. */
1460
d2e4a39e
AS
1461static struct type *
1462thin_descriptor_type (struct type *type)
14f9c5c9 1463{
d2e4a39e 1464 struct type *base_type = desc_base_type (type);
5b4ee69b 1465
14f9c5c9
AS
1466 if (base_type == NULL)
1467 return NULL;
1468 if (is_suffix (ada_type_name (base_type), "___XVE"))
1469 return base_type;
d2e4a39e 1470 else
14f9c5c9 1471 {
d2e4a39e 1472 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1473
14f9c5c9 1474 if (alt_type == NULL)
4c4b4cd2 1475 return base_type;
14f9c5c9 1476 else
4c4b4cd2 1477 return alt_type;
14f9c5c9
AS
1478 }
1479}
1480
4c4b4cd2
PH
1481/* A pointer to the array data for thin-pointer value VAL. */
1482
d2e4a39e
AS
1483static struct value *
1484thin_data_pntr (struct value *val)
14f9c5c9 1485{
828292f2 1486 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1487 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1488
556bdfd4
UW
1489 data_type = lookup_pointer_type (data_type);
1490
78134374 1491 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1492 return value_cast (data_type, value_copy (val));
d2e4a39e 1493 else
42ae5230 1494 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1495}
1496
4c4b4cd2
PH
1497/* True iff TYPE indicates a "thick" array pointer type. */
1498
14f9c5c9 1499static int
d2e4a39e 1500is_thick_pntr (struct type *type)
14f9c5c9
AS
1501{
1502 type = desc_base_type (type);
78134374 1503 return (type != NULL && type->code () == TYPE_CODE_STRUCT
4c4b4cd2 1504 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1505}
1506
4c4b4cd2
PH
1507/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1508 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1509
d2e4a39e
AS
1510static struct type *
1511desc_bounds_type (struct type *type)
14f9c5c9 1512{
d2e4a39e 1513 struct type *r;
14f9c5c9
AS
1514
1515 type = desc_base_type (type);
1516
1517 if (type == NULL)
1518 return NULL;
1519 else if (is_thin_pntr (type))
1520 {
1521 type = thin_descriptor_type (type);
1522 if (type == NULL)
4c4b4cd2 1523 return NULL;
14f9c5c9
AS
1524 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1525 if (r != NULL)
61ee279c 1526 return ada_check_typedef (r);
14f9c5c9 1527 }
78134374 1528 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1529 {
1530 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1531 if (r != NULL)
61ee279c 1532 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1533 }
1534 return NULL;
1535}
1536
1537/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1538 one, a pointer to its bounds data. Otherwise NULL. */
1539
d2e4a39e
AS
1540static struct value *
1541desc_bounds (struct value *arr)
14f9c5c9 1542{
df407dfe 1543 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1544
d2e4a39e 1545 if (is_thin_pntr (type))
14f9c5c9 1546 {
d2e4a39e 1547 struct type *bounds_type =
4c4b4cd2 1548 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1549 LONGEST addr;
1550
4cdfadb1 1551 if (bounds_type == NULL)
323e0a4a 1552 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1553
1554 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1555 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1556 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1557 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 1558 addr = value_as_long (arr);
d2e4a39e 1559 else
42ae5230 1560 addr = value_address (arr);
14f9c5c9 1561
d2e4a39e 1562 return
4c4b4cd2
PH
1563 value_from_longest (lookup_pointer_type (bounds_type),
1564 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1565 }
1566
1567 else if (is_thick_pntr (type))
05e522ef
JB
1568 {
1569 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1570 _("Bad GNAT array descriptor"));
1571 struct type *p_bounds_type = value_type (p_bounds);
1572
1573 if (p_bounds_type
78134374 1574 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1575 {
1576 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1577
1578 if (TYPE_STUB (target_type))
1579 p_bounds = value_cast (lookup_pointer_type
1580 (ada_check_typedef (target_type)),
1581 p_bounds);
1582 }
1583 else
1584 error (_("Bad GNAT array descriptor"));
1585
1586 return p_bounds;
1587 }
14f9c5c9
AS
1588 else
1589 return NULL;
1590}
1591
4c4b4cd2
PH
1592/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1593 position of the field containing the address of the bounds data. */
1594
14f9c5c9 1595static int
d2e4a39e 1596fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1597{
1598 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1599}
1600
1601/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1602 size of the field containing the address of the bounds data. */
1603
14f9c5c9 1604static int
d2e4a39e 1605fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1606{
1607 type = desc_base_type (type);
1608
d2e4a39e 1609 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1610 return TYPE_FIELD_BITSIZE (type, 1);
1611 else
940da03e 1612 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1613}
1614
4c4b4cd2 1615/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1616 pointer to one, the type of its array data (a array-with-no-bounds type);
1617 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1618 data. */
4c4b4cd2 1619
d2e4a39e 1620static struct type *
556bdfd4 1621desc_data_target_type (struct type *type)
14f9c5c9
AS
1622{
1623 type = desc_base_type (type);
1624
4c4b4cd2 1625 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1626 if (is_thin_pntr (type))
940da03e 1627 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1628 else if (is_thick_pntr (type))
556bdfd4
UW
1629 {
1630 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1631
1632 if (data_type
78134374 1633 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1634 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1635 }
1636
1637 return NULL;
14f9c5c9
AS
1638}
1639
1640/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1641 its array data. */
4c4b4cd2 1642
d2e4a39e
AS
1643static struct value *
1644desc_data (struct value *arr)
14f9c5c9 1645{
df407dfe 1646 struct type *type = value_type (arr);
5b4ee69b 1647
14f9c5c9
AS
1648 if (is_thin_pntr (type))
1649 return thin_data_pntr (arr);
1650 else if (is_thick_pntr (type))
d2e4a39e 1651 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1652 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1653 else
1654 return NULL;
1655}
1656
1657
1658/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1659 position of the field containing the address of the data. */
1660
14f9c5c9 1661static int
d2e4a39e 1662fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1663{
1664 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1665}
1666
1667/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1668 size of the field containing the address of the data. */
1669
14f9c5c9 1670static int
d2e4a39e 1671fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1672{
1673 type = desc_base_type (type);
1674
1675 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1676 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1677 else
940da03e 1678 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1679}
1680
4c4b4cd2 1681/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1682 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1683 bound, if WHICH is 1. The first bound is I=1. */
1684
d2e4a39e
AS
1685static struct value *
1686desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1687{
250106a7
TT
1688 char bound_name[20];
1689 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1690 which ? 'U' : 'L', i - 1);
1691 return value_struct_elt (&bounds, NULL, bound_name, NULL,
323e0a4a 1692 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1693}
1694
1695/* If BOUNDS is an array-bounds structure type, return the bit position
1696 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1697 bound, if WHICH is 1. The first bound is I=1. */
1698
14f9c5c9 1699static int
d2e4a39e 1700desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1701{
d2e4a39e 1702 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1703}
1704
1705/* If BOUNDS is an array-bounds structure type, return the bit field size
1706 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1707 bound, if WHICH is 1. The first bound is I=1. */
1708
76a01679 1709static int
d2e4a39e 1710desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1711{
1712 type = desc_base_type (type);
1713
d2e4a39e
AS
1714 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1715 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1716 else
940da03e 1717 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1718}
1719
1720/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1721 Ith bound (numbering from 1). Otherwise, NULL. */
1722
d2e4a39e
AS
1723static struct type *
1724desc_index_type (struct type *type, int i)
14f9c5c9
AS
1725{
1726 type = desc_base_type (type);
1727
78134374 1728 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1729 {
1730 char bound_name[20];
1731 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1732 return lookup_struct_elt_type (type, bound_name, 1);
1733 }
d2e4a39e 1734 else
14f9c5c9
AS
1735 return NULL;
1736}
1737
4c4b4cd2
PH
1738/* The number of index positions in the array-bounds type TYPE.
1739 Return 0 if TYPE is NULL. */
1740
14f9c5c9 1741static int
d2e4a39e 1742desc_arity (struct type *type)
14f9c5c9
AS
1743{
1744 type = desc_base_type (type);
1745
1746 if (type != NULL)
1f704f76 1747 return type->num_fields () / 2;
14f9c5c9
AS
1748 return 0;
1749}
1750
4c4b4cd2
PH
1751/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1752 an array descriptor type (representing an unconstrained array
1753 type). */
1754
76a01679
JB
1755static int
1756ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1757{
1758 if (type == NULL)
1759 return 0;
61ee279c 1760 type = ada_check_typedef (type);
78134374 1761 return (type->code () == TYPE_CODE_ARRAY
76a01679 1762 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1763}
1764
52ce6436 1765/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1766 * to one. */
52ce6436 1767
2c0b251b 1768static int
52ce6436
PH
1769ada_is_array_type (struct type *type)
1770{
78134374
SM
1771 while (type != NULL
1772 && (type->code () == TYPE_CODE_PTR
1773 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1774 type = TYPE_TARGET_TYPE (type);
1775 return ada_is_direct_array_type (type);
1776}
1777
4c4b4cd2 1778/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1779
14f9c5c9 1780int
4c4b4cd2 1781ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1782{
1783 if (type == NULL)
1784 return 0;
61ee279c 1785 type = ada_check_typedef (type);
78134374
SM
1786 return (type->code () == TYPE_CODE_ARRAY
1787 || (type->code () == TYPE_CODE_PTR
1788 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1789 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1790}
1791
4c4b4cd2
PH
1792/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1793
14f9c5c9 1794int
4c4b4cd2 1795ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1796{
556bdfd4 1797 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1798
1799 if (type == NULL)
1800 return 0;
61ee279c 1801 type = ada_check_typedef (type);
556bdfd4 1802 return (data_type != NULL
78134374 1803 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1804 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1805}
1806
1807/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1808 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1809 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1810 is still needed. */
1811
14f9c5c9 1812int
ebf56fd3 1813ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1814{
d2e4a39e 1815 return
14f9c5c9 1816 type != NULL
78134374 1817 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1818 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1819 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1820 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1821}
1822
1823
4c4b4cd2 1824/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1825 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1826 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1827 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1828 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1829 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1830 a descriptor. */
de93309a
SM
1831
1832static struct type *
d2e4a39e 1833ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1834{
ad82864c
JB
1835 if (ada_is_constrained_packed_array_type (value_type (arr)))
1836 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1837
df407dfe
AC
1838 if (!ada_is_array_descriptor_type (value_type (arr)))
1839 return value_type (arr);
d2e4a39e
AS
1840
1841 if (!bounds)
ad82864c
JB
1842 {
1843 struct type *array_type =
1844 ada_check_typedef (desc_data_target_type (value_type (arr)));
1845
1846 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1847 TYPE_FIELD_BITSIZE (array_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849
1850 return array_type;
1851 }
14f9c5c9
AS
1852 else
1853 {
d2e4a39e 1854 struct type *elt_type;
14f9c5c9 1855 int arity;
d2e4a39e 1856 struct value *descriptor;
14f9c5c9 1857
df407dfe
AC
1858 elt_type = ada_array_element_type (value_type (arr), -1);
1859 arity = ada_array_arity (value_type (arr));
14f9c5c9 1860
d2e4a39e 1861 if (elt_type == NULL || arity == 0)
df407dfe 1862 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1863
1864 descriptor = desc_bounds (arr);
d2e4a39e 1865 if (value_as_long (descriptor) == 0)
4c4b4cd2 1866 return NULL;
d2e4a39e 1867 while (arity > 0)
4c4b4cd2 1868 {
e9bb382b
UW
1869 struct type *range_type = alloc_type_copy (value_type (arr));
1870 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1871 struct value *low = desc_one_bound (descriptor, arity, 0);
1872 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1873
5b4ee69b 1874 arity -= 1;
0c9c3474
SA
1875 create_static_range_type (range_type, value_type (low),
1876 longest_to_int (value_as_long (low)),
1877 longest_to_int (value_as_long (high)));
4c4b4cd2 1878 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1879
1880 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1881 {
1882 /* We need to store the element packed bitsize, as well as
1883 recompute the array size, because it was previously
1884 computed based on the unpacked element size. */
1885 LONGEST lo = value_as_long (low);
1886 LONGEST hi = value_as_long (high);
1887
1888 TYPE_FIELD_BITSIZE (elt_type, 0) =
1889 decode_packed_array_bitsize (value_type (arr));
1890 /* If the array has no element, then the size is already
1891 zero, and does not need to be recomputed. */
1892 if (lo < hi)
1893 {
1894 int array_bitsize =
1895 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1896
1897 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1898 }
1899 }
4c4b4cd2 1900 }
14f9c5c9
AS
1901
1902 return lookup_pointer_type (elt_type);
1903 }
1904}
1905
1906/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1907 Otherwise, returns either a standard GDB array with bounds set
1908 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1909 GDB array. Returns NULL if ARR is a null fat pointer. */
1910
d2e4a39e
AS
1911struct value *
1912ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1913{
df407dfe 1914 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1915 {
d2e4a39e 1916 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1917
14f9c5c9 1918 if (arrType == NULL)
4c4b4cd2 1919 return NULL;
14f9c5c9
AS
1920 return value_cast (arrType, value_copy (desc_data (arr)));
1921 }
ad82864c
JB
1922 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1923 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1924 else
1925 return arr;
1926}
1927
1928/* If ARR does not represent an array, returns ARR unchanged.
1929 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1930 be ARR itself if it already is in the proper form). */
1931
720d1a40 1932struct value *
d2e4a39e 1933ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1934{
df407dfe 1935 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1936 {
d2e4a39e 1937 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1938
14f9c5c9 1939 if (arrVal == NULL)
323e0a4a 1940 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1941 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1942 return value_ind (arrVal);
1943 }
ad82864c
JB
1944 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array (arr);
d2e4a39e 1946 else
14f9c5c9
AS
1947 return arr;
1948}
1949
1950/* If TYPE represents a GNAT array type, return it translated to an
1951 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1952 packing). For other types, is the identity. */
1953
d2e4a39e
AS
1954struct type *
1955ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1956{
ad82864c
JB
1957 if (ada_is_constrained_packed_array_type (type))
1958 return decode_constrained_packed_array_type (type);
17280b9f
UW
1959
1960 if (ada_is_array_descriptor_type (type))
556bdfd4 1961 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1962
1963 return type;
14f9c5c9
AS
1964}
1965
4c4b4cd2
PH
1966/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1967
ad82864c
JB
1968static int
1969ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1970{
1971 if (type == NULL)
1972 return 0;
4c4b4cd2 1973 type = desc_base_type (type);
61ee279c 1974 type = ada_check_typedef (type);
d2e4a39e 1975 return
14f9c5c9
AS
1976 ada_type_name (type) != NULL
1977 && strstr (ada_type_name (type), "___XP") != NULL;
1978}
1979
ad82864c
JB
1980/* Non-zero iff TYPE represents a standard GNAT constrained
1981 packed-array type. */
1982
1983int
1984ada_is_constrained_packed_array_type (struct type *type)
1985{
1986 return ada_is_packed_array_type (type)
1987 && !ada_is_array_descriptor_type (type);
1988}
1989
1990/* Non-zero iff TYPE represents an array descriptor for a
1991 unconstrained packed-array type. */
1992
1993static int
1994ada_is_unconstrained_packed_array_type (struct type *type)
1995{
1996 return ada_is_packed_array_type (type)
1997 && ada_is_array_descriptor_type (type);
1998}
1999
2000/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2001 return the size of its elements in bits. */
2002
2003static long
2004decode_packed_array_bitsize (struct type *type)
2005{
0d5cff50
DE
2006 const char *raw_name;
2007 const char *tail;
ad82864c
JB
2008 long bits;
2009
720d1a40
JB
2010 /* Access to arrays implemented as fat pointers are encoded as a typedef
2011 of the fat pointer type. We need the name of the fat pointer type
2012 to do the decoding, so strip the typedef layer. */
78134374 2013 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2014 type = ada_typedef_target_type (type);
2015
2016 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2017 if (!raw_name)
2018 raw_name = ada_type_name (desc_base_type (type));
2019
2020 if (!raw_name)
2021 return 0;
2022
2023 tail = strstr (raw_name, "___XP");
720d1a40 2024 gdb_assert (tail != NULL);
ad82864c
JB
2025
2026 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2027 {
2028 lim_warning
2029 (_("could not understand bit size information on packed array"));
2030 return 0;
2031 }
2032
2033 return bits;
2034}
2035
14f9c5c9
AS
2036/* Given that TYPE is a standard GDB array type with all bounds filled
2037 in, and that the element size of its ultimate scalar constituents
2038 (that is, either its elements, or, if it is an array of arrays, its
2039 elements' elements, etc.) is *ELT_BITS, return an identical type,
2040 but with the bit sizes of its elements (and those of any
2041 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2042 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2043 in bits.
2044
2045 Note that, for arrays whose index type has an XA encoding where
2046 a bound references a record discriminant, getting that discriminant,
2047 and therefore the actual value of that bound, is not possible
2048 because none of the given parameters gives us access to the record.
2049 This function assumes that it is OK in the context where it is being
2050 used to return an array whose bounds are still dynamic and where
2051 the length is arbitrary. */
4c4b4cd2 2052
d2e4a39e 2053static struct type *
ad82864c 2054constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2055{
d2e4a39e
AS
2056 struct type *new_elt_type;
2057 struct type *new_type;
99b1c762
JB
2058 struct type *index_type_desc;
2059 struct type *index_type;
14f9c5c9
AS
2060 LONGEST low_bound, high_bound;
2061
61ee279c 2062 type = ada_check_typedef (type);
78134374 2063 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2064 return type;
2065
99b1c762
JB
2066 index_type_desc = ada_find_parallel_type (type, "___XA");
2067 if (index_type_desc)
940da03e 2068 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2069 NULL);
2070 else
3d967001 2071 index_type = type->index_type ();
99b1c762 2072
e9bb382b 2073 new_type = alloc_type_copy (type);
ad82864c
JB
2074 new_elt_type =
2075 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2076 elt_bits);
99b1c762 2077 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2078 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2079 new_type->set_name (ada_type_name (type));
14f9c5c9 2080
78134374 2081 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2082 && is_dynamic_type (check_typedef (index_type)))
2083 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2084 low_bound = high_bound = 0;
2085 if (high_bound < low_bound)
2086 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2087 else
14f9c5c9
AS
2088 {
2089 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2090 TYPE_LENGTH (new_type) =
4c4b4cd2 2091 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2092 }
2093
876cecd0 2094 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2095 return new_type;
2096}
2097
ad82864c
JB
2098/* The array type encoded by TYPE, where
2099 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2100
d2e4a39e 2101static struct type *
ad82864c 2102decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2103{
0d5cff50 2104 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2105 char *name;
0d5cff50 2106 const char *tail;
d2e4a39e 2107 struct type *shadow_type;
14f9c5c9 2108 long bits;
14f9c5c9 2109
727e3d2e
JB
2110 if (!raw_name)
2111 raw_name = ada_type_name (desc_base_type (type));
2112
2113 if (!raw_name)
2114 return NULL;
2115
2116 name = (char *) alloca (strlen (raw_name) + 1);
2117 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2118 type = desc_base_type (type);
2119
14f9c5c9
AS
2120 memcpy (name, raw_name, tail - raw_name);
2121 name[tail - raw_name] = '\000';
2122
b4ba55a1
JB
2123 shadow_type = ada_find_parallel_type_with_name (type, name);
2124
2125 if (shadow_type == NULL)
14f9c5c9 2126 {
323e0a4a 2127 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2128 return NULL;
2129 }
f168693b 2130 shadow_type = check_typedef (shadow_type);
14f9c5c9 2131
78134374 2132 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2133 {
0963b4bd
MS
2134 lim_warning (_("could not understand bounds "
2135 "information on packed array"));
14f9c5c9
AS
2136 return NULL;
2137 }
d2e4a39e 2138
ad82864c
JB
2139 bits = decode_packed_array_bitsize (type);
2140 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2141}
2142
ad82864c
JB
2143/* Given that ARR is a struct value *indicating a GNAT constrained packed
2144 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2145 standard GDB array type except that the BITSIZEs of the array
2146 target types are set to the number of bits in each element, and the
4c4b4cd2 2147 type length is set appropriately. */
14f9c5c9 2148
d2e4a39e 2149static struct value *
ad82864c 2150decode_constrained_packed_array (struct value *arr)
14f9c5c9 2151{
4c4b4cd2 2152 struct type *type;
14f9c5c9 2153
11aa919a
PMR
2154 /* If our value is a pointer, then dereference it. Likewise if
2155 the value is a reference. Make sure that this operation does not
2156 cause the target type to be fixed, as this would indirectly cause
2157 this array to be decoded. The rest of the routine assumes that
2158 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2159 and "value_ind" routines to perform the dereferencing, as opposed
2160 to using "ada_coerce_ref" or "ada_value_ind". */
2161 arr = coerce_ref (arr);
78134374 2162 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2163 arr = value_ind (arr);
4c4b4cd2 2164
ad82864c 2165 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2166 if (type == NULL)
2167 {
323e0a4a 2168 error (_("can't unpack array"));
14f9c5c9
AS
2169 return NULL;
2170 }
61ee279c 2171
d5a22e77 2172 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2173 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2174 {
2175 /* This is a (right-justified) modular type representing a packed
2176 array with no wrapper. In order to interpret the value through
2177 the (left-justified) packed array type we just built, we must
2178 first left-justify it. */
2179 int bit_size, bit_pos;
2180 ULONGEST mod;
2181
df407dfe 2182 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2183 bit_size = 0;
2184 while (mod > 0)
2185 {
2186 bit_size += 1;
2187 mod >>= 1;
2188 }
df407dfe 2189 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2190 arr = ada_value_primitive_packed_val (arr, NULL,
2191 bit_pos / HOST_CHAR_BIT,
2192 bit_pos % HOST_CHAR_BIT,
2193 bit_size,
2194 type);
2195 }
2196
4c4b4cd2 2197 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2198}
2199
2200
2201/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2202 given in IND. ARR must be a simple array. */
14f9c5c9 2203
d2e4a39e
AS
2204static struct value *
2205value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2206{
2207 int i;
2208 int bits, elt_off, bit_off;
2209 long elt_total_bit_offset;
d2e4a39e
AS
2210 struct type *elt_type;
2211 struct value *v;
14f9c5c9
AS
2212
2213 bits = 0;
2214 elt_total_bit_offset = 0;
df407dfe 2215 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2216 for (i = 0; i < arity; i += 1)
14f9c5c9 2217 {
78134374 2218 if (elt_type->code () != TYPE_CODE_ARRAY
4c4b4cd2
PH
2219 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2220 error
0963b4bd
MS
2221 (_("attempt to do packed indexing of "
2222 "something other than a packed array"));
14f9c5c9 2223 else
4c4b4cd2 2224 {
3d967001 2225 struct type *range_type = elt_type->index_type ();
4c4b4cd2
PH
2226 LONGEST lowerbound, upperbound;
2227 LONGEST idx;
2228
2229 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2230 {
323e0a4a 2231 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2232 lowerbound = upperbound = 0;
2233 }
2234
3cb382c9 2235 idx = pos_atr (ind[i]);
4c4b4cd2 2236 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2237 lim_warning (_("packed array index %ld out of bounds"),
2238 (long) idx);
4c4b4cd2
PH
2239 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2240 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2241 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2242 }
14f9c5c9
AS
2243 }
2244 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2245 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2246
2247 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2248 bits, elt_type);
14f9c5c9
AS
2249 return v;
2250}
2251
4c4b4cd2 2252/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2253
2254static int
d2e4a39e 2255has_negatives (struct type *type)
14f9c5c9 2256{
78134374 2257 switch (type->code ())
d2e4a39e
AS
2258 {
2259 default:
2260 return 0;
2261 case TYPE_CODE_INT:
2262 return !TYPE_UNSIGNED (type);
2263 case TYPE_CODE_RANGE:
4e962e74 2264 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2265 }
14f9c5c9 2266}
d2e4a39e 2267
f93fca70 2268/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2269 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2270 the unpacked buffer.
14f9c5c9 2271
5b639dea
JB
2272 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2273 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2274
f93fca70
JB
2275 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2276 zero otherwise.
14f9c5c9 2277
f93fca70 2278 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2279
f93fca70
JB
2280 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2281
2282static void
2283ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2284 gdb_byte *unpacked, int unpacked_len,
2285 int is_big_endian, int is_signed_type,
2286 int is_scalar)
2287{
a1c95e6b
JB
2288 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 int src_idx; /* Index into the source area */
2290 int src_bytes_left; /* Number of source bytes left to process. */
2291 int srcBitsLeft; /* Number of source bits left to move */
2292 int unusedLS; /* Number of bits in next significant
2293 byte of source that are unused */
2294
a1c95e6b
JB
2295 int unpacked_idx; /* Index into the unpacked buffer */
2296 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2297
4c4b4cd2 2298 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2299 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2300 unsigned char sign;
a1c95e6b 2301
4c4b4cd2
PH
2302 /* Transmit bytes from least to most significant; delta is the direction
2303 the indices move. */
f93fca70 2304 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2305
5b639dea
JB
2306 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2307 bits from SRC. .*/
2308 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2309 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2310 bit_size, unpacked_len);
2311
14f9c5c9 2312 srcBitsLeft = bit_size;
086ca51f 2313 src_bytes_left = src_len;
f93fca70 2314 unpacked_bytes_left = unpacked_len;
14f9c5c9 2315 sign = 0;
f93fca70
JB
2316
2317 if (is_big_endian)
14f9c5c9 2318 {
086ca51f 2319 src_idx = src_len - 1;
f93fca70
JB
2320 if (is_signed_type
2321 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2322 sign = ~0;
d2e4a39e
AS
2323
2324 unusedLS =
4c4b4cd2
PH
2325 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2326 % HOST_CHAR_BIT;
14f9c5c9 2327
f93fca70
JB
2328 if (is_scalar)
2329 {
2330 accumSize = 0;
2331 unpacked_idx = unpacked_len - 1;
2332 }
2333 else
2334 {
4c4b4cd2
PH
2335 /* Non-scalar values must be aligned at a byte boundary... */
2336 accumSize =
2337 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2338 /* ... And are placed at the beginning (most-significant) bytes
2339 of the target. */
086ca51f
JB
2340 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2341 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2342 }
14f9c5c9 2343 }
d2e4a39e 2344 else
14f9c5c9
AS
2345 {
2346 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2347
086ca51f 2348 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2349 unusedLS = bit_offset;
2350 accumSize = 0;
2351
f93fca70 2352 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2353 sign = ~0;
14f9c5c9 2354 }
d2e4a39e 2355
14f9c5c9 2356 accum = 0;
086ca51f 2357 while (src_bytes_left > 0)
14f9c5c9
AS
2358 {
2359 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2360 part of the value. */
d2e4a39e 2361 unsigned int unusedMSMask =
4c4b4cd2
PH
2362 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2363 1;
2364 /* Sign-extend bits for this byte. */
14f9c5c9 2365 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2366
d2e4a39e 2367 accum |=
086ca51f 2368 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2369 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2370 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2371 {
db297a65 2372 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2373 accumSize -= HOST_CHAR_BIT;
2374 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2375 unpacked_bytes_left -= 1;
2376 unpacked_idx += delta;
4c4b4cd2 2377 }
14f9c5c9
AS
2378 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2379 unusedLS = 0;
086ca51f
JB
2380 src_bytes_left -= 1;
2381 src_idx += delta;
14f9c5c9 2382 }
086ca51f 2383 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2384 {
2385 accum |= sign << accumSize;
db297a65 2386 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2387 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2388 if (accumSize < 0)
2389 accumSize = 0;
14f9c5c9 2390 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2391 unpacked_bytes_left -= 1;
2392 unpacked_idx += delta;
14f9c5c9 2393 }
f93fca70
JB
2394}
2395
2396/* Create a new value of type TYPE from the contents of OBJ starting
2397 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2398 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2399 assigning through the result will set the field fetched from.
2400 VALADDR is ignored unless OBJ is NULL, in which case,
2401 VALADDR+OFFSET must address the start of storage containing the
2402 packed value. The value returned in this case is never an lval.
2403 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2404
2405struct value *
2406ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2407 long offset, int bit_offset, int bit_size,
2408 struct type *type)
2409{
2410 struct value *v;
bfb1c796 2411 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2412 gdb_byte *unpacked;
220475ed 2413 const int is_scalar = is_scalar_type (type);
d5a22e77 2414 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2415 gdb::byte_vector staging;
f93fca70
JB
2416
2417 type = ada_check_typedef (type);
2418
d0a9e810 2419 if (obj == NULL)
bfb1c796 2420 src = valaddr + offset;
d0a9e810 2421 else
bfb1c796 2422 src = value_contents (obj) + offset;
d0a9e810
JB
2423
2424 if (is_dynamic_type (type))
2425 {
2426 /* The length of TYPE might by dynamic, so we need to resolve
2427 TYPE in order to know its actual size, which we then use
2428 to create the contents buffer of the value we return.
2429 The difficulty is that the data containing our object is
2430 packed, and therefore maybe not at a byte boundary. So, what
2431 we do, is unpack the data into a byte-aligned buffer, and then
2432 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2433 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2434 staging.resize (staging_len);
d0a9e810
JB
2435
2436 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2437 staging.data (), staging.size (),
d0a9e810
JB
2438 is_big_endian, has_negatives (type),
2439 is_scalar);
b249d2c2 2440 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2441 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2442 {
2443 /* This happens when the length of the object is dynamic,
2444 and is actually smaller than the space reserved for it.
2445 For instance, in an array of variant records, the bit_size
2446 we're given is the array stride, which is constant and
2447 normally equal to the maximum size of its element.
2448 But, in reality, each element only actually spans a portion
2449 of that stride. */
2450 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2451 }
d0a9e810
JB
2452 }
2453
f93fca70
JB
2454 if (obj == NULL)
2455 {
2456 v = allocate_value (type);
bfb1c796 2457 src = valaddr + offset;
f93fca70
JB
2458 }
2459 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2460 {
0cafa88c 2461 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2462 gdb_byte *buf;
0cafa88c 2463
f93fca70 2464 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2465 buf = (gdb_byte *) alloca (src_len);
2466 read_memory (value_address (v), buf, src_len);
2467 src = buf;
f93fca70
JB
2468 }
2469 else
2470 {
2471 v = allocate_value (type);
bfb1c796 2472 src = value_contents (obj) + offset;
f93fca70
JB
2473 }
2474
2475 if (obj != NULL)
2476 {
2477 long new_offset = offset;
2478
2479 set_value_component_location (v, obj);
2480 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2481 set_value_bitsize (v, bit_size);
2482 if (value_bitpos (v) >= HOST_CHAR_BIT)
2483 {
2484 ++new_offset;
2485 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2486 }
2487 set_value_offset (v, new_offset);
2488
2489 /* Also set the parent value. This is needed when trying to
2490 assign a new value (in inferior memory). */
2491 set_value_parent (v, obj);
2492 }
2493 else
2494 set_value_bitsize (v, bit_size);
bfb1c796 2495 unpacked = value_contents_writeable (v);
f93fca70
JB
2496
2497 if (bit_size == 0)
2498 {
2499 memset (unpacked, 0, TYPE_LENGTH (type));
2500 return v;
2501 }
2502
d5722aa2 2503 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2504 {
d0a9e810
JB
2505 /* Small short-cut: If we've unpacked the data into a buffer
2506 of the same size as TYPE's length, then we can reuse that,
2507 instead of doing the unpacking again. */
d5722aa2 2508 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2509 }
d0a9e810
JB
2510 else
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 unpacked, TYPE_LENGTH (type),
2513 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2514
14f9c5c9
AS
2515 return v;
2516}
d2e4a39e 2517
14f9c5c9
AS
2518/* Store the contents of FROMVAL into the location of TOVAL.
2519 Return a new value with the location of TOVAL and contents of
2520 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2521 floating-point or non-scalar types. */
14f9c5c9 2522
d2e4a39e
AS
2523static struct value *
2524ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2525{
df407dfe
AC
2526 struct type *type = value_type (toval);
2527 int bits = value_bitsize (toval);
14f9c5c9 2528
52ce6436
PH
2529 toval = ada_coerce_ref (toval);
2530 fromval = ada_coerce_ref (fromval);
2531
2532 if (ada_is_direct_array_type (value_type (toval)))
2533 toval = ada_coerce_to_simple_array (toval);
2534 if (ada_is_direct_array_type (value_type (fromval)))
2535 fromval = ada_coerce_to_simple_array (fromval);
2536
88e3b34b 2537 if (!deprecated_value_modifiable (toval))
323e0a4a 2538 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2539
d2e4a39e 2540 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2541 && bits > 0
78134374
SM
2542 && (type->code () == TYPE_CODE_FLT
2543 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2544 {
df407dfe
AC
2545 int len = (value_bitpos (toval)
2546 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2547 int from_size;
224c3ddb 2548 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2549 struct value *val;
42ae5230 2550 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2551
78134374 2552 if (type->code () == TYPE_CODE_FLT)
4c4b4cd2 2553 fromval = value_cast (type, fromval);
14f9c5c9 2554
52ce6436 2555 read_memory (to_addr, buffer, len);
aced2898
PH
2556 from_size = value_bitsize (fromval);
2557 if (from_size == 0)
2558 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2559
d5a22e77 2560 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2561 ULONGEST from_offset = 0;
2562 if (is_big_endian && is_scalar_type (value_type (fromval)))
2563 from_offset = from_size - bits;
2564 copy_bitwise (buffer, value_bitpos (toval),
2565 value_contents (fromval), from_offset,
2566 bits, is_big_endian);
972daa01 2567 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2568
14f9c5c9 2569 val = value_copy (toval);
0fd88904 2570 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2571 TYPE_LENGTH (type));
04624583 2572 deprecated_set_value_type (val, type);
d2e4a39e 2573
14f9c5c9
AS
2574 return val;
2575 }
2576
2577 return value_assign (toval, fromval);
2578}
2579
2580
7c512744
JB
2581/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2582 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2583 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2584 COMPONENT, and not the inferior's memory. The current contents
2585 of COMPONENT are ignored.
2586
2587 Although not part of the initial design, this function also works
2588 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2589 had a null address, and COMPONENT had an address which is equal to
2590 its offset inside CONTAINER. */
2591
52ce6436
PH
2592static void
2593value_assign_to_component (struct value *container, struct value *component,
2594 struct value *val)
2595{
2596 LONGEST offset_in_container =
42ae5230 2597 (LONGEST) (value_address (component) - value_address (container));
7c512744 2598 int bit_offset_in_container =
52ce6436
PH
2599 value_bitpos (component) - value_bitpos (container);
2600 int bits;
7c512744 2601
52ce6436
PH
2602 val = value_cast (value_type (component), val);
2603
2604 if (value_bitsize (component) == 0)
2605 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2606 else
2607 bits = value_bitsize (component);
2608
d5a22e77 2609 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2610 {
2611 int src_offset;
2612
2613 if (is_scalar_type (check_typedef (value_type (component))))
2614 src_offset
2615 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2616 else
2617 src_offset = 0;
a99bc3d2
JB
2618 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2619 value_bitpos (container) + bit_offset_in_container,
2620 value_contents (val), src_offset, bits, 1);
2a62dfa9 2621 }
52ce6436 2622 else
a99bc3d2
JB
2623 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2624 value_bitpos (container) + bit_offset_in_container,
2625 value_contents (val), 0, bits, 0);
7c512744
JB
2626}
2627
736ade86
XR
2628/* Determine if TYPE is an access to an unconstrained array. */
2629
d91e9ea8 2630bool
736ade86
XR
2631ada_is_access_to_unconstrained_array (struct type *type)
2632{
78134374 2633 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2634 && is_thick_pntr (ada_typedef_target_type (type)));
2635}
2636
4c4b4cd2
PH
2637/* The value of the element of array ARR at the ARITY indices given in IND.
2638 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2639 thereto. */
2640
d2e4a39e
AS
2641struct value *
2642ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2643{
2644 int k;
d2e4a39e
AS
2645 struct value *elt;
2646 struct type *elt_type;
14f9c5c9
AS
2647
2648 elt = ada_coerce_to_simple_array (arr);
2649
df407dfe 2650 elt_type = ada_check_typedef (value_type (elt));
78134374 2651 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2652 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2653 return value_subscript_packed (elt, arity, ind);
2654
2655 for (k = 0; k < arity; k += 1)
2656 {
b9c50e9a
XR
2657 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2658
78134374 2659 if (elt_type->code () != TYPE_CODE_ARRAY)
323e0a4a 2660 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2661
2497b498 2662 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2663
2664 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2665 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2666 {
2667 /* The element is a typedef to an unconstrained array,
2668 except that the value_subscript call stripped the
2669 typedef layer. The typedef layer is GNAT's way to
2670 specify that the element is, at the source level, an
2671 access to the unconstrained array, rather than the
2672 unconstrained array. So, we need to restore that
2673 typedef layer, which we can do by forcing the element's
2674 type back to its original type. Otherwise, the returned
2675 value is going to be printed as the array, rather
2676 than as an access. Another symptom of the same issue
2677 would be that an expression trying to dereference the
2678 element would also be improperly rejected. */
2679 deprecated_set_value_type (elt, saved_elt_type);
2680 }
2681
2682 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2683 }
b9c50e9a 2684
14f9c5c9
AS
2685 return elt;
2686}
2687
deede10c
JB
2688/* Assuming ARR is a pointer to a GDB array, the value of the element
2689 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2690 Does not read the entire array into memory.
2691
2692 Note: Unlike what one would expect, this function is used instead of
2693 ada_value_subscript for basically all non-packed array types. The reason
2694 for this is that a side effect of doing our own pointer arithmetics instead
2695 of relying on value_subscript is that there is no implicit typedef peeling.
2696 This is important for arrays of array accesses, where it allows us to
2697 preserve the fact that the array's element is an array access, where the
2698 access part os encoded in a typedef layer. */
14f9c5c9 2699
2c0b251b 2700static struct value *
deede10c 2701ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2702{
2703 int k;
919e6dbe 2704 struct value *array_ind = ada_value_ind (arr);
deede10c 2705 struct type *type
919e6dbe
PMR
2706 = check_typedef (value_enclosing_type (array_ind));
2707
78134374 2708 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2709 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2710 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2711
2712 for (k = 0; k < arity; k += 1)
2713 {
2714 LONGEST lwb, upb;
14f9c5c9 2715
78134374 2716 if (type->code () != TYPE_CODE_ARRAY)
323e0a4a 2717 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2718 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2719 value_copy (arr));
3d967001 2720 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2721 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2722 type = TYPE_TARGET_TYPE (type);
2723 }
2724
2725 return value_ind (arr);
2726}
2727
0b5d8877 2728/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2729 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2730 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2731 this array is LOW, as per Ada rules. */
0b5d8877 2732static struct value *
f5938064
JG
2733ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2734 int low, int high)
0b5d8877 2735{
b0dd7688 2736 struct type *type0 = ada_check_typedef (type);
3d967001 2737 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2738 struct type *index_type
aa715135 2739 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2740 struct type *slice_type = create_array_type_with_stride
2741 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2742 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2743 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2744 int base_low = ada_discrete_type_low_bound (type0->index_type ());
aa715135
JG
2745 LONGEST base_low_pos, low_pos;
2746 CORE_ADDR base;
2747
2748 if (!discrete_position (base_index_type, low, &low_pos)
2749 || !discrete_position (base_index_type, base_low, &base_low_pos))
2750 {
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2754 }
5b4ee69b 2755
aa715135
JG
2756 base = value_as_address (array_ptr)
2757 + ((low_pos - base_low_pos)
2758 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2759 return value_at_lazy (slice_type, base);
0b5d8877
PH
2760}
2761
2762
2763static struct value *
2764ada_value_slice (struct value *array, int low, int high)
2765{
b0dd7688 2766 struct type *type = ada_check_typedef (value_type (array));
3d967001 2767 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2768 struct type *index_type
3d967001 2769 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2770 struct type *slice_type = create_array_type_with_stride
2771 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2772 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2773 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2774 LONGEST low_pos, high_pos;
5b4ee69b 2775
aa715135
JG
2776 if (!discrete_position (base_index_type, low, &low_pos)
2777 || !discrete_position (base_index_type, high, &high_pos))
2778 {
2779 warning (_("unable to get positions in slice, use bounds instead"));
2780 low_pos = low;
2781 high_pos = high;
2782 }
2783
2784 return value_cast (slice_type,
2785 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2786}
2787
14f9c5c9
AS
2788/* If type is a record type in the form of a standard GNAT array
2789 descriptor, returns the number of dimensions for type. If arr is a
2790 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2791 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2792
2793int
d2e4a39e 2794ada_array_arity (struct type *type)
14f9c5c9
AS
2795{
2796 int arity;
2797
2798 if (type == NULL)
2799 return 0;
2800
2801 type = desc_base_type (type);
2802
2803 arity = 0;
78134374 2804 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2805 return desc_arity (desc_bounds_type (type));
d2e4a39e 2806 else
78134374 2807 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2808 {
4c4b4cd2 2809 arity += 1;
61ee279c 2810 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2811 }
d2e4a39e 2812
14f9c5c9
AS
2813 return arity;
2814}
2815
2816/* If TYPE is a record type in the form of a standard GNAT array
2817 descriptor or a simple array type, returns the element type for
2818 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2819 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2820
d2e4a39e
AS
2821struct type *
2822ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2823{
2824 type = desc_base_type (type);
2825
78134374 2826 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2827 {
2828 int k;
d2e4a39e 2829 struct type *p_array_type;
14f9c5c9 2830
556bdfd4 2831 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2832
2833 k = ada_array_arity (type);
2834 if (k == 0)
4c4b4cd2 2835 return NULL;
d2e4a39e 2836
4c4b4cd2 2837 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2838 if (nindices >= 0 && k > nindices)
4c4b4cd2 2839 k = nindices;
d2e4a39e 2840 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2841 {
61ee279c 2842 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2843 k -= 1;
2844 }
14f9c5c9
AS
2845 return p_array_type;
2846 }
78134374 2847 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2848 {
78134374 2849 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2850 {
2851 type = TYPE_TARGET_TYPE (type);
2852 nindices -= 1;
2853 }
14f9c5c9
AS
2854 return type;
2855 }
2856
2857 return NULL;
2858}
2859
4c4b4cd2 2860/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2861 Does not examine memory. Throws an error if N is invalid or TYPE
2862 is not an array type. NAME is the name of the Ada attribute being
2863 evaluated ('range, 'first, 'last, or 'length); it is used in building
2864 the error message. */
14f9c5c9 2865
1eea4ebd
UW
2866static struct type *
2867ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2868{
4c4b4cd2
PH
2869 struct type *result_type;
2870
14f9c5c9
AS
2871 type = desc_base_type (type);
2872
1eea4ebd
UW
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2875
4c4b4cd2 2876 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2877 {
2878 int i;
2879
2880 for (i = 1; i < n; i += 1)
4c4b4cd2 2881 type = TYPE_TARGET_TYPE (type);
3d967001 2882 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2
PH
2883 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2884 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2885 perhaps stabsread.c would make more sense. */
78134374 2886 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
1eea4ebd 2887 result_type = NULL;
14f9c5c9 2888 }
d2e4a39e 2889 else
1eea4ebd
UW
2890 {
2891 result_type = desc_index_type (desc_bounds_type (type), n);
2892 if (result_type == NULL)
2893 error (_("attempt to take bound of something that is not an array"));
2894 }
2895
2896 return result_type;
14f9c5c9
AS
2897}
2898
2899/* Given that arr is an array type, returns the lower bound of the
2900 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2901 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2902 array-descriptor type. It works for other arrays with bounds supplied
2903 by run-time quantities other than discriminants. */
14f9c5c9 2904
abb68b3e 2905static LONGEST
fb5e3d5c 2906ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2907{
8a48ac95 2908 struct type *type, *index_type_desc, *index_type;
1ce677a4 2909 int i;
262452ec
JK
2910
2911 gdb_assert (which == 0 || which == 1);
14f9c5c9 2912
ad82864c
JB
2913 if (ada_is_constrained_packed_array_type (arr_type))
2914 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2915
4c4b4cd2 2916 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2917 return (LONGEST) - which;
14f9c5c9 2918
78134374 2919 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2920 type = TYPE_TARGET_TYPE (arr_type);
2921 else
2922 type = arr_type;
2923
bafffb51
JB
2924 if (TYPE_FIXED_INSTANCE (type))
2925 {
2926 /* The array has already been fixed, so we do not need to
2927 check the parallel ___XA type again. That encoding has
2928 already been applied, so ignore it now. */
2929 index_type_desc = NULL;
2930 }
2931 else
2932 {
2933 index_type_desc = ada_find_parallel_type (type, "___XA");
2934 ada_fixup_array_indexes_type (index_type_desc);
2935 }
2936
262452ec 2937 if (index_type_desc != NULL)
940da03e 2938 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2939 NULL);
262452ec 2940 else
8a48ac95
JB
2941 {
2942 struct type *elt_type = check_typedef (type);
2943
2944 for (i = 1; i < n; i++)
2945 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2946
3d967001 2947 index_type = elt_type->index_type ();
8a48ac95 2948 }
262452ec 2949
43bbcdc2
PH
2950 return
2951 (LONGEST) (which == 0
2952 ? ada_discrete_type_low_bound (index_type)
2953 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2954}
2955
2956/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2957 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2958 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2959 supplied by run-time quantities other than discriminants. */
14f9c5c9 2960
1eea4ebd 2961static LONGEST
4dc81987 2962ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2963{
eb479039
JB
2964 struct type *arr_type;
2965
78134374 2966 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2967 arr = value_ind (arr);
2968 arr_type = value_enclosing_type (arr);
14f9c5c9 2969
ad82864c
JB
2970 if (ada_is_constrained_packed_array_type (arr_type))
2971 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2972 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2973 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2974 else
1eea4ebd 2975 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2976}
2977
2978/* Given that arr is an array value, returns the length of the
2979 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2980 supplied by run-time quantities other than discriminants.
2981 Does not work for arrays indexed by enumeration types with representation
2982 clauses at the moment. */
14f9c5c9 2983
1eea4ebd 2984static LONGEST
d2e4a39e 2985ada_array_length (struct value *arr, int n)
14f9c5c9 2986{
aa715135
JG
2987 struct type *arr_type, *index_type;
2988 int low, high;
eb479039 2989
78134374 2990 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2991 arr = value_ind (arr);
2992 arr_type = value_enclosing_type (arr);
14f9c5c9 2993
ad82864c
JB
2994 if (ada_is_constrained_packed_array_type (arr_type))
2995 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2996
4c4b4cd2 2997 if (ada_is_simple_array_type (arr_type))
aa715135
JG
2998 {
2999 low = ada_array_bound_from_type (arr_type, n, 0);
3000 high = ada_array_bound_from_type (arr_type, n, 1);
3001 }
14f9c5c9 3002 else
aa715135
JG
3003 {
3004 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3005 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3006 }
3007
f168693b 3008 arr_type = check_typedef (arr_type);
7150d33c 3009 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3010 if (index_type != NULL)
3011 {
3012 struct type *base_type;
78134374 3013 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3014 base_type = TYPE_TARGET_TYPE (index_type);
3015 else
3016 base_type = index_type;
3017
3018 low = pos_atr (value_from_longest (base_type, low));
3019 high = pos_atr (value_from_longest (base_type, high));
3020 }
3021 return high - low + 1;
4c4b4cd2
PH
3022}
3023
bff8c71f
TT
3024/* An array whose type is that of ARR_TYPE (an array type), with
3025 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3026 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3027
3028static struct value *
bff8c71f 3029empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3030{
b0dd7688 3031 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3032 struct type *index_type
3033 = create_static_range_type
3d967001 3034 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3035 high < low ? low - 1 : high);
b0dd7688 3036 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3037
0b5d8877 3038 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3039}
14f9c5c9 3040\f
d2e4a39e 3041
4c4b4cd2 3042 /* Name resolution */
14f9c5c9 3043
4c4b4cd2
PH
3044/* The "decoded" name for the user-definable Ada operator corresponding
3045 to OP. */
14f9c5c9 3046
d2e4a39e 3047static const char *
4c4b4cd2 3048ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3049{
3050 int i;
3051
4c4b4cd2 3052 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3053 {
3054 if (ada_opname_table[i].op == op)
4c4b4cd2 3055 return ada_opname_table[i].decoded;
14f9c5c9 3056 }
323e0a4a 3057 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3058}
3059
de93309a
SM
3060/* Returns true (non-zero) iff decoded name N0 should appear before N1
3061 in a listing of choices during disambiguation (see sort_choices, below).
3062 The idea is that overloadings of a subprogram name from the
3063 same package should sort in their source order. We settle for ordering
3064 such symbols by their trailing number (__N or $N). */
14f9c5c9 3065
de93309a
SM
3066static int
3067encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3068{
de93309a
SM
3069 if (N1 == NULL)
3070 return 0;
3071 else if (N0 == NULL)
3072 return 1;
3073 else
3074 {
3075 int k0, k1;
30b15541 3076
de93309a
SM
3077 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3078 ;
3079 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3080 ;
3081 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3082 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3083 {
3084 int n0, n1;
30b15541 3085
de93309a
SM
3086 n0 = k0;
3087 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3088 n0 -= 1;
3089 n1 = k1;
3090 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3091 n1 -= 1;
3092 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3093 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3094 }
3095 return (strcmp (N0, N1) < 0);
3096 }
14f9c5c9
AS
3097}
3098
de93309a
SM
3099/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3100 encoded names. */
14f9c5c9 3101
de93309a
SM
3102static void
3103sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3104{
14f9c5c9 3105 int i;
14f9c5c9 3106
de93309a 3107 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3108 {
de93309a
SM
3109 struct block_symbol sym = syms[i];
3110 int j;
3111
3112 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3113 {
987012b8
CB
3114 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3115 sym.symbol->linkage_name ()))
de93309a
SM
3116 break;
3117 syms[j + 1] = syms[j];
4c4b4cd2 3118 }
de93309a
SM
3119 syms[j + 1] = sym;
3120 }
3121}
14f9c5c9 3122
de93309a
SM
3123/* Whether GDB should display formals and return types for functions in the
3124 overloads selection menu. */
3125static bool print_signatures = true;
4c4b4cd2 3126
de93309a
SM
3127/* Print the signature for SYM on STREAM according to the FLAGS options. For
3128 all but functions, the signature is just the name of the symbol. For
3129 functions, this is the name of the function, the list of types for formals
3130 and the return type (if any). */
4c4b4cd2 3131
de93309a
SM
3132static void
3133ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3134 const struct type_print_options *flags)
3135{
3136 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3137
987012b8 3138 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3139 if (!print_signatures
3140 || type == NULL
78134374 3141 || type->code () != TYPE_CODE_FUNC)
de93309a 3142 return;
4c4b4cd2 3143
1f704f76 3144 if (type->num_fields () > 0)
de93309a
SM
3145 {
3146 int i;
14f9c5c9 3147
de93309a 3148 fprintf_filtered (stream, " (");
1f704f76 3149 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3150 {
3151 if (i > 0)
3152 fprintf_filtered (stream, "; ");
940da03e 3153 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3154 flags);
3155 }
3156 fprintf_filtered (stream, ")");
3157 }
3158 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3159 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3160 {
3161 fprintf_filtered (stream, " return ");
3162 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3163 }
3164}
14f9c5c9 3165
de93309a
SM
3166/* Read and validate a set of numeric choices from the user in the
3167 range 0 .. N_CHOICES-1. Place the results in increasing
3168 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3169
de93309a
SM
3170 The user types choices as a sequence of numbers on one line
3171 separated by blanks, encoding them as follows:
14f9c5c9 3172
de93309a
SM
3173 + A choice of 0 means to cancel the selection, throwing an error.
