]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[gdb] Fix more typos in comments
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4 51#include "observable.h"
692465f1 52#include "stack.h"
268a13a5 53#include "gdbsupport/gdb_vecs.h"
79d43c61 54#include "typeprint.h"
4de283e4 55#include "namespace.h"
7f6aba03 56#include "cli/cli-style.h"
4de283e4
TT
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
268a13a5
TT
63#include "gdbsupport/function-view.h"
64#include "gdbsupport/byte-vector.h"
4de283e4 65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
a121b7c1 149static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 150 int, int);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 191
d2e4a39e 192static int equiv_types (struct type *, struct type *);
14f9c5c9 193
d2e4a39e 194static int is_name_suffix (const char *);
14f9c5c9 195
73589123
PH
196static int advance_wild_match (const char **, const char *, int);
197
b5ec771e 198static bool wild_match (const char *name, const char *patn);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
108d56a4 211static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
0d5cff50 217static int find_struct_field (const char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2 219
d12307c1 220static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 221 struct value **, int, const char *,
2a612529 222 struct type *, int);
4c4b4cd2 223
4c4b4cd2
PH
224static int ada_is_direct_array_type (struct type *);
225
72d5681a
PH
226static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
714e53ab 228
52ce6436
PH
229static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
233 struct expression *,
234 int *, enum noside);
52ce6436
PH
235
236static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
852dff6c
JB
260
261static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
262
263static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
4c4b4cd2
PH
266\f
267
ee01b665
JB
268/* The result of a symbol lookup to be stored in our symbol cache. */
269
270struct cache_entry
271{
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
fe978cb0 275 domain_enum domain;
ee01b665
JB
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284};
285
286/* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295#define HASH_SIZE 1009
296
297struct ada_symbol_cache
298{
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304};
305
306static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 307
4c4b4cd2 308/* Maximum-sized dynamic type. */
14f9c5c9
AS
309static unsigned int varsize_limit;
310
67cb5b2d 311static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
312#ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314#else
14f9c5c9 315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 316#endif
14f9c5c9 317
4c4b4cd2 318/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 319static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 320 = "__gnat_ada_main_program_name";
14f9c5c9 321
4c4b4cd2
PH
322/* Limit on the number of warnings to raise per expression evaluation. */
323static int warning_limit = 2;
324
325/* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327static int warnings_issued = 0;
328
329static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331};
332
333static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335};
336
c6044dd1
JB
337/* Maintenance-related settings for this module. */
338
339static struct cmd_list_element *maint_set_ada_cmdlist;
340static struct cmd_list_element *maint_show_ada_cmdlist;
341
342/* Implement the "maintenance set ada" (prefix) command. */
343
344static void
981a3fb3 345maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 346{
635c7e8a
TT
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
c6044dd1
JB
349}
350
351/* Implement the "maintenance show ada" (prefix) command. */
352
353static void
981a3fb3 354maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
355{
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357}
358
359/* The "maintenance ada set/show ignore-descriptive-type" value. */
360
491144b5 361static bool ada_ignore_descriptive_types_p = false;
c6044dd1 362
e802dbe0
JB
363 /* Inferior-specific data. */
364
365/* Per-inferior data for this module. */
366
367struct ada_inferior_data
368{
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
f37b313d 373 struct type *tsd_type = nullptr;
3eecfa55
JB
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
f37b313d 378 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
379};
380
381/* Our key to this module's inferior data. */
f37b313d 382static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
383
384/* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392static struct ada_inferior_data *
393get_ada_inferior_data (struct inferior *inf)
394{
395 struct ada_inferior_data *data;
396
f37b313d 397 data = ada_inferior_data.get (inf);
e802dbe0 398 if (data == NULL)
f37b313d 399 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
400
401 return data;
402}
403
404/* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407static void
408ada_inferior_exit (struct inferior *inf)
409{
f37b313d 410 ada_inferior_data.clear (inf);
e802dbe0
JB
411}
412
ee01b665
JB
413
414 /* program-space-specific data. */
415
416/* This module's per-program-space data. */
417struct ada_pspace_data
418{
f37b313d
TT
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
ee01b665 425 /* The Ada symbol cache. */
f37b313d 426 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
427};
428
429/* Key to our per-program-space data. */
f37b313d 430static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
431
432/* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437static struct ada_pspace_data *
438get_ada_pspace_data (struct program_space *pspace)
439{
440 struct ada_pspace_data *data;
441
f37b313d 442 data = ada_pspace_data_handle.get (pspace);
ee01b665 443 if (data == NULL)
f37b313d 444 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
445
446 return data;
447}
448
4c4b4cd2
PH
449 /* Utilities */
450
720d1a40 451/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 452 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478static struct type *
479ada_typedef_target_type (struct type *type)
480{
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484}
485
41d27058
JB
486/* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490static const char *
491ada_unqualified_name (const char *decoded_name)
492{
2b0f535a
JB
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
41d27058
JB
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509}
510
39e7af3e 511/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 512
39e7af3e 513static std::string
41d27058
JB
514add_angle_brackets (const char *str)
515{
39e7af3e 516 return string_printf ("<%s>", str);
41d27058 517}
96d887e8 518
67cb5b2d 519static const char *
4c4b4cd2
PH
520ada_get_gdb_completer_word_break_characters (void)
521{
522 return ada_completer_word_break_characters;
523}
524
e79af960
JB
525/* Print an array element index using the Ada syntax. */
526
527static void
528ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 529 const struct value_print_options *options)
e79af960 530{
79a45b7d 531 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
532 fprintf_filtered (stream, " => ");
533}
534
e2b7af72
JB
535/* la_watch_location_expression for Ada. */
536
537gdb::unique_xmalloc_ptr<char>
538ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539{
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544}
545
f27cf670 546/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 548 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 549
f27cf670
AS
550void *
551grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 552{
d2e4a39e
AS
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
4c4b4cd2 557 *size = min_size;
f27cf670 558 vect = xrealloc (vect, *size * element_size);
d2e4a39e 559 }
f27cf670 560 return vect;
14f9c5c9
AS
561}
562
563/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 564 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
565
566static int
ebf56fd3 567field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
568{
569 int len = strlen (target);
5b4ee69b 570
d2e4a39e 571 return
4c4b4cd2
PH
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
61012eef 574 || (startswith (field_name + len, "___")
76a01679
JB
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
14f9c5c9
AS
577}
578
579
872c8b51
JB
580/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
587
588int
589ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591{
592 int fieldno;
872c8b51
JB
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
597 return fieldno;
598
599 if (!maybe_missing)
323e0a4a 600 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 601 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
602
603 return -1;
604}
605
606/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
607
608int
d2e4a39e 609ada_name_prefix_len (const char *name)
14f9c5c9
AS
610{
611 if (name == NULL)
612 return 0;
d2e4a39e 613 else
14f9c5c9 614 {
d2e4a39e 615 const char *p = strstr (name, "___");
5b4ee69b 616
14f9c5c9 617 if (p == NULL)
4c4b4cd2 618 return strlen (name);
14f9c5c9 619 else
4c4b4cd2 620 return p - name;
14f9c5c9
AS
621 }
622}
623
4c4b4cd2
PH
624/* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
14f9c5c9 627static int
d2e4a39e 628is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
629{
630 int len1, len2;
5b4ee69b 631
14f9c5c9
AS
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
4c4b4cd2 636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
637}
638
4c4b4cd2
PH
639/* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
14f9c5c9 641
d2e4a39e 642static struct value *
4c4b4cd2 643coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 644{
61ee279c 645 type = ada_check_typedef (type);
df407dfe 646 if (value_type (val) == type)
4c4b4cd2 647 return val;
d2e4a39e 648 else
14f9c5c9 649 {
4c4b4cd2
PH
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
c1b5a1a6 654 ada_ensure_varsize_limit (type);
4c4b4cd2 655
41e8491f
JK
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
9a0dc9e3 662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 663 }
74bcbdf3 664 set_value_component_location (result, val);
9bbda503
AC
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
14f9c5c9
AS
669 return result;
670 }
671}
672
fc1a4b47
AC
673static const gdb_byte *
674cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
675{
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680}
681
682static CORE_ADDR
ebf56fd3 683cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
684{
685 if (address == 0)
686 return 0;
d2e4a39e 687 else
14f9c5c9
AS
688 return address + offset;
689}
690
4c4b4cd2
PH
691/* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
a2249542 695
77109804
AC
696/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
a0b31db1 698static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 699
14f9c5c9 700static void
a2249542 701lim_warning (const char *format, ...)
14f9c5c9 702{
a2249542 703 va_list args;
a2249542 704
5b4ee69b 705 va_start (args, format);
4c4b4cd2
PH
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
a2249542
MK
708 vwarning (format, args);
709
710 va_end (args);
4c4b4cd2
PH
711}
712
714e53ab
PH
713/* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
c1b5a1a6
JB
717void
718ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
719{
720 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 721 error (_("object size is larger than varsize-limit"));
714e53ab
PH
722}
723
0963b4bd 724/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 725static LONGEST
c3e5cd34 726max_of_size (int size)
4c4b4cd2 727{
76a01679 728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 729
76a01679 730 return top_bit | (top_bit - 1);
4c4b4cd2
PH
731}
732
0963b4bd 733/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 734static LONGEST
c3e5cd34 735min_of_size (int size)
4c4b4cd2 736{
c3e5cd34 737 return -max_of_size (size) - 1;
4c4b4cd2
PH
738}
739
0963b4bd 740/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 741static ULONGEST
c3e5cd34 742umax_of_size (int size)
4c4b4cd2 743{
76a01679 744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 745
76a01679 746 return top_bit | (top_bit - 1);
4c4b4cd2
PH
747}
748
0963b4bd 749/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
750static LONGEST
751max_of_type (struct type *t)
4c4b4cd2 752{
c3e5cd34
PH
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757}
758
0963b4bd 759/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
760static LONGEST
761min_of_type (struct type *t)
762{
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
767}
768
769/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
770LONGEST
771ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 772{
c3345124 773 type = resolve_dynamic_type (type, NULL, 0);
76a01679 774 switch (TYPE_CODE (type))
4c4b4cd2
PH
775 {
776 case TYPE_CODE_RANGE:
690cc4eb 777 return TYPE_HIGH_BOUND (type);
4c4b4cd2 778 case TYPE_CODE_ENUM:
14e75d8e 779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
76a01679 783 case TYPE_CODE_INT:
690cc4eb 784 return max_of_type (type);
4c4b4cd2 785 default:
43bbcdc2 786 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
787 }
788}
789
14e75d8e 790/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_LOW_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return min_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
808 }
809}
810
811/* The identity on non-range types. For range types, the underlying
76a01679 812 non-range scalar type. */
4c4b4cd2
PH
813
814static struct type *
18af8284 815get_base_type (struct type *type)
4c4b4cd2
PH
816{
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
76a01679
JB
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
4c4b4cd2
PH
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
14f9c5c9 824}
41246937
JB
825
826/* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
85102364 828 encodings, making the resulting type a static but standard description
41246937
JB
829 of the initial type. */
830
831struct value *
832ada_get_decoded_value (struct value *value)
833{
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849}
850
851/* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856struct type *
857ada_get_decoded_type (struct type *type)
858{
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863}
864
4c4b4cd2 865\f
76a01679 866
4c4b4cd2 867 /* Language Selection */
14f9c5c9
AS
868
869/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 870 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 871
14f9c5c9 872enum language
ccefe4c4 873ada_update_initial_language (enum language lang)
14f9c5c9 874{
cafb3438 875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 876 return language_ada;
14f9c5c9
AS
877
878 return lang;
879}
96d887e8
PH
880
881/* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885char *
886ada_main_name (void)
887{
3b7344d5 888 struct bound_minimal_symbol msym;
e83e4e24 889 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 890
96d887e8
PH
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
3b7344d5 898 if (msym.minsym != NULL)
96d887e8 899 {
f9bc20b9
JB
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
77e371c0 903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 904 if (main_program_name_addr == 0)
323e0a4a 905 error (_("Invalid address for Ada main program name."));
96d887e8 906
f9bc20b9
JB
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
e83e4e24 912 return main_program_name.get ();
96d887e8
PH
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917}
14f9c5c9 918\f
4c4b4cd2 919 /* Symbols */
d2e4a39e 920
4c4b4cd2
PH
921/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
14f9c5c9 923
d2e4a39e
AS
924const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
14f9c5c9
AS
947};
948
b5ec771e
PA
949/* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
4c4b4cd2 953
b5ec771e
PA
954static char *
955ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 956{
4c4b4cd2
PH
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
d2e4a39e 959 const char *p;
14f9c5c9 960 int k;
d2e4a39e 961
4c4b4cd2 962 if (decoded == NULL)
14f9c5c9
AS
963 return NULL;
964
4c4b4cd2
PH
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
14f9c5c9
AS
967
968 k = 0;
4c4b4cd2 969 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 970 {
cdc7bb92 971 if (*p == '.')
4c4b4cd2
PH
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
14f9c5c9 976 else if (*p == '"')
4c4b4cd2
PH
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
1265e4aa 981 mapping->encoded != NULL
61012eef 982 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
983 ;
984 if (mapping->encoded == NULL)
b5ec771e
PA
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
4c4b4cd2
PH
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
d2e4a39e 995 else
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
14f9c5c9
AS
1000 }
1001
4c4b4cd2
PH
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
14f9c5c9
AS
1004}
1005
b5ec771e
PA
1006/* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009char *
1010ada_encode (const char *decoded)
1011{
1012 return ada_encode_1 (decoded, true);
1013}
1014
14f9c5c9 1015/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
d2e4a39e
AS
1019char *
1020ada_fold_name (const char *name)
14f9c5c9 1021{
d2e4a39e 1022 static char *fold_buffer = NULL;
14f9c5c9
AS
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
d2e4a39e 1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1027
1028 if (name[0] == '\'')
1029 {
d2e4a39e
AS
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1032 }
1033 else
1034 {
1035 int i;
5b4ee69b 1036
14f9c5c9 1037 for (i = 0; i <= len; i += 1)
4c4b4cd2 1038 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1039 }
1040
1041 return fold_buffer;
1042}
1043
529cad9c
PH
1044/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046static int
1047is_lower_alphanum (const char c)
1048{
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050}
1051
c90092fe
JB
1052/* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
29480c32
JB
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
c90092fe 1059
29480c32
JB
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064static void
1065ada_remove_trailing_digits (const char *encoded, int *len)
1066{
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
5b4ee69b 1070
29480c32
JB
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
61012eef 1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1078 *len = i - 2;
61012eef 1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1080 *len = i - 1;
1081 }
1082}
1083
1084/* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087static void
1088ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089{
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
0963b4bd 1095 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104}
1105
1106/* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1108 replaced by ENCODED. */
14f9c5c9 1109
f945dedf 1110std::string
4c4b4cd2 1111ada_decode (const char *encoded)
14f9c5c9
AS
1112{
1113 int i, j;
1114 int len0;
d2e4a39e 1115 const char *p;
14f9c5c9 1116 int at_start_name;
f945dedf 1117 std::string decoded;
d2e4a39e 1118
0d81f350
JG
1119 /* With function descriptors on PPC64, the value of a symbol named
1120 ".FN", if it exists, is the entry point of the function "FN". */
1121 if (encoded[0] == '.')
1122 encoded += 1;
1123
29480c32
JB
1124 /* The name of the Ada main procedure starts with "_ada_".
1125 This prefix is not part of the decoded name, so skip this part
1126 if we see this prefix. */
61012eef 1127 if (startswith (encoded, "_ada_"))
4c4b4cd2 1128 encoded += 5;
14f9c5c9 1129
29480c32
JB
1130 /* If the name starts with '_', then it is not a properly encoded
1131 name, so do not attempt to decode it. Similarly, if the name
1132 starts with '<', the name should not be decoded. */
4c4b4cd2 1133 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1134 goto Suppress;
1135
4c4b4cd2 1136 len0 = strlen (encoded);
4c4b4cd2 1137
29480c32
JB
1138 ada_remove_trailing_digits (encoded, &len0);
1139 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1140
4c4b4cd2
PH
1141 /* Remove the ___X.* suffix if present. Do not forget to verify that
1142 the suffix is located before the current "end" of ENCODED. We want
1143 to avoid re-matching parts of ENCODED that have previously been
1144 marked as discarded (by decrementing LEN0). */
1145 p = strstr (encoded, "___");
1146 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1147 {
1148 if (p[3] == 'X')
4c4b4cd2 1149 len0 = p - encoded;
14f9c5c9 1150 else
4c4b4cd2 1151 goto Suppress;
14f9c5c9 1152 }
4c4b4cd2 1153
29480c32
JB
1154 /* Remove any trailing TKB suffix. It tells us that this symbol
1155 is for the body of a task, but that information does not actually
1156 appear in the decoded name. */
1157
61012eef 1158 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1159 len0 -= 3;
76a01679 1160
a10967fa
JB
1161 /* Remove any trailing TB suffix. The TB suffix is slightly different
1162 from the TKB suffix because it is used for non-anonymous task
1163 bodies. */
1164
61012eef 1165 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1166 len0 -= 2;
1167
29480c32
JB
1168 /* Remove trailing "B" suffixes. */
1169 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1170
61012eef 1171 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1172 len0 -= 1;
1173
4c4b4cd2 1174 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1175
f945dedf 1176 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1177
29480c32
JB
1178 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1179
4c4b4cd2 1180 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1181 {
4c4b4cd2
PH
1182 i = len0 - 2;
1183 while ((i >= 0 && isdigit (encoded[i]))
1184 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1185 i -= 1;
1186 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1187 len0 = i - 1;
1188 else if (encoded[i] == '$')
1189 len0 = i;
d2e4a39e 1190 }
14f9c5c9 1191
29480c32
JB
1192 /* The first few characters that are not alphabetic are not part
1193 of any encoding we use, so we can copy them over verbatim. */
1194
4c4b4cd2
PH
1195 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1196 decoded[j] = encoded[i];
14f9c5c9
AS
1197
1198 at_start_name = 1;
1199 while (i < len0)
1200 {
29480c32 1201 /* Is this a symbol function? */
4c4b4cd2
PH
1202 if (at_start_name && encoded[i] == 'O')
1203 {
1204 int k;
5b4ee69b 1205
4c4b4cd2
PH
1206 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1207 {
1208 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1209 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1210 op_len - 1) == 0)
1211 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1212 {
f945dedf 1213 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1214 at_start_name = 0;
1215 i += op_len;
1216 j += strlen (ada_opname_table[k].decoded);
1217 break;
1218 }
1219 }
1220 if (ada_opname_table[k].encoded != NULL)
1221 continue;
1222 }
14f9c5c9
AS
1223 at_start_name = 0;
1224
529cad9c
PH
1225 /* Replace "TK__" with "__", which will eventually be translated
1226 into "." (just below). */
1227
61012eef 1228 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1229 i += 2;
529cad9c 1230
29480c32
JB
1231 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1232 be translated into "." (just below). These are internal names
1233 generated for anonymous blocks inside which our symbol is nested. */
1234
1235 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1236 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1237 && isdigit (encoded [i+4]))
1238 {
1239 int k = i + 5;
1240
1241 while (k < len0 && isdigit (encoded[k]))
1242 k++; /* Skip any extra digit. */
1243
1244 /* Double-check that the "__B_{DIGITS}+" sequence we found
1245 is indeed followed by "__". */
1246 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1247 i = k;
1248 }
1249
529cad9c
PH
1250 /* Remove _E{DIGITS}+[sb] */
1251
1252 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1253 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1254 one implements the actual entry code, and has a suffix following
1255 the convention above; the second one implements the barrier and
1256 uses the same convention as above, except that the 'E' is replaced
1257 by a 'B'.
1258
1259 Just as above, we do not decode the name of barrier functions
1260 to give the user a clue that the code he is debugging has been
1261 internally generated. */
1262
1263 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1264 && isdigit (encoded[i+2]))
1265 {
1266 int k = i + 3;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++;
1270
1271 if (k < len0
1272 && (encoded[k] == 'b' || encoded[k] == 's'))
1273 {
1274 k++;
1275 /* Just as an extra precaution, make sure that if this
1276 suffix is followed by anything else, it is a '_'.
1277 Otherwise, we matched this sequence by accident. */
1278 if (k == len0
1279 || (k < len0 && encoded[k] == '_'))
1280 i = k;
1281 }
1282 }
1283
1284 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1285 the GNAT front-end in protected object subprograms. */
1286
1287 if (i < len0 + 3
1288 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1289 {
1290 /* Backtrack a bit up until we reach either the begining of
1291 the encoded name, or "__". Make sure that we only find
1292 digits or lowercase characters. */
1293 const char *ptr = encoded + i - 1;
1294
1295 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1296 ptr--;
1297 if (ptr < encoded
1298 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1299 i++;
1300 }
1301
4c4b4cd2
PH
1302 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1303 {
29480c32
JB
1304 /* This is a X[bn]* sequence not separated from the previous
1305 part of the name with a non-alpha-numeric character (in other
1306 words, immediately following an alpha-numeric character), then
1307 verify that it is placed at the end of the encoded name. If
1308 not, then the encoding is not valid and we should abort the
1309 decoding. Otherwise, just skip it, it is used in body-nested
1310 package names. */
4c4b4cd2
PH
1311 do
1312 i += 1;
1313 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1314 if (i < len0)
1315 goto Suppress;
1316 }
cdc7bb92 1317 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1318 {
29480c32 1319 /* Replace '__' by '.'. */
4c4b4cd2
PH
1320 decoded[j] = '.';
1321 at_start_name = 1;
1322 i += 2;
1323 j += 1;
1324 }
14f9c5c9 1325 else
4c4b4cd2 1326 {
29480c32
JB
1327 /* It's a character part of the decoded name, so just copy it
1328 over. */
4c4b4cd2
PH
1329 decoded[j] = encoded[i];
1330 i += 1;
1331 j += 1;
1332 }
14f9c5c9 1333 }
f945dedf 1334 decoded.resize (j);
14f9c5c9 1335
29480c32
JB
1336 /* Decoded names should never contain any uppercase character.
1337 Double-check this, and abort the decoding if we find one. */
1338
f945dedf 1339 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1340 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1341 goto Suppress;
1342
f945dedf 1343 return decoded;
14f9c5c9
AS
1344
1345Suppress:
4c4b4cd2 1346 if (encoded[0] == '<')
f945dedf 1347 decoded = encoded;
14f9c5c9 1348 else
f945dedf 1349 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1350 return decoded;
1351
1352}
1353
1354/* Table for keeping permanent unique copies of decoded names. Once
1355 allocated, names in this table are never released. While this is a
1356 storage leak, it should not be significant unless there are massive
1357 changes in the set of decoded names in successive versions of a
1358 symbol table loaded during a single session. */
1359static struct htab *decoded_names_store;
1360
1361/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1362 in the language-specific part of GSYMBOL, if it has not been
1363 previously computed. Tries to save the decoded name in the same
1364 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1365 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1366 GSYMBOL).
4c4b4cd2
PH
1367 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1368 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1369 when a decoded name is cached in it. */
4c4b4cd2 1370
45e6c716 1371const char *
f85f34ed 1372ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1373{
f85f34ed
TT
1374 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1375 const char **resultp =
615b3f62 1376 &gsymbol->language_specific.demangled_name;
5b4ee69b 1377
f85f34ed 1378 if (!gsymbol->ada_mangled)
4c4b4cd2 1379 {
f945dedf 1380 std::string decoded = ada_decode (gsymbol->name);
f85f34ed 1381 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1382
f85f34ed 1383 gsymbol->ada_mangled = 1;
5b4ee69b 1384
f85f34ed 1385 if (obstack != NULL)
f945dedf 1386 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1387 else
76a01679 1388 {
f85f34ed
TT
1389 /* Sometimes, we can't find a corresponding objfile, in
1390 which case, we put the result on the heap. Since we only
1391 decode when needed, we hope this usually does not cause a
1392 significant memory leak (FIXME). */
1393
76a01679 1394 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1395 decoded.c_str (), INSERT);
5b4ee69b 1396
76a01679 1397 if (*slot == NULL)
f945dedf 1398 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1399 *resultp = *slot;
1400 }
4c4b4cd2 1401 }
14f9c5c9 1402
4c4b4cd2
PH
1403 return *resultp;
1404}
76a01679 1405
2c0b251b 1406static char *
76a01679 1407ada_la_decode (const char *encoded, int options)
4c4b4cd2 1408{
f945dedf 1409 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1410}
1411
8b302db8
TT
1412/* Implement la_sniff_from_mangled_name for Ada. */
1413
1414static int
1415ada_sniff_from_mangled_name (const char *mangled, char **out)
1416{
f945dedf 1417 std::string demangled = ada_decode (mangled);
8b302db8
TT
1418
1419 *out = NULL;
1420
f945dedf 1421 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1422 {
1423 /* Set the gsymbol language to Ada, but still return 0.
1424 Two reasons for that:
1425
1426 1. For Ada, we prefer computing the symbol's decoded name
1427 on the fly rather than pre-compute it, in order to save
1428 memory (Ada projects are typically very large).
1429
1430 2. There are some areas in the definition of the GNAT
1431 encoding where, with a bit of bad luck, we might be able
1432 to decode a non-Ada symbol, generating an incorrect
1433 demangled name (Eg: names ending with "TB" for instance
1434 are identified as task bodies and so stripped from
1435 the decoded name returned).
1436
1437 Returning 1, here, but not setting *DEMANGLED, helps us get a
1438 little bit of the best of both worlds. Because we're last,
1439 we should not affect any of the other languages that were
1440 able to demangle the symbol before us; we get to correctly
1441 tag Ada symbols as such; and even if we incorrectly tagged a
1442 non-Ada symbol, which should be rare, any routing through the
1443 Ada language should be transparent (Ada tries to behave much
1444 like C/C++ with non-Ada symbols). */
1445 return 1;
1446 }
1447
1448 return 0;
1449}
1450
14f9c5c9 1451\f
d2e4a39e 1452
4c4b4cd2 1453 /* Arrays */
14f9c5c9 1454
28c85d6c
JB
1455/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1456 generated by the GNAT compiler to describe the index type used
1457 for each dimension of an array, check whether it follows the latest
1458 known encoding. If not, fix it up to conform to the latest encoding.
1459 Otherwise, do nothing. This function also does nothing if
1460 INDEX_DESC_TYPE is NULL.
1461
85102364 1462 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1463 Initially, the information would be provided through the name of each
1464 field of the structure type only, while the type of these fields was
1465 described as unspecified and irrelevant. The debugger was then expected
1466 to perform a global type lookup using the name of that field in order
1467 to get access to the full index type description. Because these global
1468 lookups can be very expensive, the encoding was later enhanced to make
1469 the global lookup unnecessary by defining the field type as being
1470 the full index type description.
1471
1472 The purpose of this routine is to allow us to support older versions
1473 of the compiler by detecting the use of the older encoding, and by
1474 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1475 we essentially replace each field's meaningless type by the associated
1476 index subtype). */
1477
1478void
1479ada_fixup_array_indexes_type (struct type *index_desc_type)
1480{
1481 int i;
1482
1483 if (index_desc_type == NULL)
1484 return;
1485 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1486
1487 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1488 to check one field only, no need to check them all). If not, return
1489 now.