3174 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3175 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3176
de93309a 3177 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3178
de93309a
SM
3179 ANNOTATION_SUFFIX, if present, is used to annotate the input
3180 prompts (for use with the -f switch). */
14f9c5c9 3181
de93309a
SM
3182static int
3183get_selections (int *choices, int n_choices, int max_results,
3184 int is_all_choice, const char *annotation_suffix)
3185{
992a7040 3186 const char *args;
de93309a
SM
3187 const char *prompt;
3188 int n_chosen;
3189 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3190
de93309a
SM
3191 prompt = getenv ("PS2");
3192 if (prompt == NULL)
3193 prompt = "> ";
4c4b4cd2 3194
de93309a 3195 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3196
de93309a
SM
3197 if (args == NULL)
3198 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3199
de93309a 3200 n_chosen = 0;
4c4b4cd2 3201
de93309a
SM
3202 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3203 order, as given in args. Choices are validated. */
3204 while (1)
14f9c5c9 3205 {
de93309a
SM
3206 char *args2;
3207 int choice, j;
76a01679 3208
de93309a
SM
3209 args = skip_spaces (args);
3210 if (*args == '\0' && n_chosen == 0)
3211 error_no_arg (_("one or more choice numbers"));
3212 else if (*args == '\0')
3213 break;
76a01679 3214
de93309a
SM
3215 choice = strtol (args, &args2, 10);
3216 if (args == args2 || choice < 0
3217 || choice > n_choices + first_choice - 1)
3218 error (_("Argument must be choice number"));
3219 args = args2;
76a01679 3220
de93309a
SM
3221 if (choice == 0)
3222 error (_("cancelled"));
76a01679 3223
de93309a
SM
3224 if (choice < first_choice)
3225 {
3226 n_chosen = n_choices;
3227 for (j = 0; j < n_choices; j += 1)
3228 choices[j] = j;
3229 break;
76a01679 3230 }
de93309a 3231 choice -= first_choice;
76a01679 3232
de93309a 3233 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3234 {
76a01679 3235 }
4c4b4cd2 3236
de93309a 3237 if (j < 0 || choice != choices[j])
4c4b4cd2 3238 {
de93309a 3239 int k;
4c4b4cd2 3240
de93309a
SM
3241 for (k = n_chosen - 1; k > j; k -= 1)
3242 choices[k + 1] = choices[k];
3243 choices[j + 1] = choice;
3244 n_chosen += 1;
4c4b4cd2 3245 }
14f9c5c9
AS
3246 }
3247
de93309a
SM
3248 if (n_chosen > max_results)
3249 error (_("Select no more than %d of the above"), max_results);
3250
3251 return n_chosen;
14f9c5c9
AS
3252}
3253
de93309a
SM
3254/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3255 by asking the user (if necessary), returning the number selected,
3256 and setting the first elements of SYMS items. Error if no symbols
3257 selected. */
3258
3259/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3260 to be re-integrated one of these days. */
14f9c5c9
AS
3261
3262static int
de93309a 3263user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3264{
de93309a
SM
3265 int i;
3266 int *chosen = XALLOCAVEC (int , nsyms);
3267 int n_chosen;
3268 int first_choice = (max_results == 1) ? 1 : 2;
3269 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3270
de93309a
SM
3271 if (max_results < 1)
3272 error (_("Request to select 0 symbols!"));
3273 if (nsyms <= 1)
3274 return nsyms;
14f9c5c9 3275
de93309a
SM
3276 if (select_mode == multiple_symbols_cancel)
3277 error (_("\
3278canceled because the command is ambiguous\n\
3279See set/show multiple-symbol."));
14f9c5c9 3280
de93309a
SM
3281 /* If select_mode is "all", then return all possible symbols.
3282 Only do that if more than one symbol can be selected, of course.
3283 Otherwise, display the menu as usual. */
3284 if (select_mode == multiple_symbols_all && max_results > 1)
3285 return nsyms;
14f9c5c9 3286
de93309a
SM
3287 printf_filtered (_("[0] cancel\n"));
3288 if (max_results > 1)
3289 printf_filtered (_("[1] all\n"));
14f9c5c9 3290
de93309a 3291 sort_choices (syms, nsyms);
14f9c5c9 3292
de93309a
SM
3293 for (i = 0; i < nsyms; i += 1)
3294 {
3295 if (syms[i].symbol == NULL)
3296 continue;
14f9c5c9 3297
de93309a
SM
3298 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3299 {
3300 struct symtab_and_line sal =
3301 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3302
de93309a
SM
3303 printf_filtered ("[%d] ", i + first_choice);
3304 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3305 &type_print_raw_options);
3306 if (sal.symtab == NULL)
3307 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3308 metadata_style.style ().ptr (), nullptr, sal.line);
3309 else
3310 printf_filtered
3311 (_(" at %ps:%d\n"),
3312 styled_string (file_name_style.style (),
3313 symtab_to_filename_for_display (sal.symtab)),
3314 sal.line);
3315 continue;
3316 }
76a01679
JB
3317 else
3318 {
de93309a
SM
3319 int is_enumeral =
3320 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3321 && SYMBOL_TYPE (syms[i].symbol) != NULL
78134374 3322 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3323 struct symtab *symtab = NULL;
4c4b4cd2 3324
de93309a
SM
3325 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3326 symtab = symbol_symtab (syms[i].symbol);
3327
3328 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3329 {
3330 printf_filtered ("[%d] ", i + first_choice);
3331 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3332 &type_print_raw_options);
3333 printf_filtered (_(" at %s:%d\n"),
3334 symtab_to_filename_for_display (symtab),
3335 SYMBOL_LINE (syms[i].symbol));
3336 }
3337 else if (is_enumeral
7d93a1e0 3338 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
de93309a
SM
3339 {
3340 printf_filtered (("[%d] "), i + first_choice);
3341 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3342 gdb_stdout, -1, 0, &type_print_raw_options);
3343 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3344 syms[i].symbol->print_name ());
de93309a
SM
3345 }
3346 else
3347 {
3348 printf_filtered ("[%d] ", i + first_choice);
3349 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3350 &type_print_raw_options);
3351
3352 if (symtab != NULL)
3353 printf_filtered (is_enumeral
3354 ? _(" in %s (enumeral)\n")
3355 : _(" at %s:?\n"),
3356 symtab_to_filename_for_display (symtab));
3357 else
3358 printf_filtered (is_enumeral
3359 ? _(" (enumeral)\n")
3360 : _(" at ?\n"));
3361 }
76a01679 3362 }
14f9c5c9 3363 }
14f9c5c9 3364
de93309a
SM
3365 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3366 "overload-choice");
14f9c5c9 3367
de93309a
SM
3368 for (i = 0; i < n_chosen; i += 1)
3369 syms[i] = syms[chosen[i]];
14f9c5c9 3370
de93309a
SM
3371 return n_chosen;
3372}
14f9c5c9 3373
de93309a
SM
3374/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3375 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3376 undefined namespace) and converts operators that are
3377 user-defined into appropriate function calls. If CONTEXT_TYPE is
3378 non-null, it provides a preferred result type [at the moment, only
3379 type void has any effect---causing procedures to be preferred over
3380 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3381 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3382
de93309a
SM
3383static void
3384resolve (expression_up *expp, int void_context_p, int parse_completion,
3385 innermost_block_tracker *tracker)
3386{
3387 struct type *context_type = NULL;
3388 int pc = 0;
14f9c5c9 3389
de93309a
SM
3390 if (void_context_p)
3391 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3392
de93309a
SM
3393 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3394}
4c4b4cd2 3395
de93309a
SM
3396/* Resolve the operator of the subexpression beginning at
3397 position *POS of *EXPP. "Resolving" consists of replacing
3398 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3399 with their resolutions, replacing built-in operators with
3400 function calls to user-defined operators, where appropriate, and,
3401 when DEPROCEDURE_P is non-zero, converting function-valued variables
3402 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3403 are as in ada_resolve, above. */
14f9c5c9 3404
de93309a
SM
3405static struct value *
3406resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3407 struct type *context_type, int parse_completion,
3408 innermost_block_tracker *tracker)
14f9c5c9 3409{
de93309a
SM
3410 int pc = *pos;
3411 int i;
3412 struct expression *exp; /* Convenience: == *expp. */
3413 enum exp_opcode op = (*expp)->elts[pc].opcode;
3414 struct value **argvec; /* Vector of operand types (alloca'ed). */
3415 int nargs; /* Number of operands. */
3416 int oplen;
14f9c5c9 3417
de93309a
SM
3418 argvec = NULL;
3419 nargs = 0;
3420 exp = expp->get ();
4c4b4cd2 3421
de93309a
SM
3422 /* Pass one: resolve operands, saving their types and updating *pos,
3423 if needed. */
3424 switch (op)
3425 {
3426 case OP_FUNCALL:
3427 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3428 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3429 *pos += 7;
3430 else
3431 {
3432 *pos += 3;
3433 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3434 }
de93309a
SM
3435 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3436 break;
14f9c5c9 3437
de93309a
SM
3438 case UNOP_ADDR:
3439 *pos += 1;
3440 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3441 break;
3442
3443 case UNOP_QUAL:
3444 *pos += 3;
3445 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3446 parse_completion, tracker);
3447 break;
3448
3449 case OP_ATR_MODULUS:
3450 case OP_ATR_SIZE:
3451 case OP_ATR_TAG:
3452 case OP_ATR_FIRST:
3453 case OP_ATR_LAST:
3454 case OP_ATR_LENGTH:
3455 case OP_ATR_POS:
3456 case OP_ATR_VAL:
3457 case OP_ATR_MIN:
3458 case OP_ATR_MAX:
3459 case TERNOP_IN_RANGE:
3460 case BINOP_IN_BOUNDS:
3461 case UNOP_IN_RANGE:
3462 case OP_AGGREGATE:
3463 case OP_OTHERS:
3464 case OP_CHOICES:
3465 case OP_POSITIONAL:
3466 case OP_DISCRETE_RANGE:
3467 case OP_NAME:
3468 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3469 *pos += oplen;
3470 break;
3471
3472 case BINOP_ASSIGN:
3473 {
3474 struct value *arg1;
3475
3476 *pos += 1;
3477 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3478 if (arg1 == NULL)
3479 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3480 else
3481 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3482 tracker);
3483 break;
3484 }
3485
3486 case UNOP_CAST:
3487 *pos += 3;
3488 nargs = 1;
3489 break;
3490
3491 case BINOP_ADD:
3492 case BINOP_SUB:
3493 case BINOP_MUL:
3494 case BINOP_DIV:
3495 case BINOP_REM:
3496 case BINOP_MOD:
3497 case BINOP_EXP:
3498 case BINOP_CONCAT:
3499 case BINOP_LOGICAL_AND:
3500 case BINOP_LOGICAL_OR:
3501 case BINOP_BITWISE_AND:
3502 case BINOP_BITWISE_IOR:
3503 case BINOP_BITWISE_XOR:
3504
3505 case BINOP_EQUAL:
3506 case BINOP_NOTEQUAL:
3507 case BINOP_LESS:
3508 case BINOP_GTR:
3509 case BINOP_LEQ:
3510 case BINOP_GEQ:
3511
3512 case BINOP_REPEAT:
3513 case BINOP_SUBSCRIPT:
3514 case BINOP_COMMA:
3515 *pos += 1;
3516 nargs = 2;
3517 break;
3518
3519 case UNOP_NEG:
3520 case UNOP_PLUS:
3521 case UNOP_LOGICAL_NOT:
3522 case UNOP_ABS:
3523 case UNOP_IND:
3524 *pos += 1;
3525 nargs = 1;
3526 break;
3527
3528 case OP_LONG:
3529 case OP_FLOAT:
3530 case OP_VAR_VALUE:
3531 case OP_VAR_MSYM_VALUE:
3532 *pos += 4;
3533 break;
3534
3535 case OP_TYPE:
3536 case OP_BOOL:
3537 case OP_LAST:
3538 case OP_INTERNALVAR:
3539 *pos += 3;
3540 break;
3541
3542 case UNOP_MEMVAL:
3543 *pos += 3;
3544 nargs = 1;
3545 break;
3546
3547 case OP_REGISTER:
3548 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3549 break;
3550
3551 case STRUCTOP_STRUCT:
3552 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3553 nargs = 1;
3554 break;
3555
3556 case TERNOP_SLICE:
3557 *pos += 1;
3558 nargs = 3;
3559 break;
3560
3561 case OP_STRING:
3562 break;
3563
3564 default:
3565 error (_("Unexpected operator during name resolution"));
14f9c5c9 3566 }
14f9c5c9 3567
de93309a
SM
3568 argvec = XALLOCAVEC (struct value *, nargs + 1);
3569 for (i = 0; i < nargs; i += 1)
3570 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3571 tracker);
3572 argvec[i] = NULL;
3573 exp = expp->get ();
4c4b4cd2 3574
de93309a
SM
3575 /* Pass two: perform any resolution on principal operator. */
3576 switch (op)
14f9c5c9 3577 {
de93309a
SM
3578 default:
3579 break;
5b4ee69b 3580
de93309a
SM
3581 case OP_VAR_VALUE:
3582 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3583 {
de93309a
SM
3584 std::vector<struct block_symbol> candidates;
3585 int n_candidates;
5b4ee69b 3586
de93309a 3587 n_candidates =
987012b8 3588 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3589 exp->elts[pc + 1].block, VAR_DOMAIN,
3590 &candidates);
d2e4a39e 3591
de93309a
SM
3592 if (n_candidates > 1)
3593 {
3594 /* Types tend to get re-introduced locally, so if there
3595 are any local symbols that are not types, first filter
3596 out all types. */
3597 int j;
3598 for (j = 0; j < n_candidates; j += 1)
3599 switch (SYMBOL_CLASS (candidates[j].symbol))
3600 {
3601 case LOC_REGISTER:
3602 case LOC_ARG:
3603 case LOC_REF_ARG:
3604 case LOC_REGPARM_ADDR:
3605 case LOC_LOCAL:
3606 case LOC_COMPUTED:
3607 goto FoundNonType;
3608 default:
3609 break;
3610 }
3611 FoundNonType:
3612 if (j < n_candidates)
3613 {
3614 j = 0;
3615 while (j < n_candidates)
3616 {
3617 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3618 {
3619 candidates[j] = candidates[n_candidates - 1];
3620 n_candidates -= 1;
3621 }
3622 else
3623 j += 1;
3624 }
3625 }
3626 }
4c4b4cd2 3627
de93309a
SM
3628 if (n_candidates == 0)
3629 error (_("No definition found for %s"),
987012b8 3630 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3631 else if (n_candidates == 1)
3632 i = 0;
3633 else if (deprocedure_p
3634 && !is_nonfunction (candidates.data (), n_candidates))
3635 {
3636 i = ada_resolve_function
3637 (candidates.data (), n_candidates, NULL, 0,
987012b8 3638 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3639 context_type, parse_completion);
3640 if (i < 0)
3641 error (_("Could not find a match for %s"),
987012b8 3642 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3643 }
3644 else
3645 {
3646 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3647 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3648 user_select_syms (candidates.data (), n_candidates, 1);
3649 i = 0;
3650 }
5b4ee69b 3651
de93309a
SM
3652 exp->elts[pc + 1].block = candidates[i].block;
3653 exp->elts[pc + 2].symbol = candidates[i].symbol;
3654 tracker->update (candidates[i]);
3655 }
14f9c5c9 3656
de93309a 3657 if (deprocedure_p
78134374 3658 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
de93309a 3659 == TYPE_CODE_FUNC))
4c4b4cd2 3660 {
de93309a
SM
3661 replace_operator_with_call (expp, pc, 0, 4,
3662 exp->elts[pc + 2].symbol,
3663 exp->elts[pc + 1].block);
3664 exp = expp->get ();
4c4b4cd2 3665 }
de93309a
SM
3666 break;
3667
3668 case OP_FUNCALL:
3669 {
3670 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3671 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3672 {
3673 std::vector<struct block_symbol> candidates;
3674 int n_candidates;
3675
3676 n_candidates =
987012b8 3677 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3678 exp->elts[pc + 4].block, VAR_DOMAIN,
3679 &candidates);
14f9c5c9 3680
de93309a
SM
3681 if (n_candidates == 1)
3682 i = 0;
3683 else
3684 {
3685 i = ada_resolve_function
3686 (candidates.data (), n_candidates,
3687 argvec, nargs,
987012b8 3688 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3689 context_type, parse_completion);
3690 if (i < 0)
3691 error (_("Could not find a match for %s"),
987012b8 3692 exp->elts[pc + 5].symbol->print_name ());
de93309a 3693 }
d72413e6 3694
de93309a
SM
3695 exp->elts[pc + 4].block = candidates[i].block;
3696 exp->elts[pc + 5].symbol = candidates[i].symbol;
3697 tracker->update (candidates[i]);
3698 }
3699 }
3700 break;
3701 case BINOP_ADD:
3702 case BINOP_SUB:
3703 case BINOP_MUL:
3704 case BINOP_DIV:
3705 case BINOP_REM:
3706 case BINOP_MOD:
3707 case BINOP_CONCAT:
3708 case BINOP_BITWISE_AND:
3709 case BINOP_BITWISE_IOR:
3710 case BINOP_BITWISE_XOR:
3711 case BINOP_EQUAL:
3712 case BINOP_NOTEQUAL:
3713 case BINOP_LESS:
3714 case BINOP_GTR:
3715 case BINOP_LEQ:
3716 case BINOP_GEQ:
3717 case BINOP_EXP:
3718 case UNOP_NEG:
3719 case UNOP_PLUS:
3720 case UNOP_LOGICAL_NOT:
3721 case UNOP_ABS:
3722 if (possible_user_operator_p (op, argvec))
3723 {
3724 std::vector<struct block_symbol> candidates;
3725 int n_candidates;
d72413e6 3726
de93309a
SM
3727 n_candidates =
3728 ada_lookup_symbol_list (ada_decoded_op_name (op),
3729 NULL, VAR_DOMAIN,
3730 &candidates);
d72413e6 3731
de93309a
SM
3732 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3733 nargs, ada_decoded_op_name (op), NULL,
3734 parse_completion);
3735 if (i < 0)
3736 break;
d72413e6 3737
de93309a
SM
3738 replace_operator_with_call (expp, pc, nargs, 1,
3739 candidates[i].symbol,
3740 candidates[i].block);
3741 exp = expp->get ();
3742 }
3743 break;
d72413e6 3744
de93309a
SM
3745 case OP_TYPE:
3746 case OP_REGISTER:
3747 return NULL;
d72413e6 3748 }
d72413e6 3749
de93309a
SM
3750 *pos = pc;
3751 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3752 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3753 exp->elts[pc + 1].objfile,
3754 exp->elts[pc + 2].msymbol);
3755 else
3756 return evaluate_subexp_type (exp, pos);
3757}
14f9c5c9 3758
de93309a
SM
3759/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3760 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3761 a non-pointer. */
3762/* The term "match" here is rather loose. The match is heuristic and
3763 liberal. */
14f9c5c9 3764
de93309a
SM
3765static int
3766ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3767{
de93309a
SM
3768 ftype = ada_check_typedef (ftype);
3769 atype = ada_check_typedef (atype);
14f9c5c9 3770
78134374 3771 if (ftype->code () == TYPE_CODE_REF)
de93309a 3772 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3773 if (atype->code () == TYPE_CODE_REF)
de93309a 3774 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3775
78134374 3776 switch (ftype->code ())
14f9c5c9 3777 {
de93309a 3778 default:
78134374 3779 return ftype->code () == atype->code ();
de93309a 3780 case TYPE_CODE_PTR:
78134374 3781 if (atype->code () == TYPE_CODE_PTR)
de93309a
SM
3782 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3783 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3784 else
de93309a
SM
3785 return (may_deref
3786 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3787 case TYPE_CODE_INT:
3788 case TYPE_CODE_ENUM:
3789 case TYPE_CODE_RANGE:
78134374 3790 switch (atype->code ())
4c4b4cd2 3791 {
de93309a
SM
3792 case TYPE_CODE_INT:
3793 case TYPE_CODE_ENUM:
3794 case TYPE_CODE_RANGE:
3795 return 1;
3796 default:
3797 return 0;
4c4b4cd2 3798 }
d2e4a39e 3799
de93309a 3800 case TYPE_CODE_ARRAY:
78134374 3801 return (atype->code () == TYPE_CODE_ARRAY
de93309a 3802 || ada_is_array_descriptor_type (atype));
14f9c5c9 3803
de93309a
SM
3804 case TYPE_CODE_STRUCT:
3805 if (ada_is_array_descriptor_type (ftype))
78134374 3806 return (atype->code () == TYPE_CODE_ARRAY
de93309a
SM
3807 || ada_is_array_descriptor_type (atype));
3808 else
78134374 3809 return (atype->code () == TYPE_CODE_STRUCT
de93309a 3810 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3811
de93309a
SM
3812 case TYPE_CODE_UNION:
3813 case TYPE_CODE_FLT:
78134374 3814 return (atype->code () == ftype->code ());
de93309a 3815 }
14f9c5c9
AS
3816}
3817
de93309a
SM
3818/* Return non-zero if the formals of FUNC "sufficiently match" the
3819 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3820 may also be an enumeral, in which case it is treated as a 0-
3821 argument function. */
14f9c5c9 3822
de93309a
SM
3823static int
3824ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3825{
3826 int i;
3827 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3828
de93309a 3829 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3830 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3831 return (n_actuals == 0);
78134374 3832 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3833 return 0;
14f9c5c9 3834
1f704f76 3835 if (func_type->num_fields () != n_actuals)
de93309a 3836 return 0;
14f9c5c9 3837
de93309a
SM
3838 for (i = 0; i < n_actuals; i += 1)
3839 {
3840 if (actuals[i] == NULL)
3841 return 0;
3842 else
3843 {
940da03e 3844 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
de93309a 3845 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3846
de93309a
SM
3847 if (!ada_type_match (ftype, atype, 1))
3848 return 0;
3849 }
3850 }
3851 return 1;
3852}
d2e4a39e 3853
de93309a
SM
3854/* False iff function type FUNC_TYPE definitely does not produce a value
3855 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3856 FUNC_TYPE is not a valid function type with a non-null return type
3857 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3858
de93309a
SM
3859static int
3860return_match (struct type *func_type, struct type *context_type)
3861{
3862 struct type *return_type;
d2e4a39e 3863
de93309a
SM
3864 if (func_type == NULL)
3865 return 1;
14f9c5c9 3866
78134374 3867 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3868 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3869 else
3870 return_type = get_base_type (func_type);
3871 if (return_type == NULL)
3872 return 1;
76a01679 3873
de93309a 3874 context_type = get_base_type (context_type);
14f9c5c9 3875
78134374 3876 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3877 return context_type == NULL || return_type == context_type;
3878 else if (context_type == NULL)
78134374 3879 return return_type->code () != TYPE_CODE_VOID;
de93309a 3880 else
78134374 3881 return return_type->code () == context_type->code ();
de93309a 3882}
14f9c5c9 3883
14f9c5c9 3884
de93309a
SM
3885/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3886 function (if any) that matches the types of the NARGS arguments in
3887 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3888 that returns that type, then eliminate matches that don't. If
3889 CONTEXT_TYPE is void and there is at least one match that does not
3890 return void, eliminate all matches that do.
14f9c5c9 3891
de93309a
SM
3892 Asks the user if there is more than one match remaining. Returns -1
3893 if there is no such symbol or none is selected. NAME is used
3894 solely for messages. May re-arrange and modify SYMS in
3895 the process; the index returned is for the modified vector. */
14f9c5c9 3896
de93309a
SM
3897static int
3898ada_resolve_function (struct block_symbol syms[],
3899 int nsyms, struct value **args, int nargs,
3900 const char *name, struct type *context_type,
3901 int parse_completion)
3902{
3903 int fallback;
3904 int k;
3905 int m; /* Number of hits */
14f9c5c9 3906
de93309a
SM
3907 m = 0;
3908 /* In the first pass of the loop, we only accept functions matching
3909 context_type. If none are found, we add a second pass of the loop
3910 where every function is accepted. */
3911 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3912 {
3913 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3914 {
de93309a 3915 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3916
de93309a
SM
3917 if (ada_args_match (syms[k].symbol, args, nargs)
3918 && (fallback || return_match (type, context_type)))
3919 {
3920 syms[m] = syms[k];
3921 m += 1;
3922 }
4c4b4cd2 3923 }
14f9c5c9
AS
3924 }
3925
de93309a
SM
3926 /* If we got multiple matches, ask the user which one to use. Don't do this
3927 interactive thing during completion, though, as the purpose of the
3928 completion is providing a list of all possible matches. Prompting the
3929 user to filter it down would be completely unexpected in this case. */
3930 if (m == 0)
3931 return -1;
3932 else if (m > 1 && !parse_completion)
3933 {
3934 printf_filtered (_("Multiple matches for %s\n"), name);
3935 user_select_syms (syms, m, 1);
3936 return 0;
3937 }
3938 return 0;
14f9c5c9
AS
3939}
3940
4c4b4cd2
PH
3941/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3942 on the function identified by SYM and BLOCK, and taking NARGS
3943 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3944
3945static void
e9d9f57e 3946replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 3947 int oplen, struct symbol *sym,
270140bd 3948 const struct block *block)
14f9c5c9
AS
3949{
3950 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3951 symbol, -oplen for operator being replaced). */
d2e4a39e 3952 struct expression *newexp = (struct expression *)
8c1a34e7 3953 xzalloc (sizeof (struct expression)
4c4b4cd2 3954 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 3955 struct expression *exp = expp->get ();
14f9c5c9
AS
3956
3957 newexp->nelts = exp->nelts + 7 - oplen;
3958 newexp->language_defn = exp->language_defn;
3489610d 3959 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3960 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3961 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3962 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3963
3964 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3965 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3966
3967 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3968 newexp->elts[pc + 4].block = block;
3969 newexp->elts[pc + 5].symbol = sym;
3970
e9d9f57e 3971 expp->reset (newexp);
d2e4a39e 3972}
14f9c5c9
AS
3973
3974/* Type-class predicates */
3975
4c4b4cd2
PH
3976/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3977 or FLOAT). */
14f9c5c9
AS
3978
3979static int
d2e4a39e 3980numeric_type_p (struct type *type)
14f9c5c9
AS
3981{
3982 if (type == NULL)
3983 return 0;
d2e4a39e
AS
3984 else
3985 {
78134374 3986 switch (type->code ())
4c4b4cd2
PH
3987 {
3988 case TYPE_CODE_INT:
3989 case TYPE_CODE_FLT:
3990 return 1;
3991 case TYPE_CODE_RANGE:
3992 return (type == TYPE_TARGET_TYPE (type)
3993 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3994 default:
3995 return 0;
3996 }
d2e4a39e 3997 }
14f9c5c9
AS
3998}
3999
4c4b4cd2 4000/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4001
4002static int
d2e4a39e 4003integer_type_p (struct type *type)
14f9c5c9
AS
4004{
4005 if (type == NULL)
4006 return 0;
d2e4a39e
AS
4007 else
4008 {
78134374 4009 switch (type->code ())
4c4b4cd2
PH
4010 {
4011 case TYPE_CODE_INT:
4012 return 1;
4013 case TYPE_CODE_RANGE:
4014 return (type == TYPE_TARGET_TYPE (type)
4015 || integer_type_p (TYPE_TARGET_TYPE (type)));
4016 default:
4017 return 0;
4018 }
d2e4a39e 4019 }
14f9c5c9
AS
4020}
4021
4c4b4cd2 4022/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4023
4024static int
d2e4a39e 4025scalar_type_p (struct type *type)
14f9c5c9
AS
4026{
4027 if (type == NULL)
4028 return 0;
d2e4a39e
AS
4029 else
4030 {
78134374 4031 switch (type->code ())
4c4b4cd2
PH
4032 {
4033 case TYPE_CODE_INT:
4034 case TYPE_CODE_RANGE:
4035 case TYPE_CODE_ENUM:
4036 case TYPE_CODE_FLT:
4037 return 1;
4038 default:
4039 return 0;
4040 }
d2e4a39e 4041 }
14f9c5c9
AS
4042}
4043
4c4b4cd2 4044/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4045
4046static int
d2e4a39e 4047discrete_type_p (struct type *type)
14f9c5c9
AS
4048{
4049 if (type == NULL)
4050 return 0;
d2e4a39e
AS
4051 else
4052 {
78134374 4053 switch (type->code ())
4c4b4cd2
PH
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_RANGE:
4057 case TYPE_CODE_ENUM:
872f0337 4058 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4059 return 1;
4060 default:
4061 return 0;
4062 }
d2e4a39e 4063 }
14f9c5c9
AS
4064}
4065
4c4b4cd2
PH
4066/* Returns non-zero if OP with operands in the vector ARGS could be
4067 a user-defined function. Errs on the side of pre-defined operators
4068 (i.e., result 0). */
14f9c5c9
AS
4069
4070static int
d2e4a39e 4071possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4072{
76a01679 4073 struct type *type0 =
df407dfe 4074 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4075 struct type *type1 =
df407dfe 4076 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4077
4c4b4cd2
PH
4078 if (type0 == NULL)
4079 return 0;
4080
14f9c5c9
AS
4081 switch (op)
4082 {
4083 default:
4084 return 0;
4085
4086 case BINOP_ADD:
4087 case BINOP_SUB:
4088 case BINOP_MUL:
4089 case BINOP_DIV:
d2e4a39e 4090 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4091
4092 case BINOP_REM:
4093 case BINOP_MOD:
4094 case BINOP_BITWISE_AND:
4095 case BINOP_BITWISE_IOR:
4096 case BINOP_BITWISE_XOR:
d2e4a39e 4097 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4098
4099 case BINOP_EQUAL:
4100 case BINOP_NOTEQUAL:
4101 case BINOP_LESS:
4102 case BINOP_GTR:
4103 case BINOP_LEQ:
4104 case BINOP_GEQ:
d2e4a39e 4105 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4106
4107 case BINOP_CONCAT:
ee90b9ab 4108 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4109
4110 case BINOP_EXP:
d2e4a39e 4111 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4112
4113 case UNOP_NEG:
4114 case UNOP_PLUS:
4115 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4116 case UNOP_ABS:
4117 return (!numeric_type_p (type0));
14f9c5c9
AS
4118
4119 }
4120}
4121\f
4c4b4cd2 4122 /* Renaming */
14f9c5c9 4123
aeb5907d
JB
4124/* NOTES:
4125
4126 1. In the following, we assume that a renaming type's name may
4127 have an ___XD suffix. It would be nice if this went away at some
4128 point.
4129 2. We handle both the (old) purely type-based representation of
4130 renamings and the (new) variable-based encoding. At some point,
4131 it is devoutly to be hoped that the former goes away
4132 (FIXME: hilfinger-2007-07-09).
4133 3. Subprogram renamings are not implemented, although the XRS
4134 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4135
4136/* If SYM encodes a renaming,
4137
4138 <renaming> renames <renamed entity>,
4139
4140 sets *LEN to the length of the renamed entity's name,
4141 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4142 the string describing the subcomponent selected from the renamed
0963b4bd 4143 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4144 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4145 are undefined). Otherwise, returns a value indicating the category
4146 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4147 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4148 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4149 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4150 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4151 may be NULL, in which case they are not assigned.
4152
4153 [Currently, however, GCC does not generate subprogram renamings.] */
4154
4155enum ada_renaming_category
4156ada_parse_renaming (struct symbol *sym,
4157 const char **renamed_entity, int *len,
4158 const char **renaming_expr)
4159{
4160 enum ada_renaming_category kind;
4161 const char *info;
4162 const char *suffix;
4163
4164 if (sym == NULL)
4165 return ADA_NOT_RENAMING;
4166 switch (SYMBOL_CLASS (sym))
14f9c5c9 4167 {
aeb5907d
JB
4168 default:
4169 return ADA_NOT_RENAMING;
aeb5907d
JB
4170 case LOC_LOCAL:
4171 case LOC_STATIC:
4172 case LOC_COMPUTED:
4173 case LOC_OPTIMIZED_OUT:
987012b8 4174 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4175 if (info == NULL)
4176 return ADA_NOT_RENAMING;
4177 switch (info[5])
4178 {
4179 case '_':
4180 kind = ADA_OBJECT_RENAMING;
4181 info += 6;
4182 break;
4183 case 'E':
4184 kind = ADA_EXCEPTION_RENAMING;
4185 info += 7;
4186 break;
4187 case 'P':
4188 kind = ADA_PACKAGE_RENAMING;
4189 info += 7;
4190 break;
4191 case 'S':
4192 kind = ADA_SUBPROGRAM_RENAMING;
4193 info += 7;
4194 break;
4195 default:
4196 return ADA_NOT_RENAMING;
4197 }
14f9c5c9 4198 }
4c4b4cd2 4199
de93309a
SM
4200 if (renamed_entity != NULL)
4201 *renamed_entity = info;
4202 suffix = strstr (info, "___XE");
4203 if (suffix == NULL || suffix == info)
4204 return ADA_NOT_RENAMING;
4205 if (len != NULL)
4206 *len = strlen (info) - strlen (suffix);
4207 suffix += 5;
4208 if (renaming_expr != NULL)
4209 *renaming_expr = suffix;
4210 return kind;
4211}
4212
4213/* Compute the value of the given RENAMING_SYM, which is expected to
4214 be a symbol encoding a renaming expression. BLOCK is the block
4215 used to evaluate the renaming. */
4216
4217static struct value *
4218ada_read_renaming_var_value (struct symbol *renaming_sym,
4219 const struct block *block)
4220{
4221 const char *sym_name;
4222
987012b8 4223 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4224 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4225 return evaluate_expression (expr.get ());
4226}
4227\f
4228
4229 /* Evaluation: Function Calls */
4230
4231/* Return an lvalue containing the value VAL. This is the identity on
4232 lvalues, and otherwise has the side-effect of allocating memory
4233 in the inferior where a copy of the value contents is copied. */
4234
4235static struct value *
4236ensure_lval (struct value *val)
4237{
4238 if (VALUE_LVAL (val) == not_lval
4239 || VALUE_LVAL (val) == lval_internalvar)
4240 {
4241 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4242 const CORE_ADDR addr =
4243 value_as_long (value_allocate_space_in_inferior (len));
4244
4245 VALUE_LVAL (val) = lval_memory;
4246 set_value_address (val, addr);
4247 write_memory (addr, value_contents (val), len);
4248 }
4249
4250 return val;
4251}
4252
4253/* Given ARG, a value of type (pointer or reference to a)*
4254 structure/union, extract the component named NAME from the ultimate
4255 target structure/union and return it as a value with its
4256 appropriate type.
4257
4258 The routine searches for NAME among all members of the structure itself
4259 and (recursively) among all members of any wrapper members
4260 (e.g., '_parent').
4261
4262 If NO_ERR, then simply return NULL in case of error, rather than
4263 calling error. */
4264
4265static struct value *
4266ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4267{
4268 struct type *t, *t1;
4269 struct value *v;
4270 int check_tag;
4271
4272 v = NULL;
4273 t1 = t = ada_check_typedef (value_type (arg));
78134374 4274 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4275 {
4276 t1 = TYPE_TARGET_TYPE (t);
4277 if (t1 == NULL)
4278 goto BadValue;
4279 t1 = ada_check_typedef (t1);
78134374 4280 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4281 {
4282 arg = coerce_ref (arg);
4283 t = t1;
4284 }
4285 }
4286
78134374 4287 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4288 {
4289 t1 = TYPE_TARGET_TYPE (t);
4290 if (t1 == NULL)
4291 goto BadValue;
4292 t1 = ada_check_typedef (t1);
78134374 4293 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4294 {
4295 arg = value_ind (arg);
4296 t = t1;
4297 }
4298 else
4299 break;
4300 }
aeb5907d 4301
78134374 4302 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4303 goto BadValue;
52ce6436 4304
de93309a
SM
4305 if (t1 == t)
4306 v = ada_search_struct_field (name, arg, 0, t);
4307 else
4308 {
4309 int bit_offset, bit_size, byte_offset;
4310 struct type *field_type;
4311 CORE_ADDR address;
a5ee536b 4312
78134374 4313 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4314 address = value_address (ada_value_ind (arg));
4315 else
4316 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4317
de93309a
SM
4318 /* Check to see if this is a tagged type. We also need to handle
4319 the case where the type is a reference to a tagged type, but
4320 we have to be careful to exclude pointers to tagged types.
4321 The latter should be shown as usual (as a pointer), whereas
4322 a reference should mostly be transparent to the user. */
14f9c5c9 4323
de93309a 4324 if (ada_is_tagged_type (t1, 0)
78134374 4325 || (t1->code () == TYPE_CODE_REF
de93309a
SM
4326 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4327 {
4328 /* We first try to find the searched field in the current type.
4329 If not found then let's look in the fixed type. */
14f9c5c9 4330
de93309a
SM
4331 if (!find_struct_field (name, t1, 0,
4332 &field_type, &byte_offset, &bit_offset,
4333 &bit_size, NULL))
4334 check_tag = 1;
4335 else
4336 check_tag = 0;
4337 }
4338 else
4339 check_tag = 0;
c3e5cd34 4340
de93309a
SM
4341 /* Convert to fixed type in all cases, so that we have proper
4342 offsets to each field in unconstrained record types. */
4343 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4344 address, NULL, check_tag);
4345
4346 if (find_struct_field (name, t1, 0,
4347 &field_type, &byte_offset, &bit_offset,
4348 &bit_size, NULL))
4349 {
4350 if (bit_size != 0)
4351 {
78134374 4352 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4353 arg = ada_coerce_ref (arg);
4354 else
4355 arg = ada_value_ind (arg);
4356 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4357 bit_offset, bit_size,
4358 field_type);
4359 }
4360 else
4361 v = value_at_lazy (field_type, address + byte_offset);
4362 }
c3e5cd34 4363 }
14f9c5c9 4364
de93309a
SM
4365 if (v != NULL || no_err)
4366 return v;
4367 else
4368 error (_("There is no member named %s."), name);
4369
4370 BadValue:
4371 if (no_err)
4372 return NULL;
4373 else
4374 error (_("Attempt to extract a component of "
4375 "a value that is not a record."));
14f9c5c9
AS
4376}
4377
4378/* Return the value ACTUAL, converted to be an appropriate value for a
4379 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4380 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4381 values not residing in memory, updating it as needed. */
14f9c5c9 4382
a93c0eb6 4383struct value *
40bc484c 4384ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4385{
df407dfe 4386 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4387 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4388 struct type *formal_target =
78134374 4389 formal_type->code () == TYPE_CODE_PTR
61ee279c 4390 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4391 struct type *actual_target =
78134374 4392 actual_type->code () == TYPE_CODE_PTR
61ee279c 4393 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4394
4c4b4cd2 4395 if (ada_is_array_descriptor_type (formal_target)
78134374 4396 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4397 return make_array_descriptor (formal_type, actual);
78134374
SM
4398 else if (formal_type->code () == TYPE_CODE_PTR
4399 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4400 {
a84a8a0d 4401 struct value *result;
5b4ee69b 4402
78134374 4403 if (formal_target->code () == TYPE_CODE_ARRAY
4c4b4cd2 4404 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4405 result = desc_data (actual);
78134374 4406 else if (formal_type->code () != TYPE_CODE_PTR)
4c4b4cd2
PH
4407 {
4408 if (VALUE_LVAL (actual) != lval_memory)
4409 {
4410 struct value *val;
5b4ee69b 4411
df407dfe 4412 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4413 val = allocate_value (actual_type);
990a07ab 4414 memcpy ((char *) value_contents_raw (val),
0fd88904 4415 (char *) value_contents (actual),
4c4b4cd2 4416 TYPE_LENGTH (actual_type));
40bc484c 4417 actual = ensure_lval (val);
4c4b4cd2 4418 }
a84a8a0d 4419 result = value_addr (actual);
4c4b4cd2 4420 }
a84a8a0d
JB
4421 else
4422 return actual;
b1af9e97 4423 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4424 }
78134374 4425 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4426 return ada_value_ind (actual);
8344af1e
JB
4427 else if (ada_is_aligner_type (formal_type))
4428 {
4429 /* We need to turn this parameter into an aligner type
4430 as well. */
4431 struct value *aligner = allocate_value (formal_type);
4432 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4433
4434 value_assign_to_component (aligner, component, actual);
4435 return aligner;
4436 }
14f9c5c9
AS
4437
4438 return actual;
4439}
4440
438c98a1
JB
4441/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4442 type TYPE. This is usually an inefficient no-op except on some targets
4443 (such as AVR) where the representation of a pointer and an address
4444 differs. */
4445
4446static CORE_ADDR
4447value_pointer (struct value *value, struct type *type)
4448{
4449 struct gdbarch *gdbarch = get_type_arch (type);
4450 unsigned len = TYPE_LENGTH (type);
224c3ddb 4451 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4452 CORE_ADDR addr;
4453
4454 addr = value_address (value);
4455 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4456 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4457 return addr;
4458}
4459
14f9c5c9 4460
4c4b4cd2
PH
4461/* Push a descriptor of type TYPE for array value ARR on the stack at
4462 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4463 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4464 to-descriptor type rather than a descriptor type), a struct value *
4465 representing a pointer to this descriptor. */
14f9c5c9 4466
d2e4a39e 4467static struct value *
40bc484c 4468make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4469{
d2e4a39e
AS
4470 struct type *bounds_type = desc_bounds_type (type);
4471 struct type *desc_type = desc_base_type (type);
4472 struct value *descriptor = allocate_value (desc_type);
4473 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4474 int i;
d2e4a39e 4475
0963b4bd
MS
4476 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4477 i > 0; i -= 1)
14f9c5c9 4478 {
19f220c3
JK
4479 modify_field (value_type (bounds), value_contents_writeable (bounds),
4480 ada_array_bound (arr, i, 0),
4481 desc_bound_bitpos (bounds_type, i, 0),
4482 desc_bound_bitsize (bounds_type, i, 0));
4483 modify_field (value_type (bounds), value_contents_writeable (bounds),
4484 ada_array_bound (arr, i, 1),
4485 desc_bound_bitpos (bounds_type, i, 1),
4486 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4487 }
d2e4a39e 4488
40bc484c 4489 bounds = ensure_lval (bounds);
d2e4a39e 4490
19f220c3
JK
4491 modify_field (value_type (descriptor),
4492 value_contents_writeable (descriptor),
4493 value_pointer (ensure_lval (arr),
940da03e 4494 desc_type->field (0).type ()),
19f220c3
JK
4495 fat_pntr_data_bitpos (desc_type),
4496 fat_pntr_data_bitsize (desc_type));
4497
4498 modify_field (value_type (descriptor),
4499 value_contents_writeable (descriptor),
4500 value_pointer (bounds,
940da03e 4501 desc_type->field (1).type ()),
19f220c3
JK
4502 fat_pntr_bounds_bitpos (desc_type),
4503 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4504
40bc484c 4505 descriptor = ensure_lval (descriptor);
14f9c5c9 4506
78134374 4507 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4508 return value_addr (descriptor);
4509 else
4510 return descriptor;
4511}
14f9c5c9 4512\f
3d9434b5
JB
4513 /* Symbol Cache Module */
4514
3d9434b5 4515/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4516 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4517 on the type of entity being printed, the cache can make it as much
4518 as an order of magnitude faster than without it.
4519
4520 The descriptive type DWARF extension has significantly reduced
4521 the need for this cache, at least when DWARF is being used. However,
4522 even in this case, some expensive name-based symbol searches are still
4523 sometimes necessary - to find an XVZ variable, mostly. */
4524
ee01b665 4525/* Initialize the contents of SYM_CACHE. */
3d9434b5 4526
ee01b665
JB
4527static void
4528ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4529{
4530 obstack_init (&sym_cache->cache_space);
4531 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4532}
3d9434b5 4533
ee01b665
JB
4534/* Free the memory used by SYM_CACHE. */
4535
4536static void
4537ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4538{
ee01b665
JB
4539 obstack_free (&sym_cache->cache_space, NULL);
4540 xfree (sym_cache);
4541}
3d9434b5 4542
ee01b665
JB
4543/* Return the symbol cache associated to the given program space PSPACE.
4544 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4545
ee01b665
JB
4546static struct ada_symbol_cache *
4547ada_get_symbol_cache (struct program_space *pspace)
4548{
4549 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4550
66c168ae 4551 if (pspace_data->sym_cache == NULL)
ee01b665 4552 {
66c168ae
JB
4553 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4554 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4555 }
4556
66c168ae 4557 return pspace_data->sym_cache;
ee01b665 4558}
3d9434b5
JB
4559
4560/* Clear all entries from the symbol cache. */
4561
4562static void
4563ada_clear_symbol_cache (void)
4564{
ee01b665
JB
4565 struct ada_symbol_cache *sym_cache
4566 = ada_get_symbol_cache (current_program_space);
4567
4568 obstack_free (&sym_cache->cache_space, NULL);
4569 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4570}
4571
fe978cb0 4572/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4573 Return it if found, or NULL otherwise. */
4574
4575static struct cache_entry **
fe978cb0 4576find_entry (const char *name, domain_enum domain)
3d9434b5 4577{
ee01b665
JB
4578 struct ada_symbol_cache *sym_cache
4579 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4580 int h = msymbol_hash (name) % HASH_SIZE;
4581 struct cache_entry **e;
4582
ee01b665 4583 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4584 {
fe978cb0 4585 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4586 return e;
4587 }
4588 return NULL;
4589}
4590
fe978cb0 4591/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4592 Return 1 if found, 0 otherwise.
4593
4594 If an entry was found and SYM is not NULL, set *SYM to the entry's
4595 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4596
96d887e8 4597static int
fe978cb0 4598lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4599 struct symbol **sym, const struct block **block)
96d887e8 4600{
fe978cb0 4601 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4602
4603 if (e == NULL)
4604 return 0;
4605 if (sym != NULL)
4606 *sym = (*e)->sym;
4607 if (block != NULL)
4608 *block = (*e)->block;
4609 return 1;
96d887e8
PH
4610}
4611
3d9434b5 4612/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4613 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4614
96d887e8 4615static void
fe978cb0 4616cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4617 const struct block *block)
96d887e8 4618{
ee01b665
JB
4619 struct ada_symbol_cache *sym_cache
4620 = ada_get_symbol_cache (current_program_space);
3d9434b5 4621 int h;
3d9434b5
JB
4622 struct cache_entry *e;
4623
1994afbf
DE
4624 /* Symbols for builtin types don't have a block.
4625 For now don't cache such symbols. */
4626 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4627 return;
4628
3d9434b5
JB
4629 /* If the symbol is a local symbol, then do not cache it, as a search
4630 for that symbol depends on the context. To determine whether
4631 the symbol is local or not, we check the block where we found it
4632 against the global and static blocks of its associated symtab. */
4633 if (sym
08be3fe3 4634 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4635 GLOBAL_BLOCK) != block
08be3fe3 4636 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4637 STATIC_BLOCK) != block)
3d9434b5
JB
4638 return;
4639
4640 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4641 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4642 e->next = sym_cache->root[h];
4643 sym_cache->root[h] = e;
2ef5453b 4644 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4645 e->sym = sym;
fe978cb0 4646 e->domain = domain;
3d9434b5 4647 e->block = block;
96d887e8 4648}
4c4b4cd2
PH
4649\f
4650 /* Symbol Lookup */
4651
b5ec771e
PA
4652/* Return the symbol name match type that should be used used when
4653 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4654
4655 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4656 for Ada lookups. */
c0431670 4657
b5ec771e
PA
4658static symbol_name_match_type
4659name_match_type_from_name (const char *lookup_name)
c0431670 4660{
b5ec771e
PA
4661 return (strstr (lookup_name, "__") == NULL
4662 ? symbol_name_match_type::WILD
4663 : symbol_name_match_type::FULL);
c0431670
JB
4664}
4665
4c4b4cd2
PH
4666/* Return the result of a standard (literal, C-like) lookup of NAME in
4667 given DOMAIN, visible from lexical block BLOCK. */
4668
4669static struct symbol *
4670standard_lookup (const char *name, const struct block *block,
4671 domain_enum domain)
4672{
acbd605d 4673 /* Initialize it just to avoid a GCC false warning. */
6640a367 4674 struct block_symbol sym = {};
4c4b4cd2 4675
d12307c1
PMR
4676 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4677 return sym.symbol;
a2cd4f14 4678 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4679 cache_symbol (name, domain, sym.symbol, sym.block);
4680 return sym.symbol;
4c4b4cd2
PH
4681}
4682
4683
4684/* Non-zero iff there is at least one non-function/non-enumeral symbol
4685 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4686 since they contend in overloading in the same way. */
4687static int
d12307c1 4688is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4689{
4690 int i;
4691
4692 for (i = 0; i < n; i += 1)
78134374
SM
4693 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4694 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
d12307c1 4695 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4696 return 1;
4697
4698 return 0;
4699}
4700
4701/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4702 struct types. Otherwise, they may not. */
14f9c5c9
AS
4703
4704static int
d2e4a39e 4705equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4706{
d2e4a39e 4707 if (type0 == type1)
14f9c5c9 4708 return 1;
d2e4a39e 4709 if (type0 == NULL || type1 == NULL
78134374 4710 || type0->code () != type1->code ())
14f9c5c9 4711 return 0;
78134374
SM
4712 if ((type0->code () == TYPE_CODE_STRUCT
4713 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4714 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4715 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4716 return 1;
d2e4a39e 4717
14f9c5c9
AS
4718 return 0;
4719}
4720
4721/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4722 no more defined than that of SYM1. */
14f9c5c9
AS
4723
4724static int
d2e4a39e 4725lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4726{
4727 if (sym0 == sym1)
4728 return 1;
176620f1 4729 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4730 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4731 return 0;
4732
d2e4a39e 4733 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4734 {
4735 case LOC_UNDEF:
4736 return 1;
4737 case LOC_TYPEDEF:
4738 {
4c4b4cd2
PH
4739 struct type *type0 = SYMBOL_TYPE (sym0);
4740 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4741 const char *name0 = sym0->linkage_name ();
4742 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4743 int len0 = strlen (name0);
5b4ee69b 4744
4c4b4cd2 4745 return
78134374 4746 type0->code () == type1->code ()
4c4b4cd2
PH
4747 && (equiv_types (type0, type1)
4748 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4749 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4750 }
4751 case LOC_CONST:
4752 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4753 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4754
4755 case LOC_STATIC:
4756 {
987012b8
CB
4757 const char *name0 = sym0->linkage_name ();
4758 const char *name1 = sym1->linkage_name ();
4b610737
TT
4759 return (strcmp (name0, name1) == 0
4760 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4761 }
4762
d2e4a39e
AS
4763 default:
4764 return 0;
14f9c5c9
AS
4765 }
4766}
4767
d12307c1 4768/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4769 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4770
4771static void
76a01679
JB
4772add_defn_to_vec (struct obstack *obstackp,
4773 struct symbol *sym,
f0c5f9b2 4774 const struct block *block)
14f9c5c9
AS
4775{
4776 int i;
d12307c1 4777 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4778
529cad9c
PH
4779 /* Do not try to complete stub types, as the debugger is probably
4780 already scanning all symbols matching a certain name at the
4781 time when this function is called. Trying to replace the stub
4782 type by its associated full type will cause us to restart a scan
4783 which may lead to an infinite recursion. Instead, the client
4784 collecting the matching symbols will end up collecting several
4785 matches, with at least one of them complete. It can then filter
4786 out the stub ones if needed. */
4787
4c4b4cd2
PH
4788 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4789 {
d12307c1 4790 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4791 return;
d12307c1 4792 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4793 {
d12307c1 4794 prevDefns[i].symbol = sym;
4c4b4cd2 4795 prevDefns[i].block = block;
4c4b4cd2 4796 return;
76a01679 4797 }
4c4b4cd2
PH
4798 }
4799
4800 {
d12307c1 4801 struct block_symbol info;
4c4b4cd2 4802
d12307c1 4803 info.symbol = sym;
4c4b4cd2 4804 info.block = block;
d12307c1 4805 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4806 }
4807}
4808
d12307c1
PMR
4809/* Number of block_symbol structures currently collected in current vector in
4810 OBSTACKP. */
4c4b4cd2 4811
76a01679
JB
4812static int
4813num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4814{
d12307c1 4815 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4816}
4817
d12307c1
PMR
4818/* Vector of block_symbol structures currently collected in current vector in
4819 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4820
d12307c1 4821static struct block_symbol *
4c4b4cd2
PH
4822defns_collected (struct obstack *obstackp, int finish)
4823{
4824 if (finish)
224c3ddb 4825 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4826 else
d12307c1 4827 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4828}
4829
7c7b6655
TT
4830/* Return a bound minimal symbol matching NAME according to Ada
4831 decoding rules. Returns an invalid symbol if there is no such
4832 minimal symbol. Names prefixed with "standard__" are handled
4833 specially: "standard__" is first stripped off, and only static and
4834 global symbols are searched. */
4c4b4cd2 4835
7c7b6655 4836struct bound_minimal_symbol
96d887e8 4837ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4838{
7c7b6655 4839 struct bound_minimal_symbol result;
4c4b4cd2 4840
7c7b6655
TT
4841 memset (&result, 0, sizeof (result));
4842
b5ec771e
PA
4843 symbol_name_match_type match_type = name_match_type_from_name (name);
4844 lookup_name_info lookup_name (name, match_type);
4845
4846 symbol_name_matcher_ftype *match_name
4847 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4848
2030c079 4849 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4850 {
7932255d 4851 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4852 {
c9d95fa3 4853 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4854 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4855 {
4856 result.minsym = msymbol;
4857 result.objfile = objfile;
4858 break;
4859 }
4860 }
4861 }
4c4b4cd2 4862
7c7b6655 4863 return result;
96d887e8 4864}
4c4b4cd2 4865
96d887e8
PH
4866/* For all subprograms that statically enclose the subprogram of the
4867 selected frame, add symbols matching identifier NAME in DOMAIN
4868 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4869 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4870 with a wildcard prefix. */
4c4b4cd2 4871
96d887e8
PH
4872static void
4873add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4874 const lookup_name_info &lookup_name,
4875 domain_enum domain)
96d887e8 4876{
96d887e8 4877}
14f9c5c9 4878
96d887e8
PH
4879/* True if TYPE is definitely an artificial type supplied to a symbol
4880 for which no debugging information was given in the symbol file. */
14f9c5c9 4881
96d887e8
PH
4882static int
4883is_nondebugging_type (struct type *type)
4884{
0d5cff50 4885 const char *name = ada_type_name (type);
5b4ee69b 4886
96d887e8
PH
4887 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4888}
4c4b4cd2 4889
8f17729f
JB
4890/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4891 that are deemed "identical" for practical purposes.