1490
1491 If our INDEX_DESC_TYPE was generated using the older encoding,
1492 the field type should be a meaningless integer type whose name
1493 is not equal to the field name. */
1494 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1495 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1496 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1497 return;
1498
1499 /* Fixup each field of INDEX_DESC_TYPE. */
1500 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1501 {
0d5cff50 1502 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1503 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1504
1505 if (raw_type)
1506 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1507 }
1508}
1509
4c4b4cd2 1510/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1511
a121b7c1 1512static const char *bound_name[] = {
d2e4a39e 1513 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1514 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1515};
1516
1517/* Maximum number of array dimensions we are prepared to handle. */
1518
4c4b4cd2 1519#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1520
14f9c5c9 1521
4c4b4cd2
PH
1522/* The desc_* routines return primitive portions of array descriptors
1523 (fat pointers). */
14f9c5c9
AS
1524
1525/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1526 level of indirection, if needed. */
1527
d2e4a39e
AS
1528static struct type *
1529desc_base_type (struct type *type)
14f9c5c9
AS
1530{
1531 if (type == NULL)
1532 return NULL;
61ee279c 1533 type = ada_check_typedef (type);
720d1a40
JB
1534 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1535 type = ada_typedef_target_type (type);
1536
1265e4aa
JB
1537 if (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1540 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1541 else
1542 return type;
1543}
1544
4c4b4cd2
PH
1545/* True iff TYPE indicates a "thin" array pointer type. */
1546
14f9c5c9 1547static int
d2e4a39e 1548is_thin_pntr (struct type *type)
14f9c5c9 1549{
d2e4a39e 1550 return
14f9c5c9
AS
1551 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1552 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1553}
1554
4c4b4cd2
PH
1555/* The descriptor type for thin pointer type TYPE. */
1556
d2e4a39e
AS
1557static struct type *
1558thin_descriptor_type (struct type *type)
14f9c5c9 1559{
d2e4a39e 1560 struct type *base_type = desc_base_type (type);
5b4ee69b 1561
14f9c5c9
AS
1562 if (base_type == NULL)
1563 return NULL;
1564 if (is_suffix (ada_type_name (base_type), "___XVE"))
1565 return base_type;
d2e4a39e 1566 else
14f9c5c9 1567 {
d2e4a39e 1568 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1569
14f9c5c9 1570 if (alt_type == NULL)
4c4b4cd2 1571 return base_type;
14f9c5c9 1572 else
4c4b4cd2 1573 return alt_type;
14f9c5c9
AS
1574 }
1575}
1576
4c4b4cd2
PH
1577/* A pointer to the array data for thin-pointer value VAL. */
1578
d2e4a39e
AS
1579static struct value *
1580thin_data_pntr (struct value *val)
14f9c5c9 1581{
828292f2 1582 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1583 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1584
556bdfd4
UW
1585 data_type = lookup_pointer_type (data_type);
1586
14f9c5c9 1587 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1588 return value_cast (data_type, value_copy (val));
d2e4a39e 1589 else
42ae5230 1590 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1591}
1592
4c4b4cd2
PH
1593/* True iff TYPE indicates a "thick" array pointer type. */
1594
14f9c5c9 1595static int
d2e4a39e 1596is_thick_pntr (struct type *type)
14f9c5c9
AS
1597{
1598 type = desc_base_type (type);
1599 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1600 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1601}
1602
4c4b4cd2
PH
1603/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1604 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1605
d2e4a39e
AS
1606static struct type *
1607desc_bounds_type (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 struct type *r;
14f9c5c9
AS
1610
1611 type = desc_base_type (type);
1612
1613 if (type == NULL)
1614 return NULL;
1615 else if (is_thin_pntr (type))
1616 {
1617 type = thin_descriptor_type (type);
1618 if (type == NULL)
4c4b4cd2 1619 return NULL;
14f9c5c9
AS
1620 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1621 if (r != NULL)
61ee279c 1622 return ada_check_typedef (r);
14f9c5c9
AS
1623 }
1624 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1625 {
1626 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1627 if (r != NULL)
61ee279c 1628 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1629 }
1630 return NULL;
1631}
1632
1633/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1634 one, a pointer to its bounds data. Otherwise NULL. */
1635
d2e4a39e
AS
1636static struct value *
1637desc_bounds (struct value *arr)
14f9c5c9 1638{
df407dfe 1639 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1640
d2e4a39e 1641 if (is_thin_pntr (type))
14f9c5c9 1642 {
d2e4a39e 1643 struct type *bounds_type =
4c4b4cd2 1644 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1645 LONGEST addr;
1646
4cdfadb1 1647 if (bounds_type == NULL)
323e0a4a 1648 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1649
1650 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1651 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1652 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1654 addr = value_as_long (arr);
d2e4a39e 1655 else
42ae5230 1656 addr = value_address (arr);
14f9c5c9 1657
d2e4a39e 1658 return
4c4b4cd2
PH
1659 value_from_longest (lookup_pointer_type (bounds_type),
1660 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1661 }
1662
1663 else if (is_thick_pntr (type))
05e522ef
JB
1664 {
1665 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1666 _("Bad GNAT array descriptor"));
1667 struct type *p_bounds_type = value_type (p_bounds);
1668
1669 if (p_bounds_type
1670 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1671 {
1672 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1673
1674 if (TYPE_STUB (target_type))
1675 p_bounds = value_cast (lookup_pointer_type
1676 (ada_check_typedef (target_type)),
1677 p_bounds);
1678 }
1679 else
1680 error (_("Bad GNAT array descriptor"));
1681
1682 return p_bounds;
1683 }
14f9c5c9
AS
1684 else
1685 return NULL;
1686}
1687
4c4b4cd2
PH
1688/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1689 position of the field containing the address of the bounds data. */
1690
14f9c5c9 1691static int
d2e4a39e 1692fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1693{
1694 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1695}
1696
1697/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1698 size of the field containing the address of the bounds data. */
1699
14f9c5c9 1700static int
d2e4a39e 1701fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1702{
1703 type = desc_base_type (type);
1704
d2e4a39e 1705 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1706 return TYPE_FIELD_BITSIZE (type, 1);
1707 else
61ee279c 1708 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1709}
1710
4c4b4cd2 1711/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1712 pointer to one, the type of its array data (a array-with-no-bounds type);
1713 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1714 data. */
4c4b4cd2 1715
d2e4a39e 1716static struct type *
556bdfd4 1717desc_data_target_type (struct type *type)
14f9c5c9
AS
1718{
1719 type = desc_base_type (type);
1720
4c4b4cd2 1721 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1722 if (is_thin_pntr (type))
556bdfd4 1723 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1724 else if (is_thick_pntr (type))
556bdfd4
UW
1725 {
1726 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1727
1728 if (data_type
1729 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1730 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1731 }
1732
1733 return NULL;
14f9c5c9
AS
1734}
1735
1736/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1737 its array data. */
4c4b4cd2 1738
d2e4a39e
AS
1739static struct value *
1740desc_data (struct value *arr)
14f9c5c9 1741{
df407dfe 1742 struct type *type = value_type (arr);
5b4ee69b 1743
14f9c5c9
AS
1744 if (is_thin_pntr (type))
1745 return thin_data_pntr (arr);
1746 else if (is_thick_pntr (type))
d2e4a39e 1747 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1748 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1749 else
1750 return NULL;
1751}
1752
1753
1754/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1755 position of the field containing the address of the data. */
1756
14f9c5c9 1757static int
d2e4a39e 1758fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1759{
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1761}
1762
1763/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1764 size of the field containing the address of the data. */
1765
14f9c5c9 1766static int
d2e4a39e 1767fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1768{
1769 type = desc_base_type (type);
1770
1771 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1772 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1773 else
14f9c5c9
AS
1774 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1775}
1776
4c4b4cd2 1777/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1778 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1779 bound, if WHICH is 1. The first bound is I=1. */
1780
d2e4a39e
AS
1781static struct value *
1782desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1783{
d2e4a39e 1784 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1785 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1786}
1787
1788/* If BOUNDS is an array-bounds structure type, return the bit position
1789 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1790 bound, if WHICH is 1. The first bound is I=1. */
1791
14f9c5c9 1792static int
d2e4a39e 1793desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1794{
d2e4a39e 1795 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1796}
1797
1798/* If BOUNDS is an array-bounds structure type, return the bit field size
1799 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
76a01679 1802static int
d2e4a39e 1803desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1804{
1805 type = desc_base_type (type);
1806
d2e4a39e
AS
1807 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1808 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1809 else
1810 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1811}
1812
1813/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1814 Ith bound (numbering from 1). Otherwise, NULL. */
1815
d2e4a39e
AS
1816static struct type *
1817desc_index_type (struct type *type, int i)
14f9c5c9
AS
1818{
1819 type = desc_base_type (type);
1820
1821 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1822 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1823 else
14f9c5c9
AS
1824 return NULL;
1825}
1826
4c4b4cd2
PH
1827/* The number of index positions in the array-bounds type TYPE.
1828 Return 0 if TYPE is NULL. */
1829
14f9c5c9 1830static int
d2e4a39e 1831desc_arity (struct type *type)
14f9c5c9
AS
1832{
1833 type = desc_base_type (type);
1834
1835 if (type != NULL)
1836 return TYPE_NFIELDS (type) / 2;
1837 return 0;
1838}
1839
4c4b4cd2
PH
1840/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1841 an array descriptor type (representing an unconstrained array
1842 type). */
1843
76a01679
JB
1844static int
1845ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1846{
1847 if (type == NULL)
1848 return 0;
61ee279c 1849 type = ada_check_typedef (type);
4c4b4cd2 1850 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1851 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1852}
1853
52ce6436 1854/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1855 * to one. */
52ce6436 1856
2c0b251b 1857static int
52ce6436
PH
1858ada_is_array_type (struct type *type)
1859{
1860 while (type != NULL
1861 && (TYPE_CODE (type) == TYPE_CODE_PTR
1862 || TYPE_CODE (type) == TYPE_CODE_REF))
1863 type = TYPE_TARGET_TYPE (type);
1864 return ada_is_direct_array_type (type);
1865}
1866
4c4b4cd2 1867/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1868
14f9c5c9 1869int
4c4b4cd2 1870ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1871{
1872 if (type == NULL)
1873 return 0;
61ee279c 1874 type = ada_check_typedef (type);
14f9c5c9 1875 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1876 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1877 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1878 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1879}
1880
4c4b4cd2
PH
1881/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1882
14f9c5c9 1883int
4c4b4cd2 1884ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1885{
556bdfd4 1886 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1887
1888 if (type == NULL)
1889 return 0;
61ee279c 1890 type = ada_check_typedef (type);
556bdfd4
UW
1891 return (data_type != NULL
1892 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1893 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1894}
1895
1896/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1897 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1898 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1899 is still needed. */
1900
14f9c5c9 1901int
ebf56fd3 1902ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1903{
d2e4a39e 1904 return
14f9c5c9
AS
1905 type != NULL
1906 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1907 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1908 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1909 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1910}
1911
1912
4c4b4cd2 1913/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1914 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1915 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1916 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1917 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1918 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1919 a descriptor. */
d2e4a39e
AS
1920struct type *
1921ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1922{
ad82864c
JB
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1925
df407dfe
AC
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
d2e4a39e
AS
1928
1929 if (!bounds)
ad82864c
JB
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
14f9c5c9
AS
1940 else
1941 {
d2e4a39e 1942 struct type *elt_type;
14f9c5c9 1943 int arity;
d2e4a39e 1944 struct value *descriptor;
14f9c5c9 1945
df407dfe
AC
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
14f9c5c9 1948
d2e4a39e 1949 if (elt_type == NULL || arity == 0)
df407dfe 1950 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1951
1952 descriptor = desc_bounds (arr);
d2e4a39e 1953 if (value_as_long (descriptor) == 0)
4c4b4cd2 1954 return NULL;
d2e4a39e 1955 while (arity > 0)
4c4b4cd2 1956 {
e9bb382b
UW
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1961
5b4ee69b 1962 arity -= 1;
0c9c3474
SA
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
4c4b4cd2 1966 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
4c4b4cd2 1988 }
14f9c5c9
AS
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992}
1993
1994/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
d2e4a39e
AS
1999struct value *
2000ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2001{
df407dfe 2002 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2003 {
d2e4a39e 2004 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2005
14f9c5c9 2006 if (arrType == NULL)
4c4b4cd2 2007 return NULL;
14f9c5c9
AS
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
ad82864c
JB
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2012 else
2013 return arr;
2014}
2015
2016/* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2018 be ARR itself if it already is in the proper form). */
2019
720d1a40 2020struct value *
d2e4a39e 2021ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2022{
df407dfe 2023 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2024 {
d2e4a39e 2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2026
14f9c5c9 2027 if (arrVal == NULL)
323e0a4a 2028 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2030 return value_ind (arrVal);
2031 }
ad82864c
JB
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
d2e4a39e 2034 else
14f9c5c9
AS
2035 return arr;
2036}
2037
2038/* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2040 packing). For other types, is the identity. */
2041
d2e4a39e
AS
2042struct type *
2043ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2044{
ad82864c
JB
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
17280b9f
UW
2047
2048 if (ada_is_array_descriptor_type (type))
556bdfd4 2049 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2050
2051 return type;
14f9c5c9
AS
2052}
2053
4c4b4cd2
PH
2054/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
ad82864c
JB
2056static int
2057ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2058{
2059 if (type == NULL)
2060 return 0;
4c4b4cd2 2061 type = desc_base_type (type);
61ee279c 2062 type = ada_check_typedef (type);
d2e4a39e 2063 return
14f9c5c9
AS
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066}
2067
ad82864c
JB
2068/* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071int
2072ada_is_constrained_packed_array_type (struct type *type)
2073{
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076}
2077
2078/* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081static int
2082ada_is_unconstrained_packed_array_type (struct type *type)
2083{
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086}
2087
2088/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091static long
2092decode_packed_array_bitsize (struct type *type)
2093{
0d5cff50
DE
2094 const char *raw_name;
2095 const char *tail;
ad82864c
JB
2096 long bits;
2097
720d1a40
JB
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
720d1a40 2112 gdb_assert (tail != NULL);
ad82864c
JB
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122}
2123
14f9c5c9
AS
2124/* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
4c4b4cd2 2140
d2e4a39e 2141static struct type *
ad82864c 2142constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2143{
d2e4a39e
AS
2144 struct type *new_elt_type;
2145 struct type *new_type;
99b1c762
JB
2146 struct type *index_type_desc;
2147 struct type *index_type;
14f9c5c9
AS
2148 LONGEST low_bound, high_bound;
2149
61ee279c 2150 type = ada_check_typedef (type);
14f9c5c9
AS
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
99b1c762
JB
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
e9bb382b 2161 new_type = alloc_type_copy (type);
ad82864c
JB
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
99b1c762 2165 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
4a46959e
JB
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2175 else
14f9c5c9
AS
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2178 TYPE_LENGTH (new_type) =
4c4b4cd2 2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2180 }
2181
876cecd0 2182 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2183 return new_type;
2184}
2185
ad82864c
JB
2186/* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2188
d2e4a39e 2189static struct type *
ad82864c 2190decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2191{
0d5cff50 2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2193 char *name;
0d5cff50 2194 const char *tail;
d2e4a39e 2195 struct type *shadow_type;
14f9c5c9 2196 long bits;
14f9c5c9 2197
727e3d2e
JB
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2206 type = desc_base_type (type);
2207
14f9c5c9
AS
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
b4ba55a1
JB
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
14f9c5c9 2214 {
323e0a4a 2215 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2216 return NULL;
2217 }
f168693b 2218 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
0963b4bd
MS
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
d2e4a39e 2226
ad82864c
JB
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2229}
2230
ad82864c
JB
2231/* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
4c4b4cd2 2235 type length is set appropriately. */
14f9c5c9 2236
d2e4a39e 2237static struct value *
ad82864c 2238decode_constrained_packed_array (struct value *arr)
14f9c5c9 2239{
4c4b4cd2 2240 struct type *type;
14f9c5c9 2241
11aa919a
PMR
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
828292f2 2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2251 arr = value_ind (arr);
4c4b4cd2 2252
ad82864c 2253 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2254 if (type == NULL)
2255 {
323e0a4a 2256 error (_("can't unpack array"));
14f9c5c9
AS
2257 return NULL;
2258 }
61ee279c 2259
50810684 2260 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2261 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
df407dfe 2270 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
df407dfe 2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
4c4b4cd2 2285 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2286}
2287
2288
2289/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2290 given in IND. ARR must be a simple array. */
14f9c5c9 2291
d2e4a39e
AS
2292static struct value *
2293value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2294{
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
d2e4a39e
AS
2298 struct type *elt_type;
2299 struct value *v;
14f9c5c9
AS
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
df407dfe 2303 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2304 for (i = 0; i < arity; i += 1)
14f9c5c9 2305 {
d2e4a39e 2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
0963b4bd
MS
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
14f9c5c9 2311 else
4c4b4cd2
PH
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
323e0a4a 2319 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2320 lowerbound = upperbound = 0;
2321 }
2322
3cb382c9 2323 idx = pos_atr (ind[i]);
4c4b4cd2 2324 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
4c4b4cd2
PH
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2330 }
14f9c5c9
AS
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2336 bits, elt_type);
14f9c5c9
AS
2337 return v;
2338}
2339
4c4b4cd2 2340/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2341
2342static int
d2e4a39e 2343has_negatives (struct type *type)
14f9c5c9 2344{
d2e4a39e
AS
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
4e962e74 2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2353 }
14f9c5c9 2354}
d2e4a39e 2355
f93fca70 2356/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2358 the unpacked buffer.
14f9c5c9 2359
5b639dea
JB
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
f93fca70
JB
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
14f9c5c9 2365
f93fca70 2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2367
f93fca70
JB
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370static void
2371ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375{
a1c95e6b
JB
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
a1c95e6b
JB
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
4c4b4cd2 2386 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2387 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2388 unsigned char sign;
a1c95e6b 2389
4c4b4cd2
PH
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
f93fca70 2392 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2393
5b639dea
JB
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
14f9c5c9 2400 srcBitsLeft = bit_size;
086ca51f 2401 src_bytes_left = src_len;
f93fca70 2402 unpacked_bytes_left = unpacked_len;
14f9c5c9 2403 sign = 0;
f93fca70
JB
2404
2405 if (is_big_endian)
14f9c5c9 2406 {
086ca51f 2407 src_idx = src_len - 1;
f93fca70
JB
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2410 sign = ~0;
d2e4a39e
AS
2411
2412 unusedLS =
4c4b4cd2
PH
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
14f9c5c9 2415
f93fca70
JB
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
4c4b4cd2
PH
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
086ca51f
JB
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2430 }
14f9c5c9 2431 }
d2e4a39e 2432 else
14f9c5c9
AS
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
086ca51f 2436 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
f93fca70 2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2441 sign = ~0;
14f9c5c9 2442 }
d2e4a39e 2443
14f9c5c9 2444 accum = 0;
086ca51f 2445 while (src_bytes_left > 0)
14f9c5c9
AS
2446 {
2447 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2448 part of the value. */
d2e4a39e 2449 unsigned int unusedMSMask =
4c4b4cd2
PH
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
14f9c5c9 2453 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2454
d2e4a39e 2455 accum |=
086ca51f 2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2457 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2458 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2459 {
db297a65 2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
4c4b4cd2 2465 }
14f9c5c9
AS
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
086ca51f
JB
2468 src_bytes_left -= 1;
2469 src_idx += delta;
14f9c5c9 2470 }
086ca51f 2471 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2472 {
2473 accum |= sign << accumSize;
db297a65 2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2475 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2476 if (accumSize < 0)
2477 accumSize = 0;
14f9c5c9 2478 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
14f9c5c9 2481 }
f93fca70
JB
2482}
2483
2484/* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493struct value *
2494ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497{
2498 struct value *v;
bfb1c796 2499 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2500 gdb_byte *unpacked;
220475ed 2501 const int is_scalar = is_scalar_type (type);
d0a9e810 2502 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2503 gdb::byte_vector staging;
f93fca70
JB
2504
2505 type = ada_check_typedef (type);
2506
d0a9e810 2507 if (obj == NULL)
bfb1c796 2508 src = valaddr + offset;
d0a9e810 2509 else
bfb1c796 2510 src = value_contents (obj) + offset;
d0a9e810
JB
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
d0a9e810
JB
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2525 staging.data (), staging.size (),
d0a9e810
JB
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
d5722aa2 2528 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
d0a9e810
JB
2540 }
2541
f93fca70
JB
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
bfb1c796 2545 src = valaddr + offset;
f93fca70
JB
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
0cafa88c 2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2550 gdb_byte *buf;
0cafa88c 2551
f93fca70 2552 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
f93fca70
JB
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
bfb1c796 2560 src = value_contents (obj) + offset;
f93fca70
JB
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
bfb1c796 2583 unpacked = value_contents_writeable (v);
f93fca70
JB
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
d5722aa2 2591 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2592 {
d0a9e810
JB
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
d5722aa2 2596 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2597 }
d0a9e810
JB
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2602
14f9c5c9
AS
2603 return v;
2604}
d2e4a39e 2605
14f9c5c9
AS
2606/* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2609 floating-point or non-scalar types. */
14f9c5c9 2610
d2e4a39e
AS
2611static struct value *
2612ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2613{
df407dfe
AC
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
14f9c5c9 2616
52ce6436
PH
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
88e3b34b 2625 if (!deprecated_value_modifiable (toval))
323e0a4a 2626 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2627
d2e4a39e 2628 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2629 && bits > 0
d2e4a39e 2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2632 {
df407dfe
AC
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2635 int from_size;
224c3ddb 2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2637 struct value *val;
42ae5230 2638 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2641 fromval = value_cast (type, fromval);
14f9c5c9 2642
52ce6436 2643 read_memory (to_addr, buffer, len);
aced2898
PH
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2647
2648 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
972daa01 2655 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2656
14f9c5c9 2657 val = value_copy (toval);
0fd88904 2658 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2659 TYPE_LENGTH (type));
04624583 2660 deprecated_set_value_type (val, type);
d2e4a39e 2661
14f9c5c9
AS
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666}
2667
2668
7c512744
JB
2669/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
52ce6436
PH
2680static void
2681value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683{
2684 LONGEST offset_in_container =
42ae5230 2685 (LONGEST) (value_address (component) - value_address (container));
7c512744 2686 int bit_offset_in_container =
52ce6436
PH
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
7c512744 2689
52ce6436
PH
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
50810684 2697 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
a99bc3d2
JB
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2a62dfa9 2709 }
52ce6436 2710 else
a99bc3d2
JB
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
7c512744
JB
2714}
2715
736ade86
XR
2716/* Determine if TYPE is an access to an unconstrained array. */
2717
d91e9ea8 2718bool
736ade86
XR
2719ada_is_access_to_unconstrained_array (struct type *type)
2720{
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723}
2724
4c4b4cd2
PH
2725/* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2727 thereto. */
2728
d2e4a39e
AS
2729struct value *
2730ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2731{
2732 int k;
d2e4a39e
AS
2733 struct value *elt;
2734 struct type *elt_type;
14f9c5c9
AS
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
df407dfe 2738 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
b9c50e9a
XR
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
14f9c5c9 2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2748 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2749
2497b498 2750 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2771 }
b9c50e9a 2772
14f9c5c9
AS
2773 return elt;
2774}
2775
deede10c
JB
2776/* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
14f9c5c9 2787
2c0b251b 2788static struct value *
deede10c 2789ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2790{
2791 int k;
919e6dbe 2792 struct value *array_ind = ada_value_ind (arr);
deede10c 2793 struct type *type
919e6dbe
PMR
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
aa715135 2803 struct value *lwb_value;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2806 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2808 value_copy (arr));
14f9c5c9 2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816}
2817
0b5d8877 2818/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
0b5d8877 2822static struct value *
f5938064
JG
2823ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
0b5d8877 2825{
b0dd7688 2826 struct type *type0 = ada_check_typedef (type);
aa715135 2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2828 struct type *index_type
aa715135 2829 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
5b4ee69b 2845
aa715135
JG
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2849 return value_at_lazy (slice_type, base);
0b5d8877
PH
2850}
2851
2852
2853static struct value *
2854ada_value_slice (struct value *array, int low, int high)
2855{
b0dd7688 2856 struct type *type = ada_check_typedef (value_type (array));
aa715135 2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2864 LONGEST low_pos, high_pos;
5b4ee69b 2865
aa715135
JG
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2876}
2877
14f9c5c9
AS
2878/* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2881 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2882
2883int
d2e4a39e 2884ada_array_arity (struct type *type)
14f9c5c9
AS
2885{
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
d2e4a39e 2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2895 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2898 {
4c4b4cd2 2899 arity += 1;
61ee279c 2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2901 }
d2e4a39e 2902
14f9c5c9
AS
2903 return arity;
2904}
2905
2906/* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2909 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2910
d2e4a39e
AS
2911struct type *
2912ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2913{
2914 type = desc_base_type (type);
2915
d2e4a39e 2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2917 {
2918 int k;
d2e4a39e 2919 struct type *p_array_type;
14f9c5c9 2920
556bdfd4 2921 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
4c4b4cd2 2925 return NULL;
d2e4a39e 2926
4c4b4cd2 2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2928 if (nindices >= 0 && k > nindices)
4c4b4cd2 2929 k = nindices;
d2e4a39e 2930 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2931 {
61ee279c 2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2933 k -= 1;
2934 }
14f9c5c9
AS
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
14f9c5c9
AS
2944 return type;
2945 }
2946
2947 return NULL;
2948}
2949
4c4b4cd2 2950/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
14f9c5c9 2955
1eea4ebd
UW
2956static struct type *
2957ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2958{
4c4b4cd2
PH
2959 struct type *result_type;
2960
14f9c5c9
AS
2961 type = desc_base_type (type);
2962
1eea4ebd
UW
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2965
4c4b4cd2 2966 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
4c4b4cd2 2971 type = TYPE_TARGET_TYPE (type);
262452ec 2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2975 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
14f9c5c9 2978 }
d2e4a39e 2979 else
1eea4ebd
UW
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
14f9c5c9
AS
2987}
2988
2989/* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
14f9c5c9 2994
abb68b3e 2995static LONGEST
fb5e3d5c 2996ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2997{
8a48ac95 2998 struct type *type, *index_type_desc, *index_type;
1ce677a4 2999 int i;
262452ec
JK
3000
3001 gdb_assert (which == 0 || which == 1);
14f9c5c9 3002
ad82864c
JB
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3005
4c4b4cd2 3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3007 return (LONGEST) - which;
14f9c5c9
AS
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
bafffb51
JB
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
262452ec 3027 if (index_type_desc != NULL)
28c85d6c
JB
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
262452ec 3030 else
8a48ac95
JB
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
262452ec 3039
43bbcdc2
PH
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3044}
3045
3046/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3049 supplied by run-time quantities other than discriminants. */
14f9c5c9 3050
1eea4ebd 3051static LONGEST
4dc81987 3052ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3053{
eb479039
JB
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
14f9c5c9 3059
ad82864c
JB
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3062 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3063 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3064 else
1eea4ebd 3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
14f9c5c9 3073
1eea4ebd 3074static LONGEST
d2e4a39e 3075ada_array_length (struct value *arr, int n)
14f9c5c9 3076{
aa715135
JG
3077 struct type *arr_type, *index_type;
3078 int low, high;
eb479039
JB
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
14f9c5c9 3083
ad82864c
JB
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3086
4c4b4cd2 3087 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
14f9c5c9 3092 else
aa715135
JG
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
f168693b 3098 arr_type = check_typedef (arr_type);
7150d33c 3099 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
4c4b4cd2
PH
3112}
3113
bff8c71f
TT
3114/* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3117
3118static struct value *
bff8c71f 3119empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3120{
b0dd7688 3121 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3122 struct type *index_type
3123 = create_static_range_type
bff8c71f
TT
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
b0dd7688 3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3127
0b5d8877 3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3129}
14f9c5c9 3130\f
d2e4a39e 3131
4c4b4cd2 3132 /* Name resolution */
14f9c5c9 3133
4c4b4cd2
PH
3134/* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
14f9c5c9 3136
d2e4a39e 3137static const char *
4c4b4cd2 3138ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3139{
3140 int i;
3141
4c4b4cd2 3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3143 {
3144 if (ada_opname_table[i].op == op)
4c4b4cd2 3145 return ada_opname_table[i].decoded;
14f9c5c9 3146 }
323e0a4a 3147 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3148}
3149
3150
4c4b4cd2
PH
3151/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3152 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3153 undefined namespace) and converts operators that are
3154 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3155 non-null, it provides a preferred result type [at the moment, only
3156 type void has any effect---causing procedures to be preferred over
3157 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3158 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3159
4c4b4cd2 3160static void