4892
4893 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4894 types and that their number of enumerals is identical (in other
1f704f76 4895 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4896
4897static int
4898ada_identical_enum_types_p (struct type *type1, struct type *type2)
4899{
4900 int i;
4901
4902 /* The heuristic we use here is fairly conservative. We consider
4903 that 2 enumerate types are identical if they have the same
4904 number of enumerals and that all enumerals have the same
4905 underlying value and name. */
4906
4907 /* All enums in the type should have an identical underlying value. */
1f704f76 4908 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4909 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4910 return 0;
4911
4912 /* All enumerals should also have the same name (modulo any numerical
4913 suffix). */
1f704f76 4914 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4915 {
0d5cff50
DE
4916 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4917 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4918 int len_1 = strlen (name_1);
4919 int len_2 = strlen (name_2);
4920
4921 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4922 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4923 if (len_1 != len_2
4924 || strncmp (TYPE_FIELD_NAME (type1, i),
4925 TYPE_FIELD_NAME (type2, i),
4926 len_1) != 0)
4927 return 0;
4928 }
4929
4930 return 1;
4931}
4932
4933/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4934 that are deemed "identical" for practical purposes. Sometimes,
4935 enumerals are not strictly identical, but their types are so similar
4936 that they can be considered identical.
4937
4938 For instance, consider the following code:
4939
4940 type Color is (Black, Red, Green, Blue, White);
4941 type RGB_Color is new Color range Red .. Blue;
4942
4943 Type RGB_Color is a subrange of an implicit type which is a copy
4944 of type Color. If we call that implicit type RGB_ColorB ("B" is
4945 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4946 As a result, when an expression references any of the enumeral
4947 by name (Eg. "print green"), the expression is technically
4948 ambiguous and the user should be asked to disambiguate. But
4949 doing so would only hinder the user, since it wouldn't matter
4950 what choice he makes, the outcome would always be the same.
4951 So, for practical purposes, we consider them as the same. */
4952
4953static int
54d343a2 4954symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4955{
4956 int i;
4957
4958 /* Before performing a thorough comparison check of each type,
4959 we perform a series of inexpensive checks. We expect that these
4960 checks will quickly fail in the vast majority of cases, and thus
4961 help prevent the unnecessary use of a more expensive comparison.
4962 Said comparison also expects us to make some of these checks
4963 (see ada_identical_enum_types_p). */
4964
4965 /* Quick check: All symbols should have an enum type. */
54d343a2 4966 for (i = 0; i < syms.size (); i++)
78134374 4967 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4968 return 0;
4969
4970 /* Quick check: They should all have the same value. */
54d343a2 4971 for (i = 1; i < syms.size (); i++)
d12307c1 4972 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4973 return 0;
4974
4975 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4976 for (i = 1; i < syms.size (); i++)
1f704f76
SM
4977 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4978 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4979 return 0;
4980
4981 /* All the sanity checks passed, so we might have a set of
4982 identical enumeration types. Perform a more complete
4983 comparison of the type of each symbol. */
54d343a2 4984 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4985 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4986 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4987 return 0;
4988
4989 return 1;
4990}
4991
54d343a2 4992/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4993 duplicate other symbols in the list (The only case I know of where
4994 this happens is when object files containing stabs-in-ecoff are
4995 linked with files containing ordinary ecoff debugging symbols (or no
4996 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4997 Returns the number of items in the modified list. */
4c4b4cd2 4998
96d887e8 4999static int
54d343a2 5000remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5001{
5002 int i, j;
4c4b4cd2 5003
8f17729f
JB
5004 /* We should never be called with less than 2 symbols, as there
5005 cannot be any extra symbol in that case. But it's easy to
5006 handle, since we have nothing to do in that case. */
54d343a2
TT
5007 if (syms->size () < 2)
5008 return syms->size ();
8f17729f 5009
96d887e8 5010 i = 0;
54d343a2 5011 while (i < syms->size ())
96d887e8 5012 {
a35ddb44 5013 int remove_p = 0;
339c13b6
JB
5014
5015 /* If two symbols have the same name and one of them is a stub type,
5016 the get rid of the stub. */
5017
54d343a2 5018 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5019 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5020 {
54d343a2 5021 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5022 {
5023 if (j != i
54d343a2 5024 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5025 && (*syms)[j].symbol->linkage_name () != NULL
5026 && strcmp ((*syms)[i].symbol->linkage_name (),
5027 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5028 remove_p = 1;
339c13b6
JB
5029 }
5030 }
5031
5032 /* Two symbols with the same name, same class and same address
5033 should be identical. */
5034
987012b8 5035 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5036 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5037 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5038 {
54d343a2 5039 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5040 {
5041 if (i != j
987012b8
CB
5042 && (*syms)[j].symbol->linkage_name () != NULL
5043 && strcmp ((*syms)[i].symbol->linkage_name (),
5044 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5045 && SYMBOL_CLASS ((*syms)[i].symbol)
5046 == SYMBOL_CLASS ((*syms)[j].symbol)
5047 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5048 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5049 remove_p = 1;
4c4b4cd2 5050 }
4c4b4cd2 5051 }
339c13b6 5052
a35ddb44 5053 if (remove_p)
54d343a2 5054 syms->erase (syms->begin () + i);
339c13b6 5055
96d887e8 5056 i += 1;
14f9c5c9 5057 }
8f17729f
JB
5058
5059 /* If all the remaining symbols are identical enumerals, then
5060 just keep the first one and discard the rest.
5061
5062 Unlike what we did previously, we do not discard any entry
5063 unless they are ALL identical. This is because the symbol
5064 comparison is not a strict comparison, but rather a practical
5065 comparison. If all symbols are considered identical, then
5066 we can just go ahead and use the first one and discard the rest.
5067 But if we cannot reduce the list to a single element, we have
5068 to ask the user to disambiguate anyways. And if we have to
5069 present a multiple-choice menu, it's less confusing if the list
5070 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5071 if (symbols_are_identical_enums (*syms))
5072 syms->resize (1);
8f17729f 5073
54d343a2 5074 return syms->size ();
14f9c5c9
AS
5075}
5076
96d887e8
PH
5077/* Given a type that corresponds to a renaming entity, use the type name
5078 to extract the scope (package name or function name, fully qualified,
5079 and following the GNAT encoding convention) where this renaming has been
49d83361 5080 defined. */
4c4b4cd2 5081
49d83361 5082static std::string
96d887e8 5083xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5084{
96d887e8 5085 /* The renaming types adhere to the following convention:
0963b4bd 5086 <scope>__<rename>___<XR extension>.
96d887e8
PH
5087 So, to extract the scope, we search for the "___XR" extension,
5088 and then backtrack until we find the first "__". */
76a01679 5089
7d93a1e0 5090 const char *name = renaming_type->name ();
108d56a4
SM
5091 const char *suffix = strstr (name, "___XR");
5092 const char *last;
14f9c5c9 5093
96d887e8
PH
5094 /* Now, backtrack a bit until we find the first "__". Start looking
5095 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5096
96d887e8
PH
5097 for (last = suffix - 3; last > name; last--)
5098 if (last[0] == '_' && last[1] == '_')
5099 break;
76a01679 5100
96d887e8 5101 /* Make a copy of scope and return it. */
49d83361 5102 return std::string (name, last);
4c4b4cd2
PH
5103}
5104
96d887e8 5105/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5106
96d887e8
PH
5107static int
5108is_package_name (const char *name)
4c4b4cd2 5109{
96d887e8
PH
5110 /* Here, We take advantage of the fact that no symbols are generated
5111 for packages, while symbols are generated for each function.
5112 So the condition for NAME represent a package becomes equivalent
5113 to NAME not existing in our list of symbols. There is only one
5114 small complication with library-level functions (see below). */
4c4b4cd2 5115
96d887e8
PH
5116 /* If it is a function that has not been defined at library level,
5117 then we should be able to look it up in the symbols. */
5118 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5119 return 0;
14f9c5c9 5120
96d887e8
PH
5121 /* Library-level function names start with "_ada_". See if function
5122 "_ada_" followed by NAME can be found. */
14f9c5c9 5123
96d887e8 5124 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5125 functions names cannot contain "__" in them. */
96d887e8
PH
5126 if (strstr (name, "__") != NULL)
5127 return 0;
4c4b4cd2 5128
528e1572 5129 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5130
528e1572 5131 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5132}
14f9c5c9 5133
96d887e8 5134/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5135 not visible from FUNCTION_NAME. */
14f9c5c9 5136
96d887e8 5137static int
0d5cff50 5138old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5139{
aeb5907d
JB
5140 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5141 return 0;
5142
49d83361 5143 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5144
96d887e8 5145 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5146 if (is_package_name (scope.c_str ()))
5147 return 0;
14f9c5c9 5148
96d887e8
PH
5149 /* Check that the rename is in the current function scope by checking
5150 that its name starts with SCOPE. */
76a01679 5151
96d887e8
PH
5152 /* If the function name starts with "_ada_", it means that it is
5153 a library-level function. Strip this prefix before doing the
5154 comparison, as the encoding for the renaming does not contain
5155 this prefix. */
61012eef 5156 if (startswith (function_name, "_ada_"))
96d887e8 5157 function_name += 5;
f26caa11 5158
49d83361 5159 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5160}
5161
aeb5907d
JB
5162/* Remove entries from SYMS that corresponds to a renaming entity that
5163 is not visible from the function associated with CURRENT_BLOCK or
5164 that is superfluous due to the presence of more specific renaming
5165 information. Places surviving symbols in the initial entries of
5166 SYMS and returns the number of surviving symbols.
96d887e8
PH
5167
5168 Rationale:
aeb5907d
JB
5169 First, in cases where an object renaming is implemented as a
5170 reference variable, GNAT may produce both the actual reference
5171 variable and the renaming encoding. In this case, we discard the
5172 latter.
5173
5174 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5175 entity. Unfortunately, STABS currently does not support the definition
5176 of types that are local to a given lexical block, so all renamings types
5177 are emitted at library level. As a consequence, if an application
5178 contains two renaming entities using the same name, and a user tries to
5179 print the value of one of these entities, the result of the ada symbol
5180 lookup will also contain the wrong renaming type.
f26caa11 5181
96d887e8
PH
5182 This function partially covers for this limitation by attempting to
5183 remove from the SYMS list renaming symbols that should be visible
5184 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5185 method with the current information available. The implementation
5186 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5187
5188 - When the user tries to print a rename in a function while there
5189 is another rename entity defined in a package: Normally, the
5190 rename in the function has precedence over the rename in the
5191 package, so the latter should be removed from the list. This is
5192 currently not the case.
5193
5194 - This function will incorrectly remove valid renames if
5195 the CURRENT_BLOCK corresponds to a function which symbol name
5196 has been changed by an "Export" pragma. As a consequence,
5197 the user will be unable to print such rename entities. */
4c4b4cd2 5198
14f9c5c9 5199static int
54d343a2
TT
5200remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5201 const struct block *current_block)
4c4b4cd2
PH
5202{
5203 struct symbol *current_function;
0d5cff50 5204 const char *current_function_name;
4c4b4cd2 5205 int i;
aeb5907d
JB
5206 int is_new_style_renaming;
5207
5208 /* If there is both a renaming foo___XR... encoded as a variable and
5209 a simple variable foo in the same block, discard the latter.
0963b4bd 5210 First, zero out such symbols, then compress. */
aeb5907d 5211 is_new_style_renaming = 0;
54d343a2 5212 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5213 {
54d343a2
TT
5214 struct symbol *sym = (*syms)[i].symbol;
5215 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5216 const char *name;
5217 const char *suffix;
5218
5219 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5220 continue;
987012b8 5221 name = sym->linkage_name ();
aeb5907d
JB
5222 suffix = strstr (name, "___XR");
5223
5224 if (suffix != NULL)
5225 {
5226 int name_len = suffix - name;
5227 int j;
5b4ee69b 5228
aeb5907d 5229 is_new_style_renaming = 1;
54d343a2
TT
5230 for (j = 0; j < syms->size (); j += 1)
5231 if (i != j && (*syms)[j].symbol != NULL
987012b8 5232 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5233 name_len) == 0
54d343a2
TT
5234 && block == (*syms)[j].block)
5235 (*syms)[j].symbol = NULL;
aeb5907d
JB
5236 }
5237 }
5238 if (is_new_style_renaming)
5239 {
5240 int j, k;
5241
54d343a2
TT
5242 for (j = k = 0; j < syms->size (); j += 1)
5243 if ((*syms)[j].symbol != NULL)
aeb5907d 5244 {
54d343a2 5245 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5246 k += 1;
5247 }
5248 return k;
5249 }
4c4b4cd2
PH
5250
5251 /* Extract the function name associated to CURRENT_BLOCK.
5252 Abort if unable to do so. */
76a01679 5253
4c4b4cd2 5254 if (current_block == NULL)
54d343a2 5255 return syms->size ();
76a01679 5256
7f0df278 5257 current_function = block_linkage_function (current_block);
4c4b4cd2 5258 if (current_function == NULL)
54d343a2 5259 return syms->size ();
4c4b4cd2 5260
987012b8 5261 current_function_name = current_function->linkage_name ();
4c4b4cd2 5262 if (current_function_name == NULL)
54d343a2 5263 return syms->size ();
4c4b4cd2
PH
5264
5265 /* Check each of the symbols, and remove it from the list if it is
5266 a type corresponding to a renaming that is out of the scope of
5267 the current block. */
5268
5269 i = 0;
54d343a2 5270 while (i < syms->size ())
4c4b4cd2 5271 {
54d343a2 5272 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5273 == ADA_OBJECT_RENAMING
54d343a2
TT
5274 && old_renaming_is_invisible ((*syms)[i].symbol,
5275 current_function_name))
5276 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5277 else
5278 i += 1;
5279 }
5280
54d343a2 5281 return syms->size ();
4c4b4cd2
PH
5282}
5283
339c13b6
JB
5284/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5285 whose name and domain match NAME and DOMAIN respectively.
5286 If no match was found, then extend the search to "enclosing"
5287 routines (in other words, if we're inside a nested function,
5288 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5289 If WILD_MATCH_P is nonzero, perform the naming matching in
5290 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5291
5292 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5293
5294static void
b5ec771e
PA
5295ada_add_local_symbols (struct obstack *obstackp,
5296 const lookup_name_info &lookup_name,
5297 const struct block *block, domain_enum domain)
339c13b6
JB
5298{
5299 int block_depth = 0;
5300
5301 while (block != NULL)
5302 {
5303 block_depth += 1;
b5ec771e 5304 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5305
5306 /* If we found a non-function match, assume that's the one. */
5307 if (is_nonfunction (defns_collected (obstackp, 0),
5308 num_defns_collected (obstackp)))
5309 return;
5310
5311 block = BLOCK_SUPERBLOCK (block);
5312 }
5313
5314 /* If no luck so far, try to find NAME as a local symbol in some lexically
5315 enclosing subprogram. */
5316 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5317 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5318}
5319
ccefe4c4 5320/* An object of this type is used as the user_data argument when
40658b94 5321 calling the map_matching_symbols method. */
ccefe4c4 5322
40658b94 5323struct match_data
ccefe4c4 5324{
40658b94 5325 struct objfile *objfile;
ccefe4c4 5326 struct obstack *obstackp;
40658b94
PH
5327 struct symbol *arg_sym;
5328 int found_sym;
ccefe4c4
TT
5329};
5330
199b4314
TT
5331/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5332 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5333 containing the obstack that collects the symbol list, the file that SYM
5334 must come from, a flag indicating whether a non-argument symbol has
5335 been found in the current block, and the last argument symbol
5336 passed in SYM within the current block (if any). When SYM is null,
5337 marking the end of a block, the argument symbol is added if no
5338 other has been found. */
ccefe4c4 5339
199b4314
TT
5340static bool
5341aux_add_nonlocal_symbols (struct block_symbol *bsym,
5342 struct match_data *data)
ccefe4c4 5343{
199b4314
TT
5344 const struct block *block = bsym->block;
5345 struct symbol *sym = bsym->symbol;
5346
40658b94
PH
5347 if (sym == NULL)
5348 {
5349 if (!data->found_sym && data->arg_sym != NULL)
5350 add_defn_to_vec (data->obstackp,
5351 fixup_symbol_section (data->arg_sym, data->objfile),
5352 block);
5353 data->found_sym = 0;
5354 data->arg_sym = NULL;
5355 }
5356 else
5357 {
5358 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5359 return true;
40658b94
PH
5360 else if (SYMBOL_IS_ARGUMENT (sym))
5361 data->arg_sym = sym;
5362 else
5363 {
5364 data->found_sym = 1;
5365 add_defn_to_vec (data->obstackp,
5366 fixup_symbol_section (sym, data->objfile),
5367 block);
5368 }
5369 }
199b4314 5370 return true;
40658b94
PH
5371}
5372
b5ec771e
PA
5373/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5374 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5375 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5376
5377static int
5378ada_add_block_renamings (struct obstack *obstackp,
5379 const struct block *block,
b5ec771e
PA
5380 const lookup_name_info &lookup_name,
5381 domain_enum domain)
22cee43f
PMR
5382{
5383 struct using_direct *renaming;
5384 int defns_mark = num_defns_collected (obstackp);
5385
b5ec771e
PA
5386 symbol_name_matcher_ftype *name_match
5387 = ada_get_symbol_name_matcher (lookup_name);
5388
22cee43f
PMR
5389 for (renaming = block_using (block);
5390 renaming != NULL;
5391 renaming = renaming->next)
5392 {
5393 const char *r_name;
22cee43f
PMR
5394
5395 /* Avoid infinite recursions: skip this renaming if we are actually
5396 already traversing it.
5397
5398 Currently, symbol lookup in Ada don't use the namespace machinery from
5399 C++/Fortran support: skip namespace imports that use them. */
5400 if (renaming->searched
5401 || (renaming->import_src != NULL
5402 && renaming->import_src[0] != '\0')
5403 || (renaming->import_dest != NULL
5404 && renaming->import_dest[0] != '\0'))
5405 continue;
5406 renaming->searched = 1;
5407
5408 /* TODO: here, we perform another name-based symbol lookup, which can
5409 pull its own multiple overloads. In theory, we should be able to do
5410 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5411 not a simple name. But in order to do this, we would need to enhance
5412 the DWARF reader to associate a symbol to this renaming, instead of a
5413 name. So, for now, we do something simpler: re-use the C++/Fortran
5414 namespace machinery. */
5415 r_name = (renaming->alias != NULL
5416 ? renaming->alias
5417 : renaming->declaration);
b5ec771e
PA
5418 if (name_match (r_name, lookup_name, NULL))
5419 {
5420 lookup_name_info decl_lookup_name (renaming->declaration,
5421 lookup_name.match_type ());
5422 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5423 1, NULL);
5424 }
22cee43f
PMR
5425 renaming->searched = 0;
5426 }
5427 return num_defns_collected (obstackp) != defns_mark;
5428}
5429
db230ce3
JB
5430/* Implements compare_names, but only applying the comparision using
5431 the given CASING. */
5b4ee69b 5432
40658b94 5433static int
db230ce3
JB
5434compare_names_with_case (const char *string1, const char *string2,
5435 enum case_sensitivity casing)
40658b94
PH
5436{
5437 while (*string1 != '\0' && *string2 != '\0')
5438 {
db230ce3
JB
5439 char c1, c2;
5440
40658b94
PH
5441 if (isspace (*string1) || isspace (*string2))
5442 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5443
5444 if (casing == case_sensitive_off)
5445 {
5446 c1 = tolower (*string1);
5447 c2 = tolower (*string2);
5448 }
5449 else
5450 {
5451 c1 = *string1;
5452 c2 = *string2;
5453 }
5454 if (c1 != c2)
40658b94 5455 break;
db230ce3 5456
40658b94
PH
5457 string1 += 1;
5458 string2 += 1;
5459 }
db230ce3 5460
40658b94
PH
5461 switch (*string1)
5462 {
5463 case '(':
5464 return strcmp_iw_ordered (string1, string2);
5465 case '_':
5466 if (*string2 == '\0')
5467 {
052874e8 5468 if (is_name_suffix (string1))
40658b94
PH
5469 return 0;
5470 else
1a1d5513 5471 return 1;
40658b94 5472 }
dbb8534f 5473 /* FALLTHROUGH */
40658b94
PH
5474 default:
5475 if (*string2 == '(')
5476 return strcmp_iw_ordered (string1, string2);
5477 else
db230ce3
JB
5478 {
5479 if (casing == case_sensitive_off)
5480 return tolower (*string1) - tolower (*string2);
5481 else
5482 return *string1 - *string2;
5483 }
40658b94 5484 }
ccefe4c4
TT
5485}
5486
db230ce3
JB
5487/* Compare STRING1 to STRING2, with results as for strcmp.
5488 Compatible with strcmp_iw_ordered in that...
5489
5490 strcmp_iw_ordered (STRING1, STRING2) <= 0
5491
5492 ... implies...
5493
5494 compare_names (STRING1, STRING2) <= 0
5495
5496 (they may differ as to what symbols compare equal). */
5497
5498static int
5499compare_names (const char *string1, const char *string2)
5500{
5501 int result;
5502
5503 /* Similar to what strcmp_iw_ordered does, we need to perform
5504 a case-insensitive comparison first, and only resort to
5505 a second, case-sensitive, comparison if the first one was
5506 not sufficient to differentiate the two strings. */
5507
5508 result = compare_names_with_case (string1, string2, case_sensitive_off);
5509 if (result == 0)
5510 result = compare_names_with_case (string1, string2, case_sensitive_on);
5511
5512 return result;
5513}
5514
b5ec771e
PA
5515/* Convenience function to get at the Ada encoded lookup name for
5516 LOOKUP_NAME, as a C string. */
5517
5518static const char *
5519ada_lookup_name (const lookup_name_info &lookup_name)
5520{
5521 return lookup_name.ada ().lookup_name ().c_str ();
5522}
5523
339c13b6 5524/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5525 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5526 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5527 symbols otherwise. */
339c13b6
JB
5528
5529static void
b5ec771e
PA
5530add_nonlocal_symbols (struct obstack *obstackp,
5531 const lookup_name_info &lookup_name,
5532 domain_enum domain, int global)
339c13b6 5533{
40658b94 5534 struct match_data data;
339c13b6 5535
6475f2fe 5536 memset (&data, 0, sizeof data);
ccefe4c4 5537 data.obstackp = obstackp;
339c13b6 5538
b5ec771e
PA
5539 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5540
199b4314
TT
5541 auto callback = [&] (struct block_symbol *bsym)
5542 {
5543 return aux_add_nonlocal_symbols (bsym, &data);
5544 };
5545
2030c079 5546 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5547 {
5548 data.objfile = objfile;
5549
b054970d
TT
5550 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5551 domain, global, callback,
5552 (is_wild_match
5553 ? NULL : compare_names));
22cee43f 5554
b669c953 5555 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5556 {
5557 const struct block *global_block
5558 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5559
b5ec771e
PA
5560 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5561 domain))
22cee43f
PMR
5562 data.found_sym = 1;
5563 }
40658b94
PH
5564 }
5565
5566 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5567 {
b5ec771e 5568 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5569 std::string bracket_name = std::string ("<_ada_") + name + '>';
5570 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5571
2030c079 5572 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5573 {
40658b94 5574 data.objfile = objfile;
b054970d 5575 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5576 domain, global, callback,
b5ec771e 5577 compare_names);
40658b94
PH
5578 }
5579 }
339c13b6
JB
5580}
5581
b5ec771e
PA
5582/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5583 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5584 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5585
22cee43f
PMR
5586 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5587 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5588 is the one match returned (no other matches in that or
d9680e73 5589 enclosing blocks is returned). If there are any matches in or
22cee43f 5590 surrounding BLOCK, then these alone are returned.
4eeaa230 5591
b5ec771e
PA
5592 Names prefixed with "standard__" are handled specially:
5593 "standard__" is first stripped off (by the lookup_name
5594 constructor), and only static and global symbols are searched.
14f9c5c9 5595
22cee43f
PMR
5596 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5597 to lookup global symbols. */
5598
5599static void
5600ada_add_all_symbols (struct obstack *obstackp,
5601 const struct block *block,
b5ec771e 5602 const lookup_name_info &lookup_name,
22cee43f
PMR
5603 domain_enum domain,
5604 int full_search,
5605 int *made_global_lookup_p)
14f9c5c9
AS
5606{
5607 struct symbol *sym;
14f9c5c9 5608
22cee43f
PMR
5609 if (made_global_lookup_p)
5610 *made_global_lookup_p = 0;
339c13b6
JB
5611
5612 /* Special case: If the user specifies a symbol name inside package
5613 Standard, do a non-wild matching of the symbol name without
5614 the "standard__" prefix. This was primarily introduced in order
5615 to allow the user to specifically access the standard exceptions
5616 using, for instance, Standard.Constraint_Error when Constraint_Error
5617 is ambiguous (due to the user defining its own Constraint_Error
5618 entity inside its program). */
b5ec771e
PA
5619 if (lookup_name.ada ().standard_p ())
5620 block = NULL;
4c4b4cd2 5621
339c13b6 5622 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5623
4eeaa230
DE
5624 if (block != NULL)
5625 {
5626 if (full_search)
b5ec771e 5627 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5628 else
5629 {
5630 /* In the !full_search case we're are being called by
4009ee92 5631 iterate_over_symbols, and we don't want to search
4eeaa230 5632 superblocks. */
b5ec771e 5633 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5634 }
22cee43f
PMR
5635 if (num_defns_collected (obstackp) > 0 || !full_search)
5636 return;
4eeaa230 5637 }
d2e4a39e 5638
339c13b6
JB
5639 /* No non-global symbols found. Check our cache to see if we have
5640 already performed this search before. If we have, then return
5641 the same result. */
5642
b5ec771e
PA
5643 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5644 domain, &sym, &block))
4c4b4cd2
PH
5645 {
5646 if (sym != NULL)
b5ec771e 5647 add_defn_to_vec (obstackp, sym, block);
22cee43f 5648 return;
4c4b4cd2 5649 }
14f9c5c9 5650
22cee43f
PMR
5651 if (made_global_lookup_p)
5652 *made_global_lookup_p = 1;
b1eedac9 5653
339c13b6
JB
5654 /* Search symbols from all global blocks. */
5655
b5ec771e 5656 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5657
4c4b4cd2 5658 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5659 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5660
22cee43f 5661 if (num_defns_collected (obstackp) == 0)
b5ec771e 5662 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5663}
5664
b5ec771e
PA
5665/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5666 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5667 matches.
54d343a2
TT
5668 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5669 found and the blocks and symbol tables (if any) in which they were
5670 found.
22cee43f
PMR
5671
5672 When full_search is non-zero, any non-function/non-enumeral
5673 symbol match within the nest of blocks whose innermost member is BLOCK,
5674 is the one match returned (no other matches in that or
5675 enclosing blocks is returned). If there are any matches in or
5676 surrounding BLOCK, then these alone are returned.
5677
5678 Names prefixed with "standard__" are handled specially: "standard__"
5679 is first stripped off, and only static and global symbols are searched. */
5680
5681static int
b5ec771e
PA
5682ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5683 const struct block *block,
22cee43f 5684 domain_enum domain,
54d343a2 5685 std::vector<struct block_symbol> *results,
22cee43f
PMR
5686 int full_search)
5687{
22cee43f
PMR
5688 int syms_from_global_search;
5689 int ndefns;
ec6a20c2 5690 auto_obstack obstack;
22cee43f 5691
ec6a20c2 5692 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5693 domain, full_search, &syms_from_global_search);
14f9c5c9 5694
ec6a20c2
JB
5695 ndefns = num_defns_collected (&obstack);
5696
54d343a2
TT
5697 struct block_symbol *base = defns_collected (&obstack, 1);
5698 for (int i = 0; i < ndefns; ++i)
5699 results->push_back (base[i]);
4c4b4cd2 5700
54d343a2 5701 ndefns = remove_extra_symbols (results);
4c4b4cd2 5702
b1eedac9 5703 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5704 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5705
b1eedac9 5706 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5707 cache_symbol (ada_lookup_name (lookup_name), domain,
5708 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5709
54d343a2 5710 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5711
14f9c5c9
AS
5712 return ndefns;
5713}
5714
b5ec771e 5715/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5716 in global scopes, returning the number of matches, and filling *RESULTS
5717 with (SYM,BLOCK) tuples.
ec6a20c2 5718
4eeaa230
DE
5719 See ada_lookup_symbol_list_worker for further details. */
5720
5721int
b5ec771e 5722ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5723 domain_enum domain,
5724 std::vector<struct block_symbol> *results)
4eeaa230 5725{
b5ec771e
PA
5726 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5727 lookup_name_info lookup_name (name, name_match_type);
5728
5729 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5730}
5731
4e5c77fe
JB
5732/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5733 to 1, but choosing the first symbol found if there are multiple
5734 choices.
5735
5e2336be
JB
5736 The result is stored in *INFO, which must be non-NULL.
5737 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5738
5739void
5740ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5741 domain_enum domain,
d12307c1 5742 struct block_symbol *info)
14f9c5c9 5743{
b5ec771e
PA
5744 /* Since we already have an encoded name, wrap it in '<>' to force a
5745 verbatim match. Otherwise, if the name happens to not look like
5746 an encoded name (because it doesn't include a "__"),
5747 ada_lookup_name_info would re-encode/fold it again, and that
5748 would e.g., incorrectly lowercase object renaming names like
5749 "R28b" -> "r28b". */
5750 std::string verbatim = std::string ("<") + name + '>';
5751
5e2336be 5752 gdb_assert (info != NULL);
65392b3e 5753 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5754}
aeb5907d
JB
5755
5756/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5757 scope and in global scopes, or NULL if none. NAME is folded and
5758 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5759 choosing the first symbol if there are multiple choices. */
4e5c77fe 5760
d12307c1 5761struct block_symbol
aeb5907d 5762ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5763 domain_enum domain)
aeb5907d 5764{
54d343a2 5765 std::vector<struct block_symbol> candidates;
f98fc17b 5766 int n_candidates;
f98fc17b
PA
5767
5768 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5769
5770 if (n_candidates == 0)
54d343a2 5771 return {};
f98fc17b
PA
5772
5773 block_symbol info = candidates[0];
5774 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5775 return info;
4c4b4cd2 5776}
14f9c5c9 5777
d12307c1 5778static struct block_symbol
f606139a
DE
5779ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5780 const char *name,
76a01679 5781 const struct block *block,
21b556f4 5782 const domain_enum domain)
4c4b4cd2 5783{
d12307c1 5784 struct block_symbol sym;
04dccad0 5785
65392b3e 5786 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5787 if (sym.symbol != NULL)
04dccad0
JB
5788 return sym;
5789
5790 /* If we haven't found a match at this point, try the primitive
5791 types. In other languages, this search is performed before
5792 searching for global symbols in order to short-circuit that
5793 global-symbol search if it happens that the name corresponds
5794 to a primitive type. But we cannot do the same in Ada, because
5795 it is perfectly legitimate for a program to declare a type which
5796 has the same name as a standard type. If looking up a type in
5797 that situation, we have traditionally ignored the primitive type
5798 in favor of user-defined types. This is why, unlike most other
5799 languages, we search the primitive types this late and only after
5800 having searched the global symbols without success. */
5801
5802 if (domain == VAR_DOMAIN)
5803 {
5804 struct gdbarch *gdbarch;
5805
5806 if (block == NULL)
5807 gdbarch = target_gdbarch ();
5808 else
5809 gdbarch = block_gdbarch (block);
d12307c1
PMR
5810 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5811 if (sym.symbol != NULL)
04dccad0
JB
5812 return sym;
5813 }
5814
6640a367 5815 return {};
14f9c5c9
AS
5816}
5817
5818
4c4b4cd2
PH
5819/* True iff STR is a possible encoded suffix of a normal Ada name
5820 that is to be ignored for matching purposes. Suffixes of parallel
5821 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5822 are given by any of the regular expressions:
4c4b4cd2 5823
babe1480
JB
5824 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5825 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5826 TKB [subprogram suffix for task bodies]
babe1480 5827 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5828 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5829
5830 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5831 match is performed. This sequence is used to differentiate homonyms,
5832 is an optional part of a valid name suffix. */
4c4b4cd2 5833
14f9c5c9 5834static int
d2e4a39e 5835is_name_suffix (const char *str)
14f9c5c9
AS
5836{
5837 int k;
4c4b4cd2
PH
5838 const char *matching;
5839 const int len = strlen (str);
5840
babe1480
JB
5841 /* Skip optional leading __[0-9]+. */
5842
4c4b4cd2
PH
5843 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5844 {
babe1480
JB
5845 str += 3;
5846 while (isdigit (str[0]))
5847 str += 1;
4c4b4cd2 5848 }
babe1480
JB
5849
5850 /* [.$][0-9]+ */
4c4b4cd2 5851
babe1480 5852 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5853 {
babe1480 5854 matching = str + 1;
4c4b4cd2
PH
5855 while (isdigit (matching[0]))
5856 matching += 1;
5857 if (matching[0] == '\0')
5858 return 1;
5859 }
5860
5861 /* ___[0-9]+ */
babe1480 5862
4c4b4cd2
PH
5863 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5864 {
5865 matching = str + 3;
5866 while (isdigit (matching[0]))
5867 matching += 1;
5868 if (matching[0] == '\0')
5869 return 1;
5870 }
5871
9ac7f98e
JB
5872 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5873
5874 if (strcmp (str, "TKB") == 0)
5875 return 1;
5876
529cad9c
PH
5877#if 0
5878 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5879 with a N at the end. Unfortunately, the compiler uses the same
5880 convention for other internal types it creates. So treating
529cad9c 5881 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5882 some regressions. For instance, consider the case of an enumerated
5883 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5884 name ends with N.
5885 Having a single character like this as a suffix carrying some
0963b4bd 5886 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5887 to be something like "_N" instead. In the meantime, do not do
5888 the following check. */
5889 /* Protected Object Subprograms */
5890 if (len == 1 && str [0] == 'N')
5891 return 1;
5892#endif
5893
5894 /* _E[0-9]+[bs]$ */
5895 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5896 {
5897 matching = str + 3;
5898 while (isdigit (matching[0]))
5899 matching += 1;
5900 if ((matching[0] == 'b' || matching[0] == 's')
5901 && matching [1] == '\0')
5902 return 1;
5903 }
5904
4c4b4cd2
PH
5905 /* ??? We should not modify STR directly, as we are doing below. This
5906 is fine in this case, but may become problematic later if we find
5907 that this alternative did not work, and want to try matching
5908 another one from the begining of STR. Since we modified it, we
5909 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5910 if (str[0] == 'X')
5911 {
5912 str += 1;
d2e4a39e 5913 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5914 {
5915 if (str[0] != 'n' && str[0] != 'b')
5916 return 0;
5917 str += 1;
5918 }
14f9c5c9 5919 }
babe1480 5920
14f9c5c9
AS
5921 if (str[0] == '\000')
5922 return 1;
babe1480 5923
d2e4a39e 5924 if (str[0] == '_')
14f9c5c9
AS
5925 {
5926 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5927 return 0;
d2e4a39e 5928 if (str[2] == '_')
4c4b4cd2 5929 {
61ee279c
PH
5930 if (strcmp (str + 3, "JM") == 0)
5931 return 1;
5932 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5933 the LJM suffix in favor of the JM one. But we will
5934 still accept LJM as a valid suffix for a reasonable
5935 amount of time, just to allow ourselves to debug programs
5936 compiled using an older version of GNAT. */
4c4b4cd2
PH
5937 if (strcmp (str + 3, "LJM") == 0)
5938 return 1;
5939 if (str[3] != 'X')
5940 return 0;
1265e4aa
JB
5941 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5942 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5943 return 1;
5944 if (str[4] == 'R' && str[5] != 'T')
5945 return 1;
5946 return 0;
5947 }
5948 if (!isdigit (str[2]))
5949 return 0;
5950 for (k = 3; str[k] != '\0'; k += 1)
5951 if (!isdigit (str[k]) && str[k] != '_')
5952 return 0;
14f9c5c9
AS
5953 return 1;
5954 }
4c4b4cd2 5955 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5956 {
4c4b4cd2
PH
5957 for (k = 2; str[k] != '\0'; k += 1)
5958 if (!isdigit (str[k]) && str[k] != '_')
5959 return 0;
14f9c5c9
AS
5960 return 1;
5961 }
5962 return 0;
5963}
d2e4a39e 5964
aeb5907d
JB
5965/* Return non-zero if the string starting at NAME and ending before
5966 NAME_END contains no capital letters. */
529cad9c
PH
5967
5968static int
5969is_valid_name_for_wild_match (const char *name0)
5970{
f945dedf 5971 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5972 int i;
5973
5823c3ef
JB
5974 /* If the decoded name starts with an angle bracket, it means that
5975 NAME0 does not follow the GNAT encoding format. It should then
5976 not be allowed as a possible wild match. */
5977 if (decoded_name[0] == '<')
5978 return 0;
5979
529cad9c
PH
5980 for (i=0; decoded_name[i] != '\0'; i++)
5981 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5982 return 0;
5983
5984 return 1;
5985}
5986
73589123
PH
5987/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5988 that could start a simple name. Assumes that *NAMEP points into
5989 the string beginning at NAME0. */
4c4b4cd2 5990
14f9c5c9 5991static int
73589123 5992advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5993{
73589123 5994 const char *name = *namep;
5b4ee69b 5995
5823c3ef 5996 while (1)
14f9c5c9 5997 {
aa27d0b3 5998 int t0, t1;
73589123
PH
5999
6000 t0 = *name;
6001 if (t0 == '_')
6002 {
6003 t1 = name[1];
6004 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6005 {
6006 name += 1;
61012eef 6007 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6008 break;
6009 else
6010 name += 1;
6011 }
aa27d0b3
JB
6012 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6013 || name[2] == target0))
73589123
PH
6014 {
6015 name += 2;
6016 break;
6017 }
6018 else
6019 return 0;
6020 }
6021 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6022 name += 1;
6023 else
5823c3ef 6024 return 0;
73589123
PH
6025 }
6026
6027 *namep = name;
6028 return 1;
6029}
6030
b5ec771e
PA
6031/* Return true iff NAME encodes a name of the form prefix.PATN.
6032 Ignores any informational suffixes of NAME (i.e., for which
6033 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6034 simple name. */
73589123 6035
b5ec771e 6036static bool
73589123
PH
6037wild_match (const char *name, const char *patn)
6038{
22e048c9 6039 const char *p;
73589123
PH
6040 const char *name0 = name;
6041
6042 while (1)
6043 {
6044 const char *match = name;
6045
6046 if (*name == *patn)
6047 {
6048 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6049 if (*p != *name)
6050 break;
6051 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6052 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6053
6054 if (name[-1] == '_')
6055 name -= 1;
6056 }
6057 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6058 return false;
96d887e8 6059 }
96d887e8
PH
6060}
6061
b5ec771e
PA
6062/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6063 any trailing suffixes that encode debugging information or leading
6064 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6065 information that is ignored). */
40658b94 6066
b5ec771e 6067static bool
c4d840bd
PH
6068full_match (const char *sym_name, const char *search_name)
6069{
b5ec771e
PA
6070 size_t search_name_len = strlen (search_name);
6071
6072 if (strncmp (sym_name, search_name, search_name_len) == 0
6073 && is_name_suffix (sym_name + search_name_len))
6074 return true;
6075
6076 if (startswith (sym_name, "_ada_")
6077 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6078 && is_name_suffix (sym_name + search_name_len + 5))
6079 return true;
c4d840bd 6080
b5ec771e
PA
6081 return false;
6082}
c4d840bd 6083
b5ec771e
PA
6084/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6085 *defn_symbols, updating the list of symbols in OBSTACKP (if
6086 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6087
6088static void
6089ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6090 const struct block *block,
6091 const lookup_name_info &lookup_name,
6092 domain_enum domain, struct objfile *objfile)
96d887e8 6093{
8157b174 6094 struct block_iterator iter;
96d887e8
PH
6095 /* A matching argument symbol, if any. */
6096 struct symbol *arg_sym;
6097 /* Set true when we find a matching non-argument symbol. */
6098 int found_sym;
6099 struct symbol *sym;
6100
6101 arg_sym = NULL;
6102 found_sym = 0;
b5ec771e
PA
6103 for (sym = block_iter_match_first (block, lookup_name, &iter);
6104 sym != NULL;
6105 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6106 {
c1b5c1eb 6107 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6108 {
6109 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6110 {
6111 if (SYMBOL_IS_ARGUMENT (sym))
6112 arg_sym = sym;
6113 else
6114 {
6115 found_sym = 1;
6116 add_defn_to_vec (obstackp,
6117 fixup_symbol_section (sym, objfile),
6118 block);
6119 }
6120 }
6121 }
96d887e8
PH
6122 }
6123
22cee43f
PMR
6124 /* Handle renamings. */
6125
b5ec771e 6126 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6127 found_sym = 1;
6128
96d887e8
PH
6129 if (!found_sym && arg_sym != NULL)
6130 {
76a01679
JB
6131 add_defn_to_vec (obstackp,
6132 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6133 block);
96d887e8
PH
6134 }
6135
b5ec771e 6136 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6137 {
6138 arg_sym = NULL;
6139 found_sym = 0;
b5ec771e
PA
6140 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6141 const char *name = ada_lookup_name.c_str ();
6142 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6143
6144 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6145 {
c1b5c1eb 6146 if (symbol_matches_domain (sym->language (),
4186eb54 6147 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6148 {
6149 int cmp;
6150
987012b8 6151 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6152 if (cmp == 0)
6153 {
987012b8 6154 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6155 if (cmp == 0)
987012b8 6156 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6157 name_len);
6158 }
6159
6160 if (cmp == 0
987012b8 6161 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6162 {
2a2d4dc3
AS
6163 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6164 {
6165 if (SYMBOL_IS_ARGUMENT (sym))
6166 arg_sym = sym;
6167 else
6168 {
6169 found_sym = 1;
6170 add_defn_to_vec (obstackp,
6171 fixup_symbol_section (sym, objfile),
6172 block);
6173 }
6174 }
76a01679
JB
6175 }
6176 }
76a01679 6177 }
96d887e8
PH
6178
6179 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6180 They aren't parameters, right? */
6181 if (!found_sym && arg_sym != NULL)
6182 {
6183 add_defn_to_vec (obstackp,
76a01679 6184 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6185 block);
96d887e8
PH
6186 }
6187 }
6188}
6189\f
41d27058
JB
6190
6191 /* Symbol Completion */
6192
b5ec771e 6193/* See symtab.h. */
41d27058 6194
b5ec771e
PA
6195bool
6196ada_lookup_name_info::matches
6197 (const char *sym_name,
6198 symbol_name_match_type match_type,
a207cff2 6199 completion_match_result *comp_match_res) const
41d27058 6200{
b5ec771e
PA
6201 bool match = false;
6202 const char *text = m_encoded_name.c_str ();
6203 size_t text_len = m_encoded_name.size ();
41d27058
JB
6204
6205 /* First, test against the fully qualified name of the symbol. */
6206
6207 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6208 match = true;
41d27058 6209
f945dedf 6210 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6211 if (match && !m_encoded_p)
41d27058
JB
6212 {
6213 /* One needed check before declaring a positive match is to verify
6214 that iff we are doing a verbatim match, the decoded version
6215 of the symbol name starts with '<'. Otherwise, this symbol name
6216 is not a suitable completion. */
41d27058 6217
f945dedf 6218 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6219 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6220 }
6221
b5ec771e 6222 if (match && !m_verbatim_p)
41d27058
JB
6223 {
6224 /* When doing non-verbatim match, another check that needs to
6225 be done is to verify that the potentially matching symbol name
6226 does not include capital letters, because the ada-mode would
6227 not be able to understand these symbol names without the
6228 angle bracket notation. */
6229 const char *tmp;
6230
6231 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6232 if (*tmp != '\0')
b5ec771e 6233 match = false;
41d27058
JB
6234 }
6235
6236 /* Second: Try wild matching... */
6237
b5ec771e 6238 if (!match && m_wild_match_p)
41d27058
JB
6239 {
6240 /* Since we are doing wild matching, this means that TEXT
6241 may represent an unqualified symbol name. We therefore must
6242 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6243 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6244
6245 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6246 match = true;
41d27058
JB
6247 }
6248
b5ec771e 6249 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6250
6251 if (!match)
b5ec771e 6252 return false;
41d27058 6253
a207cff2 6254 if (comp_match_res != NULL)
b5ec771e 6255 {
a207cff2 6256 std::string &match_str = comp_match_res->match.storage ();
41d27058 6257
b5ec771e 6258 if (!m_encoded_p)
a207cff2 6259 match_str = ada_decode (sym_name);
b5ec771e
PA
6260 else
6261 {
6262 if (m_verbatim_p)
6263 match_str = add_angle_brackets (sym_name);
6264 else
6265 match_str = sym_name;
41d27058 6266
b5ec771e 6267 }
a207cff2
PA
6268
6269 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6270 }
6271
b5ec771e 6272 return true;
41d27058
JB
6273}
6274
963a6417 6275 /* Field Access */
96d887e8 6276
73fb9985
JB
6277/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6278 for tagged types. */
6279
6280static int
6281ada_is_dispatch_table_ptr_type (struct type *type)
6282{
0d5cff50 6283 const char *name;
73fb9985 6284
78134374 6285 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6286 return 0;
6287
7d93a1e0 6288 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6289 if (name == NULL)
6290 return 0;
6291
6292 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6293}
6294
ac4a2da4
JG
6295/* Return non-zero if TYPE is an interface tag. */
6296
6297static int
6298ada_is_interface_tag (struct type *type)
6299{
7d93a1e0 6300 const char *name = type->name ();
ac4a2da4
JG
6301
6302 if (name == NULL)
6303 return 0;
6304
6305 return (strcmp (name, "ada__tags__interface_tag") == 0);
6306}
6307
963a6417
PH
6308/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6309 to be invisible to users. */
96d887e8 6310
963a6417
PH
6311int
6312ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6313{
1f704f76 6314 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6315 return 1;
ffde82bf 6316
73fb9985
JB
6317 /* Check the name of that field. */
6318 {
6319 const char *name = TYPE_FIELD_NAME (type, field_num);
6320
6321 /* Anonymous field names should not be printed.
6322 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6323 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6324 if (name == NULL)
6325 return 1;
6326
ffde82bf
JB
6327 /* Normally, fields whose name start with an underscore ("_")
6328 are fields that have been internally generated by the compiler,
6329 and thus should not be printed. The "_parent" field is special,
6330 however: This is a field internally generated by the compiler
6331 for tagged types, and it contains the components inherited from
6332 the parent type. This field should not be printed as is, but
6333 should not be ignored either. */
61012eef 6334 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6335 return 1;
6336 }
6337
ac4a2da4
JG
6338 /* If this is the dispatch table of a tagged type or an interface tag,
6339 then ignore. */
73fb9985 6340 if (ada_is_tagged_type (type, 1)
940da03e
SM
6341 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6342 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6343 return 1;
6344
6345 /* Not a special field, so it should not be ignored. */
6346 return 0;
963a6417 6347}
96d887e8 6348
963a6417 6349/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6350 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6351
963a6417
PH
6352int
6353ada_is_tagged_type (struct type *type, int refok)
6354{
988f6b3d 6355 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6356}
96d887e8 6357
963a6417 6358/* True iff TYPE represents the type of X'Tag */
96d887e8 6359
963a6417
PH
6360int
6361ada_is_tag_type (struct type *type)
6362{
460efde1
JB
6363 type = ada_check_typedef (type);
6364
78134374 6365 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6366 return 0;
6367 else
96d887e8 6368 {
963a6417 6369 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6370
963a6417
PH
6371 return (name != NULL
6372 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6373 }
96d887e8
PH
6374}
6375
963a6417 6376/* The type of the tag on VAL. */
76a01679 6377
de93309a 6378static struct type *
963a6417 6379ada_tag_type (struct value *val)
96d887e8 6380{
988f6b3d 6381 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6382}
96d887e8 6383
b50d69b5
JG
6384/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6385 retired at Ada 05). */
6386
6387static int
6388is_ada95_tag (struct value *tag)
6389{
6390 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6391}
6392
963a6417 6393/* The value of the tag on VAL. */
96d887e8 6394
de93309a 6395static struct value *
963a6417
PH
6396ada_value_tag (struct value *val)
6397{
03ee6b2e 6398 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6399}
6400
963a6417
PH
6401/* The value of the tag on the object of type TYPE whose contents are
6402 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6403 ADDRESS. */
96d887e8 6404
963a6417 6405static struct value *
10a2c479 6406value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6407 const gdb_byte *valaddr,
963a6417 6408 CORE_ADDR address)
96d887e8 6409{
b5385fc0 6410 int tag_byte_offset;
963a6417 6411 struct type *tag_type;
5b4ee69b 6412
963a6417 6413 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6414 NULL, NULL, NULL))
96d887e8 6415 {
fc1a4b47 6416 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6417 ? NULL
6418 : valaddr + tag_byte_offset);
963a6417 6419 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6420
963a6417 6421 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6422 }
963a6417
PH
6423 return NULL;
6424}
96d887e8 6425
963a6417
PH
6426static struct type *
6427type_from_tag (struct value *tag)
6428{
f5272a3b 6429 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6430
963a6417 6431 if (type_name != NULL)
f5272a3b 6432 return ada_find_any_type (ada_encode (type_name.get ()));
963a6417
PH
6433 return NULL;
6434}
96d887e8 6435
b50d69b5
JG
6436/* Given a value OBJ of a tagged type, return a value of this
6437 type at the base address of the object. The base address, as
6438 defined in Ada.Tags, it is the address of the primary tag of
6439 the object, and therefore where the field values of its full
6440 view can be fetched. */
6441
6442struct value *
6443ada_tag_value_at_base_address (struct value *obj)
6444{
b50d69b5
JG
6445 struct value *val;
6446 LONGEST offset_to_top = 0;
6447 struct type *ptr_type, *obj_type;
6448 struct value *tag;
6449 CORE_ADDR base_address;
6450
6451 obj_type = value_type (obj);
6452
6453 /* It is the responsability of the caller to deref pointers. */
6454
78134374 6455 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6456 return obj;
6457
6458 tag = ada_value_tag (obj);
6459 if (!tag)
6460 return obj;
6461
6462 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6463
6464 if (is_ada95_tag (tag))
6465 return obj;
6466
08f49010
XR
6467 ptr_type = language_lookup_primitive_type
6468 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6469 ptr_type = lookup_pointer_type (ptr_type);
6470 val = value_cast (ptr_type, tag);
6471 if (!val)
6472 return obj;
6473
6474 /* It is perfectly possible that an exception be raised while
6475 trying to determine the base address, just like for the tag;
6476 see ada_tag_name for more details. We do not print the error
6477 message for the same reason. */
6478
a70b8144 6479 try
b50d69b5
JG
6480 {
6481 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6482 }
6483
230d2906 6484 catch (const gdb_exception_error &e)
492d29ea
PA
6485 {
6486 return obj;
6487 }
b50d69b5
JG
6488
6489 /* If offset is null, nothing to do. */
6490
6491 if (offset_to_top == 0)
6492 return obj;
6493
6494 /* -1 is a special case in Ada.Tags; however, what should be done
6495 is not quite clear from the documentation. So do nothing for
6496 now. */
6497
6498 if (offset_to_top == -1)
6499 return obj;
6500
08f49010
XR
6501 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6502 from the base address. This was however incompatible with
6503 C++ dispatch table: C++ uses a *negative* value to *add*
6504 to the base address. Ada's convention has therefore been
6505 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6506 use the same convention. Here, we support both cases by
6507 checking the sign of OFFSET_TO_TOP. */
6508
6509 if (offset_to_top > 0)
6510 offset_to_top = -offset_to_top;
6511
6512 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6513 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6514
6515 /* Make sure that we have a proper tag at the new address.
6516 Otherwise, offset_to_top is bogus (which can happen when
6517 the object is not initialized yet). */
6518
6519 if (!tag)
6520 return obj;
6521
6522 obj_type = type_from_tag (tag);
6523
6524 if (!obj_type)
6525 return obj;
6526
6527 return value_from_contents_and_address (obj_type, NULL, base_address);
6528}
6529
1b611343
JB
6530/* Return the "ada__tags__type_specific_data" type. */
6531
6532static struct type *
6533ada_get_tsd_type (struct inferior *inf)
963a6417 6534{
1b611343 6535 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6536
1b611343
JB
6537 if (data->tsd_type == 0)
6538 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6539 return data->tsd_type;
6540}
529cad9c 6541
1b611343
JB
6542/* Return the TSD (type-specific data) associated to the given TAG.
6543 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6544
1b611343 6545 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6546
1b611343
JB
6547static struct value *
6548ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6549{
4c4b4cd2 6550 struct value *val;
1b611343 6551 struct type *type;
5b4ee69b 6552
1b611343
JB
6553 /* First option: The TSD is simply stored as a field of our TAG.
6554 Only older versions of GNAT would use this format, but we have
6555 to test it first, because there are no visible markers for
6556 the current approach except the absence of that field. */
529cad9c 6557
1b611343
JB
6558 val = ada_value_struct_elt (tag, "tsd", 1);
6559 if (val)
6560 return val;
e802dbe0 6561
1b611343
JB
6562 /* Try the second representation for the dispatch table (in which
6563 there is no explicit 'tsd' field in the referent of the tag pointer,
6564 and instead the tsd pointer is stored just before the dispatch
6565 table. */
e802dbe0 6566
1b611343
JB
6567 type = ada_get_tsd_type (current_inferior());
6568 if (type == NULL)
6569 return NULL;
6570 type = lookup_pointer_type (lookup_pointer_type (type));
6571 val = value_cast (type, tag);
6572 if (val == NULL)
6573 return NULL;
6574 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6575}
6576
1b611343
JB
6577/* Given the TSD of a tag (type-specific data), return a string
6578 containing the name of the associated type.
6579
f5272a3b 6580 May return NULL if we are unable to determine the tag name. */
1b611343 6581
f5272a3b 6582static gdb::unique_xmalloc_ptr<char>
1b611343 6583ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6584{
529cad9c 6585 char *p;
1b611343 6586 struct value *val;
529cad9c 6587
1b611343 6588 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6589 if (val == NULL)
1b611343 6590 return NULL;
66920317
TT
6591 gdb::unique_xmalloc_ptr<char> buffer
6592 = target_read_string (value_as_address (val), INT_MAX);
6593 if (buffer == nullptr)
f5272a3b
TT
6594 return nullptr;
6595
6596 for (p = buffer.get (); *p != '\0'; ++p)
6597 {
6598 if (isalpha (*p))
6599 *p = tolower (*p);
6600 }
6601
6602 return buffer;
4c4b4cd2
PH
6603}
6604
6605/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6606 a C string.
6607
6608 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6609 determine the name of that tag. */
4c4b4cd2 6610
f5272a3b 6611gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6612ada_tag_name (struct value *tag)
6613{
f5272a3b 6614 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6615
df407dfe 6616 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6617 return NULL;
1b611343
JB
6618
6619 /* It is perfectly possible that an exception be raised while trying
6620 to determine the TAG's name, even under normal circumstances:
6621 The associated variable may be uninitialized or corrupted, for
6622 instance. We do not let any exception propagate past this point.
6623 instead we return NULL.
6624
6625 We also do not print the error message either (which often is very
6626 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6627 the caller print a more meaningful message if necessary. */
a70b8144 6628 try
1b611343
JB
6629 {
6630 struct value *tsd = ada_get_tsd_from_tag (tag);
6631
6632 if (tsd != NULL)
6633 name = ada_tag_name_from_tsd (tsd);
6634 }
230d2906 6635 catch (const gdb_exception_error &e)
492d29ea
PA
6636 {
6637 }
1b611343
JB
6638
6639 return name;
4c4b4cd2
PH
6640}
6641
6642/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6643
d2e4a39e 6644struct type *
ebf56fd3 6645ada_parent_type (struct type *type)
14f9c5c9
AS
6646{
6647 int i;
6648
61ee279c 6649 type = ada_check_typedef (type);
14f9c5c9 6650
78134374 6651 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6652 return NULL;
6653
1f704f76 6654 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6655 if (ada_is_parent_field (type, i))
0c1f74cf 6656 {
940da03e 6657 struct type *parent_type = type->field (i).type ();
0c1f74cf
JB
6658
6659 /* If the _parent field is a pointer, then dereference it. */
78134374 6660 if (parent_type->code () == TYPE_CODE_PTR)
0c1f74cf
JB
6661 parent_type = TYPE_TARGET_TYPE (parent_type);
6662 /* If there is a parallel XVS type, get the actual base type. */
6663 parent_type = ada_get_base_type (parent_type);
6664
6665 return ada_check_typedef (parent_type);
6666 }
14f9c5c9
AS
6667
6668 return NULL;
6669}
6670
4c4b4cd2
PH
6671/* True iff field number FIELD_NUM of structure type TYPE contains the
6672 parent-type (inherited) fields of a derived type. Assumes TYPE is
6673 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6674
6675int
ebf56fd3 6676ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6677{
61ee279c 6678 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6679
4c4b4cd2 6680 return (name != NULL
61012eef
GB
6681 && (startswith (name, "PARENT")
6682 || startswith (name, "_parent")));
14f9c5c9
AS
6683}
6684
4c4b4cd2 6685/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6686 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6687 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6688 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6689 structures. */
14f9c5c9
AS
6690
6691int
ebf56fd3 6692ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6693{
d2e4a39e 6694 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6695
dddc0e16
JB
6696 if (name != NULL && strcmp (name, "RETVAL") == 0)
6697 {
6698 /* This happens in functions with "out" or "in out" parameters
6699 which are passed by copy. For such functions, GNAT describes
6700 the function's return type as being a struct where the return
6701 value is in a field called RETVAL, and where the other "out"
6702 or "in out" parameters are fields of that struct. This is not
6703 a wrapper. */
6704 return 0;
6705 }
6706
d2e4a39e 6707 return (name != NULL
61012eef 6708 && (startswith (name, "PARENT")
4c4b4cd2 6709 || strcmp (name, "REP") == 0
61012eef 6710 || startswith (name, "_parent")
4c4b4cd2 6711 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6712}
6713
4c4b4cd2
PH
6714/* True iff field number FIELD_NUM of structure or union type TYPE
6715 is a variant wrapper. Assumes TYPE is a structure type with at least
6716 FIELD_NUM+1 fields. */
14f9c5c9
AS
6717
6718int
ebf56fd3 6719ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6720{
8ecb59f8
TT
6721 /* Only Ada types are eligible. */
6722 if (!ADA_TYPE_P (type))
6723 return 0;
6724
940da03e 6725 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6726
78134374
SM
6727 return (field_type->code () == TYPE_CODE_UNION
6728 || (is_dynamic_field (type, field_num)
6729 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6730 == TYPE_CODE_UNION)));
14f9c5c9
AS
6731}
6732
6733/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6734 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6735 returns the type of the controlling discriminant for the variant.
6736 May return NULL if the type could not be found. */
14f9c5c9 6737
d2e4a39e 6738struct type *
ebf56fd3 6739ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6740{
a121b7c1 6741 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6742
988f6b3d 6743 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6744}
6745
4c4b4cd2 6746/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6747 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6748 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6749
de93309a 6750static int
ebf56fd3 6751ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6752{
d2e4a39e 6753 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6754
14f9c5c9
AS
6755 return (name != NULL && name[0] == 'O');
6756}
6757
6758/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6759 returns the name of the discriminant controlling the variant.
6760 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6761
a121b7c1 6762const char *
ebf56fd3 6763ada_variant_discrim_name (struct type *type0)
14f9c5c9 6764{
d2e4a39e 6765 static char *result = NULL;
14f9c5c9 6766 static size_t result_len = 0;
d2e4a39e
AS
6767 struct type *type;
6768 const char *name;
6769 const char *discrim_end;
6770 const char *discrim_start;
14f9c5c9 6771
78134374 6772 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6773 type = TYPE_TARGET_TYPE (type0);
6774 else
6775 type = type0;
6776
6777 name = ada_type_name (type);
6778
6779 if (name == NULL || name[0] == '\000')
6780 return "";
6781
6782 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6783 discrim_end -= 1)
6784 {
61012eef 6785 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6786 break;
14f9c5c9
AS
6787 }
6788 if (discrim_end == name)
6789 return "";
6790
d2e4a39e 6791 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6792 discrim_start -= 1)
6793 {
d2e4a39e 6794 if (discrim_start == name + 1)
4c4b4cd2 6795 return "";
76a01679 6796 if ((discrim_start > name + 3
61012eef 6797 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6798 || discrim_start[-1] == '.')
6799 break;
14f9c5c9
AS
6800 }
6801
6802 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6803 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6804 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6805 return result;
6806}
6807
4c4b4cd2
PH
6808/* Scan STR for a subtype-encoded number, beginning at position K.
6809 Put the position of the character just past the number scanned in
6810 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6811 Return 1 if there was a valid number at the given position, and 0
6812 otherwise. A "subtype-encoded" number consists of the absolute value
6813 in decimal, followed by the letter 'm' to indicate a negative number.
6814 Assumes 0m does not occur. */
14f9c5c9
AS
6815
6816int
d2e4a39e 6817ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6818{
6819 ULONGEST RU;
6820
d2e4a39e 6821 if (!isdigit (str[k]))
14f9c5c9
AS
6822 return 0;
6823
4c4b4cd2 6824 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6825 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6826 LONGEST. */
14f9c5c9
AS
6827 RU = 0;
6828 while (isdigit (str[k]))
6829 {
d2e4a39e 6830 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6831 k += 1;
6832 }
6833
d2e4a39e 6834 if (str[k] == 'm')
14f9c5c9
AS
6835 {
6836 if (R != NULL)
4c4b4cd2 6837 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6838 k += 1;
6839 }
6840 else if (R != NULL)
6841 *R = (LONGEST) RU;
6842
4c4b4cd2 6843 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6844 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6845 number representable as a LONGEST (although either would probably work
6846 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6847 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6848
6849 if (new_k != NULL)
6850 *new_k = k;
6851 return 1;
6852}
6853
4c4b4cd2
PH
6854/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6855 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6856 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6857
de93309a 6858static int
ebf56fd3 6859ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6860{
d2e4a39e 6861 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6862 int p;
6863
6864 p = 0;
6865 while (1)
6866 {
d2e4a39e 6867 switch (name[p])
4c4b4cd2
PH
6868 {
6869 case '\0':
6870 return 0;
6871 case 'S':
6872 {
6873 LONGEST W;
5b4ee69b 6874
4c4b4cd2
PH
6875 if (!ada_scan_number (name, p + 1, &W, &p))
6876 return 0;
6877 if (val == W)
6878 return 1;
6879 break;
6880 }
6881 case 'R':
6882 {
6883 LONGEST L, U;
5b4ee69b 6884
4c4b4cd2
PH
6885 if (!ada_scan_number (name, p + 1, &L, &p)
6886 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6887 return 0;
6888 if (val >= L && val <= U)
6889 return 1;
6890 break;
6891 }
6892 case 'O':
6893 return 1;
6894 default:
6895 return 0;
6896 }
6897 }
6898}
6899
0963b4bd 6900/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6901
6902/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6903 ARG_TYPE, extract and return the value of one of its (non-static)
6904 fields. FIELDNO says which field. Differs from value_primitive_field
6905 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6906
5eb68a39 6907struct value *
d2e4a39e 6908ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6909 struct type *arg_type)
14f9c5c9 6910{
14f9c5c9
AS
6911 struct type *type;
6912
61ee279c 6913 arg_type = ada_check_typedef (arg_type);
940da03e 6914 type = arg_type->field (fieldno).type ();
14f9c5c9 6915
4504bbde
TT
6916 /* Handle packed fields. It might be that the field is not packed
6917 relative to its containing structure, but the structure itself is
6918 packed; in this case we must take the bit-field path. */
6919 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6920 {
6921 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6922 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6923
0fd88904 6924 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6925 offset + bit_pos / 8,
6926 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6927 }
6928 else
6929 return value_primitive_field (arg1, offset, fieldno, arg_type);
6930}
6931
52ce6436
PH
6932/* Find field with name NAME in object of type TYPE. If found,
6933 set the following for each argument that is non-null:
6934 - *FIELD_TYPE_P to the field's type;
6935 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6936 an object of that type;
6937 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6938 - *BIT_SIZE_P to its size in bits if the field is packed, and
6939 0 otherwise;
6940 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6941 fields up to but not including the desired field, or by the total
6942 number of fields if not found. A NULL value of NAME never
6943 matches; the function just counts visible fields in this case.
6944
828d5846
XR
6945 Notice that we need to handle when a tagged record hierarchy
6946 has some components with the same name, like in this scenario:
6947
6948 type Top_T is tagged record
6949 N : Integer := 1;
6950 U : Integer := 974;
6951 A : Integer := 48;
6952 end record;
6953
6954 type Middle_T is new Top.Top_T with record
6955 N : Character := 'a';
6956 C : Integer := 3;
6957 end record;
6958
6959 type Bottom_T is new Middle.Middle_T with record
6960 N : Float := 4.0;
6961 C : Character := '5';
6962 X : Integer := 6;
6963 A : Character := 'J';
6964 end record;
6965
6966 Let's say we now have a variable declared and initialized as follow:
6967
6968 TC : Top_A := new Bottom_T;
6969
6970 And then we use this variable to call this function
6971
6972 procedure Assign (Obj: in out Top_T; TV : Integer);
6973
6974 as follow:
6975
6976 Assign (Top_T (B), 12);
6977
6978 Now, we're in the debugger, and we're inside that procedure
6979 then and we want to print the value of obj.c:
6980
6981 Usually, the tagged record or one of the parent type owns the
6982 component to print and there's no issue but in this particular
6983 case, what does it mean to ask for Obj.C? Since the actual
6984 type for object is type Bottom_T, it could mean two things: type
6985 component C from the Middle_T view, but also component C from
6986 Bottom_T. So in that "undefined" case, when the component is
6987 not found in the non-resolved type (which includes all the
6988 components of the parent type), then resolve it and see if we
6989 get better luck once expanded.
6990
6991 In the case of homonyms in the derived tagged type, we don't
6992 guaranty anything, and pick the one that's easiest for us
6993 to program.
6994
0963b4bd 6995 Returns 1 if found, 0 otherwise. */
52ce6436 6996
4c4b4cd2 6997static int
0d5cff50 6998find_struct_field (const char *name, struct type *type, int offset,
76a01679 6999 struct type **field_type_p,
52ce6436
PH
7000 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7001 int *index_p)
4c4b4cd2
PH
7002{
7003 int i;
828d5846 7004 int parent_offset = -1;
4c4b4cd2 7005
61ee279c 7006 type = ada_check_typedef (type);
76a01679 7007
52ce6436
PH
7008 if (field_type_p != NULL)
7009 *field_type_p = NULL;
7010 if (byte_offset_p != NULL)
d5d6fca5 7011 *byte_offset_p = 0;
52ce6436
PH
7012 if (bit_offset_p != NULL)
7013 *bit_offset_p = 0;
7014 if (bit_size_p != NULL)
7015 *bit_size_p = 0;
7016
1f704f76 7017 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7018 {
7019 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7020 int fld_offset = offset + bit_pos / 8;
0d5cff50 7021 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7022
4c4b4cd2
PH
7023 if (t_field_name == NULL)
7024 continue;
7025
828d5846
XR
7026 else if (ada_is_parent_field (type, i))
7027 {
7028 /* This is a field pointing us to the parent type of a tagged
7029 type. As hinted in this function's documentation, we give
7030 preference to fields in the current record first, so what
7031 we do here is just record the index of this field before
7032 we skip it. If it turns out we couldn't find our field
7033 in the current record, then we'll get back to it and search
7034 inside it whether the field might exist in the parent. */
7035
7036 parent_offset = i;
7037 continue;
7038 }
7039
52ce6436 7040 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7041 {
7042 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7043
52ce6436 7044 if (field_type_p != NULL)
940da03e 7045 *field_type_p = type->field (i).type ();
52ce6436
PH
7046 if (byte_offset_p != NULL)
7047 *byte_offset_p = fld_offset;
7048 if (bit_offset_p != NULL)
7049 *bit_offset_p = bit_pos % 8;
7050 if (bit_size_p != NULL)
7051 *bit_size_p = bit_size;
76a01679
JB
7052 return 1;
7053 }
4c4b4cd2
PH
7054 else if (ada_is_wrapper_field (type, i))
7055 {
940da03e 7056 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7057 field_type_p, byte_offset_p, bit_offset_p,
7058 bit_size_p, index_p))
76a01679
JB
7059 return 1;
7060 }
4c4b4cd2
PH
7061 else if (ada_is_variant_part (type, i))
7062 {
52ce6436
PH
7063 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7064 fixed type?? */
4c4b4cd2 7065 int j;
52ce6436 7066 struct type *field_type
940da03e 7067 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7068
1f704f76 7069 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7070 {
940da03e 7071 if (find_struct_field (name, field_type->field (j).type (),
76a01679
JB
7072 fld_offset
7073 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7074 field_type_p, byte_offset_p,
52ce6436 7075 bit_offset_p, bit_size_p, index_p))
76a01679 7076 return 1;
4c4b4cd2
PH
7077 }
7078 }
52ce6436
PH
7079 else if (index_p != NULL)
7080 *index_p += 1;
4c4b4cd2 7081 }
828d5846
XR
7082
7083 /* Field not found so far. If this is a tagged type which
7084 has a parent, try finding that field in the parent now. */
7085
7086 if (parent_offset != -1)
7087 {
7088 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7089 int fld_offset = offset + bit_pos / 8;
7090
940da03e 7091 if (find_struct_field (name, type->field (parent_offset).type (),
828d5846
XR
7092 fld_offset, field_type_p, byte_offset_p,
7093 bit_offset_p, bit_size_p, index_p))
7094 return 1;
7095 }
7096
4c4b4cd2
PH
7097 return 0;
7098}
7099
0963b4bd 7100/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7101
52ce6436
PH
7102static int
7103num_visible_fields (struct type *type)
7104{
7105 int n;
5b4ee69b 7106
52ce6436
PH
7107 n = 0;
7108 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7109 return n;
7110}
14f9c5c9 7111
4c4b4cd2 7112/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7113 and search in it assuming it has (class) type TYPE.
7114 If found, return value, else return NULL.
7115
828d5846
XR
7116 Searches recursively through wrapper fields (e.g., '_parent').
7117
7118 In the case of homonyms in the tagged types, please refer to the
7119 long explanation in find_struct_field's function documentation. */
14f9c5c9 7120
4c4b4cd2 7121static struct value *
108d56a4 7122ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7123 struct type *type)
14f9c5c9
AS
7124{
7125 int i;
828d5846 7126 int parent_offset = -1;
14f9c5c9 7127
5b4ee69b 7128 type = ada_check_typedef (type);
1f704f76 7129 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7130 {
0d5cff50 7131 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7132
7133 if (t_field_name == NULL)
4c4b4cd2 7134 continue;
14f9c5c9 7135
828d5846
XR
7136 else if (ada_is_parent_field (type, i))
7137 {
7138 /* This is a field pointing us to the parent type of a tagged
7139 type. As hinted in this function's documentation, we give
7140 preference to fields in the current record first, so what
7141 we do here is just record the index of this field before
7142 we skip it. If it turns out we couldn't find our field
7143 in the current record, then we'll get back to it and search
7144 inside it whether the field might exist in the parent. */
7145
7146 parent_offset = i;
7147 continue;
7148 }
7149
14f9c5c9 7150 else if (field_name_match (t_field_name, name))
4c4b4cd2 7151 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7152
7153 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7154 {
0963b4bd 7155 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7156 ada_search_struct_field (name, arg,
7157 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7158 type->field (i).type ());
5b4ee69b 7159
4c4b4cd2
PH
7160 if (v != NULL)
7161 return v;
7162 }
14f9c5c9
AS
7163
7164 else if (ada_is_variant_part (type, i))
4c4b4cd2 7165 {
0963b4bd 7166 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7167 int j;
940da03e 7168 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2
PH
7169 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7170
1f704f76 7171 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7172 {
0963b4bd
MS
7173 struct value *v = ada_search_struct_field /* Force line
7174 break. */
06d5cf63
JB
7175 (name, arg,
7176 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
940da03e 7177 field_type->field (j).type ());
5b4ee69b 7178
4c4b4cd2
PH
7179 if (v != NULL)
7180 return v;
7181 }
7182 }
14f9c5c9 7183 }
828d5846
XR
7184
7185 /* Field not found so far. If this is a tagged type which
7186 has a parent, try finding that field in the parent now. */
7187
7188 if (parent_offset != -1)
7189 {
7190 struct value *v = ada_search_struct_field (
7191 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7192 type->field (parent_offset).type ());
828d5846
XR
7193
7194 if (v != NULL)
7195 return v;
7196 }
7197
14f9c5c9
AS
7198 return NULL;
7199}
d2e4a39e 7200
52ce6436
PH
7201static struct value *ada_index_struct_field_1 (int *, struct value *,
7202 int, struct type *);
7203
7204
7205/* Return field #INDEX in ARG, where the index is that returned by
7206 * find_struct_field through its INDEX_P argument. Adjust the address
7207 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7208 * If found, return value, else return NULL. */
52ce6436
PH
7209
7210static struct value *
7211ada_index_struct_field (int index, struct value *arg, int offset,
7212 struct type *type)
7213{
7214 return ada_index_struct_field_1 (&index, arg, offset, type);
7215}
7216
7217
7218/* Auxiliary function for ada_index_struct_field. Like
7219 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7220 * *INDEX_P. */
52ce6436
PH
7221
7222static struct value *
7223ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7224 struct type *type)
7225{
7226 int i;
7227 type = ada_check_typedef (type);
7228
1f704f76 7229 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7230 {
7231 if (TYPE_FIELD_NAME (type, i) == NULL)
7232 continue;
7233 else if (ada_is_wrapper_field (type, i))
7234 {
0963b4bd 7235 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7236 ada_index_struct_field_1 (index_p, arg,
7237 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7238 type->field (i).type ());
5b4ee69b 7239
52ce6436
PH
7240 if (v != NULL)
7241 return v;
7242 }
7243
7244 else if (ada_is_variant_part (type, i))
7245 {
7246 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7247 find_struct_field. */
52ce6436
PH
7248 error (_("Cannot assign this kind of variant record"));
7249 }
7250 else if (*index_p == 0)
7251 return ada_value_primitive_field (arg, offset, i, type);
7252 else
7253 *index_p -= 1;
7254 }
7255 return NULL;
7256}
7257
3b4de39c 7258/* Return a string representation of type TYPE. */
99bbb428 7259
3b4de39c 7260static std::string
99bbb428
PA
7261type_as_string (struct type *type)
7262{
d7e74731 7263 string_file tmp_stream;
99bbb428 7264
d7e74731 7265 type_print (type, "", &tmp_stream, -1);
99bbb428 7266
d7e74731 7267 return std::move (tmp_stream.string ());
99bbb428
PA
7268}
7269
14f9c5c9 7270/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7271 If DISPP is non-null, add its byte displacement from the beginning of a
7272 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7273 work for packed fields).
7274
7275 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7276 followed by "___".
14f9c5c9 7277
0963b4bd 7278 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7279 be a (pointer or reference)+ to a struct or union, and the
7280 ultimate target type will be searched.
14f9c5c9
AS
7281
7282 Looks recursively into variant clauses and parent types.
7283
828d5846
XR
7284 In the case of homonyms in the tagged types, please refer to the
7285 long explanation in find_struct_field's function documentation.
7286
4c4b4cd2
PH
7287 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7288 TYPE is not a type of the right kind. */
14f9c5c9 7289
4c4b4cd2 7290static struct type *
a121b7c1 7291ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7292 int noerr)
14f9c5c9
AS
7293{
7294 int i;
828d5846 7295 int parent_offset = -1;
14f9c5c9
AS
7296
7297 if (name == NULL)
7298 goto BadName;
7299
76a01679 7300 if (refok && type != NULL)
4c4b4cd2
PH
7301 while (1)
7302 {
61ee279c 7303 type = ada_check_typedef (type);
78134374 7304 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
76a01679
JB
7305 break;
7306 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7307 }
14f9c5c9 7308
76a01679 7309 if (type == NULL
78134374
SM
7310 || (type->code () != TYPE_CODE_STRUCT
7311 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7312 {
4c4b4cd2 7313 if (noerr)
76a01679 7314 return NULL;
99bbb428 7315
3b4de39c
PA
7316 error (_("Type %s is not a structure or union type"),
7317 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7318 }
7319
7320 type = to_static_fixed_type (type);
7321
1f704f76 7322 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7323 {
0d5cff50 7324 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7325 struct type *t;
d2e4a39e 7326
14f9c5c9 7327 if (t_field_name == NULL)
4c4b4cd2 7328 continue;
14f9c5c9 7329
828d5846
XR
7330 else if (ada_is_parent_field (type, i))
7331 {
7332 /* This is a field pointing us to the parent type of a tagged
7333 type. As hinted in this function's documentation, we give
7334 preference to fields in the current record first, so what
7335 we do here is just record the index of this field before
7336 we skip it. If it turns out we couldn't find our field
7337 in the current record, then we'll get back to it and search
7338 inside it whether the field might exist in the parent. */
7339
7340 parent_offset = i;
7341 continue;
7342 }
7343
14f9c5c9 7344 else if (field_name_match (t_field_name, name))
940da03e 7345 return type->field (i).type ();
14f9c5c9
AS
7346
7347 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7348 {
940da03e 7349 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
988f6b3d 7350 0, 1);
4c4b4cd2 7351 if (t != NULL)
988f6b3d 7352 return t;
4c4b4cd2 7353 }
14f9c5c9
AS
7354
7355 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7356 {
7357 int j;
940da03e 7358 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7359
1f704f76 7360 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
4c4b4cd2 7361 {
b1f33ddd
JB
7362 /* FIXME pnh 2008/01/26: We check for a field that is
7363 NOT wrapped in a struct, since the compiler sometimes
7364 generates these for unchecked variant types. Revisit
0963b4bd 7365 if the compiler changes this practice. */
0d5cff50 7366 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7367
b1f33ddd
JB
7368 if (v_field_name != NULL
7369 && field_name_match (v_field_name, name))
940da03e 7370 t = field_type->field (j).type ();
b1f33ddd 7371 else
940da03e 7372 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7373 name, 0, 1);
b1f33ddd 7374
4c4b4cd2 7375 if (t != NULL)
988f6b3d 7376 return t;
4c4b4cd2
PH
7377 }
7378 }
14f9c5c9
AS
7379
7380 }
7381
828d5846
XR
7382 /* Field not found so far. If this is a tagged type which
7383 has a parent, try finding that field in the parent now. */
7384
7385 if (parent_offset != -1)
7386 {
7387 struct type *t;
7388
940da03e 7389 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
828d5846
XR
7390 name, 0, 1);
7391 if (t != NULL)
7392 return t;
7393 }
7394
14f9c5c9 7395BadName:
d2e4a39e 7396 if (!noerr)
14f9c5c9 7397 {
2b2798cc 7398 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7399
7400 error (_("Type %s has no component named %s"),
3b4de39c 7401 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7402 }
7403
7404 return NULL;
7405}
7406
b1f33ddd
JB
7407/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7408 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7409 represents an unchecked union (that is, the variant part of a
0963b4bd 7410 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7411
7412static int
7413is_unchecked_variant (struct type *var_type, struct type *outer_type)
7414{
a121b7c1 7415 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7416
988f6b3d 7417 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7418}
7419
7420
14f9c5c9 7421/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7422 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7423 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7424
d2e4a39e 7425int
d8af9068 7426ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7427{
7428 int others_clause;
7429 int i;
a121b7c1 7430 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7431 struct value *discrim;
14f9c5c9
AS
7432 LONGEST discrim_val;
7433
012370f6
TT
7434 /* Using plain value_from_contents_and_address here causes problems
7435 because we will end up trying to resolve a type that is currently
7436 being constructed. */
0c281816
JB
7437 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7438 if (discrim == NULL)
14f9c5c9 7439 return -1;
0c281816 7440 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7441
7442 others_clause = -1;
1f704f76 7443 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7444 {
7445 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7446 others_clause = i;
14f9c5c9 7447 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7448 return i;
14f9c5c9
AS
7449 }
7450
7451 return others_clause;
7452}
d2e4a39e 7453\f
14f9c5c9
AS
7454
7455
4c4b4cd2 7456 /* Dynamic-Sized Records */
14f9c5c9
AS
7457
7458/* Strategy: The type ostensibly attached to a value with dynamic size
7459 (i.e., a size that is not statically recorded in the debugging
7460 data) does not accurately reflect the size or layout of the value.
7461 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7462 conventional types that are constructed on the fly. */
14f9c5c9
AS
7463
7464/* There is a subtle and tricky problem here. In general, we cannot
7465 determine the size of dynamic records without its data. However,
7466 the 'struct value' data structure, which GDB uses to represent
7467 quantities in the inferior process (the target), requires the size
7468 of the type at the time of its allocation in order to reserve space
7469 for GDB's internal copy of the data. That's why the
7470 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7471 rather than struct value*s.
14f9c5c9
AS
7472
7473 However, GDB's internal history variables ($1, $2, etc.) are
7474 struct value*s containing internal copies of the data that are not, in
7475 general, the same as the data at their corresponding addresses in
7476 the target. Fortunately, the types we give to these values are all
7477 conventional, fixed-size types (as per the strategy described
7478 above), so that we don't usually have to perform the
7479 'to_fixed_xxx_type' conversions to look at their values.
7480 Unfortunately, there is one exception: if one of the internal
7481 history variables is an array whose elements are unconstrained
7482 records, then we will need to create distinct fixed types for each
7483 element selected. */
7484
7485/* The upshot of all of this is that many routines take a (type, host
7486 address, target address) triple as arguments to represent a value.
7487 The host address, if non-null, is supposed to contain an internal
7488 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7489 target at the target address. */
14f9c5c9
AS
7490
7491/* Assuming that VAL0 represents a pointer value, the result of
7492 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7493 dynamic-sized types. */
14f9c5c9 7494
d2e4a39e
AS
7495struct value *
7496ada_value_ind (struct value *val0)
14f9c5c9 7497{
c48db5ca 7498 struct value *val = value_ind (val0);
5b4ee69b 7499
b50d69b5
JG
7500 if (ada_is_tagged_type (value_type (val), 0))
7501 val = ada_tag_value_at_base_address (val);
7502
4c4b4cd2 7503 return ada_to_fixed_value (val);
14f9c5c9
AS
7504}
7505
7506/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7507 qualifiers on VAL0. */
7508
d2e4a39e
AS
7509static struct value *
7510ada_coerce_ref (struct value *val0)
7511{
78134374 7512 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7513 {
7514 struct value *val = val0;
5b4ee69b 7515
994b9211 7516 val = coerce_ref (val);
b50d69b5
JG
7517
7518 if (ada_is_tagged_type (value_type (val), 0))
7519 val = ada_tag_value_at_base_address (val);
7520
4c4b4cd2 7521 return ada_to_fixed_value (val);
d2e4a39e
AS
7522 }
7523 else
14f9c5c9
AS
7524 return val0;
7525}
7526
4c4b4cd2 7527/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7528
7529static unsigned int
ebf56fd3 7530field_alignment (struct type *type, int f)
14f9c5c9 7531{
d2e4a39e 7532 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7533 int len;
14f9c5c9
AS
7534 int align_offset;
7535
64a1bf19
JB
7536 /* The field name should never be null, unless the debugging information
7537 is somehow malformed. In this case, we assume the field does not
7538 require any alignment. */
7539 if (name == NULL)
7540 return 1;
7541
7542 len = strlen (name);
7543
4c4b4cd2
PH
7544 if (!isdigit (name[len - 1]))
7545 return 1;
14f9c5c9 7546
d2e4a39e 7547 if (isdigit (name[len - 2]))
14f9c5c9
AS
7548 align_offset = len - 2;
7549 else
7550 align_offset = len - 1;
7551
61012eef 7552 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7553 return TARGET_CHAR_BIT;
7554
4c4b4cd2
PH
7555 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7556}
7557
852dff6c 7558/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7559
852dff6c
JB
7560static struct symbol *
7561ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7562{
7563 struct symbol *sym;
7564
7565 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7566 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7567 return sym;
7568
4186eb54
KS
7569 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7570 return sym;
14f9c5c9
AS
7571}
7572
dddfab26
UW
7573/* Find a type named NAME. Ignores ambiguity. This routine will look
7574 solely for types defined by debug info, it will not search the GDB
7575 primitive types. */
4c4b4cd2 7576
852dff6c 7577static struct type *
ebf56fd3 7578ada_find_any_type (const char *name)
14f9c5c9 7579{
852dff6c 7580 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7581
14f9c5c9 7582 if (sym != NULL)
dddfab26 7583 return SYMBOL_TYPE (sym);
14f9c5c9 7584
dddfab26 7585 return NULL;
14f9c5c9
AS
7586}
7587
739593e0
JB
7588/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7589 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7590 symbol, in which case it is returned. Otherwise, this looks for
7591 symbols whose name is that of NAME_SYM suffixed with "___XR".
7592 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7593
c0e70c62
TT
7594static bool
7595ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7596{
987012b8 7597 const char *name = name_sym->linkage_name ();
c0e70c62 7598 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7599}
7600
14f9c5c9 7601/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7602 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7603 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7604 otherwise return 0. */
7605
14f9c5c9 7606int
d2e4a39e 7607ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7608{
7609 if (type1 == NULL)
7610 return 1;
7611 else if (type0 == NULL)
7612 return 0;
78134374 7613 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7614 return 1;
78134374 7615 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7616 return 0;
7d93a1e0 7617 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7618 return 1;
ad82864c 7619 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7620 return 1;
4c4b4cd2
PH
7621 else if (ada_is_array_descriptor_type (type0)
7622 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7623 return 1;
aeb5907d
JB
7624 else
7625 {
7d93a1e0
SM
7626 const char *type0_name = type0->name ();
7627 const char *type1_name = type1->name ();
aeb5907d
JB
7628
7629 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7630 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7631 return 1;
7632 }
14f9c5c9
AS
7633 return 0;
7634}
7635
e86ca25f
TT
7636/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7637 null. */
4c4b4cd2 7638
0d5cff50 7639const char *
d2e4a39e 7640ada_type_name (struct type *type)
14f9c5c9 7641{
d2e4a39e 7642 if (type == NULL)
14f9c5c9 7643 return NULL;
7d93a1e0 7644 return type->name ();
14f9c5c9
AS
7645}
7646
b4ba55a1
JB
7647/* Search the list of "descriptive" types associated to TYPE for a type
7648 whose name is NAME. */
7649
7650static struct type *
7651find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7652{
931e5bc3 7653 struct type *result, *tmp;
b4ba55a1 7654
c6044dd1
JB
7655 if (ada_ignore_descriptive_types_p)
7656 return NULL;
7657
b4ba55a1
JB
7658 /* If there no descriptive-type info, then there is no parallel type
7659 to be found. */
7660 if (!HAVE_GNAT_AUX_INFO (type))
7661 return NULL;
7662
7663 result = TYPE_DESCRIPTIVE_TYPE (type);
7664 while (result != NULL)
7665 {
0d5cff50 7666 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7667
7668 if (result_name == NULL)
7669 {
7670 warning (_("unexpected null name on descriptive type"));
7671 return NULL;
7672 }
7673
7674 /* If the names match, stop. */
7675 if (strcmp (result_name, name) == 0)
7676 break;
7677
7678 /* Otherwise, look at the next item on the list, if any. */
7679 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7680 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7681 else
7682 tmp = NULL;
7683
7684 /* If not found either, try after having resolved the typedef. */
7685 if (tmp != NULL)
7686 result = tmp;
b4ba55a1 7687 else
931e5bc3 7688 {
f168693b 7689 result = check_typedef (result);
931e5bc3
JG
7690 if (HAVE_GNAT_AUX_INFO (result))
7691 result = TYPE_DESCRIPTIVE_TYPE (result);
7692 else
7693 result = NULL;
7694 }
b4ba55a1
JB
7695 }
7696
7697 /* If we didn't find a match, see whether this is a packed array. With
7698 older compilers, the descriptive type information is either absent or
7699 irrelevant when it comes to packed arrays so the above lookup fails.
7700 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7701 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7702 return ada_find_any_type (name);
7703
7704 return result;
7705}
7706
7707/* Find a parallel type to TYPE with the specified NAME, using the
7708 descriptive type taken from the debugging information, if available,
7709 and otherwise using the (slower) name-based method. */
7710
7711static struct type *
7712ada_find_parallel_type_with_name (struct type *type, const char *name)
7713{
7714 struct type *result = NULL;
7715
7716 if (HAVE_GNAT_AUX_INFO (type))
7717 result = find_parallel_type_by_descriptive_type (type, name);
7718 else
7719 result = ada_find_any_type (name);
7720
7721 return result;
7722}
7723
7724/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7725 SUFFIX to the name of TYPE. */
14f9c5c9 7726
d2e4a39e 7727struct type *
ebf56fd3 7728ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7729{
0d5cff50 7730 char *name;
fe978cb0 7731 const char *type_name = ada_type_name (type);
14f9c5c9 7732 int len;
d2e4a39e 7733
fe978cb0 7734 if (type_name == NULL)
14f9c5c9
AS
7735 return NULL;
7736
fe978cb0 7737 len = strlen (type_name);
14f9c5c9 7738
b4ba55a1 7739 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7740
fe978cb0 7741 strcpy (name, type_name);
14f9c5c9
AS
7742 strcpy (name + len, suffix);
7743
b4ba55a1 7744 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7745}
7746
14f9c5c9 7747/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7748 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7749
d2e4a39e
AS
7750static struct type *
7751dynamic_template_type (struct type *type)
14f9c5c9 7752{
61ee279c 7753 type = ada_check_typedef (type);
14f9c5c9 7754
78134374 7755 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7756 || ada_type_name (type) == NULL)
14f9c5c9 7757 return NULL;
d2e4a39e 7758 else
14f9c5c9
AS
7759 {
7760 int len = strlen (ada_type_name (type));
5b4ee69b 7761
4c4b4cd2
PH
7762 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7763 return type;
14f9c5c9 7764 else
4c4b4cd2 7765 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7766 }
7767}
7768
7769/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7770 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7771
d2e4a39e
AS
7772static int
7773is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7774{
7775 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7776
d2e4a39e 7777 return name != NULL
940da03e 7778 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7779 && strstr (name, "___XVL") != NULL;
7780}
7781
4c4b4cd2
PH
7782/* The index of the variant field of TYPE, or -1 if TYPE does not
7783 represent a variant record type. */
14f9c5c9 7784
d2e4a39e 7785static int
4c4b4cd2 7786variant_field_index (struct type *type)
14f9c5c9
AS
7787{
7788 int f;
7789
78134374 7790 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7791 return -1;
7792
1f704f76 7793 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7794 {
7795 if (ada_is_variant_part (type, f))
7796 return f;
7797 }
7798 return -1;
14f9c5c9
AS
7799}
7800
4c4b4cd2
PH
7801/* A record type with no fields. */
7802
d2e4a39e 7803static struct type *
fe978cb0 7804empty_record (struct type *templ)
14f9c5c9 7805{
fe978cb0 7806 struct type *type = alloc_type_copy (templ);
5b4ee69b 7807
67607e24 7808 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7809 INIT_NONE_SPECIFIC (type);
d0e39ea2 7810 type->set_name ("<empty>");
14f9c5c9
AS
7811 TYPE_LENGTH (type) = 0;
7812 return type;
7813}
7814
7815/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7816 the value of type TYPE at VALADDR or ADDRESS (see comments at
7817 the beginning of this section) VAL according to GNAT conventions.
7818 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7819 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7820 an outer-level type (i.e., as opposed to a branch of a variant.) A
7821 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7822 of the variant.
14f9c5c9 7823
4c4b4cd2
PH
7824 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7825 length are not statically known are discarded. As a consequence,
7826 VALADDR, ADDRESS and DVAL0 are ignored.
7827
7828 NOTE: Limitations: For now, we assume that dynamic fields and
7829 variants occupy whole numbers of bytes. However, they need not be
7830 byte-aligned. */
7831
7832struct type *
10a2c479 7833ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7834 const gdb_byte *valaddr,
4c4b4cd2
PH
7835 CORE_ADDR address, struct value *dval0,
7836 int keep_dynamic_fields)
14f9c5c9 7837{
d2e4a39e
AS
7838 struct value *mark = value_mark ();
7839 struct value *dval;
7840 struct type *rtype;
14f9c5c9 7841 int nfields, bit_len;
4c4b4cd2 7842 int variant_field;
14f9c5c9 7843 long off;
d94e4f4f 7844 int fld_bit_len;
14f9c5c9
AS
7845 int f;
7846
4c4b4cd2
PH
7847 /* Compute the number of fields in this record type that are going
7848 to be processed: unless keep_dynamic_fields, this includes only
7849 fields whose position and length are static will be processed. */
7850 if (keep_dynamic_fields)
1f704f76 7851 nfields = type->num_fields ();
4c4b4cd2
PH
7852 else
7853 {
7854 nfields = 0;
1f704f76 7855 while (nfields < type->num_fields ()
4c4b4cd2
PH
7856 && !ada_is_variant_part (type, nfields)
7857 && !is_dynamic_field (type, nfields))
7858 nfields++;
7859 }
7860
e9bb382b 7861 rtype = alloc_type_copy (type);
67607e24 7862 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7863 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7864 rtype->set_num_fields (nfields);
3cabb6b0
SM
7865 rtype->set_fields
7866 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7867 rtype->set_name (ada_type_name (type));
876cecd0 7868 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7869
d2e4a39e
AS
7870 off = 0;
7871 bit_len = 0;
4c4b4cd2
PH
7872 variant_field = -1;
7873
14f9c5c9
AS
7874 for (f = 0; f < nfields; f += 1)
7875 {
a89febbd 7876 off = align_up (off, field_alignment (type, f))
6c038f32 7877 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7878 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7879 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7880
d2e4a39e 7881 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7882 {
7883 variant_field = f;
d94e4f4f 7884 fld_bit_len = 0;
4c4b4cd2 7885 }
14f9c5c9 7886 else if (is_dynamic_field (type, f))
4c4b4cd2 7887 {
284614f0
JB
7888 const gdb_byte *field_valaddr = valaddr;
7889 CORE_ADDR field_address = address;
7890 struct type *field_type =
940da03e 7891 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7892
4c4b4cd2 7893 if (dval0 == NULL)
b5304971
JG
7894 {
7895 /* rtype's length is computed based on the run-time
7896 value of discriminants. If the discriminants are not
7897 initialized, the type size may be completely bogus and
0963b4bd 7898 GDB may fail to allocate a value for it. So check the
b5304971 7899 size first before creating the value. */
c1b5a1a6 7900 ada_ensure_varsize_limit (rtype);
012370f6
TT
7901 /* Using plain value_from_contents_and_address here
7902 causes problems because we will end up trying to
7903 resolve a type that is currently being
7904 constructed. */
7905 dval = value_from_contents_and_address_unresolved (rtype,
7906 valaddr,
7907 address);
9f1f738a 7908 rtype = value_type (dval);
b5304971 7909 }
4c4b4cd2
PH
7910 else
7911 dval = dval0;
7912
284614f0
JB
7913 /* If the type referenced by this field is an aligner type, we need
7914 to unwrap that aligner type, because its size might not be set.
7915 Keeping the aligner type would cause us to compute the wrong
7916 size for this field, impacting the offset of the all the fields
7917 that follow this one. */
7918 if (ada_is_aligner_type (field_type))
7919 {
7920 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7921
7922 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7923 field_address = cond_offset_target (field_address, field_offset);
7924 field_type = ada_aligned_type (field_type);
7925 }
7926
7927 field_valaddr = cond_offset_host (field_valaddr,
7928 off / TARGET_CHAR_BIT);
7929 field_address = cond_offset_target (field_address,
7930 off / TARGET_CHAR_BIT);
7931
7932 /* Get the fixed type of the field. Note that, in this case,
7933 we do not want to get the real type out of the tag: if
7934 the current field is the parent part of a tagged record,
7935 we will get the tag of the object. Clearly wrong: the real
7936 type of the parent is not the real type of the child. We
7937 would end up in an infinite loop. */
7938 field_type = ada_get_base_type (field_type);
7939 field_type = ada_to_fixed_type (field_type, field_valaddr,
7940 field_address, dval, 0);
27f2a97b
JB
7941 /* If the field size is already larger than the maximum
7942 object size, then the record itself will necessarily
7943 be larger than the maximum object size. We need to make
7944 this check now, because the size might be so ridiculously
7945 large (due to an uninitialized variable in the inferior)
7946 that it would cause an overflow when adding it to the
7947 record size. */
c1b5a1a6 7948 ada_ensure_varsize_limit (field_type);
284614f0 7949
5d14b6e5 7950 rtype->field (f).set_type (field_type);
4c4b4cd2 7951 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7952 /* The multiplication can potentially overflow. But because
7953 the field length has been size-checked just above, and
7954 assuming that the maximum size is a reasonable value,
7955 an overflow should not happen in practice. So rather than
7956 adding overflow recovery code to this already complex code,
7957 we just assume that it's not going to happen. */
d94e4f4f 7958 fld_bit_len =
940da03e 7959 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
4c4b4cd2 7960 }
14f9c5c9 7961 else
4c4b4cd2 7962 {
5ded5331
JB
7963 /* Note: If this field's type is a typedef, it is important
7964 to preserve the typedef layer.