699bd4cf
TT
3161resolve (expression_up *expp, int void_context_p, int parse_completion,
3162 innermost_block_tracker *tracker)
14f9c5c9 3163{
30b15541
UW
3164 struct type *context_type = NULL;
3165 int pc = 0;
3166
3167 if (void_context_p)
3168 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3169
699bd4cf 3170 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3171}
3172
4c4b4cd2
PH
3173/* Resolve the operator of the subexpression beginning at
3174 position *POS of *EXPP. "Resolving" consists of replacing
3175 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3176 with their resolutions, replacing built-in operators with
3177 function calls to user-defined operators, where appropriate, and,
3178 when DEPROCEDURE_P is non-zero, converting function-valued variables
3179 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3180 are as in ada_resolve, above. */
14f9c5c9 3181
d2e4a39e 3182static struct value *
e9d9f57e 3183resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3184 struct type *context_type, int parse_completion,
3185 innermost_block_tracker *tracker)
14f9c5c9
AS
3186{
3187 int pc = *pos;
3188 int i;
4c4b4cd2 3189 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3190 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3191 struct value **argvec; /* Vector of operand types (alloca'ed). */
3192 int nargs; /* Number of operands. */
52ce6436 3193 int oplen;
14f9c5c9
AS
3194
3195 argvec = NULL;
3196 nargs = 0;
e9d9f57e 3197 exp = expp->get ();
14f9c5c9 3198
52ce6436
PH
3199 /* Pass one: resolve operands, saving their types and updating *pos,
3200 if needed. */
14f9c5c9
AS
3201 switch (op)
3202 {
4c4b4cd2
PH
3203 case OP_FUNCALL:
3204 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3205 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3206 *pos += 7;
4c4b4cd2
PH
3207 else
3208 {
3209 *pos += 3;
699bd4cf 3210 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3211 }
3212 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3213 break;
3214
14f9c5c9 3215 case UNOP_ADDR:
4c4b4cd2 3216 *pos += 1;
699bd4cf 3217 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3218 break;
3219
52ce6436
PH
3220 case UNOP_QUAL:
3221 *pos += 3;
2a612529 3222 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3223 parse_completion, tracker);
4c4b4cd2
PH
3224 break;
3225
52ce6436 3226 case OP_ATR_MODULUS:
4c4b4cd2
PH
3227 case OP_ATR_SIZE:
3228 case OP_ATR_TAG:
4c4b4cd2
PH
3229 case OP_ATR_FIRST:
3230 case OP_ATR_LAST:
3231 case OP_ATR_LENGTH:
3232 case OP_ATR_POS:
3233 case OP_ATR_VAL:
4c4b4cd2
PH
3234 case OP_ATR_MIN:
3235 case OP_ATR_MAX:
52ce6436
PH
3236 case TERNOP_IN_RANGE:
3237 case BINOP_IN_BOUNDS:
3238 case UNOP_IN_RANGE:
3239 case OP_AGGREGATE:
3240 case OP_OTHERS:
3241 case OP_CHOICES:
3242 case OP_POSITIONAL:
3243 case OP_DISCRETE_RANGE:
3244 case OP_NAME:
3245 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3246 *pos += oplen;
14f9c5c9
AS
3247 break;
3248
3249 case BINOP_ASSIGN:
3250 {
4c4b4cd2
PH
3251 struct value *arg1;
3252
3253 *pos += 1;
699bd4cf 3254 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3255 if (arg1 == NULL)
699bd4cf 3256 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3257 else
699bd4cf
TT
3258 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3259 tracker);
4c4b4cd2 3260 break;
14f9c5c9
AS
3261 }
3262
4c4b4cd2 3263 case UNOP_CAST:
4c4b4cd2
PH
3264 *pos += 3;
3265 nargs = 1;
3266 break;
14f9c5c9 3267
4c4b4cd2
PH
3268 case BINOP_ADD:
3269 case BINOP_SUB:
3270 case BINOP_MUL:
3271 case BINOP_DIV:
3272 case BINOP_REM:
3273 case BINOP_MOD:
3274 case BINOP_EXP:
3275 case BINOP_CONCAT:
3276 case BINOP_LOGICAL_AND:
3277 case BINOP_LOGICAL_OR:
3278 case BINOP_BITWISE_AND:
3279 case BINOP_BITWISE_IOR:
3280 case BINOP_BITWISE_XOR:
14f9c5c9 3281
4c4b4cd2
PH
3282 case BINOP_EQUAL:
3283 case BINOP_NOTEQUAL:
3284 case BINOP_LESS:
3285 case BINOP_GTR:
3286 case BINOP_LEQ:
3287 case BINOP_GEQ:
14f9c5c9 3288
4c4b4cd2
PH
3289 case BINOP_REPEAT:
3290 case BINOP_SUBSCRIPT:
3291 case BINOP_COMMA:
40c8aaa9
JB
3292 *pos += 1;
3293 nargs = 2;
3294 break;
14f9c5c9 3295
4c4b4cd2
PH
3296 case UNOP_NEG:
3297 case UNOP_PLUS:
3298 case UNOP_LOGICAL_NOT:
3299 case UNOP_ABS:
3300 case UNOP_IND:
3301 *pos += 1;
3302 nargs = 1;
3303 break;
14f9c5c9 3304
4c4b4cd2 3305 case OP_LONG:
edd079d9 3306 case OP_FLOAT:
4c4b4cd2 3307 case OP_VAR_VALUE:
74ea4be4 3308 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3309 *pos += 4;
3310 break;
14f9c5c9 3311
4c4b4cd2
PH
3312 case OP_TYPE:
3313 case OP_BOOL:
3314 case OP_LAST:
4c4b4cd2
PH
3315 case OP_INTERNALVAR:
3316 *pos += 3;
3317 break;
14f9c5c9 3318
4c4b4cd2
PH
3319 case UNOP_MEMVAL:
3320 *pos += 3;
3321 nargs = 1;
3322 break;
3323
67f3407f
DJ
3324 case OP_REGISTER:
3325 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3326 break;
3327
4c4b4cd2
PH
3328 case STRUCTOP_STRUCT:
3329 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3330 nargs = 1;
3331 break;
3332
4c4b4cd2 3333 case TERNOP_SLICE:
4c4b4cd2
PH
3334 *pos += 1;
3335 nargs = 3;
3336 break;
3337
52ce6436 3338 case OP_STRING:
14f9c5c9 3339 break;
4c4b4cd2
PH
3340
3341 default:
323e0a4a 3342 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3343 }
3344
8d749320 3345 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3346 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3347 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3348 tracker);
4c4b4cd2 3349 argvec[i] = NULL;
e9d9f57e 3350 exp = expp->get ();
4c4b4cd2
PH
3351
3352 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3353 switch (op)
3354 {
3355 default:
3356 break;
3357
14f9c5c9 3358 case OP_VAR_VALUE:
4c4b4cd2 3359 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3360 {
54d343a2 3361 std::vector<struct block_symbol> candidates;
76a01679
JB
3362 int n_candidates;
3363
3364 n_candidates =
3365 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3366 (exp->elts[pc + 2].symbol),
3367 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3368 &candidates);
76a01679
JB
3369
3370 if (n_candidates > 1)
3371 {
3372 /* Types tend to get re-introduced locally, so if there
3373 are any local symbols that are not types, first filter
3374 out all types. */
3375 int j;
3376 for (j = 0; j < n_candidates; j += 1)
d12307c1 3377 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3378 {
3379 case LOC_REGISTER:
3380 case LOC_ARG:
3381 case LOC_REF_ARG:
76a01679
JB
3382 case LOC_REGPARM_ADDR:
3383 case LOC_LOCAL:
76a01679 3384 case LOC_COMPUTED:
76a01679
JB
3385 goto FoundNonType;
3386 default:
3387 break;
3388 }
3389 FoundNonType:
3390 if (j < n_candidates)
3391 {
3392 j = 0;
3393 while (j < n_candidates)
3394 {
d12307c1 3395 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3396 {
3397 candidates[j] = candidates[n_candidates - 1];
3398 n_candidates -= 1;
3399 }
3400 else
3401 j += 1;
3402 }
3403 }
3404 }
3405
3406 if (n_candidates == 0)
323e0a4a 3407 error (_("No definition found for %s"),
76a01679
JB
3408 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3409 else if (n_candidates == 1)
3410 i = 0;
3411 else if (deprocedure_p
54d343a2 3412 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3413 {
06d5cf63 3414 i = ada_resolve_function
54d343a2 3415 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3416 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3417 context_type, parse_completion);
76a01679 3418 if (i < 0)
323e0a4a 3419 error (_("Could not find a match for %s"),
76a01679
JB
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 }
3422 else
3423 {
323e0a4a 3424 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3425 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3426 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3427 i = 0;
3428 }
3429
3430 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3431 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3432 tracker->update (candidates[i]);
76a01679
JB
3433 }
3434
3435 if (deprocedure_p
3436 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3437 == TYPE_CODE_FUNC))
3438 {
424da6cf 3439 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3440 exp->elts[pc + 2].symbol,
3441 exp->elts[pc + 1].block);
e9d9f57e 3442 exp = expp->get ();
76a01679 3443 }
14f9c5c9
AS
3444 break;
3445
3446 case OP_FUNCALL:
3447 {
4c4b4cd2 3448 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3449 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3450 {
54d343a2 3451 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3452 int n_candidates;
3453
3454 n_candidates =
76a01679
JB
3455 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3456 (exp->elts[pc + 5].symbol),
3457 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3458 &candidates);
ec6a20c2 3459
4c4b4cd2
PH
3460 if (n_candidates == 1)
3461 i = 0;
3462 else
3463 {
06d5cf63 3464 i = ada_resolve_function
54d343a2 3465 (candidates.data (), n_candidates,
06d5cf63
JB
3466 argvec, nargs,
3467 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3468 context_type, parse_completion);
4c4b4cd2 3469 if (i < 0)
323e0a4a 3470 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3472 }
3473
3474 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3475 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3476 tracker->update (candidates[i]);
4c4b4cd2 3477 }
14f9c5c9
AS
3478 }
3479 break;
3480 case BINOP_ADD:
3481 case BINOP_SUB:
3482 case BINOP_MUL:
3483 case BINOP_DIV:
3484 case BINOP_REM:
3485 case BINOP_MOD:
3486 case BINOP_CONCAT:
3487 case BINOP_BITWISE_AND:
3488 case BINOP_BITWISE_IOR:
3489 case BINOP_BITWISE_XOR:
3490 case BINOP_EQUAL:
3491 case BINOP_NOTEQUAL:
3492 case BINOP_LESS:
3493 case BINOP_GTR:
3494 case BINOP_LEQ:
3495 case BINOP_GEQ:
3496 case BINOP_EXP:
3497 case UNOP_NEG:
3498 case UNOP_PLUS:
3499 case UNOP_LOGICAL_NOT:
3500 case UNOP_ABS:
3501 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3502 {
54d343a2 3503 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3504 int n_candidates;
3505
3506 n_candidates =
b5ec771e 3507 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3508 NULL, VAR_DOMAIN,
4eeaa230 3509 &candidates);
ec6a20c2 3510
54d343a2 3511 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3512 nargs, ada_decoded_op_name (op), NULL,
3513 parse_completion);
4c4b4cd2
PH
3514 if (i < 0)
3515 break;
3516
d12307c1
PMR
3517 replace_operator_with_call (expp, pc, nargs, 1,
3518 candidates[i].symbol,
3519 candidates[i].block);
e9d9f57e 3520 exp = expp->get ();
4c4b4cd2 3521 }
14f9c5c9 3522 break;
4c4b4cd2
PH
3523
3524 case OP_TYPE:
b3dbf008 3525 case OP_REGISTER:
4c4b4cd2 3526 return NULL;
14f9c5c9
AS
3527 }
3528
3529 *pos = pc;
ced9779b
JB
3530 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3531 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3532 exp->elts[pc + 1].objfile,
3533 exp->elts[pc + 2].msymbol);
3534 else
3535 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3536}
3537
3538/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3539 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3540 a non-pointer. */
14f9c5c9 3541/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3542 liberal. */
14f9c5c9
AS
3543
3544static int
4dc81987 3545ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3546{
61ee279c
PH
3547 ftype = ada_check_typedef (ftype);
3548 atype = ada_check_typedef (atype);
14f9c5c9
AS
3549
3550 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3551 ftype = TYPE_TARGET_TYPE (ftype);
3552 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3553 atype = TYPE_TARGET_TYPE (atype);
3554
d2e4a39e 3555 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3556 {
3557 default:
5b3d5b7d 3558 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3559 case TYPE_CODE_PTR:
3560 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3561 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3562 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3563 else
1265e4aa
JB
3564 return (may_deref
3565 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3566 case TYPE_CODE_INT:
3567 case TYPE_CODE_ENUM:
3568 case TYPE_CODE_RANGE:
3569 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3570 {
3571 case TYPE_CODE_INT:
3572 case TYPE_CODE_ENUM:
3573 case TYPE_CODE_RANGE:
3574 return 1;
3575 default:
3576 return 0;
3577 }
14f9c5c9
AS
3578
3579 case TYPE_CODE_ARRAY:
d2e4a39e 3580 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3581 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3582
3583 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3584 if (ada_is_array_descriptor_type (ftype))
3585 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3586 || ada_is_array_descriptor_type (atype));
14f9c5c9 3587 else
4c4b4cd2
PH
3588 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3589 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3590
3591 case TYPE_CODE_UNION:
3592 case TYPE_CODE_FLT:
3593 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3594 }
3595}
3596
3597/* Return non-zero if the formals of FUNC "sufficiently match" the
3598 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3599 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3600 argument function. */
14f9c5c9
AS
3601
3602static int
d2e4a39e 3603ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3604{
3605 int i;
d2e4a39e 3606 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3607
1265e4aa
JB
3608 if (SYMBOL_CLASS (func) == LOC_CONST
3609 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3610 return (n_actuals == 0);
3611 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3612 return 0;
3613
3614 if (TYPE_NFIELDS (func_type) != n_actuals)
3615 return 0;
3616
3617 for (i = 0; i < n_actuals; i += 1)
3618 {
4c4b4cd2 3619 if (actuals[i] == NULL)
76a01679
JB
3620 return 0;
3621 else
3622 {
5b4ee69b
MS
3623 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3624 i));
df407dfe 3625 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3626
76a01679
JB
3627 if (!ada_type_match (ftype, atype, 1))
3628 return 0;
3629 }
14f9c5c9
AS
3630 }
3631 return 1;
3632}
3633
3634/* False iff function type FUNC_TYPE definitely does not produce a value
3635 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3636 FUNC_TYPE is not a valid function type with a non-null return type
3637 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3638
3639static int
d2e4a39e 3640return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3641{
d2e4a39e 3642 struct type *return_type;
14f9c5c9
AS
3643
3644 if (func_type == NULL)
3645 return 1;
3646
4c4b4cd2 3647 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3648 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3649 else
18af8284 3650 return_type = get_base_type (func_type);
14f9c5c9
AS
3651 if (return_type == NULL)
3652 return 1;
3653
18af8284 3654 context_type = get_base_type (context_type);
14f9c5c9
AS
3655
3656 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3657 return context_type == NULL || return_type == context_type;
3658 else if (context_type == NULL)
3659 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3660 else
3661 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3662}
3663
3664
4c4b4cd2 3665/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3666 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3667 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3668 that returns that type, then eliminate matches that don't. If
3669 CONTEXT_TYPE is void and there is at least one match that does not
3670 return void, eliminate all matches that do.