7965
7966 Otherwise, we might be transforming a typedef to a fat
7967 pointer (encoding a pointer to an unconstrained array),
7968 into a basic fat pointer (encoding an unconstrained
7969 array). As both types are implemented using the same
7970 structure, the typedef is the only clue which allows us
7971 to distinguish between the two options. Stripping it
7972 would prevent us from printing this field appropriately. */
940da03e 7973 rtype->field (f).set_type (type->field (f).type ());
4c4b4cd2
PH
7974 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7975 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7976 fld_bit_len =
4c4b4cd2
PH
7977 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7978 else
5ded5331 7979 {
940da03e 7980 struct type *field_type = type->field (f).type ();
5ded5331
JB
7981
7982 /* We need to be careful of typedefs when computing
7983 the length of our field. If this is a typedef,
7984 get the length of the target type, not the length
7985 of the typedef. */
78134374 7986 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7987 field_type = ada_typedef_target_type (field_type);
7988
7989 fld_bit_len =
7990 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7991 }
4c4b4cd2 7992 }
14f9c5c9 7993 if (off + fld_bit_len > bit_len)
4c4b4cd2 7994 bit_len = off + fld_bit_len;
d94e4f4f 7995 off += fld_bit_len;
4c4b4cd2 7996 TYPE_LENGTH (rtype) =
a89febbd 7997 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7998 }
4c4b4cd2
PH
7999
8000 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8001 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8002 the record. This can happen in the presence of representation
8003 clauses. */
8004 if (variant_field >= 0)
8005 {
8006 struct type *branch_type;
8007
8008 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8009
8010 if (dval0 == NULL)
9f1f738a 8011 {
012370f6
TT
8012 /* Using plain value_from_contents_and_address here causes
8013 problems because we will end up trying to resolve a type
8014 that is currently being constructed. */
8015 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8016 address);
9f1f738a
SA
8017 rtype = value_type (dval);
8018 }
4c4b4cd2
PH
8019 else
8020 dval = dval0;
8021
8022 branch_type =
8023 to_fixed_variant_branch_type
940da03e 8024 (type->field (variant_field).type (),
4c4b4cd2
PH
8025 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8026 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8027 if (branch_type == NULL)
8028 {
1f704f76 8029 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
80fc5e77 8030 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8031 rtype->set_num_fields (rtype->num_fields () - 1);
4c4b4cd2
PH
8032 }
8033 else
8034 {
5d14b6e5 8035 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8036 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8037 fld_bit_len =
940da03e 8038 TYPE_LENGTH (rtype->field (variant_field).type ()) *
4c4b4cd2
PH
8039 TARGET_CHAR_BIT;
8040 if (off + fld_bit_len > bit_len)
8041 bit_len = off + fld_bit_len;
8042 TYPE_LENGTH (rtype) =
a89febbd 8043 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
4c4b4cd2
PH
8044 }
8045 }
8046
714e53ab
PH
8047 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8048 should contain the alignment of that record, which should be a strictly
8049 positive value. If null or negative, then something is wrong, most
8050 probably in the debug info. In that case, we don't round up the size
0963b4bd 8051 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8052 the current RTYPE length might be good enough for our purposes. */
8053 if (TYPE_LENGTH (type) <= 0)
8054 {
7d93a1e0 8055 if (rtype->name ())
cc1defb1 8056 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8057 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8058 else
cc1defb1
KS
8059 warning (_("Invalid type size for <unnamed> detected: %s."),
8060 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8061 }
8062 else
8063 {
a89febbd
TT
8064 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8065 TYPE_LENGTH (type));
714e53ab 8066 }
14f9c5c9
AS
8067
8068 value_free_to_mark (mark);
d2e4a39e 8069 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8070 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8071 return rtype;
8072}
8073
4c4b4cd2
PH
8074/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8075 of 1. */
14f9c5c9 8076
d2e4a39e 8077static struct type *
fc1a4b47 8078template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8079 CORE_ADDR address, struct value *dval0)
8080{
8081 return ada_template_to_fixed_record_type_1 (type, valaddr,
8082 address, dval0, 1);
8083}
8084
8085/* An ordinary record type in which ___XVL-convention fields and
8086 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8087 static approximations, containing all possible fields. Uses
8088 no runtime values. Useless for use in values, but that's OK,
8089 since the results are used only for type determinations. Works on both
8090 structs and unions. Representation note: to save space, we memorize
8091 the result of this function in the TYPE_TARGET_TYPE of the
8092 template type. */
8093
8094static struct type *
8095template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8096{
8097 struct type *type;
8098 int nfields;
8099 int f;
8100
9e195661
PMR
8101 /* No need no do anything if the input type is already fixed. */
8102 if (TYPE_FIXED_INSTANCE (type0))
8103 return type0;
8104
8105 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8106 if (TYPE_TARGET_TYPE (type0) != NULL)
8107 return TYPE_TARGET_TYPE (type0);
8108
9e195661 8109 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8110 type = type0;
1f704f76 8111 nfields = type0->num_fields ();
9e195661
PMR
8112
8113 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8114 recompute all over next time. */
8115 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8116
8117 for (f = 0; f < nfields; f += 1)
8118 {
940da03e 8119 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8120 struct type *new_type;
14f9c5c9 8121
4c4b4cd2 8122 if (is_dynamic_field (type0, f))
460efde1
JB
8123 {
8124 field_type = ada_check_typedef (field_type);
8125 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8126 }
14f9c5c9 8127 else
f192137b 8128 new_type = static_unwrap_type (field_type);
9e195661
PMR
8129
8130 if (new_type != field_type)
8131 {
8132 /* Clone TYPE0 only the first time we get a new field type. */
8133 if (type == type0)
8134 {
8135 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8136 type->set_code (type0->code ());
8ecb59f8 8137 INIT_NONE_SPECIFIC (type);
5e33d5f4 8138 type->set_num_fields (nfields);
3cabb6b0
SM
8139
8140 field *fields =
8141 ((struct field *)
8142 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8143 memcpy (fields, type0->fields (),
9e195661 8144 sizeof (struct field) * nfields);
3cabb6b0
SM
8145 type->set_fields (fields);
8146
d0e39ea2 8147 type->set_name (ada_type_name (type0));
9e195661
PMR
8148 TYPE_FIXED_INSTANCE (type) = 1;
8149 TYPE_LENGTH (type) = 0;
8150 }
5d14b6e5 8151 type->field (f).set_type (new_type);
9e195661
PMR
8152 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8153 }
14f9c5c9 8154 }
9e195661 8155
14f9c5c9
AS
8156 return type;
8157}
8158
4c4b4cd2 8159/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8160 whose address in memory is ADDRESS, returns a revision of TYPE,
8161 which should be a non-dynamic-sized record, in which the variant
8162 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8163 for discriminant values in DVAL0, which can be NULL if the record
8164 contains the necessary discriminant values. */
8165
d2e4a39e 8166static struct type *
fc1a4b47 8167to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8168 CORE_ADDR address, struct value *dval0)
14f9c5c9 8169{
d2e4a39e 8170 struct value *mark = value_mark ();
4c4b4cd2 8171 struct value *dval;
d2e4a39e 8172 struct type *rtype;
14f9c5c9 8173 struct type *branch_type;
1f704f76 8174 int nfields = type->num_fields ();
4c4b4cd2 8175 int variant_field = variant_field_index (type);
14f9c5c9 8176
4c4b4cd2 8177 if (variant_field == -1)
14f9c5c9
AS
8178 return type;
8179
4c4b4cd2 8180 if (dval0 == NULL)
9f1f738a
SA
8181 {
8182 dval = value_from_contents_and_address (type, valaddr, address);
8183 type = value_type (dval);
8184 }
4c4b4cd2
PH
8185 else
8186 dval = dval0;
8187
e9bb382b 8188 rtype = alloc_type_copy (type);
67607e24 8189 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8190 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8191 rtype->set_num_fields (nfields);
3cabb6b0
SM
8192
8193 field *fields =
d2e4a39e 8194 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8195 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8196 rtype->set_fields (fields);
8197
d0e39ea2 8198 rtype->set_name (ada_type_name (type));
876cecd0 8199 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8200 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8201
4c4b4cd2 8202 branch_type = to_fixed_variant_branch_type
940da03e 8203 (type->field (variant_field).type (),
d2e4a39e 8204 cond_offset_host (valaddr,
4c4b4cd2
PH
8205 TYPE_FIELD_BITPOS (type, variant_field)
8206 / TARGET_CHAR_BIT),
d2e4a39e 8207 cond_offset_target (address,
4c4b4cd2
PH
8208 TYPE_FIELD_BITPOS (type, variant_field)
8209 / TARGET_CHAR_BIT), dval);
d2e4a39e 8210 if (branch_type == NULL)
14f9c5c9 8211 {
4c4b4cd2 8212 int f;
5b4ee69b 8213
4c4b4cd2 8214 for (f = variant_field + 1; f < nfields; f += 1)
80fc5e77 8215 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8216 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8217 }
8218 else
8219 {
5d14b6e5 8220 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8221 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8222 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8223 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8224 }
940da03e 8225 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8226
4c4b4cd2 8227 value_free_to_mark (mark);
14f9c5c9
AS
8228 return rtype;
8229}
8230
8231/* An ordinary record type (with fixed-length fields) that describes
8232 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8233 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8234 should be in DVAL, a record value; it may be NULL if the object
8235 at ADDR itself contains any necessary discriminant values.
8236 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8237 values from the record are needed. Except in the case that DVAL,
8238 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8239 unchecked) is replaced by a particular branch of the variant.
8240
8241 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8242 is questionable and may be removed. It can arise during the
8243 processing of an unconstrained-array-of-record type where all the
8244 variant branches have exactly the same size. This is because in
8245 such cases, the compiler does not bother to use the XVS convention
8246 when encoding the record. I am currently dubious of this
8247 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8248
d2e4a39e 8249static struct type *
fc1a4b47 8250to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8251 CORE_ADDR address, struct value *dval)
14f9c5c9 8252{
d2e4a39e 8253 struct type *templ_type;
14f9c5c9 8254
876cecd0 8255 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8256 return type0;
8257
d2e4a39e 8258 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8259
8260 if (templ_type != NULL)
8261 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8262 else if (variant_field_index (type0) >= 0)
8263 {
8264 if (dval == NULL && valaddr == NULL && address == 0)
8265 return type0;
8266 return to_record_with_fixed_variant_part (type0, valaddr, address,
8267 dval);
8268 }
14f9c5c9
AS
8269 else
8270 {
876cecd0 8271 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8272 return type0;
8273 }
8274
8275}
8276
8277/* An ordinary record type (with fixed-length fields) that describes
8278 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8279 union type. Any necessary discriminants' values should be in DVAL,
8280 a record value. That is, this routine selects the appropriate
8281 branch of the union at ADDR according to the discriminant value
b1f33ddd 8282 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8283 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8284
d2e4a39e 8285static struct type *
fc1a4b47 8286to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8287 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8288{
8289 int which;
d2e4a39e
AS
8290 struct type *templ_type;
8291 struct type *var_type;
14f9c5c9 8292
78134374 8293 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8294 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8295 else
14f9c5c9
AS
8296 var_type = var_type0;
8297
8298 templ_type = ada_find_parallel_type (var_type, "___XVU");
8299
8300 if (templ_type != NULL)
8301 var_type = templ_type;
8302
b1f33ddd
JB
8303 if (is_unchecked_variant (var_type, value_type (dval)))
8304 return var_type0;
d8af9068 8305 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8306
8307 if (which < 0)
e9bb382b 8308 return empty_record (var_type);
14f9c5c9 8309 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8310 return to_fixed_record_type
940da03e 8311 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8312 valaddr, address, dval);
940da03e 8313 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8314 return
8315 to_fixed_record_type
940da03e 8316 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8317 else
940da03e 8318 return var_type->field (which).type ();
14f9c5c9
AS
8319}
8320
8908fca5
JB
8321/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8322 ENCODING_TYPE, a type following the GNAT conventions for discrete
8323 type encodings, only carries redundant information. */
8324
8325static int
8326ada_is_redundant_range_encoding (struct type *range_type,
8327 struct type *encoding_type)
8328{
108d56a4 8329 const char *bounds_str;
8908fca5
JB
8330 int n;
8331 LONGEST lo, hi;
8332
78134374 8333 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8334
78134374
SM
8335 if (get_base_type (range_type)->code ()
8336 != get_base_type (encoding_type)->code ())
005e2509
JB
8337 {
8338 /* The compiler probably used a simple base type to describe
8339 the range type instead of the range's actual base type,
8340 expecting us to get the real base type from the encoding
8341 anyway. In this situation, the encoding cannot be ignored
8342 as redundant. */
8343 return 0;
8344 }
8345
8908fca5
JB
8346 if (is_dynamic_type (range_type))
8347 return 0;
8348
7d93a1e0 8349 if (encoding_type->name () == NULL)
8908fca5
JB
8350 return 0;
8351
7d93a1e0 8352 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8353 if (bounds_str == NULL)
8354 return 0;
8355
8356 n = 8; /* Skip "___XDLU_". */
8357 if (!ada_scan_number (bounds_str, n, &lo, &n))
8358 return 0;
8359 if (TYPE_LOW_BOUND (range_type) != lo)
8360 return 0;
8361
8362 n += 2; /* Skip the "__" separator between the two bounds. */
8363 if (!ada_scan_number (bounds_str, n, &hi, &n))
8364 return 0;
8365 if (TYPE_HIGH_BOUND (range_type) != hi)
8366 return 0;
8367
8368 return 1;
8369}
8370
8371/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8372 a type following the GNAT encoding for describing array type
8373 indices, only carries redundant information. */
8374
8375static int
8376ada_is_redundant_index_type_desc (struct type *array_type,
8377 struct type *desc_type)
8378{
8379 struct type *this_layer = check_typedef (array_type);
8380 int i;
8381
1f704f76 8382 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8383 {
3d967001 8384 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8385 desc_type->field (i).type ()))
8908fca5
JB
8386 return 0;
8387 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8388 }
8389
8390 return 1;
8391}
8392
14f9c5c9
AS
8393/* Assuming that TYPE0 is an array type describing the type of a value
8394 at ADDR, and that DVAL describes a record containing any
8395 discriminants used in TYPE0, returns a type for the value that
8396 contains no dynamic components (that is, no components whose sizes
8397 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8398 true, gives an error message if the resulting type's size is over
4c4b4cd2 8399 varsize_limit. */
14f9c5c9 8400
d2e4a39e
AS
8401static struct type *
8402to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8403 int ignore_too_big)
14f9c5c9 8404{
d2e4a39e
AS
8405 struct type *index_type_desc;
8406 struct type *result;
ad82864c 8407 int constrained_packed_array_p;
931e5bc3 8408 static const char *xa_suffix = "___XA";
14f9c5c9 8409
b0dd7688 8410 type0 = ada_check_typedef (type0);
284614f0 8411 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8412 return type0;
14f9c5c9 8413
ad82864c
JB
8414 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8415 if (constrained_packed_array_p)
8416 type0 = decode_constrained_packed_array_type (type0);
284614f0 8417
931e5bc3
JG
8418 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8419
8420 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8421 encoding suffixed with 'P' may still be generated. If so,
8422 it should be used to find the XA type. */
8423
8424 if (index_type_desc == NULL)
8425 {
1da0522e 8426 const char *type_name = ada_type_name (type0);
931e5bc3 8427
1da0522e 8428 if (type_name != NULL)
931e5bc3 8429 {
1da0522e 8430 const int len = strlen (type_name);
931e5bc3
JG
8431 char *name = (char *) alloca (len + strlen (xa_suffix));
8432
1da0522e 8433 if (type_name[len - 1] == 'P')
931e5bc3 8434 {
1da0522e 8435 strcpy (name, type_name);
931e5bc3
JG
8436 strcpy (name + len - 1, xa_suffix);
8437 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8438 }
8439 }
8440 }
8441
28c85d6c 8442 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8443 if (index_type_desc != NULL
8444 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8445 {
8446 /* Ignore this ___XA parallel type, as it does not bring any
8447 useful information. This allows us to avoid creating fixed
8448 versions of the array's index types, which would be identical
8449 to the original ones. This, in turn, can also help avoid
8450 the creation of fixed versions of the array itself. */
8451 index_type_desc = NULL;
8452 }
8453
14f9c5c9
AS
8454 if (index_type_desc == NULL)
8455 {
61ee279c 8456 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8457
14f9c5c9 8458 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8459 depend on the contents of the array in properly constructed
8460 debugging data. */
529cad9c
PH
8461 /* Create a fixed version of the array element type.
8462 We're not providing the address of an element here,
e1d5a0d2 8463 and thus the actual object value cannot be inspected to do
529cad9c
PH
8464 the conversion. This should not be a problem, since arrays of
8465 unconstrained objects are not allowed. In particular, all
8466 the elements of an array of a tagged type should all be of
8467 the same type specified in the debugging info. No need to
8468 consult the object tag. */
1ed6ede0 8469 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8470
284614f0
JB
8471 /* Make sure we always create a new array type when dealing with
8472 packed array types, since we're going to fix-up the array
8473 type length and element bitsize a little further down. */
ad82864c 8474 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8475 result = type0;
14f9c5c9 8476 else
e9bb382b 8477 result = create_array_type (alloc_type_copy (type0),
3d967001 8478 elt_type, type0->index_type ());
14f9c5c9
AS
8479 }
8480 else
8481 {
8482 int i;
8483 struct type *elt_type0;
8484
8485 elt_type0 = type0;
1f704f76 8486 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
4c4b4cd2 8487 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8488
8489 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8490 depend on the contents of the array in properly constructed
8491 debugging data. */
529cad9c
PH
8492 /* Create a fixed version of the array element type.
8493 We're not providing the address of an element here,
e1d5a0d2 8494 and thus the actual object value cannot be inspected to do
529cad9c
PH
8495 the conversion. This should not be a problem, since arrays of
8496 unconstrained objects are not allowed. In particular, all
8497 the elements of an array of a tagged type should all be of
8498 the same type specified in the debugging info. No need to
8499 consult the object tag. */
1ed6ede0
JB
8500 result =
8501 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8502
8503 elt_type0 = type0;
1f704f76 8504 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8505 {
8506 struct type *range_type =
940da03e 8507 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8508
e9bb382b 8509 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8510 result, range_type);
1ce677a4 8511 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8512 }
d2e4a39e 8513 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8514 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8515 }
8516
2e6fda7d
JB
8517 /* We want to preserve the type name. This can be useful when
8518 trying to get the type name of a value that has already been
8519 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8520 result->set_name (type0->name ());
2e6fda7d 8521
ad82864c 8522 if (constrained_packed_array_p)
284614f0
JB
8523 {
8524 /* So far, the resulting type has been created as if the original
8525 type was a regular (non-packed) array type. As a result, the
8526 bitsize of the array elements needs to be set again, and the array
8527 length needs to be recomputed based on that bitsize. */
8528 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8529 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8530
8531 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8532 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8533 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8534 TYPE_LENGTH (result)++;
8535 }
8536
876cecd0 8537 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8538 return result;
d2e4a39e 8539}
14f9c5c9
AS
8540
8541
8542/* A standard type (containing no dynamically sized components)
8543 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8544 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8545 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8546 ADDRESS or in VALADDR contains these discriminants.
8547
1ed6ede0
JB
8548 If CHECK_TAG is not null, in the case of tagged types, this function
8549 attempts to locate the object's tag and use it to compute the actual
8550 type. However, when ADDRESS is null, we cannot use it to determine the
8551 location of the tag, and therefore compute the tagged type's actual type.
8552 So we return the tagged type without consulting the tag. */
529cad9c 8553
f192137b
JB
8554static struct type *
8555ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8556 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8557{
61ee279c 8558 type = ada_check_typedef (type);
8ecb59f8
TT
8559
8560 /* Only un-fixed types need to be handled here. */
8561 if (!HAVE_GNAT_AUX_INFO (type))
8562 return type;
8563
78134374 8564 switch (type->code ())
d2e4a39e
AS
8565 {
8566 default:
14f9c5c9 8567 return type;
d2e4a39e 8568 case TYPE_CODE_STRUCT:
4c4b4cd2 8569 {
76a01679 8570 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8571 struct type *fixed_record_type =
8572 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8573
529cad9c
PH
8574 /* If STATIC_TYPE is a tagged type and we know the object's address,
8575 then we can determine its tag, and compute the object's actual
0963b4bd 8576 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8577 type (the parent part of the record may have dynamic fields
8578 and the way the location of _tag is expressed may depend on
8579 them). */
529cad9c 8580
1ed6ede0 8581 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8582 {
b50d69b5
JG
8583 struct value *tag =
8584 value_tag_from_contents_and_address
8585 (fixed_record_type,
8586 valaddr,
8587 address);
8588 struct type *real_type = type_from_tag (tag);
8589 struct value *obj =
8590 value_from_contents_and_address (fixed_record_type,
8591 valaddr,
8592 address);
9f1f738a 8593 fixed_record_type = value_type (obj);
76a01679 8594 if (real_type != NULL)
b50d69b5
JG
8595 return to_fixed_record_type
8596 (real_type, NULL,
8597 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8598 }
4af88198
JB
8599
8600 /* Check to see if there is a parallel ___XVZ variable.
8601 If there is, then it provides the actual size of our type. */
8602 else if (ada_type_name (fixed_record_type) != NULL)
8603 {
0d5cff50 8604 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8605 char *xvz_name
8606 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8607 bool xvz_found = false;
4af88198
JB
8608 LONGEST size;
8609
88c15c34 8610 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8611 try
eccab96d
JB
8612 {
8613 xvz_found = get_int_var_value (xvz_name, size);
8614 }
230d2906 8615 catch (const gdb_exception_error &except)
eccab96d
JB
8616 {
8617 /* We found the variable, but somehow failed to read
8618 its value. Rethrow the same error, but with a little
8619 bit more information, to help the user understand
8620 what went wrong (Eg: the variable might have been
8621 optimized out). */
8622 throw_error (except.error,
8623 _("unable to read value of %s (%s)"),
3d6e9d23 8624 xvz_name, except.what ());
eccab96d 8625 }
eccab96d
JB
8626
8627 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8628 {
8629 fixed_record_type = copy_type (fixed_record_type);
8630 TYPE_LENGTH (fixed_record_type) = size;
8631
8632 /* The FIXED_RECORD_TYPE may have be a stub. We have
8633 observed this when the debugging info is STABS, and
8634 apparently it is something that is hard to fix.
8635
8636 In practice, we don't need the actual type definition
8637 at all, because the presence of the XVZ variable allows us
8638 to assume that there must be a XVS type as well, which we
8639 should be able to use later, when we need the actual type
8640 definition.
8641
8642 In the meantime, pretend that the "fixed" type we are
8643 returning is NOT a stub, because this can cause trouble
8644 when using this type to create new types targeting it.
8645 Indeed, the associated creation routines often check
8646 whether the target type is a stub and will try to replace
0963b4bd 8647 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8648 might cause the new type to have the wrong size too.
8649 Consider the case of an array, for instance, where the size
8650 of the array is computed from the number of elements in
8651 our array multiplied by the size of its element. */
8652 TYPE_STUB (fixed_record_type) = 0;
8653 }
8654 }
1ed6ede0 8655 return fixed_record_type;
4c4b4cd2 8656 }
d2e4a39e 8657 case TYPE_CODE_ARRAY:
4c4b4cd2 8658 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8659 case TYPE_CODE_UNION:
8660 if (dval == NULL)
4c4b4cd2 8661 return type;
d2e4a39e 8662 else
4c4b4cd2 8663 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8664 }
14f9c5c9
AS
8665}
8666
f192137b
JB
8667/* The same as ada_to_fixed_type_1, except that it preserves the type
8668 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8669
8670 The typedef layer needs be preserved in order to differentiate between
8671 arrays and array pointers when both types are implemented using the same
8672 fat pointer. In the array pointer case, the pointer is encoded as
8673 a typedef of the pointer type. For instance, considering:
8674
8675 type String_Access is access String;
8676 S1 : String_Access := null;
8677
8678 To the debugger, S1 is defined as a typedef of type String. But
8679 to the user, it is a pointer. So if the user tries to print S1,
8680 we should not dereference the array, but print the array address
8681 instead.
8682
8683 If we didn't preserve the typedef layer, we would lose the fact that
8684 the type is to be presented as a pointer (needs de-reference before
8685 being printed). And we would also use the source-level type name. */
f192137b
JB
8686
8687struct type *
8688ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8689 CORE_ADDR address, struct value *dval, int check_tag)
8690
8691{
8692 struct type *fixed_type =
8693 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8694
96dbd2c1
JB
8695 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8696 then preserve the typedef layer.
8697
8698 Implementation note: We can only check the main-type portion of
8699 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8700 from TYPE now returns a type that has the same instance flags
8701 as TYPE. For instance, if TYPE is a "typedef const", and its
8702 target type is a "struct", then the typedef elimination will return
8703 a "const" version of the target type. See check_typedef for more
8704 details about how the typedef layer elimination is done.
8705
8706 brobecker/2010-11-19: It seems to me that the only case where it is
8707 useful to preserve the typedef layer is when dealing with fat pointers.
8708 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8709 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8710 because we call check_typedef/ada_check_typedef pretty much everywhere.
8711 */
78134374 8712 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8713 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8714 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8715 return type;
8716
8717 return fixed_type;
8718}
8719
14f9c5c9 8720/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8721 TYPE0, but based on no runtime data. */
14f9c5c9 8722
d2e4a39e
AS
8723static struct type *
8724to_static_fixed_type (struct type *type0)
14f9c5c9 8725{
d2e4a39e 8726 struct type *type;
14f9c5c9
AS
8727
8728 if (type0 == NULL)
8729 return NULL;
8730
876cecd0 8731 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8732 return type0;
8733
61ee279c 8734 type0 = ada_check_typedef (type0);
d2e4a39e 8735
78134374 8736 switch (type0->code ())
14f9c5c9
AS
8737 {
8738 default:
8739 return type0;
8740 case TYPE_CODE_STRUCT:
8741 type = dynamic_template_type (type0);
d2e4a39e 8742 if (type != NULL)
4c4b4cd2
PH
8743 return template_to_static_fixed_type (type);
8744 else
8745 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8746 case TYPE_CODE_UNION:
8747 type = ada_find_parallel_type (type0, "___XVU");
8748 if (type != NULL)
4c4b4cd2
PH
8749 return template_to_static_fixed_type (type);
8750 else
8751 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8752 }
8753}
8754
4c4b4cd2
PH
8755/* A static approximation of TYPE with all type wrappers removed. */
8756
d2e4a39e
AS
8757static struct type *
8758static_unwrap_type (struct type *type)
14f9c5c9
AS
8759{
8760 if (ada_is_aligner_type (type))
8761 {
940da03e 8762 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8763 if (ada_type_name (type1) == NULL)
d0e39ea2 8764 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8765
8766 return static_unwrap_type (type1);
8767 }
d2e4a39e 8768 else
14f9c5c9 8769 {
d2e4a39e 8770 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8771
d2e4a39e 8772 if (raw_real_type == type)
4c4b4cd2 8773 return type;
14f9c5c9 8774 else
4c4b4cd2 8775 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8776 }
8777}
8778
8779/* In some cases, incomplete and private types require
4c4b4cd2 8780 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8781 type Foo;
8782 type FooP is access Foo;
8783 V: FooP;
8784 type Foo is array ...;
4c4b4cd2 8785 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8786 cross-references to such types, we instead substitute for FooP a
8787 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8788 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8789
8790/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8791 exists, otherwise TYPE. */
8792
d2e4a39e 8793struct type *
61ee279c 8794ada_check_typedef (struct type *type)
14f9c5c9 8795{
727e3d2e
JB
8796 if (type == NULL)
8797 return NULL;
8798
736ade86
XR
8799 /* If our type is an access to an unconstrained array, which is encoded
8800 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8801 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8802 what allows us to distinguish between fat pointers that represent
8803 array types, and fat pointers that represent array access types
8804 (in both cases, the compiler implements them as fat pointers). */
736ade86 8805 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8806 return type;
8807
f168693b 8808 type = check_typedef (type);
78134374 8809 if (type == NULL || type->code () != TYPE_CODE_ENUM
529cad9c 8810 || !TYPE_STUB (type)
7d93a1e0 8811 || type->name () == NULL)
14f9c5c9 8812 return type;
d2e4a39e 8813 else
14f9c5c9 8814 {
7d93a1e0 8815 const char *name = type->name ();
d2e4a39e 8816 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8817
05e522ef
JB
8818 if (type1 == NULL)
8819 return type;
8820
8821 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8822 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8823 types, only for the typedef-to-array types). If that's the case,
8824 strip the typedef layer. */
78134374 8825 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8826 type1 = ada_check_typedef (type1);
8827
8828 return type1;
14f9c5c9
AS
8829 }
8830}
8831
8832/* A value representing the data at VALADDR/ADDRESS as described by
8833 type TYPE0, but with a standard (static-sized) type that correctly
8834 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8835 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8836 creation of struct values]. */
14f9c5c9 8837
4c4b4cd2
PH
8838static struct value *
8839ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8840 struct value *val0)
14f9c5c9 8841{
1ed6ede0 8842 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8843
14f9c5c9
AS
8844 if (type == type0 && val0 != NULL)
8845 return val0;
cc0e770c
JB
8846
8847 if (VALUE_LVAL (val0) != lval_memory)
8848 {
8849 /* Our value does not live in memory; it could be a convenience
8850 variable, for instance. Create a not_lval value using val0's
8851 contents. */
8852 return value_from_contents (type, value_contents (val0));
8853 }
8854
8855 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8856}
8857
8858/* A value representing VAL, but with a standard (static-sized) type
8859 that correctly describes it. Does not necessarily create a new
8860 value. */
8861
0c3acc09 8862struct value *
4c4b4cd2
PH
8863ada_to_fixed_value (struct value *val)
8864{
c48db5ca 8865 val = unwrap_value (val);
d8ce9127 8866 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8867 return val;
14f9c5c9 8868}
d2e4a39e 8869\f
14f9c5c9 8870
14f9c5c9
AS
8871/* Attributes */
8872
4c4b4cd2
PH
8873/* Table mapping attribute numbers to names.
8874 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8875
d2e4a39e 8876static const char *attribute_names[] = {
14f9c5c9
AS
8877 "<?>",
8878
d2e4a39e 8879 "first",
14f9c5c9
AS
8880 "last",
8881 "length",
8882 "image",
14f9c5c9
AS
8883 "max",
8884 "min",
4c4b4cd2
PH
8885 "modulus",
8886 "pos",
8887 "size",
8888 "tag",
14f9c5c9 8889 "val",
14f9c5c9
AS
8890 0
8891};
8892
de93309a 8893static const char *
4c4b4cd2 8894ada_attribute_name (enum exp_opcode n)
14f9c5c9 8895{
4c4b4cd2
PH
8896 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8897 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8898 else
8899 return attribute_names[0];
8900}
8901
4c4b4cd2 8902/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8903
4c4b4cd2
PH
8904static LONGEST
8905pos_atr (struct value *arg)
14f9c5c9 8906{
24209737
PH
8907 struct value *val = coerce_ref (arg);
8908 struct type *type = value_type (val);
aa715135 8909 LONGEST result;
14f9c5c9 8910
d2e4a39e 8911 if (!discrete_type_p (type))
323e0a4a 8912 error (_("'POS only defined on discrete types"));
14f9c5c9 8913
aa715135
JG
8914 if (!discrete_position (type, value_as_long (val), &result))
8915 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8916
aa715135 8917 return result;
4c4b4cd2
PH
8918}
8919
8920static struct value *
3cb382c9 8921value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8922{
3cb382c9 8923 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8924}
8925
4c4b4cd2 8926/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8927
d2e4a39e 8928static struct value *
53a47a3e 8929val_atr (struct type *type, LONGEST val)
14f9c5c9 8930{
53a47a3e 8931 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8932 if (type->code () == TYPE_CODE_RANGE)
8933 type = TYPE_TARGET_TYPE (type);
78134374 8934 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8935 {
53a47a3e 8936 if (val < 0 || val >= type->num_fields ())
323e0a4a 8937 error (_("argument to 'VAL out of range"));
53a47a3e 8938 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8939 }
53a47a3e
TT
8940 return value_from_longest (type, val);
8941}
8942
8943static struct value *
8944value_val_atr (struct type *type, struct value *arg)
8945{
8946 if (!discrete_type_p (type))
8947 error (_("'VAL only defined on discrete types"));
8948 if (!integer_type_p (value_type (arg)))
8949 error (_("'VAL requires integral argument"));
8950
8951 return val_atr (type, value_as_long (arg));
14f9c5c9 8952}
14f9c5c9 8953\f
d2e4a39e 8954
4c4b4cd2 8955 /* Evaluation */
14f9c5c9 8956
4c4b4cd2
PH
8957/* True if TYPE appears to be an Ada character type.
8958 [At the moment, this is true only for Character and Wide_Character;
8959 It is a heuristic test that could stand improvement]. */
14f9c5c9 8960
fc913e53 8961bool
d2e4a39e 8962ada_is_character_type (struct type *type)
14f9c5c9 8963{
7b9f71f2
JB
8964 const char *name;
8965
8966 /* If the type code says it's a character, then assume it really is,
8967 and don't check any further. */
78134374 8968 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8969 return true;
7b9f71f2
JB
8970
8971 /* Otherwise, assume it's a character type iff it is a discrete type
8972 with a known character type name. */
8973 name = ada_type_name (type);
8974 return (name != NULL
78134374
SM
8975 && (type->code () == TYPE_CODE_INT
8976 || type->code () == TYPE_CODE_RANGE)
7b9f71f2
JB
8977 && (strcmp (name, "character") == 0
8978 || strcmp (name, "wide_character") == 0
5a517ebd 8979 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8980 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8981}
8982
4c4b4cd2 8983/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8984
fc913e53 8985bool
ebf56fd3 8986ada_is_string_type (struct type *type)
14f9c5c9 8987{
61ee279c 8988 type = ada_check_typedef (type);
d2e4a39e 8989 if (type != NULL
78134374 8990 && type->code () != TYPE_CODE_PTR
76a01679
JB
8991 && (ada_is_simple_array_type (type)
8992 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8993 && ada_array_arity (type) == 1)
8994 {
8995 struct type *elttype = ada_array_element_type (type, 1);
8996
8997 return ada_is_character_type (elttype);
8998 }
d2e4a39e 8999 else
fc913e53 9000 return false;
14f9c5c9
AS
9001}
9002
5bf03f13
JB
9003/* The compiler sometimes provides a parallel XVS type for a given
9004 PAD type. Normally, it is safe to follow the PAD type directly,
9005 but older versions of the compiler have a bug that causes the offset
9006 of its "F" field to be wrong. Following that field in that case
9007 would lead to incorrect results, but this can be worked around
9008 by ignoring the PAD type and using the associated XVS type instead.
9009
9010 Set to True if the debugger should trust the contents of PAD types.
9011 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9012static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9013
9014/* True if TYPE is a struct type introduced by the compiler to force the
9015 alignment of a value. Such types have a single field with a
4c4b4cd2 9016 distinctive name. */
14f9c5c9
AS
9017
9018int
ebf56fd3 9019ada_is_aligner_type (struct type *type)
14f9c5c9 9020{
61ee279c 9021 type = ada_check_typedef (type);
714e53ab 9022
5bf03f13 9023 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9024 return 0;
9025
78134374 9026 return (type->code () == TYPE_CODE_STRUCT
1f704f76 9027 && type->num_fields () == 1
4c4b4cd2 9028 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9029}
9030
9031/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9032 the parallel type. */
14f9c5c9 9033
d2e4a39e
AS
9034struct type *
9035ada_get_base_type (struct type *raw_type)
14f9c5c9 9036{
d2e4a39e
AS
9037 struct type *real_type_namer;
9038 struct type *raw_real_type;
14f9c5c9 9039
78134374 9040 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9041 return raw_type;
9042
284614f0
JB
9043 if (ada_is_aligner_type (raw_type))
9044 /* The encoding specifies that we should always use the aligner type.
9045 So, even if this aligner type has an associated XVS type, we should
9046 simply ignore it.
9047
9048 According to the compiler gurus, an XVS type parallel to an aligner
9049 type may exist because of a stabs limitation. In stabs, aligner
9050 types are empty because the field has a variable-sized type, and
9051 thus cannot actually be used as an aligner type. As a result,
9052 we need the associated parallel XVS type to decode the type.
9053 Since the policy in the compiler is to not change the internal
9054 representation based on the debugging info format, we sometimes
9055 end up having a redundant XVS type parallel to the aligner type. */
9056 return raw_type;
9057
14f9c5c9 9058 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9059 if (real_type_namer == NULL
78134374 9060 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9061 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9062 return raw_type;
9063
940da03e 9064 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9065 {
9066 /* This is an older encoding form where the base type needs to be
85102364 9067 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9068 more efficient. */
9069 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9070 if (raw_real_type == NULL)
9071 return raw_type;
9072 else
9073 return raw_real_type;
9074 }
9075
9076 /* The field in our XVS type is a reference to the base type. */
940da03e 9077 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9078}
14f9c5c9 9079
4c4b4cd2 9080/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9081
d2e4a39e
AS
9082struct type *
9083ada_aligned_type (struct type *type)
14f9c5c9
AS
9084{
9085 if (ada_is_aligner_type (type))
940da03e 9086 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9087 else
9088 return ada_get_base_type (type);
9089}
9090
9091
9092/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9093 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9094
fc1a4b47
AC
9095const gdb_byte *
9096ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9097{
d2e4a39e 9098 if (ada_is_aligner_type (type))
940da03e 9099 return ada_aligned_value_addr (type->field (0).type (),
4c4b4cd2
PH
9100 valaddr +
9101 TYPE_FIELD_BITPOS (type,
9102 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9103 else
9104 return valaddr;
9105}
9106
4c4b4cd2
PH
9107
9108
14f9c5c9 9109/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9110 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9111const char *
9112ada_enum_name (const char *name)
14f9c5c9 9113{
4c4b4cd2
PH
9114 static char *result;
9115 static size_t result_len = 0;
e6a959d6 9116 const char *tmp;
14f9c5c9 9117
4c4b4cd2
PH
9118 /* First, unqualify the enumeration name:
9119 1. Search for the last '.' character. If we find one, then skip
177b42fe 9120 all the preceding characters, the unqualified name starts
76a01679 9121 right after that dot.
4c4b4cd2 9122 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9123 translates dots into "__". Search forward for double underscores,
9124 but stop searching when we hit an overloading suffix, which is
9125 of the form "__" followed by digits. */
4c4b4cd2 9126
c3e5cd34
PH
9127 tmp = strrchr (name, '.');
9128 if (tmp != NULL)
4c4b4cd2
PH
9129 name = tmp + 1;
9130 else
14f9c5c9 9131 {
4c4b4cd2
PH
9132 while ((tmp = strstr (name, "__")) != NULL)
9133 {
9134 if (isdigit (tmp[2]))
9135 break;
9136 else
9137 name = tmp + 2;
9138 }
14f9c5c9
AS
9139 }
9140
9141 if (name[0] == 'Q')
9142 {
14f9c5c9 9143 int v;
5b4ee69b 9144
14f9c5c9 9145 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9146 {
9147 if (sscanf (name + 2, "%x", &v) != 1)
9148 return name;
9149 }
272560b5
TT
9150 else if (((name[1] >= '0' && name[1] <= '9')
9151 || (name[1] >= 'a' && name[1] <= 'z'))
9152 && name[2] == '\0')
9153 {
9154 GROW_VECT (result, result_len, 4);
9155 xsnprintf (result, result_len, "'%c'", name[1]);
9156 return result;
9157 }
14f9c5c9 9158 else
4c4b4cd2 9159 return name;
14f9c5c9 9160
4c4b4cd2 9161 GROW_VECT (result, result_len, 16);
14f9c5c9 9162 if (isascii (v) && isprint (v))
88c15c34 9163 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9164 else if (name[1] == 'U')
88c15c34 9165 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9166 else
88c15c34 9167 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9168
9169 return result;
9170 }
d2e4a39e 9171 else
4c4b4cd2 9172 {
c3e5cd34
PH
9173 tmp = strstr (name, "__");
9174 if (tmp == NULL)
9175 tmp = strstr (name, "$");
9176 if (tmp != NULL)
4c4b4cd2
PH
9177 {
9178 GROW_VECT (result, result_len, tmp - name + 1);
9179 strncpy (result, name, tmp - name);
9180 result[tmp - name] = '\0';
9181 return result;
9182 }
9183
9184 return name;
9185 }
14f9c5c9
AS
9186}
9187
14f9c5c9
AS
9188/* Evaluate the subexpression of EXP starting at *POS as for
9189 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9190 expression. */
14f9c5c9 9191
d2e4a39e
AS
9192static struct value *
9193evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9194{
4b27a620 9195 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9196}
9197
9198/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9199 value it wraps. */
14f9c5c9 9200
d2e4a39e
AS
9201static struct value *
9202unwrap_value (struct value *val)
14f9c5c9 9203{
df407dfe 9204 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9205
14f9c5c9
AS
9206 if (ada_is_aligner_type (type))
9207 {
de4d072f 9208 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9209 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9210
14f9c5c9 9211 if (ada_type_name (val_type) == NULL)
d0e39ea2 9212 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9213
9214 return unwrap_value (v);
9215 }
d2e4a39e 9216 else
14f9c5c9 9217 {
d2e4a39e 9218 struct type *raw_real_type =
61ee279c 9219 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9220
5bf03f13
JB
9221 /* If there is no parallel XVS or XVE type, then the value is
9222 already unwrapped. Return it without further modification. */
9223 if ((type == raw_real_type)
9224 && ada_find_parallel_type (type, "___XVE") == NULL)
9225 return val;
14f9c5c9 9226
d2e4a39e 9227 return
4c4b4cd2
PH
9228 coerce_unspec_val_to_type
9229 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9230 value_address (val),
1ed6ede0 9231 NULL, 1));
14f9c5c9
AS
9232 }
9233}
d2e4a39e
AS
9234
9235static struct value *
50eff16b 9236cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9237{
50eff16b
UW
9238 struct value *scale = ada_scaling_factor (value_type (arg));
9239 arg = value_cast (value_type (scale), arg);
14f9c5c9 9240
50eff16b
UW
9241 arg = value_binop (arg, scale, BINOP_MUL);
9242 return value_cast (type, arg);
14f9c5c9
AS
9243}
9244
d2e4a39e 9245static struct value *
50eff16b 9246cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9247{
50eff16b
UW
9248 if (type == value_type (arg))
9249 return arg;
5b4ee69b 9250
50eff16b 9251 struct value *scale = ada_scaling_factor (type);
b2188a06 9252 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
50eff16b
UW
9253 arg = cast_from_fixed (value_type (scale), arg);
9254 else
9255 arg = value_cast (value_type (scale), arg);
9256
9257 arg = value_binop (arg, scale, BINOP_DIV);
9258 return value_cast (type, arg);
14f9c5c9
AS
9259}
9260
d99dcf51
JB
9261/* Given two array types T1 and T2, return nonzero iff both arrays
9262 contain the same number of elements. */
9263
9264static int
9265ada_same_array_size_p (struct type *t1, struct type *t2)
9266{
9267 LONGEST lo1, hi1, lo2, hi2;
9268
9269 /* Get the array bounds in order to verify that the size of
9270 the two arrays match. */
9271 if (!get_array_bounds (t1, &lo1, &hi1)
9272 || !get_array_bounds (t2, &lo2, &hi2))
9273 error (_("unable to determine array bounds"));
9274
9275 /* To make things easier for size comparison, normalize a bit
9276 the case of empty arrays by making sure that the difference
9277 between upper bound and lower bound is always -1. */
9278 if (lo1 > hi1)
9279 hi1 = lo1 - 1;
9280 if (lo2 > hi2)
9281 hi2 = lo2 - 1;
9282
9283 return (hi1 - lo1 == hi2 - lo2);
9284}
9285
9286/* Assuming that VAL is an array of integrals, and TYPE represents
9287 an array with the same number of elements, but with wider integral
9288 elements, return an array "casted" to TYPE. In practice, this
9289 means that the returned array is built by casting each element
9290 of the original array into TYPE's (wider) element type. */
9291
9292static struct value *
9293ada_promote_array_of_integrals (struct type *type, struct value *val)
9294{
9295 struct type *elt_type = TYPE_TARGET_TYPE (type);
9296 LONGEST lo, hi;
9297 struct value *res;
9298 LONGEST i;
9299
9300 /* Verify that both val and type are arrays of scalars, and
9301 that the size of val's elements is smaller than the size
9302 of type's element. */
78134374 9303 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9304 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9305 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9306 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9307 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9308 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9309
9310 if (!get_array_bounds (type, &lo, &hi))
9311 error (_("unable to determine array bounds"));
9312
9313 res = allocate_value (type);
9314
9315 /* Promote each array element. */
9316 for (i = 0; i < hi - lo + 1; i++)
9317 {
9318 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9319
9320 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9321 value_contents_all (elt), TYPE_LENGTH (elt_type));
9322 }
9323
9324 return res;
9325}
9326
4c4b4cd2
PH
9327/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9328 return the converted value. */
9329
d2e4a39e
AS
9330static struct value *
9331coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9332{
df407dfe 9333 struct type *type2 = value_type (val);
5b4ee69b 9334
14f9c5c9
AS
9335 if (type == type2)
9336 return val;
9337
61ee279c
PH
9338 type2 = ada_check_typedef (type2);
9339 type = ada_check_typedef (type);
14f9c5c9 9340
78134374
SM
9341 if (type2->code () == TYPE_CODE_PTR
9342 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9343 {
9344 val = ada_value_ind (val);
df407dfe 9345 type2 = value_type (val);
14f9c5c9
AS
9346 }
9347
78134374
SM
9348 if (type2->code () == TYPE_CODE_ARRAY
9349 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9350 {
d99dcf51
JB
9351 if (!ada_same_array_size_p (type, type2))
9352 error (_("cannot assign arrays of different length"));
9353
9354 if (is_integral_type (TYPE_TARGET_TYPE (type))
9355 && is_integral_type (TYPE_TARGET_TYPE (type2))
9356 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9357 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9358 {
9359 /* Allow implicit promotion of the array elements to
9360 a wider type. */
9361 return ada_promote_array_of_integrals (type, val);
9362 }
9363
9364 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9365 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9366 error (_("Incompatible types in assignment"));
04624583 9367 deprecated_set_value_type (val, type);
14f9c5c9 9368 }
d2e4a39e 9369 return val;
14f9c5c9
AS
9370}
9371
4c4b4cd2
PH
9372static struct value *
9373ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9374{
9375 struct value *val;
9376 struct type *type1, *type2;
9377 LONGEST v, v1, v2;
9378
994b9211
AC
9379 arg1 = coerce_ref (arg1);
9380 arg2 = coerce_ref (arg2);
18af8284
JB
9381 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9382 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9383
78134374
SM
9384 if (type1->code () != TYPE_CODE_INT
9385 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9386 return value_binop (arg1, arg2, op);
9387
76a01679 9388 switch (op)
4c4b4cd2
PH
9389 {
9390 case BINOP_MOD:
9391 case BINOP_DIV:
9392 case BINOP_REM:
9393 break;
9394 default:
9395 return value_binop (arg1, arg2, op);
9396 }
9397
9398 v2 = value_as_long (arg2);
9399 if (v2 == 0)
323e0a4a 9400 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9401
9402 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9403 return value_binop (arg1, arg2, op);
9404
9405 v1 = value_as_long (arg1);
9406 switch (op)
9407 {
9408 case BINOP_DIV:
9409 v = v1 / v2;
76a01679
JB
9410 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9411 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9412 break;
9413 case BINOP_REM:
9414 v = v1 % v2;
76a01679
JB
9415 if (v * v1 < 0)
9416 v -= v2;
4c4b4cd2
PH
9417 break;
9418 default:
9419 /* Should not reach this point. */
9420 v = 0;
9421 }
9422
9423 val = allocate_value (type1);
990a07ab 9424 store_unsigned_integer (value_contents_raw (val),
e17a4113 9425 TYPE_LENGTH (value_type (val)),
34877895 9426 type_byte_order (type1), v);
4c4b4cd2
PH
9427 return val;
9428}
9429
9430static int
9431ada_value_equal (struct value *arg1, struct value *arg2)
9432{
df407dfe
AC
9433 if (ada_is_direct_array_type (value_type (arg1))
9434 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9435 {
79e8fcaa
JB
9436 struct type *arg1_type, *arg2_type;
9437
f58b38bf
JB
9438 /* Automatically dereference any array reference before
9439 we attempt to perform the comparison. */
9440 arg1 = ada_coerce_ref (arg1);
9441 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9442
4c4b4cd2
PH
9443 arg1 = ada_coerce_to_simple_array (arg1);
9444 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9445
9446 arg1_type = ada_check_typedef (value_type (arg1));
9447 arg2_type = ada_check_typedef (value_type (arg2));
9448
78134374
SM
9449 if (arg1_type->code () != TYPE_CODE_ARRAY
9450 || arg2_type->code () != TYPE_CODE_ARRAY)
323e0a4a 9451 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9452 /* FIXME: The following works only for types whose
76a01679
JB
9453 representations use all bits (no padding or undefined bits)
9454 and do not have user-defined equality. */
79e8fcaa
JB
9455 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9456 && memcmp (value_contents (arg1), value_contents (arg2),
9457 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9458 }
9459 return value_equal (arg1, arg2);
9460}
9461
52ce6436
PH
9462/* Total number of component associations in the aggregate starting at
9463 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9464 OP_AGGREGATE. */
52ce6436
PH
9465
9466static int
9467num_component_specs (struct expression *exp, int pc)
9468{
9469 int n, m, i;
5b4ee69b 9470
52ce6436
PH
9471 m = exp->elts[pc + 1].longconst;
9472 pc += 3;
9473 n = 0;
9474 for (i = 0; i < m; i += 1)
9475 {
9476 switch (exp->elts[pc].opcode)
9477 {
9478 default:
9479 n += 1;
9480 break;
9481 case OP_CHOICES:
9482 n += exp->elts[pc + 1].longconst;
9483 break;
9484 }
9485 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9486 }
9487 return n;
9488}
9489
9490/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9491 component of LHS (a simple array or a record), updating *POS past
9492 the expression, assuming that LHS is contained in CONTAINER. Does
9493 not modify the inferior's memory, nor does it modify LHS (unless
9494 LHS == CONTAINER). */
9495
9496static void
9497assign_component (struct value *container, struct value *lhs, LONGEST index,
9498 struct expression *exp, int *pos)
9499{
9500 struct value *mark = value_mark ();
9501 struct value *elt;
0e2da9f0 9502 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9503
78134374 9504 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9505 {
22601c15
UW
9506 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9507 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9508
52ce6436
PH
9509 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9510 }
9511 else
9512 {
9513 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9514 elt = ada_to_fixed_value (elt);
52ce6436
PH
9515 }
9516
9517 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9518 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9519 else
9520 value_assign_to_component (container, elt,
9521 ada_evaluate_subexp (NULL, exp, pos,
9522 EVAL_NORMAL));
9523
9524 value_free_to_mark (mark);
9525}
9526
9527/* Assuming that LHS represents an lvalue having a record or array
9528 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9529 of that aggregate's value to LHS, advancing *POS past the
9530 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9531 lvalue containing LHS (possibly LHS itself). Does not modify
9532 the inferior's memory, nor does it modify the contents of
0963b4bd 9533 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9534
9535static struct value *
9536assign_aggregate (struct value *container,
9537 struct value *lhs, struct expression *exp,
9538 int *pos, enum noside noside)
9539{
9540 struct type *lhs_type;
9541 int n = exp->elts[*pos+1].longconst;
9542 LONGEST low_index, high_index;
9543 int num_specs;
9544 LONGEST *indices;
9545 int max_indices, num_indices;
52ce6436 9546 int i;
52ce6436
PH
9547
9548 *pos += 3;
9549 if (noside != EVAL_NORMAL)
9550 {
52ce6436
PH
9551 for (i = 0; i < n; i += 1)
9552 ada_evaluate_subexp (NULL, exp, pos, noside);
9553 return container;
9554 }
9555
9556 container = ada_coerce_ref (container);
9557 if (ada_is_direct_array_type (value_type (container)))
9558 container = ada_coerce_to_simple_array (container);
9559 lhs = ada_coerce_ref (lhs);
9560 if (!deprecated_value_modifiable (lhs))
9561 error (_("Left operand of assignment is not a modifiable lvalue."));
9562
0e2da9f0 9563 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9564 if (ada_is_direct_array_type (lhs_type))
9565 {
9566 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9567 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9568 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9569 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436 9570 }
78134374 9571 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9572 {
9573 low_index = 0;
9574 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9575 }
9576 else
9577 error (_("Left-hand side must be array or record."));
9578
9579 num_specs = num_component_specs (exp, *pos - 3);
9580 max_indices = 4 * num_specs + 4;
8d749320 9581 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9582 indices[0] = indices[1] = low_index - 1;
9583 indices[2] = indices[3] = high_index + 1;
9584 num_indices = 4;
9585
9586 for (i = 0; i < n; i += 1)
9587 {
9588 switch (exp->elts[*pos].opcode)
9589 {
1fbf5ada
JB
9590 case OP_CHOICES:
9591 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9592 &num_indices, max_indices,
9593 low_index, high_index);
9594 break;
9595 case OP_POSITIONAL:
9596 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9597 &num_indices, max_indices,
9598 low_index, high_index);
1fbf5ada
JB
9599 break;
9600 case OP_OTHERS:
9601 if (i != n-1)
9602 error (_("Misplaced 'others' clause"));
9603 aggregate_assign_others (container, lhs, exp, pos, indices,
9604 num_indices, low_index, high_index);
9605 break;
9606 default:
9607 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9608 }
9609 }
9610
9611 return container;
9612}
9613
9614/* Assign into the component of LHS indexed by the OP_POSITIONAL
9615 construct at *POS, updating *POS past the construct, given that
9616 the positions are relative to lower bound LOW, where HIGH is the
9617 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9618 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9619 assign_aggregate. */
52ce6436
PH
9620static void
9621aggregate_assign_positional (struct value *container,
9622 struct value *lhs, struct expression *exp,
9623 int *pos, LONGEST *indices, int *num_indices,
9624 int max_indices, LONGEST low, LONGEST high)
9625{
9626 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9627
9628 if (ind - 1 == high)
e1d5a0d2 9629 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9630 if (ind <= high)
9631 {
9632 add_component_interval (ind, ind, indices, num_indices, max_indices);
9633 *pos += 3;
9634 assign_component (container, lhs, ind, exp, pos);
9635 }
9636 else
9637 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9638}
9639
9640/* Assign into the components of LHS indexed by the OP_CHOICES
9641 construct at *POS, updating *POS past the construct, given that
9642 the allowable indices are LOW..HIGH. Record the indices assigned
9643 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9644 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9645static void
9646aggregate_assign_from_choices (struct value *container,
9647 struct value *lhs, struct expression *exp,
9648 int *pos, LONGEST *indices, int *num_indices,
9649 int max_indices, LONGEST low, LONGEST high)
9650{
9651 int j;
9652 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9653 int choice_pos, expr_pc;
9654 int is_array = ada_is_direct_array_type (value_type (lhs));
9655
9656 choice_pos = *pos += 3;
9657
9658 for (j = 0; j < n_choices; j += 1)
9659 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9660 expr_pc = *pos;
9661 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9662
9663 for (j = 0; j < n_choices; j += 1)
9664 {
9665 LONGEST lower, upper;
9666 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9667
52ce6436
PH
9668 if (op == OP_DISCRETE_RANGE)
9669 {
9670 choice_pos += 1;
9671 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9672 EVAL_NORMAL));
9673 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9674 EVAL_NORMAL));
9675 }
9676 else if (is_array)
9677 {
9678 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9679 EVAL_NORMAL));
9680 upper = lower;
9681 }
9682 else
9683 {
9684 int ind;
0d5cff50 9685 const char *name;
5b4ee69b 9686
52ce6436
PH
9687 switch (op)
9688 {
9689 case OP_NAME:
9690 name = &exp->elts[choice_pos + 2].string;
9691 break;
9692 case OP_VAR_VALUE:
987012b8 9693 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9694 break;
9695 default:
9696 error (_("Invalid record component association."));
9697 }
9698 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9699 ind = 0;
9700 if (! find_struct_field (name, value_type (lhs), 0,
9701 NULL, NULL, NULL, NULL, &ind))
9702 error (_("Unknown component name: %s."), name);
9703 lower = upper = ind;
9704 }
9705
9706 if (lower <= upper && (lower < low || upper > high))
9707 error (_("Index in component association out of bounds."));
9708
9709 add_component_interval (lower, upper, indices, num_indices,
9710 max_indices);
9711 while (lower <= upper)
9712 {
9713 int pos1;
5b4ee69b 9714
52ce6436
PH
9715 pos1 = expr_pc;
9716 assign_component (container, lhs, lower, exp, &pos1);
9717 lower += 1;
9718 }
9719 }
9720}
9721
9722/* Assign the value of the expression in the OP_OTHERS construct in
9723 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9724 have not been previously assigned. The index intervals already assigned
9725 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9726 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9727static void
9728aggregate_assign_others (struct value *container,
9729 struct value *lhs, struct expression *exp,
9730 int *pos, LONGEST *indices, int num_indices,
9731 LONGEST low, LONGEST high)
9732{
9733 int i;
5ce64950 9734 int expr_pc = *pos + 1;
52ce6436
PH
9735
9736 for (i = 0; i < num_indices - 2; i += 2)
9737 {
9738 LONGEST ind;
5b4ee69b 9739
52ce6436
PH
9740 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9741 {
5ce64950 9742 int localpos;
5b4ee69b 9743
5ce64950
MS
9744 localpos = expr_pc;
9745 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9746 }
9747 }
9748 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9749}
9750
9751/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9752 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9753 modifying *SIZE as needed. It is an error if *SIZE exceeds
9754 MAX_SIZE. The resulting intervals do not overlap. */
9755static void
9756add_component_interval (LONGEST low, LONGEST high,
9757 LONGEST* indices, int *size, int max_size)
9758{
9759 int i, j;
5b4ee69b 9760
52ce6436
PH
9761 for (i = 0; i < *size; i += 2) {
9762 if (high >= indices[i] && low <= indices[i + 1])
9763 {
9764 int kh;
5b4ee69b 9765
52ce6436
PH
9766 for (kh = i + 2; kh < *size; kh += 2)
9767 if (high < indices[kh])
9768 break;
9769 if (low < indices[i])
9770 indices[i] = low;
9771 indices[i + 1] = indices[kh - 1];
9772 if (high > indices[i + 1])
9773 indices[i + 1] = high;
9774 memcpy (indices + i + 2, indices + kh, *size - kh);
9775 *size -= kh - i - 2;
9776 return;
9777 }
9778 else if (high < indices[i])
9779 break;
9780 }
9781
9782 if (*size == max_size)
9783 error (_("Internal error: miscounted aggregate components."));
9784 *size += 2;
9785 for (j = *size-1; j >= i+2; j -= 1)
9786 indices[j] = indices[j - 2];
9787 indices[i] = low;
9788 indices[i + 1] = high;
9789}
9790
6e48bd2c
JB
9791/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9792 is different. */
9793
9794static struct value *
b7e22850 9795ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9796{
9797 if (type == ada_check_typedef (value_type (arg2)))
9798 return arg2;
9799
b2188a06 9800 if (ada_is_gnat_encoded_fixed_point_type (type))
95f39a5b 9801 return cast_to_fixed (type, arg2);
6e48bd2c 9802
b2188a06 9803 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 9804 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9805
9806 return value_cast (type, arg2);
9807}
9808
284614f0
JB
9809/* Evaluating Ada expressions, and printing their result.
9810 ------------------------------------------------------
9811
21649b50
JB
9812 1. Introduction:
9813 ----------------
9814
284614f0
JB
9815 We usually evaluate an Ada expression in order to print its value.
9816 We also evaluate an expression in order to print its type, which
9817 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9818 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9819 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9820 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9821 similar.
9822
9823 Evaluating expressions is a little more complicated for Ada entities
9824 than it is for entities in languages such as C. The main reason for
9825 this is that Ada provides types whose definition might be dynamic.
9826 One example of such types is variant records. Or another example
9827 would be an array whose bounds can only be known at run time.
9828
9829 The following description is a general guide as to what should be
9830 done (and what should NOT be done) in order to evaluate an expression
9831 involving such types, and when. This does not cover how the semantic
9832 information is encoded by GNAT as this is covered separatly. For the
9833 document used as the reference for the GNAT encoding, see exp_dbug.ads
9834 in the GNAT sources.
9835
9836 Ideally, we should embed each part of this description next to its
9837 associated code. Unfortunately, the amount of code is so vast right
9838 now that it's hard to see whether the code handling a particular
9839 situation might be duplicated or not. One day, when the code is
9840 cleaned up, this guide might become redundant with the comments
9841 inserted in the code, and we might want to remove it.
9842
21649b50
JB
9843 2. ``Fixing'' an Entity, the Simple Case:
9844 -----------------------------------------
9845
284614f0
JB
9846 When evaluating Ada expressions, the tricky issue is that they may
9847 reference entities whose type contents and size are not statically
9848 known. Consider for instance a variant record:
9849
9850 type Rec (Empty : Boolean := True) is record
9851 case Empty is
9852 when True => null;
9853 when False => Value : Integer;
9854 end case;
9855 end record;
9856 Yes : Rec := (Empty => False, Value => 1);
9857 No : Rec := (empty => True);
9858
9859 The size and contents of that record depends on the value of the
9860 descriminant (Rec.Empty). At this point, neither the debugging
9861 information nor the associated type structure in GDB are able to
9862 express such dynamic types. So what the debugger does is to create
9863 "fixed" versions of the type that applies to the specific object.
30baf67b 9864 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9865 which means creating its associated fixed type.
9866
9867 Example: when printing the value of variable "Yes" above, its fixed
9868 type would look like this:
9869
9870 type Rec is record
9871 Empty : Boolean;
9872 Value : Integer;
9873 end record;
9874
9875 On the other hand, if we printed the value of "No", its fixed type
9876 would become:
9877
9878 type Rec is record
9879 Empty : Boolean;
9880 end record;
9881
9882 Things become a little more complicated when trying to fix an entity
9883 with a dynamic type that directly contains another dynamic type,
9884 such as an array of variant records, for instance. There are
9885 two possible cases: Arrays, and records.
9886
21649b50
JB
9887 3. ``Fixing'' Arrays:
9888 ---------------------
9889
9890 The type structure in GDB describes an array in terms of its bounds,
9891 and the type of its elements. By design, all elements in the array
9892 have the same type and we cannot represent an array of variant elements
9893 using the current type structure in GDB. When fixing an array,
9894 we cannot fix the array element, as we would potentially need one
9895 fixed type per element of the array. As a result, the best we can do
9896 when fixing an array is to produce an array whose bounds and size
9897 are correct (allowing us to read it from memory), but without having
9898 touched its element type. Fixing each element will be done later,
9899 when (if) necessary.
9900
9901 Arrays are a little simpler to handle than records, because the same
9902 amount of memory is allocated for each element of the array, even if
1b536f04 9903 the amount of space actually used by each element differs from element
21649b50 9904 to element. Consider for instance the following array of type Rec:
284614f0
JB
9905
9906 type Rec_Array is array (1 .. 2) of Rec;
9907
1b536f04
JB
9908 The actual amount of memory occupied by each element might be different
9909 from element to element, depending on the value of their discriminant.
21649b50 9910 But the amount of space reserved for each element in the array remains
1b536f04 9911 fixed regardless. So we simply need to compute that size using
21649b50
JB
9912 the debugging information available, from which we can then determine
9913 the array size (we multiply the number of elements of the array by
9914 the size of each element).
9915
9916 The simplest case is when we have an array of a constrained element
9917 type. For instance, consider the following type declarations:
9918
9919 type Bounded_String (Max_Size : Integer) is
9920 Length : Integer;
9921 Buffer : String (1 .. Max_Size);
9922 end record;
9923 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9924
9925 In this case, the compiler describes the array as an array of
9926 variable-size elements (identified by its XVS suffix) for which
9927 the size can be read in the parallel XVZ variable.
9928
9929 In the case of an array of an unconstrained element type, the compiler
9930 wraps the array element inside a private PAD type. This type should not
9931 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9932 that we also use the adjective "aligner" in our code to designate
9933 these wrapper types.
9934
1b536f04 9935 In some cases, the size allocated for each element is statically
21649b50
JB
9936 known. In that case, the PAD type already has the correct size,
9937 and the array element should remain unfixed.
9938
9939 But there are cases when this size is not statically known.
9940 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9941
9942 type Dynamic is array (1 .. Five) of Integer;
9943 type Wrapper (Has_Length : Boolean := False) is record
9944 Data : Dynamic;
9945 case Has_Length is
9946 when True => Length : Integer;
9947 when False => null;
9948 end case;
9949 end record;
9950 type Wrapper_Array is array (1 .. 2) of Wrapper;
9951
9952 Hello : Wrapper_Array := (others => (Has_Length => True,
9953 Data => (others => 17),
9954 Length => 1));
9955
9956
9957 The debugging info would describe variable Hello as being an
9958 array of a PAD type. The size of that PAD type is not statically
9959 known, but can be determined using a parallel XVZ variable.
9960 In that case, a copy of the PAD type with the correct size should
9961 be used for the fixed array.
9962
21649b50
JB
9963 3. ``Fixing'' record type objects:
9964 ----------------------------------
9965
9966 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9967 record types. In this case, in order to compute the associated
9968 fixed type, we need to determine the size and offset of each of
9969 its components. This, in turn, requires us to compute the fixed
9970 type of each of these components.
9971
9972 Consider for instance the example:
9973
9974 type Bounded_String (Max_Size : Natural) is record
9975 Str : String (1 .. Max_Size);
9976 Length : Natural;
9977 end record;
9978 My_String : Bounded_String (Max_Size => 10);
9979
9980 In that case, the position of field "Length" depends on the size
9981 of field Str, which itself depends on the value of the Max_Size
21649b50 9982 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9983 we need to fix the type of field Str. Therefore, fixing a variant
9984 record requires us to fix each of its components.
9985
9986 However, if a component does not have a dynamic size, the component
9987 should not be fixed. In particular, fields that use a PAD type
9988 should not fixed. Here is an example where this might happen
9989 (assuming type Rec above):
9990
9991 type Container (Big : Boolean) is record
9992 First : Rec;
9993 After : Integer;
9994 case Big is
9995 when True => Another : Integer;
9996 when False => null;
9997 end case;
9998 end record;
9999 My_Container : Container := (Big => False,
10000 First => (Empty => True),
10001 After => 42);
10002
10003 In that example, the compiler creates a PAD type for component First,
10004 whose size is constant, and then positions the component After just
10005 right after it. The offset of component After is therefore constant
10006 in this case.
10007
10008 The debugger computes the position of each field based on an algorithm
10009 that uses, among other things, the actual position and size of the field
21649b50
JB
10010 preceding it. Let's now imagine that the user is trying to print
10011 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10012 end up computing the offset of field After based on the size of the
10013 fixed version of field First. And since in our example First has
10014 only one actual field, the size of the fixed type is actually smaller
10015 than the amount of space allocated to that field, and thus we would
10016 compute the wrong offset of field After.
10017
21649b50
JB
10018 To make things more complicated, we need to watch out for dynamic
10019 components of variant records (identified by the ___XVL suffix in
10020 the component name). Even if the target type is a PAD type, the size
10021 of that type might not be statically known. So the PAD type needs
10022 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10023 we might end up with the wrong size for our component. This can be
10024 observed with the following type declarations:
284614f0
JB
10025
10026 type Octal is new Integer range 0 .. 7;
10027 type Octal_Array is array (Positive range <>) of Octal;
10028 pragma Pack (Octal_Array);
10029
10030 type Octal_Buffer (Size : Positive) is record
10031 Buffer : Octal_Array (1 .. Size);
10032 Length : Integer;
10033 end record;
10034
10035 In that case, Buffer is a PAD type whose size is unset and needs
10036 to be computed by fixing the unwrapped type.
10037
21649b50
JB
10038 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10039 ----------------------------------------------------------
10040
10041 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10042 thus far, be actually fixed?
10043
10044 The answer is: Only when referencing that element. For instance
10045 when selecting one component of a record, this specific component
10046 should be fixed at that point in time. Or when printing the value
10047 of a record, each component should be fixed before its value gets
10048 printed. Similarly for arrays, the element of the array should be
10049 fixed when printing each element of the array, or when extracting
10050 one element out of that array. On the other hand, fixing should
10051 not be performed on the elements when taking a slice of an array!
10052
31432a67 10053 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10054 size of each field is that we end up also miscomputing the size
10055 of the containing type. This can have adverse results when computing
10056 the value of an entity. GDB fetches the value of an entity based
10057 on the size of its type, and thus a wrong size causes GDB to fetch
10058 the wrong amount of memory. In the case where the computed size is
10059 too small, GDB fetches too little data to print the value of our
31432a67 10060 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10061 past the buffer containing the data =:-o. */
10062
ced9779b
JB
10063/* Evaluate a subexpression of EXP, at index *POS, and return a value
10064 for that subexpression cast to TO_TYPE. Advance *POS over the
10065 subexpression. */
10066
10067static value *
10068ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10069 enum noside noside, struct type *to_type)
10070{
10071 int pc = *pos;
10072
10073 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10074 || exp->elts[pc].opcode == OP_VAR_VALUE)
10075 {
10076 (*pos) += 4;
10077
10078 value *val;
10079 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10080 {
10081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10082 return value_zero (to_type, not_lval);
10083
10084 val = evaluate_var_msym_value (noside,
10085 exp->elts[pc + 1].objfile,
10086 exp->elts[pc + 2].msymbol);
10087 }
10088 else
10089 val = evaluate_var_value (noside,
10090 exp->elts[pc + 1].block,
10091 exp->elts[pc + 2].symbol);
10092
10093 if (noside == EVAL_SKIP)
10094 return eval_skip_value (exp);
10095
10096 val = ada_value_cast (to_type, val);
10097
10098 /* Follow the Ada language semantics that do not allow taking
10099 an address of the result of a cast (view conversion in Ada). */
10100 if (VALUE_LVAL (val) == lval_memory)
10101 {
10102 if (value_lazy (val))
10103 value_fetch_lazy (val);
10104 VALUE_LVAL (val) = not_lval;
10105 }
10106 return val;
10107 }
10108
10109 value *val = evaluate_subexp (to_type, exp, pos, noside);
10110 if (noside == EVAL_SKIP)
10111 return eval_skip_value (exp);
10112 return ada_value_cast (to_type, val);
10113}
10114
284614f0
JB
10115/* Implement the evaluate_exp routine in the exp_descriptor structure
10116 for the Ada language. */
10117
52ce6436 10118static struct value *
ebf56fd3 10119ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10120 int *pos, enum noside noside)
14f9c5c9
AS
10121{
10122 enum exp_opcode op;
b5385fc0 10123 int tem;
14f9c5c9 10124 int pc;
5ec18f2b 10125 int preeval_pos;
14f9c5c9
AS
10126 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10127 struct type *type;
52ce6436 10128 int nargs, oplen;
d2e4a39e 10129 struct value **argvec;
14f9c5c9 10130
d2e4a39e
AS
10131 pc = *pos;
10132 *pos += 1;
14f9c5c9
AS
10133 op = exp->elts[pc].opcode;
10134
d2e4a39e 10135 switch (op)
14f9c5c9
AS
10136 {
10137 default:
10138 *pos -= 1;
6e48bd2c 10139 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10140
10141 if (noside == EVAL_NORMAL)
10142 arg1 = unwrap_value (arg1);
6e48bd2c 10143
edd079d9 10144 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10145 then we need to perform the conversion manually, because
10146 evaluate_subexp_standard doesn't do it. This conversion is
10147 necessary in Ada because the different kinds of float/fixed
10148 types in Ada have different representations.
10149
10150 Similarly, we need to perform the conversion from OP_LONG
10151 ourselves. */
edd079d9 10152 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10153 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10154
10155 return arg1;
4c4b4cd2
PH
10156
10157 case OP_STRING:
10158 {
76a01679 10159 struct value *result;
5b4ee69b 10160
76a01679
JB
10161 *pos -= 1;
10162 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10163 /* The result type will have code OP_STRING, bashed there from
10164 OP_ARRAY. Bash it back. */
78134374 10165 if (value_type (result)->code () == TYPE_CODE_STRING)
67607e24 10166 value_type (result)->set_code (TYPE_CODE_ARRAY);
76a01679 10167 return result;
4c4b4cd2 10168 }
14f9c5c9
AS
10169
10170 case UNOP_CAST:
10171 (*pos) += 2;
10172 type = exp->elts[pc + 1].type;
ced9779b 10173 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10174
4c4b4cd2
PH
10175 case UNOP_QUAL:
10176 (*pos) += 2;
10177 type = exp->elts[pc + 1].type;
10178 return ada_evaluate_subexp (type, exp, pos, noside);
10179
14f9c5c9
AS
10180 case BINOP_ASSIGN:
10181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10182 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10183 {
10184 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10185 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10186 return arg1;
10187 return ada_value_assign (arg1, arg1);
10188 }
003f3813
JB
10189 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10190 except if the lhs of our assignment is a convenience variable.
10191 In the case of assigning to a convenience variable, the lhs
10192 should be exactly the result of the evaluation of the rhs. */
10193 type = value_type (arg1);
10194 if (VALUE_LVAL (arg1) == lval_internalvar)
10195 type = NULL;
10196 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10197 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10198 return arg1;
f411722c
TT
10199 if (VALUE_LVAL (arg1) == lval_internalvar)
10200 {
10201 /* Nothing. */
10202 }
b2188a06 10203 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10204 arg2 = cast_to_fixed (value_type (arg1), arg2);
b2188a06 10205 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
76a01679 10206 error
323e0a4a 10207 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10208 else
df407dfe 10209 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10210 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10211
10212 case BINOP_ADD:
10213 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10214 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10215 if (noside == EVAL_SKIP)
4c4b4cd2 10216 goto nosideret;
78134374 10217 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10218 return (value_from_longest
10219 (value_type (arg1),
10220 value_as_long (arg1) + value_as_long (arg2)));
78134374 10221 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10222 return (value_from_longest
10223 (value_type (arg2),
10224 value_as_long (arg1) + value_as_long (arg2)));
b2188a06
JB
10225 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10226 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10227 && value_type (arg1) != value_type (arg2))
323e0a4a 10228 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10229 /* Do the addition, and cast the result to the type of the first
10230 argument. We cannot cast the result to a reference type, so if
10231 ARG1 is a reference type, find its underlying type. */
10232 type = value_type (arg1);
78134374 10233 while (type->code () == TYPE_CODE_REF)
b7789565 10234 type = TYPE_TARGET_TYPE (type);
f44316fa 10235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10236 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10237
10238 case BINOP_SUB:
10239 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10240 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10241 if (noside == EVAL_SKIP)
4c4b4cd2 10242 goto nosideret;
78134374 10243 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10244 return (value_from_longest
10245 (value_type (arg1),
10246 value_as_long (arg1) - value_as_long (arg2)));
78134374 10247 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10248 return (value_from_longest
10249 (value_type (arg2),
10250 value_as_long (arg1) - value_as_long (arg2)));
b2188a06
JB
10251 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10252 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10253 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10254 error (_("Operands of fixed-point subtraction "
10255 "must have the same type"));
b7789565
JB
10256 /* Do the substraction, and cast the result to the type of the first
10257 argument. We cannot cast the result to a reference type, so if
10258 ARG1 is a reference type, find its underlying type. */
10259 type = value_type (arg1);
78134374 10260 while (type->code () == TYPE_CODE_REF)
b7789565 10261 type = TYPE_TARGET_TYPE (type);
f44316fa 10262 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10263 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10264
10265 case BINOP_MUL:
10266 case BINOP_DIV:
e1578042
JB
10267 case BINOP_REM:
10268 case BINOP_MOD:
14f9c5c9
AS
10269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10270 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10271 if (noside == EVAL_SKIP)
4c4b4cd2 10272 goto nosideret;
e1578042 10273 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10274 {
10275 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10276 return value_zero (value_type (arg1), not_lval);
10277 }
14f9c5c9 10278 else
4c4b4cd2 10279 {
a53b7a21 10280 type = builtin_type (exp->gdbarch)->builtin_double;
b2188a06 10281 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
a53b7a21 10282 arg1 = cast_from_fixed (type, arg1);
b2188a06 10283 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10284 arg2 = cast_from_fixed (type, arg2);
f44316fa 10285 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10286 return ada_value_binop (arg1, arg2, op);
10287 }
10288
4c4b4cd2
PH
10289 case BINOP_EQUAL:
10290 case BINOP_NOTEQUAL:
14f9c5c9 10291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10292 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10293 if (noside == EVAL_SKIP)
76a01679 10294 goto nosideret;
4c4b4cd2 10295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10296 tem = 0;
4c4b4cd2 10297 else
f44316fa
UW
10298 {
10299 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10300 tem = ada_value_equal (arg1, arg2);
10301 }
4c4b4cd2 10302 if (op == BINOP_NOTEQUAL)
76a01679 10303 tem = !tem;
fbb06eb1
UW
10304 type = language_bool_type (exp->language_defn, exp->gdbarch);
10305 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10306
10307 case UNOP_NEG:
10308 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10309 if (noside == EVAL_SKIP)
10310 goto nosideret;
b2188a06 10311 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10312 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10313 else
f44316fa
UW
10314 {
10315 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10316 return value_neg (arg1);
10317 }
4c4b4cd2 10318
2330c6c6
JB
10319 case BINOP_LOGICAL_AND:
10320 case BINOP_LOGICAL_OR:
10321 case UNOP_LOGICAL_NOT:
000d5124
JB
10322 {
10323 struct value *val;
10324
10325 *pos -= 1;
10326 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10327 type = language_bool_type (exp->language_defn, exp->gdbarch);
10328 return value_cast (type, val);
000d5124 10329 }
2330c6c6
JB
10330
10331 case BINOP_BITWISE_AND:
10332 case BINOP_BITWISE_IOR:
10333 case BINOP_BITWISE_XOR:
000d5124
JB
10334 {
10335 struct value *val;
10336
10337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10338 *pos = pc;
10339 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10340
10341 return value_cast (value_type (arg1), val);
10342 }
2330c6c6 10343
14f9c5c9
AS
10344 case OP_VAR_VALUE:
10345 *pos -= 1;
6799def4 10346
14f9c5c9 10347 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10348 {
10349 *pos += 4;
10350 goto nosideret;
10351 }
da5c522f
JB
10352
10353 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10354 /* Only encountered when an unresolved symbol occurs in a
10355 context other than a function call, in which case, it is
52ce6436 10356 invalid. */
323e0a4a 10357 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10358 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10359
10360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10361 {
0c1f74cf 10362 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10363 /* Check to see if this is a tagged type. We also need to handle
10364 the case where the type is a reference to a tagged type, but
10365 we have to be careful to exclude pointers to tagged types.
10366 The latter should be shown as usual (as a pointer), whereas
10367 a reference should mostly be transparent to the user. */
10368 if (ada_is_tagged_type (type, 0)
78134374 10369 || (type->code () == TYPE_CODE_REF
31dbc1c5 10370 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10371 {
10372 /* Tagged types are a little special in the fact that the real
10373 type is dynamic and can only be determined by inspecting the
10374 object's tag. This means that we need to get the object's
10375 value first (EVAL_NORMAL) and then extract the actual object
10376 type from its tag.
10377
10378 Note that we cannot skip the final step where we extract
10379 the object type from its tag, because the EVAL_NORMAL phase
10380 results in dynamic components being resolved into fixed ones.
10381 This can cause problems when trying to print the type
10382 description of tagged types whose parent has a dynamic size:
10383 We use the type name of the "_parent" component in order
10384 to print the name of the ancestor type in the type description.
10385 If that component had a dynamic size, the resolution into
10386 a fixed type would result in the loss of that type name,
10387 thus preventing us from printing the name of the ancestor
10388 type in the type description. */
10389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10390
78134374 10391 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10392 {
10393 struct type *actual_type;
10394
10395 actual_type = type_from_tag (ada_value_tag (arg1));
10396 if (actual_type == NULL)
10397 /* If, for some reason, we were unable to determine
10398 the actual type from the tag, then use the static
10399 approximation that we just computed as a fallback.
10400 This can happen if the debugging information is
10401 incomplete, for instance. */
10402 actual_type = type;
10403 return value_zero (actual_type, not_lval);
10404 }
10405 else
10406 {
10407 /* In the case of a ref, ada_coerce_ref takes care
10408 of determining the actual type. But the evaluation
10409 should return a ref as it should be valid to ask
10410 for its address; so rebuild a ref after coerce. */
10411 arg1 = ada_coerce_ref (arg1);
a65cfae5 10412 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10413 }
10414 }
0c1f74cf 10415
84754697
JB
10416 /* Records and unions for which GNAT encodings have been
10417 generated need to be statically fixed as well.
10418 Otherwise, non-static fixing produces a type where
10419 all dynamic properties are removed, which prevents "ptype"
10420 from being able to completely describe the type.
10421 For instance, a case statement in a variant record would be
10422 replaced by the relevant components based on the actual
10423 value of the discriminants. */
78134374 10424 if ((type->code () == TYPE_CODE_STRUCT
84754697 10425 && dynamic_template_type (type) != NULL)
78134374 10426 || (type->code () == TYPE_CODE_UNION
84754697
JB
10427 && ada_find_parallel_type (type, "___XVU") != NULL))
10428 {
10429 *pos += 4;
10430 return value_zero (to_static_fixed_type (type), not_lval);
10431 }
4c4b4cd2 10432 }
da5c522f
JB
10433
10434 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10435 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10436
10437 case OP_FUNCALL:
10438 (*pos) += 2;
10439
10440 /* Allocate arg vector, including space for the function to be
10441 called in argvec[0] and a terminating NULL. */
10442 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10443 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10444
10445 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10446 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10447 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10448 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10449 else
10450 {
10451 for (tem = 0; tem <= nargs; tem += 1)
10452 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10453 argvec[tem] = 0;
10454
10455 if (noside == EVAL_SKIP)
10456 goto nosideret;
10457 }
10458
ad82864c
JB
10459 if (ada_is_constrained_packed_array_type
10460 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10461 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10462 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
284614f0
JB
10463 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10464 /* This is a packed array that has already been fixed, and
10465 therefore already coerced to a simple array. Nothing further
10466 to do. */
10467 ;
78134374 10468 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10469 {
10470 /* Make sure we dereference references so that all the code below
10471 feels like it's really handling the referenced value. Wrapping
10472 types (for alignment) may be there, so make sure we strip them as
10473 well. */
10474 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10475 }
78134374 10476 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10477 && VALUE_LVAL (argvec[0]) == lval_memory)
10478 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10479
df407dfe 10480 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10481
10482 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10483 them. So, if this is an array typedef (encoding use for array
10484 access types encoded as fat pointers), strip it now. */
78134374 10485 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10486 type = ada_typedef_target_type (type);
10487
78134374 10488 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 10489 {
78134374 10490 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
4c4b4cd2
PH
10491 {
10492 case TYPE_CODE_FUNC:
61ee279c 10493 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10494 break;
10495 case TYPE_CODE_ARRAY:
10496 break;
10497 case TYPE_CODE_STRUCT:
10498 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10499 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10500 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10501 break;
10502 default:
323e0a4a 10503 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10504 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10505 break;
10506 }
10507 }
10508
78134374 10509 switch (type->code ())
4c4b4cd2
PH
10510 {
10511 case TYPE_CODE_FUNC:
10512 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10513 {
7022349d
PA
10514 if (TYPE_TARGET_TYPE (type) == NULL)
10515 error_call_unknown_return_type (NULL);
10516 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10517 }
e71585ff
PA
10518 return call_function_by_hand (argvec[0], NULL,
10519 gdb::make_array_view (argvec + 1,
10520 nargs));
c8ea1972
PH
10521 case TYPE_CODE_INTERNAL_FUNCTION:
10522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10523 /* We don't know anything about what the internal
10524 function might return, but we have to return
10525 something. */
10526 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10527 not_lval);
10528 else
10529 return call_internal_function (exp->gdbarch, exp->language_defn,
10530 argvec[0], nargs, argvec + 1);
10531
4c4b4cd2
PH
10532 case TYPE_CODE_STRUCT:
10533 {
10534 int arity;
10535
4c4b4cd2
PH
10536 arity = ada_array_arity (type);
10537 type = ada_array_element_type (type, nargs);
10538 if (type == NULL)
323e0a4a 10539 error (_("cannot subscript or call a record"));
4c4b4cd2 10540 if (arity != nargs)
323e0a4a 10541 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10543 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10544 return
10545 unwrap_value (ada_value_subscript
10546 (argvec[0], nargs, argvec + 1));
10547 }
10548 case TYPE_CODE_ARRAY:
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 {
10551 type = ada_array_element_type (type, nargs);
10552 if (type == NULL)
323e0a4a 10553 error (_("element type of array unknown"));
4c4b4cd2 10554 else
0a07e705 10555 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10556 }
10557 return
10558 unwrap_value (ada_value_subscript
10559 (ada_coerce_to_simple_array (argvec[0]),
10560 nargs, argvec + 1));
10561 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10562 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10563 {
deede10c 10564 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10565 type = ada_array_element_type (type, nargs);
10566 if (type == NULL)
323e0a4a 10567 error (_("element type of array unknown"));
4c4b4cd2 10568 else
0a07e705 10569 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10570 }
10571 return
deede10c
JB
10572 unwrap_value (ada_value_ptr_subscript (argvec[0],
10573 nargs, argvec + 1));
4c4b4cd2
PH
10574
10575 default:
e1d5a0d2
PH
10576 error (_("Attempt to index or call something other than an "
10577 "array or function"));
4c4b4cd2
PH
10578 }
10579
10580 case TERNOP_SLICE:
10581 {
10582 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10583 struct value *low_bound_val =
10584 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10585 struct value *high_bound_val =
10586 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10587 LONGEST low_bound;
10588 LONGEST high_bound;
5b4ee69b 10589
994b9211
AC
10590 low_bound_val = coerce_ref (low_bound_val);
10591 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10592 low_bound = value_as_long (low_bound_val);
10593 high_bound = value_as_long (high_bound_val);
963a6417 10594
4c4b4cd2
PH
10595 if (noside == EVAL_SKIP)
10596 goto nosideret;
10597
4c4b4cd2
PH
10598 /* If this is a reference to an aligner type, then remove all
10599 the aligners. */
78134374 10600 if (value_type (array)->code () == TYPE_CODE_REF
df407dfe
AC
10601 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10602 TYPE_TARGET_TYPE (value_type (array)) =
10603 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10604
ad82864c 10605 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10606 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10607
10608 /* If this is a reference to an array or an array lvalue,
10609 convert to a pointer. */
78134374
SM
10610 if (value_type (array)->code () == TYPE_CODE_REF
10611 || (value_type (array)->code () == TYPE_CODE_ARRAY
4c4b4cd2
PH
10612 && VALUE_LVAL (array) == lval_memory))
10613 array = value_addr (array);
10614
1265e4aa 10615 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10616 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10617 (value_type (array))))
bff8c71f
TT
10618 return empty_array (ada_type_of_array (array, 0), low_bound,
10619 high_bound);
4c4b4cd2
PH
10620
10621 array = ada_coerce_to_simple_array_ptr (array);
10622
714e53ab
PH
10623 /* If we have more than one level of pointer indirection,
10624 dereference the value until we get only one level. */
78134374
SM
10625 while (value_type (array)->code () == TYPE_CODE_PTR
10626 && (TYPE_TARGET_TYPE (value_type (array))->code ()
714e53ab
PH
10627 == TYPE_CODE_PTR))
10628 array = value_ind (array);
10629
10630 /* Make sure we really do have an array type before going further,
10631 to avoid a SEGV when trying to get the index type or the target
10632 type later down the road if the debug info generated by
10633 the compiler is incorrect or incomplete. */
df407dfe 10634 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10635 error (_("cannot take slice of non-array"));
714e53ab 10636
78134374 10637 if (ada_check_typedef (value_type (array))->code ()
828292f2 10638 == TYPE_CODE_PTR)
4c4b4cd2 10639 {
828292f2
JB
10640 struct type *type0 = ada_check_typedef (value_type (array));
10641
0b5d8877 10642 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10643 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10644 else
10645 {
10646 struct type *arr_type0 =
828292f2 10647 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10648
f5938064
JG
10649 return ada_value_slice_from_ptr (array, arr_type0,
10650 longest_to_int (low_bound),
10651 longest_to_int (high_bound));
4c4b4cd2
PH
10652 }
10653 }
10654 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10655 return array;
10656 else if (high_bound < low_bound)
bff8c71f 10657 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10658 else
529cad9c
PH
10659 return ada_value_slice (array, longest_to_int (low_bound),
10660 longest_to_int (high_bound));
4c4b4cd2 10661 }
14f9c5c9 10662
4c4b4cd2
PH
10663 case UNOP_IN_RANGE:
10664 (*pos) += 2;
10665 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10666 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10667
14f9c5c9 10668 if (noside == EVAL_SKIP)
4c4b4cd2 10669 goto nosideret;
14f9c5c9 10670
78134374 10671 switch (type->code ())
4c4b4cd2
PH
10672 {
10673 default:
e1d5a0d2
PH
10674 lim_warning (_("Membership test incompletely implemented; "
10675 "always returns true"));
fbb06eb1
UW
10676 type = language_bool_type (exp->language_defn, exp->gdbarch);
10677 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10678
10679 case TYPE_CODE_RANGE:
030b4912
UW
10680 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10681 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10682 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10684 type = language_bool_type (exp->language_defn, exp->gdbarch);
10685 return
10686 value_from_longest (type,
4c4b4cd2
PH
10687 (value_less (arg1, arg3)
10688 || value_equal (arg1, arg3))
10689 && (value_less (arg2, arg1)
10690 || value_equal (arg2, arg1)));
10691 }
10692
10693 case BINOP_IN_BOUNDS:
14f9c5c9 10694 (*pos) += 2;
4c4b4cd2
PH
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10697
4c4b4cd2
PH
10698 if (noside == EVAL_SKIP)
10699 goto nosideret;
14f9c5c9 10700
4c4b4cd2 10701 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10702 {
10703 type = language_bool_type (exp->language_defn, exp->gdbarch);
10704 return value_zero (type, not_lval);
10705 }
14f9c5c9 10706
4c4b4cd2 10707 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10708
1eea4ebd
UW
10709 type = ada_index_type (value_type (arg2), tem, "range");
10710 if (!type)
10711 type = value_type (arg1);
14f9c5c9 10712
1eea4ebd
UW
10713 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10714 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10715
f44316fa
UW
10716 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10717 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10718 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10719 return
fbb06eb1 10720 value_from_longest (type,
4c4b4cd2
PH
10721 (value_less (arg1, arg3)
10722 || value_equal (arg1, arg3))
10723 && (value_less (arg2, arg1)
10724 || value_equal (arg2, arg1)));
10725
10726 case TERNOP_IN_RANGE:
10727 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730
10731 if (noside == EVAL_SKIP)
10732 goto nosideret;
10733
f44316fa
UW
10734 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10736 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10737 return
fbb06eb1 10738 value_from_longest (type,
4c4b4cd2
PH
10739 (value_less (arg1, arg3)
10740 || value_equal (arg1, arg3))
10741 && (value_less (arg2, arg1)
10742 || value_equal (arg2, arg1)));
10743
10744 case OP_ATR_FIRST:
10745 case OP_ATR_LAST:
10746 case OP_ATR_LENGTH:
10747 {
76a01679 10748 struct type *type_arg;
5b4ee69b 10749
76a01679
JB
10750 if (exp->elts[*pos].opcode == OP_TYPE)
10751 {
10752 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10753 arg1 = NULL;
5bc23cb3 10754 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10755 }
10756 else
10757 {
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10759 type_arg = NULL;
10760 }
10761
10762 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10763 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10764 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10765 *pos += 4;
10766
10767 if (noside == EVAL_SKIP)
10768 goto nosideret;
680e1bee
TT
10769 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10770 {
10771 if (type_arg == NULL)
10772 type_arg = value_type (arg1);
76a01679 10773
680e1bee
TT
10774 if (ada_is_constrained_packed_array_type (type_arg))
10775 type_arg = decode_constrained_packed_array_type (type_arg);
10776
10777 if (!discrete_type_p (type_arg))
10778 {
10779 switch (op)
10780 {
10781 default: /* Should never happen. */
10782 error (_("unexpected attribute encountered"));
10783 case OP_ATR_FIRST:
10784 case OP_ATR_LAST:
10785 type_arg = ada_index_type (type_arg, tem,
10786 ada_attribute_name (op));
10787 break;
10788 case OP_ATR_LENGTH:
10789 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10790 break;
10791 }
10792 }
10793
10794 return value_zero (type_arg, not_lval);
10795 }
10796 else if (type_arg == NULL)
76a01679
JB
10797 {
10798 arg1 = ada_coerce_ref (arg1);
10799
ad82864c 10800 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10801 arg1 = ada_coerce_to_simple_array (arg1);
10802
aa4fb036 10803 if (op == OP_ATR_LENGTH)
1eea4ebd 10804 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10805 else
10806 {
10807 type = ada_index_type (value_type (arg1), tem,
10808 ada_attribute_name (op));
10809 if (type == NULL)
10810 type = builtin_type (exp->gdbarch)->builtin_int;
10811 }
76a01679 10812
76a01679
JB
10813 switch (op)
10814 {
10815 default: /* Should never happen. */
323e0a4a 10816 error (_("unexpected attribute encountered"));
76a01679 10817 case OP_ATR_FIRST:
1eea4ebd
UW
10818 return value_from_longest
10819 (type, ada_array_bound (arg1, tem, 0));
76a01679 10820 case OP_ATR_LAST:
1eea4ebd
UW
10821 return value_from_longest
10822 (type, ada_array_bound (arg1, tem, 1));
76a01679 10823 case OP_ATR_LENGTH:
1eea4ebd
UW
10824 return value_from_longest
10825 (type, ada_array_length (arg1, tem));
76a01679
JB
10826 }
10827 }
10828 else if (discrete_type_p (type_arg))
10829 {
10830 struct type *range_type;
0d5cff50 10831 const char *name = ada_type_name (type_arg);
5b4ee69b 10832
76a01679 10833 range_type = NULL;
78134374 10834 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
28c85d6c 10835 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10836 if (range_type == NULL)
10837 range_type = type_arg;
10838 switch (op)
10839 {
10840 default:
323e0a4a 10841 error (_("unexpected attribute encountered"));
76a01679 10842 case OP_ATR_FIRST:
690cc4eb 10843 return value_from_longest
43bbcdc2 10844 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10845 case OP_ATR_LAST:
690cc4eb 10846 return value_from_longest
43bbcdc2 10847 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10848 case OP_ATR_LENGTH:
323e0a4a 10849 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10850 }
10851 }
78134374 10852 else if (type_arg->code () == TYPE_CODE_FLT)
323e0a4a 10853 error (_("unimplemented type attribute"));
76a01679
JB
10854 else
10855 {
10856 LONGEST low, high;
10857
ad82864c
JB
10858 if (ada_is_constrained_packed_array_type (type_arg))
10859 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10860
aa4fb036 10861 if (op == OP_ATR_LENGTH)
1eea4ebd 10862 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10863 else
10864 {
10865 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10866 if (type == NULL)
10867 type = builtin_type (exp->gdbarch)->builtin_int;
10868 }
1eea4ebd 10869
76a01679
JB
10870 switch (op)
10871 {
10872 default:
323e0a4a 10873 error (_("unexpected attribute encountered"));
76a01679 10874 case OP_ATR_FIRST:
1eea4ebd 10875 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10876 return value_from_longest (type, low);
10877 case OP_ATR_LAST:
1eea4ebd 10878 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10879 return value_from_longest (type, high);
10880 case OP_ATR_LENGTH:
1eea4ebd
UW
10881 low = ada_array_bound_from_type (type_arg, tem, 0);
10882 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10883 return value_from_longest (type, high - low + 1);
10884 }
10885 }
14f9c5c9
AS
10886 }
10887
4c4b4cd2
PH
10888 case OP_ATR_TAG:
10889 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10890 if (noside == EVAL_SKIP)
76a01679 10891 goto nosideret;
4c4b4cd2
PH
10892
10893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10894 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10895
10896 return ada_value_tag (arg1);
10897
10898 case OP_ATR_MIN:
10899 case OP_ATR_MAX:
10900 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10902 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10903 if (noside == EVAL_SKIP)
76a01679 10904 goto nosideret;
d2e4a39e 10905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10906 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10907 else
f44316fa
UW
10908 {
10909 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10910 return value_binop (arg1, arg2,
10911 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10912 }
14f9c5c9 10913
4c4b4cd2
PH
10914 case OP_ATR_MODULUS:
10915 {
31dedfee 10916 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10917
5b4ee69b 10918 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10919 if (noside == EVAL_SKIP)
10920 goto nosideret;
4c4b4cd2 10921
76a01679 10922 if (!ada_is_modular_type (type_arg))
323e0a4a 10923 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10924
76a01679
JB
10925 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10926 ada_modulus (type_arg));
4c4b4cd2
PH
10927 }
10928
10929
10930 case OP_ATR_POS:
10931 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10932 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10933 if (noside == EVAL_SKIP)
76a01679 10934 goto nosideret;
3cb382c9
UW
10935 type = builtin_type (exp->gdbarch)->builtin_int;
10936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10937 return value_zero (type, not_lval);
14f9c5c9 10938 else
3cb382c9 10939 return value_pos_atr (type, arg1);
14f9c5c9 10940
4c4b4cd2
PH
10941 case OP_ATR_SIZE:
10942 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10943 type = value_type (arg1);
10944
10945 /* If the argument is a reference, then dereference its type, since
10946 the user is really asking for the size of the actual object,
10947 not the size of the pointer. */
78134374 10948 if (type->code () == TYPE_CODE_REF)
8c1c099f
JB
10949 type = TYPE_TARGET_TYPE (type);
10950
4c4b4cd2 10951 if (noside == EVAL_SKIP)
76a01679 10952 goto nosideret;
4c4b4cd2 10953 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10954 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10955 else
22601c15 10956 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10957 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10958
10959 case OP_ATR_VAL:
10960 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10962 type = exp->elts[pc + 2].type;
14f9c5c9 10963 if (noside == EVAL_SKIP)
76a01679 10964 goto nosideret;
4c4b4cd2 10965 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10966 return value_zero (type, not_lval);
4c4b4cd2 10967 else
76a01679 10968 return value_val_atr (type, arg1);
4c4b4cd2
PH
10969
10970 case BINOP_EXP:
10971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973 if (noside == EVAL_SKIP)
10974 goto nosideret;
10975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10976 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10977 else
f44316fa
UW
10978 {
10979 /* For integer exponentiation operations,
10980 only promote the first argument. */
10981 if (is_integral_type (value_type (arg2)))
10982 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10983 else
10984 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10985
10986 return value_binop (arg1, arg2, op);
10987 }
4c4b4cd2
PH
10988
10989 case UNOP_PLUS:
10990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10991 if (noside == EVAL_SKIP)
10992 goto nosideret;
10993 else
10994 return arg1;
10995
10996 case UNOP_ABS:
10997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10998 if (noside == EVAL_SKIP)
10999 goto nosideret;
f44316fa 11000 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11001 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11002 return value_neg (arg1);
14f9c5c9 11003 else
4c4b4cd2 11004 return arg1;
14f9c5c9
AS
11005
11006 case UNOP_IND:
5ec18f2b 11007 preeval_pos = *pos;
6b0d7253 11008 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11009 if (noside == EVAL_SKIP)
4c4b4cd2 11010 goto nosideret;
df407dfe 11011 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11012 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11013 {
11014 if (ada_is_array_descriptor_type (type))
11015 /* GDB allows dereferencing GNAT array descriptors. */
11016 {
11017 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11018
4c4b4cd2 11019 if (arrType == NULL)
323e0a4a 11020 error (_("Attempt to dereference null array pointer."));
00a4c844 11021 return value_at_lazy (arrType, 0);
4c4b4cd2 11022 }
78134374
SM
11023 else if (type->code () == TYPE_CODE_PTR
11024 || type->code () == TYPE_CODE_REF
4c4b4cd2 11025 /* In C you can dereference an array to get the 1st elt. */
78134374 11026 || type->code () == TYPE_CODE_ARRAY)
714e53ab 11027 {
5ec18f2b
JG
11028 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11029 only be determined by inspecting the object's tag.
11030 This means that we need to evaluate completely the
11031 expression in order to get its type. */
11032
78134374
SM
11033 if ((type->code () == TYPE_CODE_REF
11034 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11035 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11036 {
11037 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11038 EVAL_NORMAL);
11039 type = value_type (ada_value_ind (arg1));
11040 }
11041 else
11042 {
11043 type = to_static_fixed_type
11044 (ada_aligned_type
11045 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11046 }
c1b5a1a6 11047 ada_ensure_varsize_limit (type);
714e53ab
PH
11048 return value_zero (type, lval_memory);
11049 }
78134374 11050 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11051 {
11052 /* GDB allows dereferencing an int. */
11053 if (expect_type == NULL)
11054 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11055 lval_memory);
11056 else
11057 {
11058 expect_type =
11059 to_static_fixed_type (ada_aligned_type (expect_type));
11060 return value_zero (expect_type, lval_memory);
11061 }
11062 }
4c4b4cd2 11063 else
323e0a4a 11064 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11065 }
0963b4bd 11066 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11067 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11068
78134374 11069 if (type->code () == TYPE_CODE_INT)
96967637
JB
11070 /* GDB allows dereferencing an int. If we were given
11071 the expect_type, then use that as the target type.
11072 Otherwise, assume that the target type is an int. */
11073 {
11074 if (expect_type != NULL)
11075 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11076 arg1));
11077 else
11078 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11079 (CORE_ADDR) value_as_address (arg1));
11080 }
6b0d7253 11081
4c4b4cd2
PH
11082 if (ada_is_array_descriptor_type (type))
11083 /* GDB allows dereferencing GNAT array descriptors. */
11084 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11085 else
4c4b4cd2 11086 return ada_value_ind (arg1);
14f9c5c9
AS
11087
11088 case STRUCTOP_STRUCT:
11089 tem = longest_to_int (exp->elts[pc + 1].longconst);
11090 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11091 preeval_pos = *pos;
14f9c5c9
AS
11092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11093 if (noside == EVAL_SKIP)
4c4b4cd2 11094 goto nosideret;
14f9c5c9 11095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11096 {
df407dfe 11097 struct type *type1 = value_type (arg1);
5b4ee69b 11098
76a01679
JB
11099 if (ada_is_tagged_type (type1, 1))
11100 {
11101 type = ada_lookup_struct_elt_type (type1,
11102 &exp->elts[pc + 2].string,
988f6b3d 11103 1, 1);
5ec18f2b
JG
11104
11105 /* If the field is not found, check if it exists in the
11106 extension of this object's type. This means that we
11107 need to evaluate completely the expression. */
11108
76a01679 11109 if (type == NULL)
5ec18f2b
JG
11110 {
11111 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11112 EVAL_NORMAL);
11113 arg1 = ada_value_struct_elt (arg1,
11114 &exp->elts[pc + 2].string,
11115 0);
11116 arg1 = unwrap_value (arg1);
11117 type = value_type (ada_to_fixed_value (arg1));
11118 }
76a01679
JB
11119 }
11120 else
11121 type =
11122 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11123 0);
76a01679
JB
11124
11125 return value_zero (ada_aligned_type (type), lval_memory);
11126 }
14f9c5c9 11127 else
a579cd9a
MW
11128 {
11129 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11130 arg1 = unwrap_value (arg1);
11131 return ada_to_fixed_value (arg1);
11132 }
284614f0 11133
14f9c5c9 11134 case OP_TYPE:
4c4b4cd2
PH
11135 /* The value is not supposed to be used. This is here to make it
11136 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11137 (*pos) += 2;
11138 if (noside == EVAL_SKIP)
4c4b4cd2 11139 goto nosideret;
14f9c5c9 11140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11141 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11142 else
323e0a4a 11143 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11144
11145 case OP_AGGREGATE:
11146 case OP_CHOICES:
11147 case OP_OTHERS:
11148 case OP_DISCRETE_RANGE:
11149 case OP_POSITIONAL:
11150 case OP_NAME:
11151 if (noside == EVAL_NORMAL)
11152 switch (op)
11153 {
11154 case OP_NAME:
11155 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11156 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11157 case OP_AGGREGATE:
11158 error (_("Aggregates only allowed on the right of an assignment"));
11159 default:
0963b4bd
MS
11160 internal_error (__FILE__, __LINE__,
11161 _("aggregate apparently mangled"));
52ce6436
PH
11162 }
11163
11164 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11165 *pos += oplen - 1;
11166 for (tem = 0; tem < nargs; tem += 1)
11167 ada_evaluate_subexp (NULL, exp, pos, noside);
11168 goto nosideret;
14f9c5c9
AS
11169 }
11170
11171nosideret:
ced9779b 11172 return eval_skip_value (exp);
14f9c5c9 11173}
14f9c5c9 11174\f
d2e4a39e 11175
4c4b4cd2 11176 /* Fixed point */
14f9c5c9
AS
11177
11178/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11179 type name that encodes the 'small and 'delta information.