3671
14f9c5c9
AS
3672 Asks the user if there is more than one match remaining. Returns -1
3673 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3674 solely for messages. May re-arrange and modify SYMS in
3675 the process; the index returned is for the modified vector. */
14f9c5c9 3676
4c4b4cd2 3677static int
d12307c1 3678ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3679 int nsyms, struct value **args, int nargs,
2a612529
TT
3680 const char *name, struct type *context_type,
3681 int parse_completion)
14f9c5c9 3682{
30b15541 3683 int fallback;
14f9c5c9 3684 int k;
4c4b4cd2 3685 int m; /* Number of hits */
14f9c5c9 3686
d2e4a39e 3687 m = 0;
30b15541
UW
3688 /* In the first pass of the loop, we only accept functions matching
3689 context_type. If none are found, we add a second pass of the loop
3690 where every function is accepted. */
3691 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3692 {
3693 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3694 {
d12307c1 3695 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3696
d12307c1 3697 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3698 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3699 {
3700 syms[m] = syms[k];
3701 m += 1;
3702 }
3703 }
14f9c5c9
AS
3704 }
3705
dc5c8746
PMR
3706 /* If we got multiple matches, ask the user which one to use. Don't do this
3707 interactive thing during completion, though, as the purpose of the
3708 completion is providing a list of all possible matches. Prompting the
3709 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3710 if (m == 0)
3711 return -1;
dc5c8746 3712 else if (m > 1 && !parse_completion)
14f9c5c9 3713 {
323e0a4a 3714 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3715 user_select_syms (syms, m, 1);
14f9c5c9
AS
3716 return 0;
3717 }
3718 return 0;
3719}
3720
4c4b4cd2
PH
3721/* Returns true (non-zero) iff decoded name N0 should appear before N1
3722 in a listing of choices during disambiguation (see sort_choices, below).
3723 The idea is that overloadings of a subprogram name from the
3724 same package should sort in their source order. We settle for ordering
3725 such symbols by their trailing number (__N or $N). */
3726
14f9c5c9 3727static int
0d5cff50 3728encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3729{
3730 if (N1 == NULL)
3731 return 0;
3732 else if (N0 == NULL)
3733 return 1;
3734 else
3735 {
3736 int k0, k1;
5b4ee69b 3737
d2e4a39e 3738 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3739 ;
d2e4a39e 3740 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3741 ;
d2e4a39e 3742 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3743 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3744 {
3745 int n0, n1;
5b4ee69b 3746
4c4b4cd2
PH
3747 n0 = k0;
3748 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3749 n0 -= 1;
3750 n1 = k1;
3751 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3752 n1 -= 1;
3753 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3754 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3755 }
14f9c5c9
AS
3756 return (strcmp (N0, N1) < 0);
3757 }
3758}
d2e4a39e 3759
4c4b4cd2
PH
3760/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3761 encoded names. */
3762
d2e4a39e 3763static void
d12307c1 3764sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3765{
4c4b4cd2 3766 int i;
5b4ee69b 3767
d2e4a39e 3768 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3769 {
d12307c1 3770 struct block_symbol sym = syms[i];
14f9c5c9
AS
3771 int j;
3772
d2e4a39e 3773 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3774 {
d12307c1
PMR
3775 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3776 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3777 break;
3778 syms[j + 1] = syms[j];
3779 }
d2e4a39e 3780 syms[j + 1] = sym;
14f9c5c9
AS
3781 }
3782}
3783
d72413e6
PMR
3784/* Whether GDB should display formals and return types for functions in the
3785 overloads selection menu. */
491144b5 3786static bool print_signatures = true;
d72413e6
PMR
3787
3788/* Print the signature for SYM on STREAM according to the FLAGS options. For
3789 all but functions, the signature is just the name of the symbol. For
3790 functions, this is the name of the function, the list of types for formals
3791 and the return type (if any). */
3792
3793static void
3794ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3795 const struct type_print_options *flags)
3796{
3797 struct type *type = SYMBOL_TYPE (sym);
3798
3799 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3800 if (!print_signatures
3801 || type == NULL
3802 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3803 return;
3804
3805 if (TYPE_NFIELDS (type) > 0)
3806 {
3807 int i;
3808
3809 fprintf_filtered (stream, " (");
3810 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3811 {
3812 if (i > 0)
3813 fprintf_filtered (stream, "; ");
3814 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3815 flags);
3816 }
3817 fprintf_filtered (stream, ")");
3818 }
3819 if (TYPE_TARGET_TYPE (type) != NULL
3820 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3821 {
3822 fprintf_filtered (stream, " return ");
3823 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3824 }
3825}
3826
4c4b4cd2
PH
3827/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3828 by asking the user (if necessary), returning the number selected,
3829 and setting the first elements of SYMS items. Error if no symbols
3830 selected. */
14f9c5c9
AS
3831
3832/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3833 to be re-integrated one of these days. */
14f9c5c9
AS
3834
3835int
d12307c1 3836user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3837{
3838 int i;
8d749320 3839 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3840 int n_chosen;
3841 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3842 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3843
3844 if (max_results < 1)
323e0a4a 3845 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3846 if (nsyms <= 1)
3847 return nsyms;
3848
717d2f5a
JB
3849 if (select_mode == multiple_symbols_cancel)
3850 error (_("\
3851canceled because the command is ambiguous\n\
3852See set/show multiple-symbol."));
a0087920 3853
717d2f5a
JB
3854 /* If select_mode is "all", then return all possible symbols.
3855 Only do that if more than one symbol can be selected, of course.
3856 Otherwise, display the menu as usual. */
3857 if (select_mode == multiple_symbols_all && max_results > 1)
3858 return nsyms;
3859
a0087920 3860 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3861 if (max_results > 1)
a0087920 3862 printf_filtered (_("[1] all\n"));
14f9c5c9 3863
4c4b4cd2 3864 sort_choices (syms, nsyms);
14f9c5c9
AS
3865
3866 for (i = 0; i < nsyms; i += 1)
3867 {
d12307c1 3868 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3869 continue;
3870
d12307c1 3871 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3872 {
76a01679 3873 struct symtab_and_line sal =
d12307c1 3874 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3875
a0087920 3876 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3877 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3878 &type_print_raw_options);
323e0a4a 3879 if (sal.symtab == NULL)
7f6aba03
TT
3880 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3881 metadata_style.style ().ptr (), nullptr, sal.line);
323e0a4a 3882 else
9d636d67
TT
3883 printf_filtered
3884 (_(" at %ps:%d\n"),
3885 styled_string (file_name_style.style (),
3886 symtab_to_filename_for_display (sal.symtab)),
3887 sal.line);
4c4b4cd2
PH
3888 continue;
3889 }
d2e4a39e 3890 else
4c4b4cd2
PH
3891 {
3892 int is_enumeral =
d12307c1
PMR
3893 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3894 && SYMBOL_TYPE (syms[i].symbol) != NULL
3895 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3896 struct symtab *symtab = NULL;
3897
d12307c1
PMR
3898 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3899 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3900
d12307c1 3901 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3902 {
a0087920 3903 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3904 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3905 &type_print_raw_options);
a0087920
TT
3906 printf_filtered (_(" at %s:%d\n"),
3907 symtab_to_filename_for_display (symtab),
3908 SYMBOL_LINE (syms[i].symbol));
d72413e6 3909 }
76a01679 3910 else if (is_enumeral
d12307c1 3911 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3912 {
a0087920 3913 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3914 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3915 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3916 printf_filtered (_("'(%s) (enumeral)\n"),
3917 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3918 }
d72413e6
PMR
3919 else
3920 {
a0087920 3921 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3922 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3923 &type_print_raw_options);
3924
3925 if (symtab != NULL)
a0087920
TT
3926 printf_filtered (is_enumeral
3927 ? _(" in %s (enumeral)\n")
3928 : _(" at %s:?\n"),
3929 symtab_to_filename_for_display (symtab));
d72413e6 3930 else
a0087920
TT
3931 printf_filtered (is_enumeral
3932 ? _(" (enumeral)\n")
3933 : _(" at ?\n"));
d72413e6 3934 }
4c4b4cd2 3935 }
14f9c5c9 3936 }
d2e4a39e 3937
14f9c5c9 3938 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3939 "overload-choice");
14f9c5c9
AS
3940
3941 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3942 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3943
3944 return n_chosen;
3945}
3946
3947/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3948 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3949 order in CHOICES[0 .. N-1], and return N.
3950
3951 The user types choices as a sequence of numbers on one line
3952 separated by blanks, encoding them as follows:
3953
4c4b4cd2 3954 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3955 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3956 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3957
4c4b4cd2 3958 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3959
3960 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3961 prompts (for use with the -f switch). */
14f9c5c9
AS
3962
3963int
d2e4a39e 3964get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3965 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3966{
d2e4a39e 3967 char *args;
a121b7c1 3968 const char *prompt;
14f9c5c9
AS
3969 int n_chosen;
3970 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3971
14f9c5c9
AS
3972 prompt = getenv ("PS2");
3973 if (prompt == NULL)
0bcd0149 3974 prompt = "> ";
14f9c5c9 3975
89fbedf3 3976 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3977
14f9c5c9 3978 if (args == NULL)
323e0a4a 3979 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3980
3981 n_chosen = 0;
76a01679 3982
4c4b4cd2
PH
3983 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3984 order, as given in args. Choices are validated. */
14f9c5c9
AS
3985 while (1)
3986 {
d2e4a39e 3987 char *args2;
14f9c5c9
AS
3988 int choice, j;
3989
0fcd72ba 3990 args = skip_spaces (args);
14f9c5c9 3991 if (*args == '\0' && n_chosen == 0)
323e0a4a 3992 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3993 else if (*args == '\0')
4c4b4cd2 3994 break;
14f9c5c9
AS
3995
3996 choice = strtol (args, &args2, 10);
d2e4a39e 3997 if (args == args2 || choice < 0
4c4b4cd2 3998 || choice > n_choices + first_choice - 1)
323e0a4a 3999 error (_("Argument must be choice number"));
14f9c5c9
AS
4000 args = args2;
4001
d2e4a39e 4002 if (choice == 0)
323e0a4a 4003 error (_("cancelled"));
14f9c5c9
AS
4004
4005 if (choice < first_choice)
4c4b4cd2
PH
4006 {
4007 n_chosen = n_choices;
4008 for (j = 0; j < n_choices; j += 1)
4009 choices[j] = j;
4010 break;
4011 }
14f9c5c9
AS
4012 choice -= first_choice;
4013
d2e4a39e 4014 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4015 {
4016 }
14f9c5c9
AS
4017
4018 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4019 {
4020 int k;
5b4ee69b 4021
4c4b4cd2
PH
4022 for (k = n_chosen - 1; k > j; k -= 1)
4023 choices[k + 1] = choices[k];
4024 choices[j + 1] = choice;
4025 n_chosen += 1;
4026 }
14f9c5c9
AS
4027 }
4028
4029 if (n_chosen > max_results)
323e0a4a 4030 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4031
14f9c5c9
AS
4032 return n_chosen;
4033}
4034
4c4b4cd2
PH
4035/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4036 on the function identified by SYM and BLOCK, and taking NARGS
4037 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4038
4039static void
e9d9f57e 4040replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4041 int oplen, struct symbol *sym,
270140bd 4042 const struct block *block)
14f9c5c9
AS
4043{
4044 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4045 symbol, -oplen for operator being replaced). */
d2e4a39e 4046 struct expression *newexp = (struct expression *)
8c1a34e7 4047 xzalloc (sizeof (struct expression)
4c4b4cd2 4048 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4049 struct expression *exp = expp->get ();
14f9c5c9
AS
4050
4051 newexp->nelts = exp->nelts + 7 - oplen;
4052 newexp->language_defn = exp->language_defn;
3489610d 4053 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4054 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4055 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4056 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4057
4058 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4059 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4060
4061 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4062 newexp->elts[pc + 4].block = block;
4063 newexp->elts[pc + 5].symbol = sym;
4064
e9d9f57e 4065 expp->reset (newexp);
d2e4a39e 4066}
14f9c5c9
AS
4067
4068/* Type-class predicates */
4069
4c4b4cd2
PH
4070/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4071 or FLOAT). */
14f9c5c9
AS
4072
4073static int
d2e4a39e 4074numeric_type_p (struct type *type)
14f9c5c9
AS
4075{
4076 if (type == NULL)
4077 return 0;
d2e4a39e
AS
4078 else
4079 {
4080 switch (TYPE_CODE (type))
4c4b4cd2
PH
4081 {
4082 case TYPE_CODE_INT:
4083 case TYPE_CODE_FLT:
4084 return 1;
4085 case TYPE_CODE_RANGE:
4086 return (type == TYPE_TARGET_TYPE (type)
4087 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4088 default:
4089 return 0;
4090 }
d2e4a39e 4091 }
14f9c5c9
AS
4092}
4093
4c4b4cd2 4094/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4095
4096static int
d2e4a39e 4097integer_type_p (struct type *type)
14f9c5c9
AS
4098{
4099 if (type == NULL)
4100 return 0;
d2e4a39e
AS
4101 else
4102 {
4103 switch (TYPE_CODE (type))
4c4b4cd2
PH
4104 {
4105 case TYPE_CODE_INT:
4106 return 1;
4107 case TYPE_CODE_RANGE:
4108 return (type == TYPE_TARGET_TYPE (type)
4109 || integer_type_p (TYPE_TARGET_TYPE (type)));
4110 default:
4111 return 0;
4112 }
d2e4a39e 4113 }
14f9c5c9
AS
4114}
4115
4c4b4cd2 4116/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4117
4118static int
d2e4a39e 4119scalar_type_p (struct type *type)
14f9c5c9
AS
4120{
4121 if (type == NULL)
4122 return 0;
d2e4a39e
AS
4123 else
4124 {
4125 switch (TYPE_CODE (type))
4c4b4cd2
PH
4126 {
4127 case TYPE_CODE_INT:
4128 case TYPE_CODE_RANGE:
4129 case TYPE_CODE_ENUM:
4130 case TYPE_CODE_FLT:
4131 return 1;
4132 default:
4133 return 0;
4134 }
d2e4a39e 4135 }
14f9c5c9
AS
4136}
4137
4c4b4cd2 4138/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4139
4140static int
d2e4a39e 4141discrete_type_p (struct type *type)
14f9c5c9
AS
4142{
4143 if (type == NULL)
4144 return 0;
d2e4a39e
AS
4145 else
4146 {
4147 switch (TYPE_CODE (type))
4c4b4cd2
PH
4148 {
4149 case TYPE_CODE_INT:
4150 case TYPE_CODE_RANGE:
4151 case TYPE_CODE_ENUM:
872f0337 4152 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4153 return 1;
4154 default:
4155 return 0;
4156 }
d2e4a39e 4157 }
14f9c5c9
AS
4158}
4159
4c4b4cd2
PH
4160/* Returns non-zero if OP with operands in the vector ARGS could be
4161 a user-defined function. Errs on the side of pre-defined operators
4162 (i.e., result 0). */
14f9c5c9
AS
4163
4164static int
d2e4a39e 4165possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4166{
76a01679 4167 struct type *type0 =
df407dfe 4168 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4169 struct type *type1 =
df407dfe 4170 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4171
4c4b4cd2
PH
4172 if (type0 == NULL)
4173 return 0;
4174
14f9c5c9
AS
4175 switch (op)
4176 {
4177 default:
4178 return 0;
4179
4180 case BINOP_ADD:
4181 case BINOP_SUB:
4182 case BINOP_MUL:
4183 case BINOP_DIV:
d2e4a39e 4184 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4185
4186 case BINOP_REM:
4187 case BINOP_MOD:
4188 case BINOP_BITWISE_AND:
4189 case BINOP_BITWISE_IOR:
4190 case BINOP_BITWISE_XOR:
d2e4a39e 4191 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4192
4193 case BINOP_EQUAL:
4194 case BINOP_NOTEQUAL:
4195 case BINOP_LESS:
4196 case BINOP_GTR:
4197 case BINOP_LEQ:
4198 case BINOP_GEQ:
d2e4a39e 4199 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4200
4201 case BINOP_CONCAT:
ee90b9ab 4202 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4203
4204 case BINOP_EXP:
d2e4a39e 4205 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4206
4207 case UNOP_NEG:
4208 case UNOP_PLUS:
4209 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4210 case UNOP_ABS:
4211 return (!numeric_type_p (type0));
14f9c5c9
AS
4212
4213 }
4214}
4215\f
4c4b4cd2 4216 /* Renaming */
14f9c5c9 4217
aeb5907d
JB
4218/* NOTES:
4219
4220 1. In the following, we assume that a renaming type's name may
4221 have an ___XD suffix. It would be nice if this went away at some
4222 point.