4c4b4cd2 11180 Otherwise, return NULL. */
14f9c5c9 11181
d2e4a39e 11182static const char *
b2188a06 11183gnat_encoded_fixed_type_info (struct type *type)
14f9c5c9 11184{
d2e4a39e 11185 const char *name = ada_type_name (type);
78134374 11186 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11187
d2e4a39e
AS
11188 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11189 {
14f9c5c9 11190 const char *tail = strstr (name, "___XF_");
5b4ee69b 11191
14f9c5c9 11192 if (tail == NULL)
4c4b4cd2 11193 return NULL;
d2e4a39e 11194 else
4c4b4cd2 11195 return tail + 5;
14f9c5c9
AS
11196 }
11197 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
b2188a06 11198 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11199 else
11200 return NULL;
11201}
11202
4c4b4cd2 11203/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11204
11205int
b2188a06 11206ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11207{
b2188a06 11208 return gnat_encoded_fixed_type_info (type) != NULL;
14f9c5c9
AS
11209}
11210
4c4b4cd2
PH
11211/* Return non-zero iff TYPE represents a System.Address type. */
11212
11213int
11214ada_is_system_address_type (struct type *type)
11215{
7d93a1e0 11216 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11217}
11218
14f9c5c9 11219/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11220 type, return the target floating-point type to be used to represent
11221 of this type during internal computation. */
11222
11223static struct type *
11224ada_scaling_type (struct type *type)
11225{
11226 return builtin_type (get_type_arch (type))->builtin_long_double;
11227}
11228
11229/* Assuming that TYPE is the representation of an Ada fixed-point
11230 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11231 delta cannot be determined. */
14f9c5c9 11232
50eff16b 11233struct value *
b2188a06 11234gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11235{
b2188a06 11236 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11237 struct type *scale_type = ada_scaling_type (type);
11238
11239 long long num, den;
11240
11241 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11242 return nullptr;
d2e4a39e 11243 else
50eff16b
UW
11244 return value_binop (value_from_longest (scale_type, num),
11245 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11246}
11247
b2188a06
JB
11248/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11249 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11250
50eff16b
UW
11251struct value *
11252ada_scaling_factor (struct type *type)
14f9c5c9 11253{
b2188a06 11254 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11255 struct type *scale_type = ada_scaling_type (type);
11256
11257 long long num0, den0, num1, den1;
14f9c5c9 11258 int n;
d2e4a39e 11259
50eff16b 11260 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11261 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11262
11263 if (n < 2)
50eff16b 11264 return value_from_longest (scale_type, 1);
14f9c5c9 11265 else if (n == 4)
50eff16b
UW
11266 return value_binop (value_from_longest (scale_type, num1),
11267 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11268 else
50eff16b
UW
11269 return value_binop (value_from_longest (scale_type, num0),
11270 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11271}
11272
14f9c5c9 11273\f
d2e4a39e 11274
4c4b4cd2 11275 /* Range types */
14f9c5c9
AS
11276
11277/* Scan STR beginning at position K for a discriminant name, and
11278 return the value of that discriminant field of DVAL in *PX. If
11279 PNEW_K is not null, put the position of the character beyond the
11280 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11281 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11282
11283static int
108d56a4 11284scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11285 int *pnew_k)
14f9c5c9
AS
11286{
11287 static char *bound_buffer = NULL;
11288 static size_t bound_buffer_len = 0;
5da1a4d3 11289 const char *pstart, *pend, *bound;
d2e4a39e 11290 struct value *bound_val;
14f9c5c9
AS
11291
11292 if (dval == NULL || str == NULL || str[k] == '\0')
11293 return 0;
11294
5da1a4d3
SM
11295 pstart = str + k;
11296 pend = strstr (pstart, "__");
14f9c5c9
AS
11297 if (pend == NULL)
11298 {
5da1a4d3 11299 bound = pstart;
14f9c5c9
AS
11300 k += strlen (bound);
11301 }
d2e4a39e 11302 else
14f9c5c9 11303 {
5da1a4d3
SM
11304 int len = pend - pstart;
11305
11306 /* Strip __ and beyond. */
11307 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11308 strncpy (bound_buffer, pstart, len);
11309 bound_buffer[len] = '\0';
11310
14f9c5c9 11311 bound = bound_buffer;
d2e4a39e 11312 k = pend - str;
14f9c5c9 11313 }
d2e4a39e 11314
df407dfe 11315 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11316 if (bound_val == NULL)
11317 return 0;
11318
11319 *px = value_as_long (bound_val);
11320 if (pnew_k != NULL)
11321 *pnew_k = k;
11322 return 1;
11323}
11324
11325/* Value of variable named NAME in the current environment. If
11326 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11327 otherwise causes an error with message ERR_MSG. */
11328
d2e4a39e 11329static struct value *
edb0c9cb 11330get_var_value (const char *name, const char *err_msg)
14f9c5c9 11331{
b5ec771e 11332 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11333
54d343a2 11334 std::vector<struct block_symbol> syms;
b5ec771e
PA
11335 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11336 get_selected_block (0),
11337 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11338
11339 if (nsyms != 1)
11340 {
11341 if (err_msg == NULL)
4c4b4cd2 11342 return 0;
14f9c5c9 11343 else
8a3fe4f8 11344 error (("%s"), err_msg);
14f9c5c9
AS
11345 }
11346
54d343a2 11347 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11348}
d2e4a39e 11349
edb0c9cb
PA
11350/* Value of integer variable named NAME in the current environment.
11351 If no such variable is found, returns false. Otherwise, sets VALUE
11352 to the variable's value and returns true. */
4c4b4cd2 11353
edb0c9cb
PA
11354bool
11355get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11356{
4c4b4cd2 11357 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11358
14f9c5c9 11359 if (var_val == 0)
edb0c9cb
PA
11360 return false;
11361
11362 value = value_as_long (var_val);
11363 return true;
14f9c5c9 11364}
d2e4a39e 11365
14f9c5c9
AS
11366
11367/* Return a range type whose base type is that of the range type named
11368 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11369 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11370 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11371 corresponding range type from debug information; fall back to using it
11372 if symbol lookup fails. If a new type must be created, allocate it
11373 like ORIG_TYPE was. The bounds information, in general, is encoded
11374 in NAME, the base type given in the named range type. */
14f9c5c9 11375
d2e4a39e 11376static struct type *
28c85d6c 11377to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11378{
0d5cff50 11379 const char *name;
14f9c5c9 11380 struct type *base_type;
108d56a4 11381 const char *subtype_info;
14f9c5c9 11382
28c85d6c 11383 gdb_assert (raw_type != NULL);
7d93a1e0 11384 gdb_assert (raw_type->name () != NULL);
dddfab26 11385
78134374 11386 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11387 base_type = TYPE_TARGET_TYPE (raw_type);
11388 else
11389 base_type = raw_type;
11390
7d93a1e0 11391 name = raw_type->name ();
14f9c5c9
AS
11392 subtype_info = strstr (name, "___XD");
11393 if (subtype_info == NULL)
690cc4eb 11394 {
43bbcdc2
PH
11395 LONGEST L = ada_discrete_type_low_bound (raw_type);
11396 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11397
690cc4eb
PH
11398 if (L < INT_MIN || U > INT_MAX)
11399 return raw_type;
11400 else
0c9c3474
SA
11401 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11402 L, U);
690cc4eb 11403 }
14f9c5c9
AS
11404 else
11405 {
11406 static char *name_buf = NULL;
11407 static size_t name_len = 0;
11408 int prefix_len = subtype_info - name;
11409 LONGEST L, U;
11410 struct type *type;
108d56a4 11411 const char *bounds_str;
14f9c5c9
AS
11412 int n;
11413
11414 GROW_VECT (name_buf, name_len, prefix_len + 5);
11415 strncpy (name_buf, name, prefix_len);
11416 name_buf[prefix_len] = '\0';
11417
11418 subtype_info += 5;
11419 bounds_str = strchr (subtype_info, '_');
11420 n = 1;
11421
d2e4a39e 11422 if (*subtype_info == 'L')
4c4b4cd2
PH
11423 {
11424 if (!ada_scan_number (bounds_str, n, &L, &n)
11425 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11426 return raw_type;
11427 if (bounds_str[n] == '_')
11428 n += 2;
0963b4bd 11429 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11430 n += 1;
11431 subtype_info += 1;
11432 }
d2e4a39e 11433 else
4c4b4cd2 11434 {
4c4b4cd2 11435 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11436 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11437 {
323e0a4a 11438 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11439 L = 1;
11440 }
11441 }
14f9c5c9 11442
d2e4a39e 11443 if (*subtype_info == 'U')
4c4b4cd2
PH
11444 {
11445 if (!ada_scan_number (bounds_str, n, &U, &n)
11446 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11447 return raw_type;
11448 }
d2e4a39e 11449 else
4c4b4cd2 11450 {
4c4b4cd2 11451 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11452 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11453 {
323e0a4a 11454 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11455 U = L;
11456 }
11457 }
14f9c5c9 11458
0c9c3474
SA
11459 type = create_static_range_type (alloc_type_copy (raw_type),
11460 base_type, L, U);
f5a91472
JB
11461 /* create_static_range_type alters the resulting type's length
11462 to match the size of the base_type, which is not what we want.
11463 Set it back to the original range type's length. */
11464 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11465 type->set_name (name);
14f9c5c9
AS
11466 return type;
11467 }
11468}
11469
4c4b4cd2
PH
11470/* True iff NAME is the name of a range type. */
11471
14f9c5c9 11472int
d2e4a39e 11473ada_is_range_type_name (const char *name)
14f9c5c9
AS
11474{
11475 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11476}
14f9c5c9 11477\f
d2e4a39e 11478
4c4b4cd2
PH
11479 /* Modular types */
11480
11481/* True iff TYPE is an Ada modular type. */
14f9c5c9 11482
14f9c5c9 11483int
d2e4a39e 11484ada_is_modular_type (struct type *type)
14f9c5c9 11485{
18af8284 11486 struct type *subranged_type = get_base_type (type);
14f9c5c9 11487
78134374
SM
11488 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11489 && subranged_type->code () == TYPE_CODE_INT
4c4b4cd2 11490 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11491}
11492
4c4b4cd2
PH
11493/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11494
61ee279c 11495ULONGEST
0056e4d5 11496ada_modulus (struct type *type)
14f9c5c9 11497{
43bbcdc2 11498 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11499}
d2e4a39e 11500\f
f7f9143b
JB
11501
11502/* Ada exception catchpoint support:
11503 ---------------------------------
11504
11505 We support 3 kinds of exception catchpoints:
11506 . catchpoints on Ada exceptions
11507 . catchpoints on unhandled Ada exceptions
11508 . catchpoints on failed assertions
11509
11510 Exceptions raised during failed assertions, or unhandled exceptions
11511 could perfectly be caught with the general catchpoint on Ada exceptions.
11512 However, we can easily differentiate these two special cases, and having
11513 the option to distinguish these two cases from the rest can be useful
11514 to zero-in on certain situations.
11515
11516 Exception catchpoints are a specialized form of breakpoint,
11517 since they rely on inserting breakpoints inside known routines
11518 of the GNAT runtime. The implementation therefore uses a standard
11519 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11520 of breakpoint_ops.
11521
0259addd
JB
11522 Support in the runtime for exception catchpoints have been changed
11523 a few times already, and these changes affect the implementation
11524 of these catchpoints. In order to be able to support several
11525 variants of the runtime, we use a sniffer that will determine
28010a5d 11526 the runtime variant used by the program being debugged. */
f7f9143b 11527
82eacd52
JB
11528/* Ada's standard exceptions.
11529
11530 The Ada 83 standard also defined Numeric_Error. But there so many
11531 situations where it was unclear from the Ada 83 Reference Manual
11532 (RM) whether Constraint_Error or Numeric_Error should be raised,
11533 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11534 Interpretation saying that anytime the RM says that Numeric_Error
11535 should be raised, the implementation may raise Constraint_Error.
11536 Ada 95 went one step further and pretty much removed Numeric_Error
11537 from the list of standard exceptions (it made it a renaming of
11538 Constraint_Error, to help preserve compatibility when compiling
11539 an Ada83 compiler). As such, we do not include Numeric_Error from
11540 this list of standard exceptions. */
3d0b0fa3 11541
a121b7c1 11542static const char *standard_exc[] = {
3d0b0fa3
JB
11543 "constraint_error",
11544 "program_error",
11545 "storage_error",
11546 "tasking_error"
11547};
11548
0259addd
JB
11549typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11550
11551/* A structure that describes how to support exception catchpoints
11552 for a given executable. */
11553
11554struct exception_support_info
11555{
11556 /* The name of the symbol to break on in order to insert
11557 a catchpoint on exceptions. */
11558 const char *catch_exception_sym;
11559
11560 /* The name of the symbol to break on in order to insert
11561 a catchpoint on unhandled exceptions. */
11562 const char *catch_exception_unhandled_sym;
11563
11564 /* The name of the symbol to break on in order to insert
11565 a catchpoint on failed assertions. */
11566 const char *catch_assert_sym;
11567
9f757bf7
XR
11568 /* The name of the symbol to break on in order to insert
11569 a catchpoint on exception handling. */
11570 const char *catch_handlers_sym;
11571
0259addd
JB
11572 /* Assuming that the inferior just triggered an unhandled exception
11573 catchpoint, this function is responsible for returning the address
11574 in inferior memory where the name of that exception is stored.
11575 Return zero if the address could not be computed. */
11576 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11577};
11578
11579static CORE_ADDR ada_unhandled_exception_name_addr (void);
11580static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11581
11582/* The following exception support info structure describes how to
11583 implement exception catchpoints with the latest version of the
ca683e3a 11584 Ada runtime (as of 2019-08-??). */
0259addd
JB
11585
11586static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11587{
11588 "__gnat_debug_raise_exception", /* catch_exception_sym */
11589 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11590 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11591 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11592 ada_unhandled_exception_name_addr
11593};
11594
11595/* The following exception support info structure describes how to
11596 implement exception catchpoints with an earlier version of the
11597 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11598
11599static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11600{
11601 "__gnat_debug_raise_exception", /* catch_exception_sym */
11602 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11603 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11604 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11605 ada_unhandled_exception_name_addr
11606};
11607
11608/* The following exception support info structure describes how to
11609 implement exception catchpoints with a slightly older version
11610 of the Ada runtime. */
11611
11612static const struct exception_support_info exception_support_info_fallback =
11613{
11614 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11615 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11616 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11617 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11618 ada_unhandled_exception_name_addr_from_raise
11619};
11620
f17011e0
JB
11621/* Return nonzero if we can detect the exception support routines
11622 described in EINFO.
11623
11624 This function errors out if an abnormal situation is detected
11625 (for instance, if we find the exception support routines, but
11626 that support is found to be incomplete). */
11627
11628static int
11629ada_has_this_exception_support (const struct exception_support_info *einfo)
11630{
11631 struct symbol *sym;
11632
11633 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11634 that should be compiled with debugging information. As a result, we
11635 expect to find that symbol in the symtabs. */
11636
11637 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11638 if (sym == NULL)
a6af7abe
JB
11639 {
11640 /* Perhaps we did not find our symbol because the Ada runtime was
11641 compiled without debugging info, or simply stripped of it.
11642 It happens on some GNU/Linux distributions for instance, where
11643 users have to install a separate debug package in order to get
11644 the runtime's debugging info. In that situation, let the user
11645 know why we cannot insert an Ada exception catchpoint.
11646
11647 Note: Just for the purpose of inserting our Ada exception
11648 catchpoint, we could rely purely on the associated minimal symbol.
11649 But we would be operating in degraded mode anyway, since we are
11650 still lacking the debugging info needed later on to extract
11651 the name of the exception being raised (this name is printed in
11652 the catchpoint message, and is also used when trying to catch
11653 a specific exception). We do not handle this case for now. */
3b7344d5 11654 struct bound_minimal_symbol msym
1c8e84b0
JB
11655 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11656
3b7344d5 11657 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11658 error (_("Your Ada runtime appears to be missing some debugging "
11659 "information.\nCannot insert Ada exception catchpoint "
11660 "in this configuration."));
11661
11662 return 0;
11663 }
f17011e0
JB
11664
11665 /* Make sure that the symbol we found corresponds to a function. */
11666
11667 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11668 {
11669 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11670 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11671 return 0;
11672 }
11673
11674 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11675 if (sym == NULL)
11676 {
11677 struct bound_minimal_symbol msym
11678 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11679
11680 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11681 error (_("Your Ada runtime appears to be missing some debugging "
11682 "information.\nCannot insert Ada exception catchpoint "
11683 "in this configuration."));
11684
11685 return 0;
11686 }
11687
11688 /* Make sure that the symbol we found corresponds to a function. */
11689
11690 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11691 {
11692 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11693 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11694 return 0;
11695 }
f17011e0
JB
11696
11697 return 1;
11698}
11699
0259addd
JB
11700/* Inspect the Ada runtime and determine which exception info structure
11701 should be used to provide support for exception catchpoints.
11702
3eecfa55
JB
11703 This function will always set the per-inferior exception_info,
11704 or raise an error. */
0259addd
JB
11705
11706static void
11707ada_exception_support_info_sniffer (void)
11708{
3eecfa55 11709 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11710
11711 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11712 if (data->exception_info != NULL)
0259addd
JB
11713 return;
11714
11715 /* Check the latest (default) exception support info. */
f17011e0 11716 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11717 {
3eecfa55 11718 data->exception_info = &default_exception_support_info;
0259addd
JB
11719 return;
11720 }
11721
ca683e3a
AO
11722 /* Try the v0 exception suport info. */
11723 if (ada_has_this_exception_support (&exception_support_info_v0))
11724 {
11725 data->exception_info = &exception_support_info_v0;
11726 return;
11727 }
11728
0259addd 11729 /* Try our fallback exception suport info. */
f17011e0 11730 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11731 {
3eecfa55 11732 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11733 return;
11734 }
11735
11736 /* Sometimes, it is normal for us to not be able to find the routine
11737 we are looking for. This happens when the program is linked with
11738 the shared version of the GNAT runtime, and the program has not been
11739 started yet. Inform the user of these two possible causes if
11740 applicable. */
11741
ccefe4c4 11742 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11743 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11744
11745 /* If the symbol does not exist, then check that the program is
11746 already started, to make sure that shared libraries have been
11747 loaded. If it is not started, this may mean that the symbol is
11748 in a shared library. */
11749
e99b03dc 11750 if (inferior_ptid.pid () == 0)
0259addd
JB
11751 error (_("Unable to insert catchpoint. Try to start the program first."));
11752
11753 /* At this point, we know that we are debugging an Ada program and
11754 that the inferior has been started, but we still are not able to
0963b4bd 11755 find the run-time symbols. That can mean that we are in
0259addd
JB
11756 configurable run time mode, or that a-except as been optimized
11757 out by the linker... In any case, at this point it is not worth
11758 supporting this feature. */
11759
7dda8cff 11760 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11761}
11762
f7f9143b
JB
11763/* True iff FRAME is very likely to be that of a function that is
11764 part of the runtime system. This is all very heuristic, but is
11765 intended to be used as advice as to what frames are uninteresting
11766 to most users. */
11767
11768static int
11769is_known_support_routine (struct frame_info *frame)
11770{
692465f1 11771 enum language func_lang;
f7f9143b 11772 int i;
f35a17b5 11773 const char *fullname;
f7f9143b 11774
4ed6b5be
JB
11775 /* If this code does not have any debugging information (no symtab),
11776 This cannot be any user code. */
f7f9143b 11777
51abb421 11778 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11779 if (sal.symtab == NULL)
11780 return 1;
11781
4ed6b5be
JB
11782 /* If there is a symtab, but the associated source file cannot be
11783 located, then assume this is not user code: Selecting a frame
11784 for which we cannot display the code would not be very helpful
11785 for the user. This should also take care of case such as VxWorks
11786 where the kernel has some debugging info provided for a few units. */
f7f9143b 11787
f35a17b5
JK
11788 fullname = symtab_to_fullname (sal.symtab);
11789 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11790 return 1;
11791
85102364 11792 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11793 We also check the name of the objfile against the name of some
11794 known system libraries that sometimes come with debugging info
11795 too. */
11796
f7f9143b
JB
11797 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11798 {
11799 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11800 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11801 return 1;
eb822aa6
DE
11802 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11803 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11804 return 1;
f7f9143b
JB
11805 }
11806
4ed6b5be 11807 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11808
c6dc63a1
TT
11809 gdb::unique_xmalloc_ptr<char> func_name
11810 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11811 if (func_name == NULL)
11812 return 1;
11813
11814 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11815 {
11816 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11817 if (re_exec (func_name.get ()))
11818 return 1;
f7f9143b
JB
11819 }
11820
11821 return 0;
11822}
11823
11824/* Find the first frame that contains debugging information and that is not
11825 part of the Ada run-time, starting from FI and moving upward. */
11826
0ef643c8 11827void
f7f9143b
JB
11828ada_find_printable_frame (struct frame_info *fi)
11829{
11830 for (; fi != NULL; fi = get_prev_frame (fi))
11831 {
11832 if (!is_known_support_routine (fi))
11833 {
11834 select_frame (fi);
11835 break;
11836 }
11837 }
11838
11839}
11840
11841/* Assuming that the inferior just triggered an unhandled exception
11842 catchpoint, return the address in inferior memory where the name
11843 of the exception is stored.
11844
11845 Return zero if the address could not be computed. */
11846
11847static CORE_ADDR
11848ada_unhandled_exception_name_addr (void)
0259addd
JB
11849{
11850 return parse_and_eval_address ("e.full_name");
11851}
11852
11853/* Same as ada_unhandled_exception_name_addr, except that this function
11854 should be used when the inferior uses an older version of the runtime,
11855 where the exception name needs to be extracted from a specific frame
11856 several frames up in the callstack. */
11857
11858static CORE_ADDR
11859ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11860{
11861 int frame_level;
11862 struct frame_info *fi;
3eecfa55 11863 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11864
11865 /* To determine the name of this exception, we need to select
11866 the frame corresponding to RAISE_SYM_NAME. This frame is
11867 at least 3 levels up, so we simply skip the first 3 frames
11868 without checking the name of their associated function. */
11869 fi = get_current_frame ();
11870 for (frame_level = 0; frame_level < 3; frame_level += 1)
11871 if (fi != NULL)
11872 fi = get_prev_frame (fi);
11873
11874 while (fi != NULL)
11875 {
692465f1
JB
11876 enum language func_lang;
11877
c6dc63a1
TT
11878 gdb::unique_xmalloc_ptr<char> func_name
11879 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11880 if (func_name != NULL)
11881 {
c6dc63a1 11882 if (strcmp (func_name.get (),
55b87a52
KS
11883 data->exception_info->catch_exception_sym) == 0)
11884 break; /* We found the frame we were looking for... */
55b87a52 11885 }
fb44b1a7 11886 fi = get_prev_frame (fi);
f7f9143b
JB
11887 }
11888
11889 if (fi == NULL)
11890 return 0;
11891
11892 select_frame (fi);
11893 return parse_and_eval_address ("id.full_name");
11894}
11895
11896/* Assuming the inferior just triggered an Ada exception catchpoint
11897 (of any type), return the address in inferior memory where the name
11898 of the exception is stored, if applicable.
11899
45db7c09
PA
11900 Assumes the selected frame is the current frame.
11901
f7f9143b
JB
11902 Return zero if the address could not be computed, or if not relevant. */
11903
11904static CORE_ADDR
761269c8 11905ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11906 struct breakpoint *b)
11907{
3eecfa55
JB
11908 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11909
f7f9143b
JB
11910 switch (ex)
11911 {
761269c8 11912 case ada_catch_exception:
f7f9143b
JB
11913 return (parse_and_eval_address ("e.full_name"));
11914 break;
11915
761269c8 11916 case ada_catch_exception_unhandled:
3eecfa55 11917 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 11918 break;
9f757bf7
XR
11919
11920 case ada_catch_handlers:
11921 return 0; /* The runtimes does not provide access to the exception
11922 name. */
11923 break;
11924
761269c8 11925 case ada_catch_assert:
f7f9143b
JB
11926 return 0; /* Exception name is not relevant in this case. */
11927 break;
11928
11929 default:
11930 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11931 break;
11932 }
11933
11934 return 0; /* Should never be reached. */
11935}
11936
e547c119
JB
11937/* Assuming the inferior is stopped at an exception catchpoint,
11938 return the message which was associated to the exception, if
11939 available. Return NULL if the message could not be retrieved.
11940
e547c119
JB
11941 Note: The exception message can be associated to an exception
11942 either through the use of the Raise_Exception function, or
11943 more simply (Ada 2005 and later), via:
11944
11945 raise Exception_Name with "exception message";
11946
11947 */
11948
6f46ac85 11949static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11950ada_exception_message_1 (void)
11951{
11952 struct value *e_msg_val;
e547c119 11953 int e_msg_len;
e547c119
JB
11954
11955 /* For runtimes that support this feature, the exception message
11956 is passed as an unbounded string argument called "message". */
11957 e_msg_val = parse_and_eval ("message");
11958 if (e_msg_val == NULL)
11959 return NULL; /* Exception message not supported. */
11960
11961 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11962 gdb_assert (e_msg_val != NULL);
11963 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11964
11965 /* If the message string is empty, then treat it as if there was
11966 no exception message. */
11967 if (e_msg_len <= 0)
11968 return NULL;
11969
66920317 11970 return target_read_string (value_address (e_msg_val), INT_MAX);
e547c119
JB
11971}
11972
11973/* Same as ada_exception_message_1, except that all exceptions are
11974 contained here (returning NULL instead). */
11975
6f46ac85 11976static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11977ada_exception_message (void)
11978{
6f46ac85 11979 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11980
a70b8144 11981 try
e547c119
JB
11982 {
11983 e_msg = ada_exception_message_1 ();
11984 }
230d2906 11985 catch (const gdb_exception_error &e)
e547c119 11986 {
6f46ac85 11987 e_msg.reset (nullptr);
e547c119 11988 }
e547c119
JB
11989
11990 return e_msg;
11991}
11992
f7f9143b
JB
11993/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11994 any error that ada_exception_name_addr_1 might cause to be thrown.
11995 When an error is intercepted, a warning with the error message is printed,
11996 and zero is returned. */
11997
11998static CORE_ADDR
761269c8 11999ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12000 struct breakpoint *b)
12001{
f7f9143b
JB
12002 CORE_ADDR result = 0;
12003
a70b8144 12004 try
f7f9143b
JB
12005 {
12006 result = ada_exception_name_addr_1 (ex, b);
12007 }
12008
230d2906 12009 catch (const gdb_exception_error &e)
f7f9143b 12010 {
3d6e9d23 12011 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12012 return 0;
12013 }
12014
12015 return result;
12016}
12017
cb7de75e 12018static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12019 (const char *excep_string,
12020 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12021
12022/* Ada catchpoints.
12023
12024 In the case of catchpoints on Ada exceptions, the catchpoint will
12025 stop the target on every exception the program throws. When a user
12026 specifies the name of a specific exception, we translate this
12027 request into a condition expression (in text form), and then parse
12028 it into an expression stored in each of the catchpoint's locations.
12029 We then use this condition to check whether the exception that was
12030 raised is the one the user is interested in. If not, then the
12031 target is resumed again. We store the name of the requested
12032 exception, in order to be able to re-set the condition expression
12033 when symbols change. */
12034
12035/* An instance of this type is used to represent an Ada catchpoint
5625a286 12036 breakpoint location. */
28010a5d 12037
5625a286 12038class ada_catchpoint_location : public bp_location
28010a5d 12039{
5625a286 12040public:
5f486660 12041 ada_catchpoint_location (breakpoint *owner)
f06f1252 12042 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12043 {}
28010a5d
PA
12044
12045 /* The condition that checks whether the exception that was raised
12046 is the specific exception the user specified on catchpoint
12047 creation. */
4d01a485 12048 expression_up excep_cond_expr;
28010a5d
PA
12049};
12050
c1fc2657 12051/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12052
c1fc2657 12053struct ada_catchpoint : public breakpoint
28010a5d 12054{
37f6a7f4
TT
12055 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12056 : m_kind (kind)
12057 {
12058 }
12059
28010a5d 12060 /* The name of the specific exception the user specified. */
bc18fbb5 12061 std::string excep_string;
37f6a7f4
TT
12062
12063 /* What kind of catchpoint this is. */
12064 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12065};
12066
12067/* Parse the exception condition string in the context of each of the
12068 catchpoint's locations, and store them for later evaluation. */
12069
12070static void
9f757bf7
XR
12071create_excep_cond_exprs (struct ada_catchpoint *c,
12072 enum ada_exception_catchpoint_kind ex)
28010a5d 12073{
fccf9de1
TT
12074 struct bp_location *bl;
12075
28010a5d 12076 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12077 if (c->excep_string.empty ())
28010a5d
PA
12078 return;
12079
12080 /* Same if there are no locations... */
c1fc2657 12081 if (c->loc == NULL)
28010a5d
PA
12082 return;
12083
fccf9de1
TT
12084 /* Compute the condition expression in text form, from the specific
12085 expection we want to catch. */
12086 std::string cond_string
12087 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12088
fccf9de1
TT
12089 /* Iterate over all the catchpoint's locations, and parse an
12090 expression for each. */
12091 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12092 {
12093 struct ada_catchpoint_location *ada_loc
fccf9de1 12094 = (struct ada_catchpoint_location *) bl;
4d01a485 12095 expression_up exp;
28010a5d 12096
fccf9de1 12097 if (!bl->shlib_disabled)
28010a5d 12098 {
bbc13ae3 12099 const char *s;
28010a5d 12100
cb7de75e 12101 s = cond_string.c_str ();
a70b8144 12102 try
28010a5d 12103 {
fccf9de1
TT
12104 exp = parse_exp_1 (&s, bl->address,
12105 block_for_pc (bl->address),
036e657b 12106 0);
28010a5d 12107 }
230d2906 12108 catch (const gdb_exception_error &e)
849f2b52
JB
12109 {
12110 warning (_("failed to reevaluate internal exception condition "
12111 "for catchpoint %d: %s"),
3d6e9d23 12112 c->number, e.what ());
849f2b52 12113 }
28010a5d
PA
12114 }
12115
b22e99fd 12116 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12117 }
28010a5d
PA
12118}
12119
28010a5d
PA
12120/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12121 structure for all exception catchpoint kinds. */
12122
12123static struct bp_location *
37f6a7f4 12124allocate_location_exception (struct breakpoint *self)
28010a5d 12125{
5f486660 12126 return new ada_catchpoint_location (self);
28010a5d
PA
12127}
12128
12129/* Implement the RE_SET method in the breakpoint_ops structure for all
12130 exception catchpoint kinds. */
12131
12132static void
37f6a7f4 12133re_set_exception (struct breakpoint *b)
28010a5d
PA
12134{
12135 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12136
12137 /* Call the base class's method. This updates the catchpoint's
12138 locations. */
2060206e 12139 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12140
12141 /* Reparse the exception conditional expressions. One for each
12142 location. */
37f6a7f4 12143 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12144}
12145
12146/* Returns true if we should stop for this breakpoint hit. If the
12147 user specified a specific exception, we only want to cause a stop
12148 if the program thrown that exception. */
12149
12150static int
12151should_stop_exception (const struct bp_location *bl)
12152{
12153 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12154 const struct ada_catchpoint_location *ada_loc
12155 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12156 int stop;
12157
37f6a7f4
TT
12158 struct internalvar *var = lookup_internalvar ("_ada_exception");
12159 if (c->m_kind == ada_catch_assert)
12160 clear_internalvar (var);
12161 else
12162 {
12163 try
12164 {
12165 const char *expr;
12166
12167 if (c->m_kind == ada_catch_handlers)
12168 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12169 ".all.occurrence.id");
12170 else
12171 expr = "e";
12172
12173 struct value *exc = parse_and_eval (expr);
12174 set_internalvar (var, exc);
12175 }
12176 catch (const gdb_exception_error &ex)
12177 {
12178 clear_internalvar (var);
12179 }
12180 }
12181
28010a5d 12182 /* With no specific exception, should always stop. */
bc18fbb5 12183 if (c->excep_string.empty ())
28010a5d
PA
12184 return 1;
12185
12186 if (ada_loc->excep_cond_expr == NULL)
12187 {
12188 /* We will have a NULL expression if back when we were creating
12189 the expressions, this location's had failed to parse. */
12190 return 1;
12191 }
12192
12193 stop = 1;
a70b8144 12194 try
28010a5d
PA
12195 {
12196 struct value *mark;
12197
12198 mark = value_mark ();
4d01a485 12199 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12200 value_free_to_mark (mark);
12201 }
230d2906 12202 catch (const gdb_exception &ex)
492d29ea
PA
12203 {
12204 exception_fprintf (gdb_stderr, ex,
12205 _("Error in testing exception condition:\n"));
12206 }
492d29ea 12207
28010a5d
PA
12208 return stop;
12209}
12210
12211/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12212 for all exception catchpoint kinds. */
12213
12214static void
37f6a7f4 12215check_status_exception (bpstat bs)
28010a5d
PA
12216{
12217 bs->stop = should_stop_exception (bs->bp_location_at);
12218}
12219
f7f9143b
JB
12220/* Implement the PRINT_IT method in the breakpoint_ops structure
12221 for all exception catchpoint kinds. */
12222
12223static enum print_stop_action
37f6a7f4 12224print_it_exception (bpstat bs)
f7f9143b 12225{
79a45e25 12226 struct ui_out *uiout = current_uiout;
348d480f
PA
12227 struct breakpoint *b = bs->breakpoint_at;
12228
956a9fb9 12229 annotate_catchpoint (b->number);
f7f9143b 12230
112e8700 12231 if (uiout->is_mi_like_p ())
f7f9143b 12232 {
112e8700 12233 uiout->field_string ("reason",
956a9fb9 12234 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12235 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12236 }
12237
112e8700
SM
12238 uiout->text (b->disposition == disp_del
12239 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12240 uiout->field_signed ("bkptno", b->number);
112e8700 12241 uiout->text (", ");
f7f9143b 12242
45db7c09
PA
12243 /* ada_exception_name_addr relies on the selected frame being the
12244 current frame. Need to do this here because this function may be
12245 called more than once when printing a stop, and below, we'll
12246 select the first frame past the Ada run-time (see
12247 ada_find_printable_frame). */
12248 select_frame (get_current_frame ());
12249
37f6a7f4
TT
12250 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12251 switch (c->m_kind)
f7f9143b 12252 {
761269c8
JB
12253 case ada_catch_exception:
12254 case ada_catch_exception_unhandled:
9f757bf7 12255 case ada_catch_handlers:
956a9fb9 12256 {
37f6a7f4 12257 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12258 char exception_name[256];
12259
12260 if (addr != 0)
12261 {
c714b426
PA
12262 read_memory (addr, (gdb_byte *) exception_name,
12263 sizeof (exception_name) - 1);
956a9fb9
JB
12264 exception_name [sizeof (exception_name) - 1] = '\0';
12265 }
12266 else
12267 {
12268 /* For some reason, we were unable to read the exception
12269 name. This could happen if the Runtime was compiled
12270 without debugging info, for instance. In that case,
12271 just replace the exception name by the generic string
12272 "exception" - it will read as "an exception" in the
12273 notification we are about to print. */
967cff16 12274 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12275 }
12276 /* In the case of unhandled exception breakpoints, we print
12277 the exception name as "unhandled EXCEPTION_NAME", to make
12278 it clearer to the user which kind of catchpoint just got
12279 hit. We used ui_out_text to make sure that this extra
12280 info does not pollute the exception name in the MI case. */
37f6a7f4 12281 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12282 uiout->text ("unhandled ");
12283 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12284 }
12285 break;
761269c8 12286 case ada_catch_assert:
956a9fb9
JB
12287 /* In this case, the name of the exception is not really
12288 important. Just print "failed assertion" to make it clearer
12289 that his program just hit an assertion-failure catchpoint.
12290 We used ui_out_text because this info does not belong in
12291 the MI output. */
112e8700 12292 uiout->text ("failed assertion");
956a9fb9 12293 break;
f7f9143b 12294 }
e547c119 12295
6f46ac85 12296 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12297 if (exception_message != NULL)
12298 {
e547c119 12299 uiout->text (" (");
6f46ac85 12300 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12301 uiout->text (")");
e547c119
JB
12302 }
12303
112e8700 12304 uiout->text (" at ");
956a9fb9 12305 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12306
12307 return PRINT_SRC_AND_LOC;
12308}
12309
12310/* Implement the PRINT_ONE method in the breakpoint_ops structure
12311 for all exception catchpoint kinds. */
12312
12313static void
37f6a7f4 12314print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12315{
79a45e25 12316 struct ui_out *uiout = current_uiout;
28010a5d 12317 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12318 struct value_print_options opts;
12319
12320 get_user_print_options (&opts);
f06f1252 12321
79a45b7d 12322 if (opts.addressprint)
f06f1252 12323 uiout->field_skip ("addr");
f7f9143b
JB
12324
12325 annotate_field (5);
37f6a7f4 12326 switch (c->m_kind)
f7f9143b 12327 {
761269c8 12328 case ada_catch_exception:
bc18fbb5 12329 if (!c->excep_string.empty ())
f7f9143b 12330 {
bc18fbb5
TT
12331 std::string msg = string_printf (_("`%s' Ada exception"),
12332 c->excep_string.c_str ());
28010a5d 12333
112e8700 12334 uiout->field_string ("what", msg);
f7f9143b
JB
12335 }
12336 else
112e8700 12337 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12338
12339 break;
12340
761269c8 12341 case ada_catch_exception_unhandled:
112e8700 12342 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12343 break;
12344
9f757bf7 12345 case ada_catch_handlers:
bc18fbb5 12346 if (!c->excep_string.empty ())
9f757bf7
XR
12347 {
12348 uiout->field_fmt ("what",
12349 _("`%s' Ada exception handlers"),
bc18fbb5 12350 c->excep_string.c_str ());
9f757bf7
XR
12351 }
12352 else
12353 uiout->field_string ("what", "all Ada exceptions handlers");
12354 break;
12355
761269c8 12356 case ada_catch_assert:
112e8700 12357 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12358 break;
12359
12360 default:
12361 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12362 break;
12363 }
12364}
12365
12366/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12367 for all exception catchpoint kinds. */
12368
12369static void
37f6a7f4 12370print_mention_exception (struct breakpoint *b)
f7f9143b 12371{
28010a5d 12372 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12373 struct ui_out *uiout = current_uiout;
28010a5d 12374
112e8700 12375 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12376 : _("Catchpoint "));
381befee 12377 uiout->field_signed ("bkptno", b->number);
112e8700 12378 uiout->text (": ");
00eb2c4a 12379
37f6a7f4 12380 switch (c->m_kind)
f7f9143b 12381 {
761269c8 12382 case ada_catch_exception:
bc18fbb5 12383 if (!c->excep_string.empty ())
00eb2c4a 12384 {
862d101a 12385 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12386 c->excep_string.c_str ());
862d101a 12387 uiout->text (info.c_str ());
00eb2c4a 12388 }
f7f9143b 12389 else
112e8700 12390 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12391 break;
12392
761269c8 12393 case ada_catch_exception_unhandled:
112e8700 12394 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12395 break;
9f757bf7
XR
12396
12397 case ada_catch_handlers:
bc18fbb5 12398 if (!c->excep_string.empty ())
9f757bf7
XR
12399 {
12400 std::string info
12401 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12402 c->excep_string.c_str ());
9f757bf7
XR
12403 uiout->text (info.c_str ());
12404 }
12405 else
12406 uiout->text (_("all Ada exceptions handlers"));
12407 break;
12408
761269c8 12409 case ada_catch_assert:
112e8700 12410 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12411 break;
12412
12413 default:
12414 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12415 break;
12416 }
12417}
12418
6149aea9
PA
12419/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12420 for all exception catchpoint kinds. */
12421
12422static void
37f6a7f4 12423print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12424{
28010a5d
PA
12425 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12426
37f6a7f4 12427 switch (c->m_kind)
6149aea9 12428 {
761269c8 12429 case ada_catch_exception:
6149aea9 12430 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12431 if (!c->excep_string.empty ())
12432 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12433 break;
12434
761269c8 12435 case ada_catch_exception_unhandled:
78076abc 12436 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12437 break;
12438
9f757bf7
XR
12439 case ada_catch_handlers:
12440 fprintf_filtered (fp, "catch handlers");
12441 break;
12442
761269c8 12443 case ada_catch_assert:
6149aea9
PA
12444 fprintf_filtered (fp, "catch assert");
12445 break;
12446
12447 default:
12448 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12449 }
d9b3f62e 12450 print_recreate_thread (b, fp);
6149aea9
PA
12451}
12452
37f6a7f4 12453/* Virtual tables for various breakpoint types. */
2060206e 12454static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12455static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12456static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12457static struct breakpoint_ops catch_handlers_breakpoint_ops;
12458
f06f1252
TT
12459/* See ada-lang.h. */
12460
12461bool
12462is_ada_exception_catchpoint (breakpoint *bp)
12463{
12464 return (bp->ops == &catch_exception_breakpoint_ops
12465 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12466 || bp->ops == &catch_assert_breakpoint_ops
12467 || bp->ops == &catch_handlers_breakpoint_ops);
12468}
12469
f7f9143b
JB
12470/* Split the arguments specified in a "catch exception" command.
12471 Set EX to the appropriate catchpoint type.
28010a5d 12472 Set EXCEP_STRING to the name of the specific exception if
5845583d 12473 specified by the user.
9f757bf7
XR
12474 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12475 "catch handlers" command. False otherwise.
5845583d
JB
12476 If a condition is found at the end of the arguments, the condition
12477 expression is stored in COND_STRING (memory must be deallocated
12478 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12479
12480static void
a121b7c1 12481catch_ada_exception_command_split (const char *args,
9f757bf7 12482 bool is_catch_handlers_cmd,
761269c8 12483 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12484 std::string *excep_string,
12485 std::string *cond_string)
f7f9143b 12486{
bc18fbb5 12487 std::string exception_name;
f7f9143b 12488
bc18fbb5
TT
12489 exception_name = extract_arg (&args);
12490 if (exception_name == "if")
5845583d
JB
12491 {
12492 /* This is not an exception name; this is the start of a condition
12493 expression for a catchpoint on all exceptions. So, "un-get"
12494 this token, and set exception_name to NULL. */
bc18fbb5 12495 exception_name.clear ();
5845583d
JB
12496 args -= 2;
12497 }
f7f9143b 12498
5845583d 12499 /* Check to see if we have a condition. */
f7f9143b 12500
f1735a53 12501 args = skip_spaces (args);
61012eef 12502 if (startswith (args, "if")
5845583d
JB
12503 && (isspace (args[2]) || args[2] == '\0'))
12504 {
12505 args += 2;
f1735a53 12506 args = skip_spaces (args);
5845583d
JB
12507
12508 if (args[0] == '\0')
12509 error (_("Condition missing after `if' keyword"));
bc18fbb5 12510 *cond_string = args;
5845583d
JB
12511
12512 args += strlen (args);
12513 }
12514
12515 /* Check that we do not have any more arguments. Anything else
12516 is unexpected. */
f7f9143b
JB
12517
12518 if (args[0] != '\0')
12519 error (_("Junk at end of expression"));
12520
9f757bf7
XR
12521 if (is_catch_handlers_cmd)
12522 {
12523 /* Catch handling of exceptions. */
12524 *ex = ada_catch_handlers;
12525 *excep_string = exception_name;
12526 }
bc18fbb5 12527 else if (exception_name.empty ())
f7f9143b
JB
12528 {
12529 /* Catch all exceptions. */
761269c8 12530 *ex = ada_catch_exception;
bc18fbb5 12531 excep_string->clear ();
f7f9143b 12532 }
bc18fbb5 12533 else if (exception_name == "unhandled")
f7f9143b
JB
12534 {
12535 /* Catch unhandled exceptions. */
761269c8 12536 *ex = ada_catch_exception_unhandled;
bc18fbb5 12537 excep_string->clear ();
f7f9143b
JB
12538 }
12539 else
12540 {
12541 /* Catch a specific exception. */
761269c8 12542 *ex = ada_catch_exception;
28010a5d 12543 *excep_string = exception_name;
f7f9143b
JB
12544 }
12545}
12546
12547/* Return the name of the symbol on which we should break in order to
12548 implement a catchpoint of the EX kind. */
12549
12550static const char *
761269c8 12551ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12552{
3eecfa55
JB
12553 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12554
12555 gdb_assert (data->exception_info != NULL);
0259addd 12556
f7f9143b
JB
12557 switch (ex)
12558 {
761269c8 12559 case ada_catch_exception:
3eecfa55 12560 return (data->exception_info->catch_exception_sym);
f7f9143b 12561 break;
761269c8 12562 case ada_catch_exception_unhandled:
3eecfa55 12563 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12564 break;
761269c8 12565 case ada_catch_assert:
3eecfa55 12566 return (data->exception_info->catch_assert_sym);
f7f9143b 12567 break;
9f757bf7
XR
12568 case ada_catch_handlers:
12569 return (data->exception_info->catch_handlers_sym);
12570 break;
f7f9143b
JB
12571 default:
12572 internal_error (__FILE__, __LINE__,
12573 _("unexpected catchpoint kind (%d)"), ex);
12574 }
12575}
12576
12577/* Return the breakpoint ops "virtual table" used for catchpoints
12578 of the EX kind. */
12579
c0a91b2b 12580static const struct breakpoint_ops *
761269c8 12581ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12582{
12583 switch (ex)
12584 {
761269c8 12585 case ada_catch_exception:
f7f9143b
JB
12586 return (&catch_exception_breakpoint_ops);
12587 break;
761269c8 12588 case ada_catch_exception_unhandled:
f7f9143b
JB
12589 return (&catch_exception_unhandled_breakpoint_ops);
12590 break;
761269c8 12591 case ada_catch_assert:
f7f9143b
JB
12592 return (&catch_assert_breakpoint_ops);
12593 break;
9f757bf7
XR
12594 case ada_catch_handlers:
12595 return (&catch_handlers_breakpoint_ops);
12596 break;
f7f9143b
JB
12597 default:
12598 internal_error (__FILE__, __LINE__,
12599 _("unexpected catchpoint kind (%d)"), ex);
12600 }
12601}
12602
12603/* Return the condition that will be used to match the current exception
12604 being raised with the exception that the user wants to catch. This
12605 assumes that this condition is used when the inferior just triggered
12606 an exception catchpoint.
cb7de75e 12607 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12608
cb7de75e 12609static std::string
9f757bf7
XR
12610ada_exception_catchpoint_cond_string (const char *excep_string,
12611 enum ada_exception_catchpoint_kind ex)
f7f9143b 12612{
3d0b0fa3 12613 int i;
fccf9de1 12614 bool is_standard_exc = false;
cb7de75e 12615 std::string result;
9f757bf7
XR
12616
12617 if (ex == ada_catch_handlers)
12618 {
12619 /* For exception handlers catchpoints, the condition string does
12620 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12621 result = ("long_integer (GNAT_GCC_exception_Access"
12622 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12623 }
12624 else
fccf9de1 12625 result = "long_integer (e)";
3d0b0fa3 12626
0963b4bd 12627 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12628 runtime units that have been compiled without debugging info; if
28010a5d 12629 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12630 exception (e.g. "constraint_error") then, during the evaluation
12631 of the condition expression, the symbol lookup on this name would
0963b4bd 12632 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12633 may then be set only on user-defined exceptions which have the
12634 same not-fully-qualified name (e.g. my_package.constraint_error).
12635
12636 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12637 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12638 exception constraint_error" is rewritten into "catch exception
12639 standard.constraint_error".
12640
85102364 12641 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12642 the inferior program, then the only way to specify this exception as a
12643 breakpoint condition is to use its fully-qualified named:
fccf9de1 12644 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12645
12646 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12647 {
28010a5d 12648 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12649 {
fccf9de1 12650 is_standard_exc = true;
9f757bf7 12651 break;
3d0b0fa3
JB
12652 }
12653 }
9f757bf7 12654
fccf9de1
TT
12655 result += " = ";
12656
12657 if (is_standard_exc)
12658 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12659 else
12660 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12661
9f757bf7 12662 return result;
f7f9143b
JB
12663}
12664
12665/* Return the symtab_and_line that should be used to insert an exception
12666 catchpoint of the TYPE kind.
12667
28010a5d
PA
12668 ADDR_STRING returns the name of the function where the real
12669 breakpoint that implements the catchpoints is set, depending on the
12670 type of catchpoint we need to create. */
f7f9143b
JB
12671
12672static struct symtab_and_line
bc18fbb5 12673ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12674 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12675{
12676 const char *sym_name;
12677 struct symbol *sym;
f7f9143b 12678
0259addd
JB
12679 /* First, find out which exception support info to use. */
12680 ada_exception_support_info_sniffer ();
12681
12682 /* Then lookup the function on which we will break in order to catch
f7f9143b 12683 the Ada exceptions requested by the user. */
f7f9143b
JB
12684 sym_name = ada_exception_sym_name (ex);
12685 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12686
57aff202
JB
12687 if (sym == NULL)
12688 error (_("Catchpoint symbol not found: %s"), sym_name);
12689
12690 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12691 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12692
12693 /* Set ADDR_STRING. */
cc12f4a8 12694 *addr_string = sym_name;
f7f9143b 12695
f7f9143b 12696 /* Set OPS. */
4b9eee8c 12697 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12698
f17011e0 12699 return find_function_start_sal (sym, 1);
f7f9143b
JB
12700}
12701
b4a5b78b 12702/* Create an Ada exception catchpoint.
f7f9143b 12703
b4a5b78b 12704 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12705
bc18fbb5 12706 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12707 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12708 of the exception to which this catchpoint applies.
2df4d1d5 12709
bc18fbb5 12710 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12711
b4a5b78b
JB
12712 TEMPFLAG, if nonzero, means that the underlying breakpoint
12713 should be temporary.
28010a5d 12714
b4a5b78b 12715 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12716
349774ef 12717void
28010a5d 12718create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12719 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12720 const std::string &excep_string,
56ecd069 12721 const std::string &cond_string,
28010a5d 12722 int tempflag,
349774ef 12723 int disabled,
28010a5d
PA
12724 int from_tty)
12725{
cc12f4a8 12726 std::string addr_string;
b4a5b78b 12727 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12728 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12729
37f6a7f4 12730 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12731 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12732 ops, tempflag, disabled, from_tty);
28010a5d 12733 c->excep_string = excep_string;
9f757bf7 12734 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12735 if (!cond_string.empty ())
12736 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12737 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12738}
12739
9ac4176b
PA
12740/* Implement the "catch exception" command. */
12741
12742static void
eb4c3f4a 12743catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12744 struct cmd_list_element *command)
12745{
a121b7c1 12746 const char *arg = arg_entry;
9ac4176b
PA
12747 struct gdbarch *gdbarch = get_current_arch ();
12748 int tempflag;
761269c8 12749 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12750 std::string excep_string;
56ecd069 12751 std::string cond_string;
9ac4176b
PA
12752
12753 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12754
12755 if (!arg)
12756 arg = "";
9f757bf7 12757 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12758 &cond_string);
9f757bf7
XR
12759 create_ada_exception_catchpoint (gdbarch, ex_kind,
12760 excep_string, cond_string,
12761 tempflag, 1 /* enabled */,
12762 from_tty);
12763}
12764
12765/* Implement the "catch handlers" command. */
12766
12767static void
12768catch_ada_handlers_command (const char *arg_entry, int from_tty,
12769 struct cmd_list_element *command)
12770{
12771 const char *arg = arg_entry;
12772 struct gdbarch *gdbarch = get_current_arch ();
12773 int tempflag;
12774 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12775 std::string excep_string;
56ecd069 12776 std::string cond_string;
9f757bf7
XR
12777
12778 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12779
12780 if (!arg)
12781 arg = "";
12782 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12783 &cond_string);
b4a5b78b
JB
12784 create_ada_exception_catchpoint (gdbarch, ex_kind,
12785 excep_string, cond_string,
349774ef
JB
12786 tempflag, 1 /* enabled */,
12787 from_tty);
9ac4176b
PA
12788}
12789
71bed2db
TT
12790/* Completion function for the Ada "catch" commands. */
12791
12792static void
12793catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12794 const char *text, const char *word)
12795{
12796 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12797
12798 for (const ada_exc_info &info : exceptions)
12799 {
12800 if (startswith (info.name, word))
b02f78f9 12801 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12802 }
12803}
12804
b4a5b78b 12805/* Split the arguments specified in a "catch assert" command.
5845583d 12806
b4a5b78b
JB
12807 ARGS contains the command's arguments (or the empty string if
12808 no arguments were passed).
5845583d
JB
12809
12810 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12811 (the memory needs to be deallocated after use). */
5845583d 12812
b4a5b78b 12813static void
56ecd069 12814catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12815{
f1735a53 12816 args = skip_spaces (args);
f7f9143b 12817
5845583d 12818 /* Check whether a condition was provided. */
61012eef 12819 if (startswith (args, "if")
5845583d 12820 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12821 {
5845583d 12822 args += 2;
f1735a53 12823 args = skip_spaces (args);
5845583d
JB
12824 if (args[0] == '\0')
12825 error (_("condition missing after `if' keyword"));
56ecd069 12826 cond_string.assign (args);
f7f9143b
JB
12827 }
12828
5845583d
JB
12829 /* Otherwise, there should be no other argument at the end of
12830 the command. */
12831 else if (args[0] != '\0')
12832 error (_("Junk at end of arguments."));
f7f9143b
JB
12833}
12834
9ac4176b
PA
12835/* Implement the "catch assert" command. */
12836
12837static void
eb4c3f4a 12838catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12839 struct cmd_list_element *command)
12840{
a121b7c1 12841 const char *arg = arg_entry;
9ac4176b
PA
12842 struct gdbarch *gdbarch = get_current_arch ();
12843 int tempflag;
56ecd069 12844 std::string cond_string;
9ac4176b
PA
12845
12846 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12847
12848 if (!arg)
12849 arg = "";
56ecd069 12850 catch_ada_assert_command_split (arg, cond_string);
761269c8 12851 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12852 "", cond_string,
349774ef
JB
12853 tempflag, 1 /* enabled */,
12854 from_tty);
9ac4176b 12855}
778865d3
JB
12856
12857/* Return non-zero if the symbol SYM is an Ada exception object. */
12858
12859static int
12860ada_is_exception_sym (struct symbol *sym)
12861{
7d93a1e0 12862 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12863
12864 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12865 && SYMBOL_CLASS (sym) != LOC_BLOCK
12866 && SYMBOL_CLASS (sym) != LOC_CONST
12867 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12868 && type_name != NULL && strcmp (type_name, "exception") == 0);
12869}
12870
12871/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12872 Ada exception object. This matches all exceptions except the ones
12873 defined by the Ada language. */
12874
12875static int
12876ada_is_non_standard_exception_sym (struct symbol *sym)
12877{
12878 int i;
12879
12880 if (!ada_is_exception_sym (sym))
12881 return 0;
12882
12883 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12884 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12885 return 0; /* A standard exception. */
12886
12887 /* Numeric_Error is also a standard exception, so exclude it.
12888 See the STANDARD_EXC description for more details as to why
12889 this exception is not listed in that array. */
987012b8 12890 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12891 return 0;
12892
12893 return 1;
12894}
12895
ab816a27 12896/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12897 objects.
12898
12899 The comparison is determined first by exception name, and then
12900 by exception address. */
12901
ab816a27 12902bool
cc536b21 12903ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12904{
778865d3
JB
12905 int result;
12906
ab816a27
TT
12907 result = strcmp (name, other.name);
12908 if (result < 0)
12909 return true;
12910 if (result == 0 && addr < other.addr)
12911 return true;
12912 return false;
12913}
778865d3 12914
ab816a27 12915bool
cc536b21 12916ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12917{
12918 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12919}
12920
12921/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12922 routine, but keeping the first SKIP elements untouched.
12923
12924 All duplicates are also removed. */
12925
12926static void
ab816a27 12927sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12928 int skip)
12929{
ab816a27
TT
12930 std::sort (exceptions->begin () + skip, exceptions->end ());
12931 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12932 exceptions->end ());
778865d3
JB
12933}
12934
778865d3
JB
12935/* Add all exceptions defined by the Ada standard whose name match
12936 a regular expression.
12937
12938 If PREG is not NULL, then this regexp_t object is used to
12939 perform the symbol name matching. Otherwise, no name-based
12940 filtering is performed.
12941
12942 EXCEPTIONS is a vector of exceptions to which matching exceptions
12943 gets pushed. */
12944
12945static void
2d7cc5c7 12946ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12947 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12948{
12949 int i;
12950
12951 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12952 {
12953 if (preg == NULL
2d7cc5c7 12954 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12955 {
12956 struct bound_minimal_symbol msymbol
12957 = ada_lookup_simple_minsym (standard_exc[i]);
12958
12959 if (msymbol.minsym != NULL)
12960 {
12961 struct ada_exc_info info
77e371c0 12962 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12963
ab816a27 12964 exceptions->push_back (info);
778865d3
JB
12965 }
12966 }
12967 }
12968}
12969
12970/* Add all Ada exceptions defined locally and accessible from the given
12971 FRAME.
12972
12973 If PREG is not NULL, then this regexp_t object is used to
12974 perform the symbol name matching. Otherwise, no name-based
12975 filtering is performed.
12976
12977 EXCEPTIONS is a vector of exceptions to which matching exceptions
12978 gets pushed. */
12979
12980static void
2d7cc5c7
PA
12981ada_add_exceptions_from_frame (compiled_regex *preg,
12982 struct frame_info *frame,
ab816a27 12983 std::vector<ada_exc_info> *exceptions)
778865d3 12984{
3977b71f 12985 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12986
12987 while (block != 0)
12988 {
12989 struct block_iterator iter;
12990 struct symbol *sym;
12991
12992 ALL_BLOCK_SYMBOLS (block, iter, sym)
12993 {
12994 switch (SYMBOL_CLASS (sym))
12995 {
12996 case LOC_TYPEDEF:
12997 case LOC_BLOCK:
12998 case LOC_CONST:
12999 break;
13000 default:
13001 if (ada_is_exception_sym (sym))
13002 {
987012b8 13003 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13004 SYMBOL_VALUE_ADDRESS (sym)};
13005
ab816a27 13006 exceptions->push_back (info);
778865d3
JB
13007 }
13008 }
13009 }
13010 if (BLOCK_FUNCTION (block) != NULL)
13011 break;
13012 block = BLOCK_SUPERBLOCK (block);
13013 }
13014}
13015
14bc53a8
PA
13016/* Return true if NAME matches PREG or if PREG is NULL. */
13017
13018static bool
2d7cc5c7 13019name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13020{
13021 return (preg == NULL
f945dedf 13022 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13023}
13024
778865d3
JB
13025/* Add all exceptions defined globally whose name name match
13026 a regular expression, excluding standard exceptions.
13027
13028 The reason we exclude standard exceptions is that they need
13029 to be handled separately: Standard exceptions are defined inside
13030 a runtime unit which is normally not compiled with debugging info,
13031 and thus usually do not show up in our symbol search. However,
13032 if the unit was in fact built with debugging info, we need to
13033 exclude them because they would duplicate the entry we found
13034 during the special loop that specifically searches for those
13035 standard exceptions.
13036
13037 If PREG is not NULL, then this regexp_t object is used to
13038 perform the symbol name matching. Otherwise, no name-based
13039 filtering is performed.
13040
13041 EXCEPTIONS is a vector of exceptions to which matching exceptions
13042 gets pushed. */
13043
13044static void
2d7cc5c7 13045ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13046 std::vector<ada_exc_info> *exceptions)
778865d3 13047{
14bc53a8
PA
13048 /* In Ada, the symbol "search name" is a linkage name, whereas the
13049 regular expression used to do the matching refers to the natural
13050 name. So match against the decoded name. */
13051 expand_symtabs_matching (NULL,
b5ec771e 13052 lookup_name_info::match_any (),
14bc53a8
PA
13053 [&] (const char *search_name)
13054 {
f945dedf
CB
13055 std::string decoded = ada_decode (search_name);
13056 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13057 },
13058 NULL,
13059 VARIABLES_DOMAIN);
778865d3 13060
2030c079 13061 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13062 {
b669c953 13063 for (compunit_symtab *s : objfile->compunits ())
778865d3 13064 {
d8aeb77f
TT
13065 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13066 int i;
778865d3 13067
d8aeb77f
TT
13068 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13069 {
582942f4 13070 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13071 struct block_iterator iter;
13072 struct symbol *sym;
778865d3 13073
d8aeb77f
TT
13074 ALL_BLOCK_SYMBOLS (b, iter, sym)
13075 if (ada_is_non_standard_exception_sym (sym)
987012b8 13076 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13077 {
13078 struct ada_exc_info info
987012b8 13079 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13080
13081 exceptions->push_back (info);
13082 }
13083 }
778865d3
JB
13084 }
13085 }
13086}
13087
13088/* Implements ada_exceptions_list with the regular expression passed
13089 as a regex_t, rather than a string.
13090
13091 If not NULL, PREG is used to filter out exceptions whose names
13092 do not match. Otherwise, all exceptions are listed. */
13093
ab816a27 13094static std::vector<ada_exc_info>
2d7cc5c7 13095ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13096{
ab816a27 13097 std::vector<ada_exc_info> result;
778865d3
JB
13098 int prev_len;
13099
13100 /* First, list the known standard exceptions. These exceptions
13101 need to be handled separately, as they are usually defined in
13102 runtime units that have been compiled without debugging info. */
13103
13104 ada_add_standard_exceptions (preg, &result);
13105
13106 /* Next, find all exceptions whose scope is local and accessible
13107 from the currently selected frame. */
13108
13109 if (has_stack_frames ())
13110 {
ab816a27 13111 prev_len = result.size ();
778865d3
JB
13112 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13113 &result);
ab816a27 13114 if (result.size () > prev_len)
778865d3
JB
13115 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13116 }
13117
13118 /* Add all exceptions whose scope is global. */
13119
ab816a27 13120 prev_len = result.size ();
778865d3 13121 ada_add_global_exceptions (preg, &result);
ab816a27 13122 if (result.size () > prev_len)
778865d3
JB
13123 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13124
778865d3
JB
13125 return result;
13126}
13127
13128/* Return a vector of ada_exc_info.
13129
13130 If REGEXP is NULL, all exceptions are included in the result.
13131 Otherwise, it should contain a valid regular expression,
13132 and only the exceptions whose names match that regular expression
13133 are included in the result.
13134
13135 The exceptions are sorted in the following order:
13136 - Standard exceptions (defined by the Ada language), in
13137 alphabetical order;
13138 - Exceptions only visible from the current frame, in
13139 alphabetical order;
13140 - Exceptions whose scope is global, in alphabetical order. */
13141
ab816a27 13142std::vector<ada_exc_info>
778865d3
JB
13143ada_exceptions_list (const char *regexp)
13144{
2d7cc5c7
PA
13145 if (regexp == NULL)
13146 return ada_exceptions_list_1 (NULL);
778865d3 13147
2d7cc5c7
PA
13148 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13149 return ada_exceptions_list_1 (&reg);
778865d3
JB
13150}
13151
13152/* Implement the "info exceptions" command. */
13153
13154static void
1d12d88f 13155info_exceptions_command (const char *regexp, int from_tty)
778865d3 13156{
778865d3 13157 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13158
ab816a27 13159 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13160
13161 if (regexp != NULL)
13162 printf_filtered
13163 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13164 else
13165 printf_filtered (_("All defined Ada exceptions:\n"));
13166
ab816a27
TT
13167 for (const ada_exc_info &info : exceptions)
13168 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13169}
13170
4c4b4cd2
PH
13171 /* Operators */
13172/* Information about operators given special treatment in functions
13173 below. */
13174/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13175
13176#define ADA_OPERATORS \
13177 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13178 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13179 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13180 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13181 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13182 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13183 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13184 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13185 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13186 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13187 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13188 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13189 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13190 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13191 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13192 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13193 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13194 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13195 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13196
13197static void
554794dc
SDJ
13198ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13199 int *argsp)
4c4b4cd2
PH
13200{
13201 switch (exp->elts[pc - 1].opcode)
13202 {
76a01679 13203 default:
4c4b4cd2
PH
13204 operator_length_standard (exp, pc, oplenp, argsp);
13205 break;
13206
13207#define OP_DEFN(op, len, args, binop) \
13208 case op: *oplenp = len; *argsp = args; break;
13209 ADA_OPERATORS;
13210#undef OP_DEFN
52ce6436
PH
13211
13212 case OP_AGGREGATE:
13213 *oplenp = 3;
13214 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13215 break;
13216
13217 case OP_CHOICES:
13218 *oplenp = 3;
13219 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13220 break;
4c4b4cd2
PH
13221 }
13222}
13223
c0201579
JK
13224/* Implementation of the exp_descriptor method operator_check. */
13225
13226static int
13227ada_operator_check (struct expression *exp, int pos,
13228 int (*objfile_func) (struct objfile *objfile, void *data),
13229 void *data)
13230{
13231 const union exp_element *const elts = exp->elts;
13232 struct type *type = NULL;
13233
13234 switch (elts[pos].opcode)
13235 {
13236 case UNOP_IN_RANGE:
13237 case UNOP_QUAL:
13238 type = elts[pos + 1].type;
13239 break;
13240
13241 default:
13242 return operator_check_standard (exp, pos, objfile_func, data);
13243 }
13244
13245 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13246
13247 if (type && TYPE_OBJFILE (type)
13248 && (*objfile_func) (TYPE_OBJFILE (type), data))
13249 return 1;
13250
13251 return 0;
13252}
13253
a121b7c1 13254static const char *
4c4b4cd2
PH
13255ada_op_name (enum exp_opcode opcode)
13256{
13257 switch (opcode)
13258 {
76a01679 13259 default:
4c4b4cd2 13260 return op_name_standard (opcode);
52ce6436 13261
4c4b4cd2
PH
13262#define OP_DEFN(op, len, args, binop) case op: return #op;
13263 ADA_OPERATORS;
13264#undef OP_DEFN
52ce6436
PH
13265
13266 case OP_AGGREGATE:
13267 return "OP_AGGREGATE";
13268 case OP_CHOICES:
13269 return "OP_CHOICES";
13270 case OP_NAME:
13271 return "OP_NAME";
4c4b4cd2
PH
13272 }
13273}
13274
13275/* As for operator_length, but assumes PC is pointing at the first
13276 element of the operator, and gives meaningful results only for the
52ce6436 13277 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13278
13279static void
76a01679
JB
13280ada_forward_operator_length (struct expression *exp, int pc,
13281 int *oplenp, int *argsp)
4c4b4cd2 13282{
76a01679 13283 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13284 {
13285 default:
13286 *oplenp = *argsp = 0;
13287 break;
52ce6436 13288
4c4b4cd2
PH
13289#define OP_DEFN(op, len, args, binop) \
13290 case op: *oplenp = len; *argsp = args; break;
13291 ADA_OPERATORS;
13292#undef OP_DEFN
52ce6436
PH
13293
13294 case OP_AGGREGATE:
13295 *oplenp = 3;
13296 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13297 break;
13298
13299 case OP_CHOICES:
13300 *oplenp = 3;
13301 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13302 break;
13303
13304 case OP_STRING:
13305 case OP_NAME:
13306 {
13307 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13308
52ce6436
PH
13309 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13310 *argsp = 0;
13311 break;
13312 }
4c4b4cd2
PH
13313 }
13314}
13315
13316static int
13317ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13318{
13319 enum exp_opcode op = exp->elts[elt].opcode;
13320 int oplen, nargs;
13321 int pc = elt;
13322 int i;
76a01679 13323
4c4b4cd2
PH
13324 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13325
76a01679 13326 switch (op)
4c4b4cd2 13327 {
76a01679 13328 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13329 case OP_ATR_FIRST:
13330 case OP_ATR_LAST:
13331 case OP_ATR_LENGTH:
13332 case OP_ATR_IMAGE:
13333 case OP_ATR_MAX:
13334 case OP_ATR_MIN:
13335 case OP_ATR_MODULUS:
13336 case OP_ATR_POS:
13337 case OP_ATR_SIZE:
13338 case OP_ATR_TAG:
13339 case OP_ATR_VAL:
13340 break;
13341
13342 case UNOP_IN_RANGE:
13343 case UNOP_QUAL:
323e0a4a
AC
13344 /* XXX: gdb_sprint_host_address, type_sprint */
13345 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13346 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13347 fprintf_filtered (stream, " (");
13348 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13349 fprintf_filtered (stream, ")");
13350 break;
13351 case BINOP_IN_BOUNDS:
52ce6436
PH
13352 fprintf_filtered (stream, " (%d)",
13353 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13354 break;
13355 case TERNOP_IN_RANGE:
13356 break;
13357
52ce6436
PH
13358 case OP_AGGREGATE:
13359 case OP_OTHERS:
13360 case OP_DISCRETE_RANGE:
13361 case OP_POSITIONAL:
13362 case OP_CHOICES:
13363 break;
13364
13365 case OP_NAME:
13366 case OP_STRING:
13367 {
13368 char *name = &exp->elts[elt + 2].string;
13369 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13370
52ce6436
PH
13371 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13372 break;
13373 }
13374
4c4b4cd2
PH
13375 default:
13376 return dump_subexp_body_standard (exp, stream, elt);
13377 }
13378
13379 elt += oplen;
13380 for (i = 0; i < nargs; i += 1)
13381 elt = dump_subexp (exp, stream, elt);
13382
13383 return elt;
13384}
13385
13386/* The Ada extension of print_subexp (q.v.). */
13387
76a01679
JB
13388static void
13389ada_print_subexp (struct expression *exp, int *pos,
13390 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13391{
52ce6436 13392 int oplen, nargs, i;
4c4b4cd2
PH
13393 int pc = *pos;
13394 enum exp_opcode op = exp->elts[pc].opcode;
13395
13396 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13397
52ce6436 13398 *pos += oplen;
4c4b4cd2
PH
13399 switch (op)
13400 {
13401 default:
52ce6436 13402 *pos -= oplen;
4c4b4cd2
PH
13403 print_subexp_standard (exp, pos, stream, prec);
13404 return;
13405
13406 case OP_VAR_VALUE:
987012b8 13407 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13408 return;
13409
13410 case BINOP_IN_BOUNDS:
323e0a4a 13411 /* XXX: sprint_subexp */
4c4b4cd2 13412 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13413 fputs_filtered (" in ", stream);
4c4b4cd2 13414 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13415 fputs_filtered ("'range", stream);
4c4b4cd2 13416 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13417 fprintf_filtered (stream, "(%ld)",
13418 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13419 return;
13420
13421 case TERNOP_IN_RANGE:
4c4b4cd2 13422 if (prec >= PREC_EQUAL)
76a01679 13423 fputs_filtered ("(", stream);
323e0a4a 13424 /* XXX: sprint_subexp */
4c4b4cd2 13425 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13426 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13427 print_subexp (exp, pos, stream, PREC_EQUAL);
13428 fputs_filtered (" .. ", stream);
13429 print_subexp (exp, pos, stream, PREC_EQUAL);
13430 if (prec >= PREC_EQUAL)
76a01679
JB
13431 fputs_filtered (")", stream);
13432 return;
4c4b4cd2
PH
13433
13434 case OP_ATR_FIRST:
13435 case OP_ATR_LAST:
13436 case OP_ATR_LENGTH:
13437 case OP_ATR_IMAGE:
13438 case OP_ATR_MAX:
13439 case OP_ATR_MIN:
13440 case OP_ATR_MODULUS:
13441 case OP_ATR_POS:
13442 case OP_ATR_SIZE:
13443 case OP_ATR_TAG:
13444 case OP_ATR_VAL:
4c4b4cd2 13445 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679 13446 {
78134374 13447 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
79d43c61
TT
13448 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13449 &type_print_raw_options);
76a01679
JB
13450 *pos += 3;
13451 }
4c4b4cd2 13452 else
76a01679 13453 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13454 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13455 if (nargs > 1)
76a01679
JB
13456 {
13457 int tem;
5b4ee69b 13458
76a01679
JB
13459 for (tem = 1; tem < nargs; tem += 1)
13460 {
13461 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13462 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13463 }
13464 fputs_filtered (")", stream);
13465 }
4c4b4cd2 13466 return;
14f9c5c9 13467
4c4b4cd2 13468 case UNOP_QUAL:
4c4b4cd2
PH
13469 type_print (exp->elts[pc + 1].type, "", stream, 0);
13470 fputs_filtered ("'(", stream);
13471 print_subexp (exp, pos, stream, PREC_PREFIX);
13472 fputs_filtered (")", stream);
13473 return;
14f9c5c9 13474
4c4b4cd2 13475 case UNOP_IN_RANGE:
323e0a4a 13476 /* XXX: sprint_subexp */
4c4b4cd2 13477 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13478 fputs_filtered (" in ", stream);
79d43c61
TT
13479 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13480 &type_print_raw_options);
4c4b4cd2 13481 return;
52ce6436
PH
13482
13483 case OP_DISCRETE_RANGE:
13484 print_subexp (exp, pos, stream, PREC_SUFFIX);
13485 fputs_filtered ("..", stream);
13486 print_subexp (exp, pos, stream, PREC_SUFFIX);
13487 return;
13488
13489 case OP_OTHERS:
13490 fputs_filtered ("others => ", stream);
13491 print_subexp (exp, pos, stream, PREC_SUFFIX);
13492 return;
13493
13494 case OP_CHOICES:
13495 for (i = 0; i < nargs-1; i += 1)
13496 {
13497 if (i > 0)
13498 fputs_filtered ("|", stream);
13499 print_subexp (exp, pos, stream, PREC_SUFFIX);
13500 }
13501 fputs_filtered (" => ", stream);
13502 print_subexp (exp, pos, stream, PREC_SUFFIX);
13503 return;
13504
13505 case OP_POSITIONAL:
13506 print_subexp (exp, pos, stream, PREC_SUFFIX);
13507 return;
13508
13509 case OP_AGGREGATE:
13510 fputs_filtered ("(", stream);
13511 for (i = 0; i < nargs; i += 1)
13512 {
13513 if (i > 0)
13514 fputs_filtered (", ", stream);
13515 print_subexp (exp, pos, stream, PREC_SUFFIX);
13516 }
13517 fputs_filtered (")", stream);
13518 return;
4c4b4cd2
PH
13519 }
13520}
14f9c5c9
AS
13521
13522/* Table mapping opcodes into strings for printing operators
13523 and precedences of the operators. */
13524
d2e4a39e
AS
13525static const struct op_print ada_op_print_tab[] = {
13526 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13527 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13528 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13529 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13530 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13531 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13532 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13533 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13534 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13535 {">=", BINOP_GEQ, PREC_ORDER, 0},
13536 {">", BINOP_GTR, PREC_ORDER, 0},
13537 {"<", BINOP_LESS, PREC_ORDER, 0},
13538 {">>", BINOP_RSH, PREC_SHIFT, 0},
13539 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13540 {"+", BINOP_ADD, PREC_ADD, 0},
13541 {"-", BINOP_SUB, PREC_ADD, 0},
13542 {"&", BINOP_CONCAT, PREC_ADD, 0},
13543 {"*", BINOP_MUL, PREC_MUL, 0},
13544 {"/", BINOP_DIV, PREC_MUL, 0},
13545 {"rem", BINOP_REM, PREC_MUL, 0},
13546 {"mod", BINOP_MOD, PREC_MUL, 0},
13547 {"**", BINOP_EXP, PREC_REPEAT, 0},
13548 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13549 {"-", UNOP_NEG, PREC_PREFIX, 0},
13550 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13551 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13552 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13553 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13554 {".all", UNOP_IND, PREC_SUFFIX, 1},
13555 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13556 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13557 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13558};
13559\f
72d5681a
PH
13560enum ada_primitive_types {
13561 ada_primitive_type_int,
13562 ada_primitive_type_long,
13563 ada_primitive_type_short,
13564 ada_primitive_type_char,
13565 ada_primitive_type_float,
13566 ada_primitive_type_double,
13567 ada_primitive_type_void,
13568 ada_primitive_type_long_long,
13569 ada_primitive_type_long_double,
13570 ada_primitive_type_natural,
13571 ada_primitive_type_positive,
13572 ada_primitive_type_system_address,
08f49010 13573 ada_primitive_type_storage_offset,
72d5681a
PH
13574 nr_ada_primitive_types
13575};
6c038f32 13576
6c038f32
PH
13577\f
13578 /* Language vector */
13579
13580/* Not really used, but needed in the ada_language_defn. */
13581
13582static void
6c7a06a3 13583emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13584{
6c7a06a3 13585 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13586}
13587
13588static int
410a0ff2 13589parse (struct parser_state *ps)
6c038f32
PH
13590{
13591 warnings_issued = 0;
410a0ff2 13592 return ada_parse (ps);
6c038f32
PH
13593}
13594
13595static const struct exp_descriptor ada_exp_descriptor = {
13596 ada_print_subexp,
13597 ada_operator_length,
c0201579 13598 ada_operator_check,
6c038f32
PH
13599 ada_op_name,
13600 ada_dump_subexp_body,
13601 ada_evaluate_subexp
13602};
13603
b5ec771e
PA
13604/* symbol_name_matcher_ftype adapter for wild_match. */
13605
13606static bool
13607do_wild_match (const char *symbol_search_name,
13608 const lookup_name_info &lookup_name,
a207cff2 13609 completion_match_result *comp_match_res)
b5ec771e
PA
13610{
13611 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13612}
13613
13614/* symbol_name_matcher_ftype adapter for full_match. */
13615
13616static bool
13617do_full_match (const char *symbol_search_name,
13618 const lookup_name_info &lookup_name,
a207cff2 13619 completion_match_result *comp_match_res)
b5ec771e
PA
13620{
13621 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13622}
13623
a2cd4f14
JB
13624/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13625
13626static bool
13627do_exact_match (const char *symbol_search_name,
13628 const lookup_name_info &lookup_name,
13629 completion_match_result *comp_match_res)
13630{
13631 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13632}
13633
b5ec771e
PA
13634/* Build the Ada lookup name for LOOKUP_NAME. */
13635
13636ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13637{
e0802d59 13638 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13639
13640 if (user_name[0] == '<')
13641 {
13642 if (user_name.back () == '>')
e0802d59
TT
13643 m_encoded_name
13644 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13645 else
e0802d59
TT
13646 m_encoded_name
13647 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13648 m_encoded_p = true;
13649 m_verbatim_p = true;
13650 m_wild_match_p = false;
13651 m_standard_p = false;
13652 }
13653 else
13654 {
13655 m_verbatim_p = false;
13656
e0802d59 13657 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13658
13659 if (!m_encoded_p)
13660 {
e0802d59 13661 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13662 const char *encoded = ada_encode_1 (folded, false);
13663 if (encoded != NULL)
13664 m_encoded_name = encoded;
13665 else
e0802d59 13666 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13667 }
13668 else
e0802d59 13669 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13670
13671 /* Handle the 'package Standard' special case. See description
13672 of m_standard_p. */
13673 if (startswith (m_encoded_name.c_str (), "standard__"))
13674 {
13675 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13676 m_standard_p = true;
13677 }
13678 else
13679 m_standard_p = false;
74ccd7f5 13680
b5ec771e
PA
13681 /* If the name contains a ".", then the user is entering a fully
13682 qualified entity name, and the match must not be done in wild
13683 mode. Similarly, if the user wants to complete what looks
13684 like an encoded name, the match must not be done in wild
13685 mode. Also, in the standard__ special case always do
13686 non-wild matching. */
13687 m_wild_match_p
13688 = (lookup_name.match_type () != symbol_name_match_type::FULL
13689 && !m_encoded_p
13690 && !m_standard_p
13691 && user_name.find ('.') == std::string::npos);
13692 }
13693}
13694
13695/* symbol_name_matcher_ftype method for Ada. This only handles
13696 completion mode. */
13697
13698static bool
13699ada_symbol_name_matches (const char *symbol_search_name,
13700 const lookup_name_info &lookup_name,
a207cff2 13701 completion_match_result *comp_match_res)
74ccd7f5 13702{
b5ec771e
PA
13703 return lookup_name.ada ().matches (symbol_search_name,
13704 lookup_name.match_type (),
a207cff2 13705 comp_match_res);
b5ec771e
PA
13706}
13707
de63c46b
PA
13708/* A name matcher that matches the symbol name exactly, with
13709 strcmp. */
13710
13711static bool
13712literal_symbol_name_matcher (const char *symbol_search_name,
13713 const lookup_name_info &lookup_name,
13714 completion_match_result *comp_match_res)
13715{
e0802d59 13716 gdb::string_view name_view = lookup_name.name ();
de63c46b 13717
e0802d59
TT
13718 if (lookup_name.completion_mode ()
13719 ? (strncmp (symbol_search_name, name_view.data (),
13720 name_view.size ()) == 0)
13721 : symbol_search_name == name_view)
de63c46b
PA
13722 {
13723 if (comp_match_res != NULL)
13724 comp_match_res->set_match (symbol_search_name);
13725 return true;
13726 }
13727 else
13728 return false;
13729}
13730
c9debfb9 13731/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13732 Ada. */
13733
13734static symbol_name_matcher_ftype *
13735ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13736{
de63c46b
PA
13737 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13738 return literal_symbol_name_matcher;
13739
b5ec771e
PA
13740 if (lookup_name.completion_mode ())
13741 return ada_symbol_name_matches;
74ccd7f5 13742 else
b5ec771e
PA
13743 {
13744 if (lookup_name.ada ().wild_match_p ())
13745 return do_wild_match;
a2cd4f14
JB
13746 else if (lookup_name.ada ().verbatim_p ())
13747 return do_exact_match;
b5ec771e
PA
13748 else
13749 return do_full_match;
13750 }
74ccd7f5
JB
13751}
13752
56618e20
TT
13753static const char *ada_extensions[] =
13754{
13755 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13756};
13757
0874fd07
AB
13758/* Constant data that describes the Ada language. */
13759
13760extern const struct language_data ada_language_data =
13761{
6c038f32 13762 "ada", /* Language name */
6abde28f 13763 "Ada",
6c038f32 13764 language_ada,
6c038f32 13765 range_check_off,
6c038f32
PH
13766 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13767 that's not quite what this means. */
6c038f32 13768 array_row_major,
9a044a89 13769 macro_expansion_no,
56618e20 13770 ada_extensions,
6c038f32
PH
13771 &ada_exp_descriptor,
13772 parse,
6c038f32
PH
13773 resolve,
13774 ada_printchar, /* Print a character constant */
13775 ada_printstr, /* Function to print string constant */
13776 emit_char, /* Function to print single char (not used) */
be942545 13777 ada_print_typedef, /* Print a typedef using appropriate syntax */
26792ee0 13778 ada_value_print_inner, /* la_value_print_inner */
6c038f32 13779 ada_value_print, /* Print a top-level value */
2b2d9e11 13780 NULL, /* name_of_this */
59cc4834 13781 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32 13782 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
6c038f32
PH
13783 ada_op_print_tab, /* expression operators for printing */
13784 0, /* c-style arrays */
13785 1, /* String lower bound */
e2b7af72 13786 ada_watch_location_expression,
a53b64ea 13787 &ada_varobj_ops,
4be290b2 13788 ada_is_string_type,
721b08c6 13789 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
13790};
13791
0874fd07
AB
13792/* Class representing the Ada language. */
13793
13794class ada_language : public language_defn
13795{
13796public:
13797 ada_language ()
13798 : language_defn (language_ada, ada_language_data)
13799 { /* Nothing. */ }
5bd40f2a
AB
13800
13801 /* Print an array element index using the Ada syntax. */
13802
13803 void print_array_index (struct type *index_type,
13804 LONGEST index,
13805 struct ui_file *stream,
13806 const value_print_options *options) const override
13807 {
13808 struct value *index_value = val_atr (index_type, index);
13809
13810 LA_VALUE_PRINT (index_value, stream, options);
13811 fprintf_filtered (stream, " => ");
13812 }
15e5fd35
AB
13813
13814 /* Implement the "read_var_value" language_defn method for Ada. */
13815
13816 struct value *read_var_value (struct symbol *var,
13817 const struct block *var_block,
13818 struct frame_info *frame) const override
13819 {
13820 /* The only case where default_read_var_value is not sufficient
13821 is when VAR is a renaming... */
13822 if (frame != nullptr)
13823 {
13824 const struct block *frame_block = get_frame_block (frame, NULL);
13825 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13826 return ada_read_renaming_var_value (var, frame_block);
13827 }
13828
13829 /* This is a typical case where we expect the default_read_var_value
13830 function to work. */
13831 return language_defn::read_var_value (var, var_block, frame);
13832 }
1fb314aa
AB
13833
13834 /* See language.h. */
13835 void language_arch_info (struct gdbarch *gdbarch,
13836 struct language_arch_info *lai) const override
13837 {
13838 const struct builtin_type *builtin = builtin_type (gdbarch);
13839
13840 lai->primitive_type_vector
13841 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13842 struct type *);
13843
13844 lai->primitive_type_vector [ada_primitive_type_int]
13845 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13846 0, "integer");
13847 lai->primitive_type_vector [ada_primitive_type_long]
13848 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13849 0, "long_integer");
13850 lai->primitive_type_vector [ada_primitive_type_short]
13851 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13852 0, "short_integer");
13853 lai->string_char_type
13854 = lai->primitive_type_vector [ada_primitive_type_char]
13855 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13856 lai->primitive_type_vector [ada_primitive_type_float]
13857 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13858 "float", gdbarch_float_format (gdbarch));
13859 lai->primitive_type_vector [ada_primitive_type_double]
13860 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13861 "long_float", gdbarch_double_format (gdbarch));
13862 lai->primitive_type_vector [ada_primitive_type_long_long]
13863 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13864 0, "long_long_integer");
13865 lai->primitive_type_vector [ada_primitive_type_long_double]
13866 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13867 "long_long_float", gdbarch_long_double_format (gdbarch));
13868 lai->primitive_type_vector [ada_primitive_type_natural]
13869 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13870 0, "natural");
13871 lai->primitive_type_vector [ada_primitive_type_positive]
13872 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13873 0, "positive");
13874 lai->primitive_type_vector [ada_primitive_type_void]
13875 = builtin->builtin_void;
13876
13877 lai->primitive_type_vector [ada_primitive_type_system_address]
13878 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13879 "void"));
13880 lai->primitive_type_vector [ada_primitive_type_system_address]
13881 ->set_name ("system__address");
13882
13883 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13884 type. This is a signed integral type whose size is the same as
13885 the size of addresses. */
13886 {
13887 unsigned int addr_length = TYPE_LENGTH
13888 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13889
13890 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13891 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13892 "storage_offset");
13893 }
13894
13895 lai->bool_type_symbol = NULL;
13896 lai->bool_type_default = builtin->builtin_bool;
13897 }
4009ee92
AB
13898
13899 /* See language.h. */
13900
13901 bool iterate_over_symbols
13902 (const struct block *block, const lookup_name_info &name,
13903 domain_enum domain,
13904 gdb::function_view<symbol_found_callback_ftype> callback) const override
13905 {
13906 std::vector<struct block_symbol> results;
13907
13908 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13909 for (block_symbol &sym : results)
13910 {
13911 if (!callback (&sym))
13912 return false;
13913 }
13914
13915 return true;
13916 }
6f827019
AB
13917
13918 /* See language.h. */
13919 bool sniff_from_mangled_name (const char *mangled,
13920 char **out) const override
13921 {
13922 std::string demangled = ada_decode (mangled);
13923
13924 *out = NULL;
13925
13926 if (demangled != mangled && demangled[0] != '<')
13927 {
13928 /* Set the gsymbol language to Ada, but still return 0.
13929 Two reasons for that:
13930
13931 1. For Ada, we prefer computing the symbol's decoded name
13932 on the fly rather than pre-compute it, in order to save
13933 memory (Ada projects are typically very large).
13934
13935 2. There are some areas in the definition of the GNAT
13936 encoding where, with a bit of bad luck, we might be able
13937 to decode a non-Ada symbol, generating an incorrect
13938 demangled name (Eg: names ending with "TB" for instance
13939 are identified as task bodies and so stripped from
13940 the decoded name returned).
13941
13942 Returning true, here, but not setting *DEMANGLED, helps us get
13943 a little bit of the best of both worlds. Because we're last,
13944 we should not affect any of the other languages that were
13945 able to demangle the symbol before us; we get to correctly
13946 tag Ada symbols as such; and even if we incorrectly tagged a
13947 non-Ada symbol, which should be rare, any routing through the
13948 Ada language should be transparent (Ada tries to behave much
13949 like C/C++ with non-Ada symbols). */
13950 return true;
13951 }
13952
13953 return false;
13954 }
fbfb0a46
AB
13955
13956 /* See language.h. */
13957
0a50df5d
AB
13958 char *demangle (const char *mangled, int options) const override
13959 {
13960 return ada_la_decode (mangled, options);
13961 }
13962
13963 /* See language.h. */
13964
fbfb0a46
AB
13965 void print_type (struct type *type, const char *varstring,
13966 struct ui_file *stream, int show, int level,
13967 const struct type_print_options *flags) const override
13968 {
13969 ada_print_type (type, varstring, stream, show, level, flags);
13970 }
c9debfb9 13971
53fc67f8
AB
13972 /* See language.h. */
13973
13974 const char *word_break_characters (void) const override
13975 {
13976 return ada_completer_word_break_characters;
13977 }
13978
7e56227d
AB
13979 /* See language.h. */
13980
13981 void collect_symbol_completion_matches (completion_tracker &tracker,
13982 complete_symbol_mode mode,
13983 symbol_name_match_type name_match_type,
13984 const char *text, const char *word,
13985 enum type_code code) const override
13986 {
13987 struct symbol *sym;
13988 const struct block *b, *surrounding_static_block = 0;
13989 struct block_iterator iter;
13990
13991 gdb_assert (code == TYPE_CODE_UNDEF);
13992
13993 lookup_name_info lookup_name (text, name_match_type, true);
13994
13995 /* First, look at the partial symtab symbols. */
13996 expand_symtabs_matching (NULL,
13997 lookup_name,
13998 NULL,
13999 NULL,
14000 ALL_DOMAIN);
14001
14002 /* At this point scan through the misc symbol vectors and add each
14003 symbol you find to the list. Eventually we want to ignore
14004 anything that isn't a text symbol (everything else will be
14005 handled by the psymtab code above). */
14006
14007 for (objfile *objfile : current_program_space->objfiles ())
14008 {
14009 for (minimal_symbol *msymbol : objfile->msymbols ())
14010 {
14011 QUIT;
14012
14013 if (completion_skip_symbol (mode, msymbol))
14014 continue;
14015
14016 language symbol_language = msymbol->language ();
14017
14018 /* Ada minimal symbols won't have their language set to Ada. If
14019 we let completion_list_add_name compare using the
14020 default/C-like matcher, then when completing e.g., symbols in a
14021 package named "pck", we'd match internal Ada symbols like
14022 "pckS", which are invalid in an Ada expression, unless you wrap
14023 them in '<' '>' to request a verbatim match.
14024
14025 Unfortunately, some Ada encoded names successfully demangle as
14026 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14027 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14028 with the wrong language set. Paper over that issue here. */
14029 if (symbol_language == language_auto
14030 || symbol_language == language_cplus)
14031 symbol_language = language_ada;
14032
14033 completion_list_add_name (tracker,
14034 symbol_language,
14035 msymbol->linkage_name (),
14036 lookup_name, text, word);
14037 }
14038 }
14039
14040 /* Search upwards from currently selected frame (so that we can
14041 complete on local vars. */
14042
14043 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14044 {
14045 if (!BLOCK_SUPERBLOCK (b))
14046 surrounding_static_block = b; /* For elmin of dups */
14047
14048 ALL_BLOCK_SYMBOLS (b, iter, sym)
14049 {
14050 if (completion_skip_symbol (mode, sym))
14051 continue;
14052
14053 completion_list_add_name (tracker,
14054 sym->language (),
14055 sym->linkage_name (),
14056 lookup_name, text, word);
14057 }
14058 }
14059
14060 /* Go through the symtabs and check the externs and statics for
14061 symbols which match. */
14062
14063 for (objfile *objfile : current_program_space->objfiles ())
14064 {
14065 for (compunit_symtab *s : objfile->compunits ())
14066 {
14067 QUIT;
14068 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14069 ALL_BLOCK_SYMBOLS (b, iter, sym)
14070 {
14071 if (completion_skip_symbol (mode, sym))
14072 continue;
14073
14074 completion_list_add_name (tracker,
14075 sym->language (),
14076 sym->linkage_name (),
14077 lookup_name, text, word);
14078 }
14079 }
14080 }
14081
14082 for (objfile *objfile : current_program_space->objfiles ())
14083 {
14084 for (compunit_symtab *s : objfile->compunits ())
14085 {
14086 QUIT;
14087 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14088 /* Don't do this block twice. */
14089 if (b == surrounding_static_block)
14090 continue;
14091 ALL_BLOCK_SYMBOLS (b, iter, sym)
14092 {
14093 if (completion_skip_symbol (mode, sym))
14094 continue;
14095
14096 completion_list_add_name (tracker,
14097 sym->language (),
14098 sym->linkage_name (),
14099 lookup_name, text, word);
14100 }
14101 }
14102 }
14103 }
14104
c9debfb9
AB
14105protected:
14106 /* See language.h. */
14107
14108 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14109 (const lookup_name_info &lookup_name) const override
14110 {
14111 return ada_get_symbol_name_matcher (lookup_name);
14112 }
0874fd07
AB
14113};
14114
14115/* Single instance of the Ada language class. */
14116
14117static ada_language ada_language_defn;
14118
5bf03f13
JB
14119/* Command-list for the "set/show ada" prefix command. */
14120static struct cmd_list_element *set_ada_list;
14121static struct cmd_list_element *show_ada_list;
14122
2060206e
PA
14123static void
14124initialize_ada_catchpoint_ops (void)
14125{
14126 struct breakpoint_ops *ops;
14127
14128 initialize_breakpoint_ops ();
14129
14130 ops = &catch_exception_breakpoint_ops;
14131 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14132 ops->allocate_location = allocate_location_exception;
14133 ops->re_set = re_set_exception;
14134 ops->check_status = check_status_exception;
14135 ops->print_it = print_it_exception;
14136 ops->print_one = print_one_exception;
14137 ops->print_mention = print_mention_exception;
14138 ops->print_recreate = print_recreate_exception;
2060206e
PA
14139
14140 ops = &catch_exception_unhandled_breakpoint_ops;
14141 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14142 ops->allocate_location = allocate_location_exception;
14143 ops->re_set = re_set_exception;
14144 ops->check_status = check_status_exception;
14145 ops->print_it = print_it_exception;
14146 ops->print_one = print_one_exception;
14147 ops->print_mention = print_mention_exception;
14148 ops->print_recreate = print_recreate_exception;
2060206e
PA
14149
14150 ops = &catch_assert_breakpoint_ops;
14151 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14152 ops->allocate_location = allocate_location_exception;
14153 ops->re_set = re_set_exception;
14154 ops->check_status = check_status_exception;
14155 ops->print_it = print_it_exception;
14156 ops->print_one = print_one_exception;
14157 ops->print_mention = print_mention_exception;
14158 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14159
14160 ops = &catch_handlers_breakpoint_ops;
14161 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14162 ops->allocate_location = allocate_location_exception;
14163 ops->re_set = re_set_exception;
14164 ops->check_status = check_status_exception;
14165 ops->print_it = print_it_exception;
14166 ops->print_one = print_one_exception;
14167 ops->print_mention = print_mention_exception;
14168 ops->print_recreate = print_recreate_exception;
2060206e
PA
14169}
14170
3d9434b5
JB
14171/* This module's 'new_objfile' observer. */
14172
14173static void
14174ada_new_objfile_observer (struct objfile *objfile)
14175{
14176 ada_clear_symbol_cache ();
14177}
14178
14179/* This module's 'free_objfile' observer. */
14180
14181static void
14182ada_free_objfile_observer (struct objfile *objfile)
14183{
14184 ada_clear_symbol_cache ();
14185}
14186
6c265988 14187void _initialize_ada_language ();
d2e4a39e 14188void
6c265988 14189_initialize_ada_language ()
14f9c5c9 14190{
2060206e
PA
14191 initialize_ada_catchpoint_ops ();
14192
0743fc83
TT
14193 add_basic_prefix_cmd ("ada", no_class,
14194 _("Prefix command for changing Ada-specific settings."),
14195 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14196
0743fc83
TT
14197 add_show_prefix_cmd ("ada", no_class,
14198 _("Generic command for showing Ada-specific settings."),
14199 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14200
14201 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14202 &trust_pad_over_xvs, _("\
590042fc
PW
14203Enable or disable an optimization trusting PAD types over XVS types."), _("\
14204Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14205 _("\
14206This is related to the encoding used by the GNAT compiler. The debugger\n\
14207should normally trust the contents of PAD types, but certain older versions\n\
14208of GNAT have a bug that sometimes causes the information in the PAD type\n\
14209to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14210work around this bug. It is always safe to turn this option \"off\", but\n\
14211this incurs a slight performance penalty, so it is recommended to NOT change\n\
14212this option to \"off\" unless necessary."),
14213 NULL, NULL, &set_ada_list, &show_ada_list);
14214
d72413e6
PMR
14215 add_setshow_boolean_cmd ("print-signatures", class_vars,
14216 &print_signatures, _("\
14217Enable or disable the output of formal and return types for functions in the \
590042fc 14218overloads selection menu."), _("\
d72413e6 14219Show whether the output of formal and return types for functions in the \
590042fc 14220overloads selection menu is activated."),
d72413e6
PMR
14221 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14222
9ac4176b
PA
14223 add_catch_command ("exception", _("\
14224Catch Ada exceptions, when raised.\n\
9bf7038b 14225Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14226Without any argument, stop when any Ada exception is raised.\n\
14227If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14228being raised does not have a handler (and will therefore lead to the task's\n\
14229termination).\n\
14230Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14231raised is the same as ARG.\n\
14232CONDITION is a boolean expression that is evaluated to see whether the\n\
14233exception should cause a stop."),
9ac4176b 14234 catch_ada_exception_command,
71bed2db 14235 catch_ada_completer,
9ac4176b
PA
14236 CATCH_PERMANENT,
14237 CATCH_TEMPORARY);
9f757bf7
XR
14238
14239 add_catch_command ("handlers", _("\
14240Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14241Usage: catch handlers [ARG] [if CONDITION]\n\
14242Without any argument, stop when any Ada exception is handled.\n\
14243With an argument, catch only exceptions with the given name.\n\
14244CONDITION is a boolean expression that is evaluated to see whether the\n\
14245exception should cause a stop."),
9f757bf7 14246 catch_ada_handlers_command,
71bed2db 14247 catch_ada_completer,
9f757bf7
XR
14248 CATCH_PERMANENT,
14249 CATCH_TEMPORARY);
9ac4176b
PA
14250 add_catch_command ("assert", _("\
14251Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14252Usage: catch assert [if CONDITION]\n\
14253CONDITION is a boolean expression that is evaluated to see whether the\n\
14254exception should cause a stop."),
9ac4176b
PA
14255 catch_assert_command,
14256 NULL,
14257 CATCH_PERMANENT,
14258 CATCH_TEMPORARY);
14259
6c038f32 14260 varsize_limit = 65536;
3fcded8f
JB
14261 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14262 &varsize_limit, _("\
14263Set the maximum number of bytes allowed in a variable-size object."), _("\
14264Show the maximum number of bytes allowed in a variable-size object."), _("\
14265Attempts to access an object whose size is not a compile-time constant\n\
14266and exceeds this limit will cause an error."),
14267 NULL, NULL, &setlist, &showlist);
6c038f32 14268
778865d3
JB
14269 add_info ("exceptions", info_exceptions_command,
14270 _("\
14271List all Ada exception names.\n\
9bf7038b 14272Usage: info exceptions [REGEXP]\n\
778865d3
JB
14273If a regular expression is passed as an argument, only those matching\n\
14274the regular expression are listed."));
14275
0743fc83
TT
14276 add_basic_prefix_cmd ("ada", class_maintenance,
14277 _("Set Ada maintenance-related variables."),
14278 &maint_set_ada_cmdlist, "maintenance set ada ",
14279 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14280
0743fc83
TT
14281 add_show_prefix_cmd ("ada", class_maintenance,
14282 _("Show Ada maintenance-related variables."),
14283 &maint_show_ada_cmdlist, "maintenance show ada ",
14284 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14285
14286 add_setshow_boolean_cmd
14287 ("ignore-descriptive-types", class_maintenance,
14288 &ada_ignore_descriptive_types_p,
14289 _("Set whether descriptive types generated by GNAT should be ignored."),
14290 _("Show whether descriptive types generated by GNAT should be ignored."),
14291 _("\
14292When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14293DWARF attribute."),
14294 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14295
459a2e4c
TT
14296 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14297 NULL, xcalloc, xfree);
6b69afc4 14298
3d9434b5 14299 /* The ada-lang observers. */
76727919
TT
14300 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14301 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14302 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14303}