4223 2. We handle both the (old) purely type-based representation of
4224 renamings and the (new) variable-based encoding. At some point,
4225 it is devoutly to be hoped that the former goes away
4226 (FIXME: hilfinger-2007-07-09).
4227 3. Subprogram renamings are not implemented, although the XRS
4228 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4229
4230/* If SYM encodes a renaming,
4231
4232 <renaming> renames <renamed entity>,
4233
4234 sets *LEN to the length of the renamed entity's name,
4235 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4236 the string describing the subcomponent selected from the renamed
0963b4bd 4237 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4238 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4239 are undefined). Otherwise, returns a value indicating the category
4240 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4241 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4242 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4243 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4244 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4245 may be NULL, in which case they are not assigned.
4246
4247 [Currently, however, GCC does not generate subprogram renamings.] */
4248
4249enum ada_renaming_category
4250ada_parse_renaming (struct symbol *sym,
4251 const char **renamed_entity, int *len,
4252 const char **renaming_expr)
4253{
4254 enum ada_renaming_category kind;
4255 const char *info;
4256 const char *suffix;
4257
4258 if (sym == NULL)
4259 return ADA_NOT_RENAMING;
4260 switch (SYMBOL_CLASS (sym))
14f9c5c9 4261 {
aeb5907d
JB
4262 default:
4263 return ADA_NOT_RENAMING;
aeb5907d
JB
4264 case LOC_LOCAL:
4265 case LOC_STATIC:
4266 case LOC_COMPUTED:
4267 case LOC_OPTIMIZED_OUT:
4268 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4269 if (info == NULL)
4270 return ADA_NOT_RENAMING;
4271 switch (info[5])
4272 {
4273 case '_':
4274 kind = ADA_OBJECT_RENAMING;
4275 info += 6;
4276 break;
4277 case 'E':
4278 kind = ADA_EXCEPTION_RENAMING;
4279 info += 7;
4280 break;
4281 case 'P':
4282 kind = ADA_PACKAGE_RENAMING;
4283 info += 7;
4284 break;
4285 case 'S':
4286 kind = ADA_SUBPROGRAM_RENAMING;
4287 info += 7;
4288 break;
4289 default:
4290 return ADA_NOT_RENAMING;
4291 }
14f9c5c9 4292 }
4c4b4cd2 4293
aeb5907d
JB
4294 if (renamed_entity != NULL)
4295 *renamed_entity = info;
4296 suffix = strstr (info, "___XE");
4297 if (suffix == NULL || suffix == info)
4298 return ADA_NOT_RENAMING;
4299 if (len != NULL)
4300 *len = strlen (info) - strlen (suffix);
4301 suffix += 5;
4302 if (renaming_expr != NULL)
4303 *renaming_expr = suffix;
4304 return kind;
4305}
4306
a5ee536b
JB
4307/* Compute the value of the given RENAMING_SYM, which is expected to
4308 be a symbol encoding a renaming expression. BLOCK is the block
4309 used to evaluate the renaming. */
52ce6436 4310
a5ee536b
JB
4311static struct value *
4312ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4313 const struct block *block)
a5ee536b 4314{
bbc13ae3 4315 const char *sym_name;
a5ee536b 4316
bbc13ae3 4317 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4318 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4319 return evaluate_expression (expr.get ());
a5ee536b 4320}
14f9c5c9 4321\f
d2e4a39e 4322
4c4b4cd2 4323 /* Evaluation: Function Calls */
14f9c5c9 4324
4c4b4cd2 4325/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4326 lvalues, and otherwise has the side-effect of allocating memory
4327 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4328
d2e4a39e 4329static struct value *
40bc484c 4330ensure_lval (struct value *val)
14f9c5c9 4331{
40bc484c
JB
4332 if (VALUE_LVAL (val) == not_lval
4333 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4334 {
df407dfe 4335 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4336 const CORE_ADDR addr =
4337 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4338
a84a8a0d 4339 VALUE_LVAL (val) = lval_memory;
1a088441 4340 set_value_address (val, addr);
40bc484c 4341 write_memory (addr, value_contents (val), len);
c3e5cd34 4342 }
14f9c5c9
AS
4343
4344 return val;
4345}
4346
4347/* Return the value ACTUAL, converted to be an appropriate value for a
4348 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4349 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4350 values not residing in memory, updating it as needed. */
14f9c5c9 4351
a93c0eb6 4352struct value *
40bc484c 4353ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4354{
df407dfe 4355 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4356 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4357 struct type *formal_target =
4358 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4359 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4360 struct type *actual_target =
4361 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4362 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4363
4c4b4cd2 4364 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4365 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4366 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4367 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4368 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4369 {
a84a8a0d 4370 struct value *result;
5b4ee69b 4371
14f9c5c9 4372 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4373 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4374 result = desc_data (actual);
cb923fcc 4375 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4376 {
4377 if (VALUE_LVAL (actual) != lval_memory)
4378 {
4379 struct value *val;
5b4ee69b 4380
df407dfe 4381 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4382 val = allocate_value (actual_type);
990a07ab 4383 memcpy ((char *) value_contents_raw (val),
0fd88904 4384 (char *) value_contents (actual),
4c4b4cd2 4385 TYPE_LENGTH (actual_type));
40bc484c 4386 actual = ensure_lval (val);
4c4b4cd2 4387 }
a84a8a0d 4388 result = value_addr (actual);
4c4b4cd2 4389 }
a84a8a0d
JB
4390 else
4391 return actual;
b1af9e97 4392 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4393 }
4394 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4395 return ada_value_ind (actual);
8344af1e
JB
4396 else if (ada_is_aligner_type (formal_type))
4397 {
4398 /* We need to turn this parameter into an aligner type
4399 as well. */
4400 struct value *aligner = allocate_value (formal_type);
4401 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4402
4403 value_assign_to_component (aligner, component, actual);
4404 return aligner;
4405 }
14f9c5c9
AS
4406
4407 return actual;
4408}
4409
438c98a1
JB
4410/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4411 type TYPE. This is usually an inefficient no-op except on some targets
4412 (such as AVR) where the representation of a pointer and an address
4413 differs. */
4414
4415static CORE_ADDR
4416value_pointer (struct value *value, struct type *type)
4417{
4418 struct gdbarch *gdbarch = get_type_arch (type);
4419 unsigned len = TYPE_LENGTH (type);
224c3ddb 4420 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4421 CORE_ADDR addr;
4422
4423 addr = value_address (value);
4424 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4425 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4426 return addr;
4427}
4428
14f9c5c9 4429
4c4b4cd2
PH
4430/* Push a descriptor of type TYPE for array value ARR on the stack at
4431 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4432 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4433 to-descriptor type rather than a descriptor type), a struct value *
4434 representing a pointer to this descriptor. */
14f9c5c9 4435
d2e4a39e 4436static struct value *
40bc484c 4437make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4438{
d2e4a39e
AS
4439 struct type *bounds_type = desc_bounds_type (type);
4440 struct type *desc_type = desc_base_type (type);
4441 struct value *descriptor = allocate_value (desc_type);
4442 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4443 int i;
d2e4a39e 4444
0963b4bd
MS
4445 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4446 i > 0; i -= 1)
14f9c5c9 4447 {
19f220c3
JK
4448 modify_field (value_type (bounds), value_contents_writeable (bounds),
4449 ada_array_bound (arr, i, 0),
4450 desc_bound_bitpos (bounds_type, i, 0),
4451 desc_bound_bitsize (bounds_type, i, 0));
4452 modify_field (value_type (bounds), value_contents_writeable (bounds),
4453 ada_array_bound (arr, i, 1),
4454 desc_bound_bitpos (bounds_type, i, 1),
4455 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4456 }
d2e4a39e 4457
40bc484c 4458 bounds = ensure_lval (bounds);
d2e4a39e 4459
19f220c3
JK
4460 modify_field (value_type (descriptor),
4461 value_contents_writeable (descriptor),
4462 value_pointer (ensure_lval (arr),
4463 TYPE_FIELD_TYPE (desc_type, 0)),
4464 fat_pntr_data_bitpos (desc_type),
4465 fat_pntr_data_bitsize (desc_type));
4466
4467 modify_field (value_type (descriptor),
4468 value_contents_writeable (descriptor),
4469 value_pointer (bounds,
4470 TYPE_FIELD_TYPE (desc_type, 1)),
4471 fat_pntr_bounds_bitpos (desc_type),
4472 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4473
40bc484c 4474 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4475
4476 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4477 return value_addr (descriptor);
4478 else
4479 return descriptor;
4480}
14f9c5c9 4481\f
3d9434b5
JB
4482 /* Symbol Cache Module */
4483
3d9434b5 4484/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4485 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4486 on the type of entity being printed, the cache can make it as much
4487 as an order of magnitude faster than without it.
4488
4489 The descriptive type DWARF extension has significantly reduced
4490 the need for this cache, at least when DWARF is being used. However,
4491 even in this case, some expensive name-based symbol searches are still
4492 sometimes necessary - to find an XVZ variable, mostly. */
4493
ee01b665 4494/* Initialize the contents of SYM_CACHE. */
3d9434b5 4495
ee01b665
JB
4496static void
4497ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4498{
4499 obstack_init (&sym_cache->cache_space);
4500 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4501}
3d9434b5 4502
ee01b665
JB
4503/* Free the memory used by SYM_CACHE. */
4504
4505static void
4506ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4507{
ee01b665
JB
4508 obstack_free (&sym_cache->cache_space, NULL);
4509 xfree (sym_cache);
4510}
3d9434b5 4511
ee01b665
JB
4512/* Return the symbol cache associated to the given program space PSPACE.
4513 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4514
ee01b665
JB
4515static struct ada_symbol_cache *
4516ada_get_symbol_cache (struct program_space *pspace)
4517{
4518 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4519
66c168ae 4520 if (pspace_data->sym_cache == NULL)
ee01b665 4521 {
66c168ae
JB
4522 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4523 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4524 }
4525
66c168ae 4526 return pspace_data->sym_cache;
ee01b665 4527}
3d9434b5
JB
4528
4529/* Clear all entries from the symbol cache. */
4530
4531static void
4532ada_clear_symbol_cache (void)
4533{
ee01b665
JB
4534 struct ada_symbol_cache *sym_cache
4535 = ada_get_symbol_cache (current_program_space);
4536
4537 obstack_free (&sym_cache->cache_space, NULL);
4538 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4539}
4540
fe978cb0 4541/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4542 Return it if found, or NULL otherwise. */
4543
4544static struct cache_entry **
fe978cb0 4545find_entry (const char *name, domain_enum domain)
3d9434b5 4546{
ee01b665
JB
4547 struct ada_symbol_cache *sym_cache
4548 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4549 int h = msymbol_hash (name) % HASH_SIZE;
4550 struct cache_entry **e;
4551
ee01b665 4552 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4553 {
fe978cb0 4554 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4555 return e;
4556 }
4557 return NULL;
4558}
4559
fe978cb0 4560/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4561 Return 1 if found, 0 otherwise.
4562
4563 If an entry was found and SYM is not NULL, set *SYM to the entry's
4564 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4565
96d887e8 4566static int
fe978cb0 4567lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4568 struct symbol **sym, const struct block **block)
96d887e8 4569{
fe978cb0 4570 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4571
4572 if (e == NULL)
4573 return 0;
4574 if (sym != NULL)
4575 *sym = (*e)->sym;
4576 if (block != NULL)
4577 *block = (*e)->block;
4578 return 1;
96d887e8
PH
4579}
4580
3d9434b5 4581/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4582 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4583
96d887e8 4584static void
fe978cb0 4585cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4586 const struct block *block)
96d887e8 4587{
ee01b665
JB
4588 struct ada_symbol_cache *sym_cache
4589 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4590 int h;
4591 char *copy;
4592 struct cache_entry *e;
4593
1994afbf
DE
4594 /* Symbols for builtin types don't have a block.
4595 For now don't cache such symbols. */
4596 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4597 return;
4598
3d9434b5
JB
4599 /* If the symbol is a local symbol, then do not cache it, as a search
4600 for that symbol depends on the context. To determine whether
4601 the symbol is local or not, we check the block where we found it
4602 against the global and static blocks of its associated symtab. */
4603 if (sym
08be3fe3 4604 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4605 GLOBAL_BLOCK) != block
08be3fe3 4606 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4607 STATIC_BLOCK) != block)
3d9434b5
JB
4608 return;
4609
4610 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4611 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4612 e->next = sym_cache->root[h];
4613 sym_cache->root[h] = e;
224c3ddb
SM
4614 e->name = copy
4615 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4616 strcpy (copy, name);
4617 e->sym = sym;
fe978cb0 4618 e->domain = domain;
3d9434b5 4619 e->block = block;
96d887e8 4620}
4c4b4cd2
PH
4621\f
4622 /* Symbol Lookup */
4623
b5ec771e
PA
4624/* Return the symbol name match type that should be used used when
4625 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4626
4627 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4628 for Ada lookups. */
c0431670 4629
b5ec771e
PA
4630static symbol_name_match_type
4631name_match_type_from_name (const char *lookup_name)
c0431670 4632{
b5ec771e
PA
4633 return (strstr (lookup_name, "__") == NULL
4634 ? symbol_name_match_type::WILD
4635 : symbol_name_match_type::FULL);
c0431670
JB
4636}
4637
4c4b4cd2
PH
4638/* Return the result of a standard (literal, C-like) lookup of NAME in
4639 given DOMAIN, visible from lexical block BLOCK. */
4640
4641static struct symbol *
4642standard_lookup (const char *name, const struct block *block,
4643 domain_enum domain)
4644{
acbd605d 4645 /* Initialize it just to avoid a GCC false warning. */
6640a367 4646 struct block_symbol sym = {};
4c4b4cd2 4647
d12307c1
PMR
4648 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4649 return sym.symbol;
a2cd4f14 4650 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4651 cache_symbol (name, domain, sym.symbol, sym.block);
4652 return sym.symbol;
4c4b4cd2
PH
4653}
4654
4655
4656/* Non-zero iff there is at least one non-function/non-enumeral symbol
4657 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4658 since they contend in overloading in the same way. */
4659static int
d12307c1 4660is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4661{
4662 int i;
4663
4664 for (i = 0; i < n; i += 1)
d12307c1
PMR
4665 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4666 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4667 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4668 return 1;
4669
4670 return 0;
4671}
4672
4673/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4674 struct types. Otherwise, they may not. */
14f9c5c9
AS
4675
4676static int
d2e4a39e 4677equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4678{
d2e4a39e 4679 if (type0 == type1)
14f9c5c9 4680 return 1;
d2e4a39e 4681 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4682 || TYPE_CODE (type0) != TYPE_CODE (type1))
4683 return 0;
d2e4a39e 4684 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4685 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4686 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4687 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4688 return 1;
d2e4a39e 4689
14f9c5c9
AS
4690 return 0;
4691}
4692
4693/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4694 no more defined than that of SYM1. */
14f9c5c9
AS
4695
4696static int
d2e4a39e 4697lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4698{
4699 if (sym0 == sym1)
4700 return 1;
176620f1 4701 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4702 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4703 return 0;
4704
d2e4a39e 4705 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4706 {
4707 case LOC_UNDEF:
4708 return 1;
4709 case LOC_TYPEDEF:
4710 {
4c4b4cd2
PH
4711 struct type *type0 = SYMBOL_TYPE (sym0);
4712 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4713 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4714 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4715 int len0 = strlen (name0);
5b4ee69b 4716
4c4b4cd2
PH
4717 return
4718 TYPE_CODE (type0) == TYPE_CODE (type1)
4719 && (equiv_types (type0, type1)
4720 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4721 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4722 }
4723 case LOC_CONST:
4724 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4725 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4726
4727 case LOC_STATIC:
4728 {
4729 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4730 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4731 return (strcmp (name0, name1) == 0
4732 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4733 }
4734
d2e4a39e
AS
4735 default:
4736 return 0;
14f9c5c9
AS
4737 }
4738}
4739
d12307c1 4740/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4741 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4742
4743static void
76a01679
JB
4744add_defn_to_vec (struct obstack *obstackp,
4745 struct symbol *sym,
f0c5f9b2 4746 const struct block *block)
14f9c5c9
AS
4747{
4748 int i;
d12307c1 4749 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4750
529cad9c
PH
4751 /* Do not try to complete stub types, as the debugger is probably
4752 already scanning all symbols matching a certain name at the
4753 time when this function is called. Trying to replace the stub
4754 type by its associated full type will cause us to restart a scan
4755 which may lead to an infinite recursion. Instead, the client
4756 collecting the matching symbols will end up collecting several
4757 matches, with at least one of them complete. It can then filter
4758 out the stub ones if needed. */
4759
4c4b4cd2
PH
4760 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4761 {
d12307c1 4762 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4763 return;
d12307c1 4764 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4765 {
d12307c1 4766 prevDefns[i].symbol = sym;
4c4b4cd2 4767 prevDefns[i].block = block;
4c4b4cd2 4768 return;
76a01679 4769 }
4c4b4cd2
PH
4770 }
4771
4772 {
d12307c1 4773 struct block_symbol info;
4c4b4cd2 4774
d12307c1 4775 info.symbol = sym;
4c4b4cd2 4776 info.block = block;
d12307c1 4777 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4778 }
4779}
4780
d12307c1
PMR
4781/* Number of block_symbol structures currently collected in current vector in
4782 OBSTACKP. */
4c4b4cd2 4783
76a01679
JB
4784static int
4785num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4786{
d12307c1 4787 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4788}
4789
d12307c1
PMR
4790/* Vector of block_symbol structures currently collected in current vector in
4791 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4792
d12307c1 4793static struct block_symbol *
4c4b4cd2
PH
4794defns_collected (struct obstack *obstackp, int finish)
4795{
4796 if (finish)
224c3ddb 4797 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4798 else
d12307c1 4799 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4800}
4801
7c7b6655
TT
4802/* Return a bound minimal symbol matching NAME according to Ada
4803 decoding rules. Returns an invalid symbol if there is no such
4804 minimal symbol. Names prefixed with "standard__" are handled
4805 specially: "standard__" is first stripped off, and only static and
4806 global symbols are searched. */
4c4b4cd2 4807
7c7b6655 4808struct bound_minimal_symbol
96d887e8 4809ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4810{
7c7b6655 4811 struct bound_minimal_symbol result;
4c4b4cd2 4812
7c7b6655
TT
4813 memset (&result, 0, sizeof (result));
4814
b5ec771e
PA
4815 symbol_name_match_type match_type = name_match_type_from_name (name);
4816 lookup_name_info lookup_name (name, match_type);
4817
4818 symbol_name_matcher_ftype *match_name
4819 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4820
2030c079 4821 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4822 {
7932255d 4823 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4824 {
4825 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4826 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4827 {
4828 result.minsym = msymbol;
4829 result.objfile = objfile;
4830 break;
4831 }
4832 }
4833 }
4c4b4cd2 4834
7c7b6655 4835 return result;
96d887e8 4836}
4c4b4cd2 4837
96d887e8
PH
4838/* For all subprograms that statically enclose the subprogram of the
4839 selected frame, add symbols matching identifier NAME in DOMAIN
4840 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4841 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4842 with a wildcard prefix. */
4c4b4cd2 4843
96d887e8
PH
4844static void
4845add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4846 const lookup_name_info &lookup_name,
4847 domain_enum domain)
96d887e8 4848{
96d887e8 4849}
14f9c5c9 4850
96d887e8
PH
4851/* True if TYPE is definitely an artificial type supplied to a symbol
4852 for which no debugging information was given in the symbol file. */
14f9c5c9 4853
96d887e8
PH
4854static int
4855is_nondebugging_type (struct type *type)
4856{
0d5cff50 4857 const char *name = ada_type_name (type);
5b4ee69b 4858
96d887e8
PH
4859 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4860}
4c4b4cd2 4861
8f17729f
JB
4862/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4863 that are deemed "identical" for practical purposes.
4864
4865 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4866 types and that their number of enumerals is identical (in other
4867 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4868
4869static int
4870ada_identical_enum_types_p (struct type *type1, struct type *type2)
4871{
4872 int i;
4873
4874 /* The heuristic we use here is fairly conservative. We consider
4875 that 2 enumerate types are identical if they have the same
4876 number of enumerals and that all enumerals have the same
4877 underlying value and name. */
4878
4879 /* All enums in the type should have an identical underlying value. */
4880 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4881 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4882 return 0;
4883
4884 /* All enumerals should also have the same name (modulo any numerical
4885 suffix). */
4886 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4887 {
0d5cff50
DE
4888 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4889 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4890 int len_1 = strlen (name_1);
4891 int len_2 = strlen (name_2);
4892
4893 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4894 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4895 if (len_1 != len_2
4896 || strncmp (TYPE_FIELD_NAME (type1, i),
4897 TYPE_FIELD_NAME (type2, i),
4898 len_1) != 0)
4899 return 0;
4900 }
4901
4902 return 1;
4903}
4904
4905/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4906 that are deemed "identical" for practical purposes. Sometimes,
4907 enumerals are not strictly identical, but their types are so similar
4908 that they can be considered identical.
4909
4910 For instance, consider the following code:
4911
4912 type Color is (Black, Red, Green, Blue, White);
4913 type RGB_Color is new Color range Red .. Blue;
4914
4915 Type RGB_Color is a subrange of an implicit type which is a copy
4916 of type Color. If we call that implicit type RGB_ColorB ("B" is
4917 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4918 As a result, when an expression references any of the enumeral
4919 by name (Eg. "print green"), the expression is technically
4920 ambiguous and the user should be asked to disambiguate. But
4921 doing so would only hinder the user, since it wouldn't matter
4922 what choice he makes, the outcome would always be the same.
4923 So, for practical purposes, we consider them as the same. */
4924
4925static int
54d343a2 4926symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4927{
4928 int i;
4929
4930 /* Before performing a thorough comparison check of each type,
4931 we perform a series of inexpensive checks. We expect that these
4932 checks will quickly fail in the vast majority of cases, and thus
4933 help prevent the unnecessary use of a more expensive comparison.
4934 Said comparison also expects us to make some of these checks
4935 (see ada_identical_enum_types_p). */
4936
4937 /* Quick check: All symbols should have an enum type. */
54d343a2 4938 for (i = 0; i < syms.size (); i++)
d12307c1 4939 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4940 return 0;
4941
4942 /* Quick check: They should all have the same value. */
54d343a2 4943 for (i = 1; i < syms.size (); i++)
d12307c1 4944 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4945 return 0;
4946
4947 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4948 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4949 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4950 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4951 return 0;
4952
4953 /* All the sanity checks passed, so we might have a set of
4954 identical enumeration types. Perform a more complete
4955 comparison of the type of each symbol. */
54d343a2 4956 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4957 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4958 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4959 return 0;
4960
4961 return 1;
4962}
4963
54d343a2 4964/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4965 duplicate other symbols in the list (The only case I know of where
4966 this happens is when object files containing stabs-in-ecoff are
4967 linked with files containing ordinary ecoff debugging symbols (or no
4968 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4969 Returns the number of items in the modified list. */
4c4b4cd2 4970
96d887e8 4971static int
54d343a2 4972remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4973{
4974 int i, j;
4c4b4cd2 4975
8f17729f
JB
4976 /* We should never be called with less than 2 symbols, as there
4977 cannot be any extra symbol in that case. But it's easy to
4978 handle, since we have nothing to do in that case. */
54d343a2
TT
4979 if (syms->size () < 2)
4980 return syms->size ();
8f17729f 4981
96d887e8 4982 i = 0;
54d343a2 4983 while (i < syms->size ())
96d887e8 4984 {
a35ddb44 4985 int remove_p = 0;
339c13b6
JB
4986
4987 /* If two symbols have the same name and one of them is a stub type,
4988 the get rid of the stub. */
4989
54d343a2
TT
4990 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
4991 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 4992 {
54d343a2 4993 for (j = 0; j < syms->size (); j++)
339c13b6
JB
4994 {
4995 if (j != i
54d343a2
TT
4996 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
4997 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
4998 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
4999 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5000 remove_p = 1;
339c13b6
JB
5001 }
5002 }
5003
5004 /* Two symbols with the same name, same class and same address
5005 should be identical. */
5006
54d343a2
TT
5007 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5008 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5009 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5010 {
54d343a2 5011 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5012 {
5013 if (i != j
54d343a2
TT
5014 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5015 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5016 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5017 && SYMBOL_CLASS ((*syms)[i].symbol)
5018 == SYMBOL_CLASS ((*syms)[j].symbol)
5019 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5020 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5021 remove_p = 1;
4c4b4cd2 5022 }
4c4b4cd2 5023 }
339c13b6 5024
a35ddb44 5025 if (remove_p)
54d343a2 5026 syms->erase (syms->begin () + i);
339c13b6 5027
96d887e8 5028 i += 1;
14f9c5c9 5029 }
8f17729f
JB
5030
5031 /* If all the remaining symbols are identical enumerals, then
5032 just keep the first one and discard the rest.
5033
5034 Unlike what we did previously, we do not discard any entry
5035 unless they are ALL identical. This is because the symbol
5036 comparison is not a strict comparison, but rather a practical
5037 comparison. If all symbols are considered identical, then
5038 we can just go ahead and use the first one and discard the rest.
5039 But if we cannot reduce the list to a single element, we have
5040 to ask the user to disambiguate anyways. And if we have to
5041 present a multiple-choice menu, it's less confusing if the list
5042 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5043 if (symbols_are_identical_enums (*syms))
5044 syms->resize (1);
8f17729f 5045
54d343a2 5046 return syms->size ();
14f9c5c9
AS
5047}
5048
96d887e8
PH
5049/* Given a type that corresponds to a renaming entity, use the type name
5050 to extract the scope (package name or function name, fully qualified,
5051 and following the GNAT encoding convention) where this renaming has been
49d83361 5052 defined. */
4c4b4cd2 5053
49d83361 5054static std::string
96d887e8 5055xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5056{
96d887e8 5057 /* The renaming types adhere to the following convention:
0963b4bd 5058 <scope>__<rename>___<XR extension>.
96d887e8
PH
5059 So, to extract the scope, we search for the "___XR" extension,
5060 and then backtrack until we find the first "__". */
76a01679 5061
a737d952 5062 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5063 const char *suffix = strstr (name, "___XR");
5064 const char *last;
14f9c5c9 5065
96d887e8
PH
5066 /* Now, backtrack a bit until we find the first "__". Start looking
5067 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5068
96d887e8
PH
5069 for (last = suffix - 3; last > name; last--)
5070 if (last[0] == '_' && last[1] == '_')
5071 break;
76a01679 5072
96d887e8 5073 /* Make a copy of scope and return it. */
49d83361 5074 return std::string (name, last);
4c4b4cd2
PH
5075}
5076
96d887e8 5077/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5078
96d887e8
PH
5079static int
5080is_package_name (const char *name)
4c4b4cd2 5081{
96d887e8
PH
5082 /* Here, We take advantage of the fact that no symbols are generated
5083 for packages, while symbols are generated for each function.
5084 So the condition for NAME represent a package becomes equivalent
5085 to NAME not existing in our list of symbols. There is only one
5086 small complication with library-level functions (see below). */
4c4b4cd2 5087
96d887e8
PH
5088 /* If it is a function that has not been defined at library level,
5089 then we should be able to look it up in the symbols. */
5090 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5091 return 0;
14f9c5c9 5092
96d887e8
PH
5093 /* Library-level function names start with "_ada_". See if function
5094 "_ada_" followed by NAME can be found. */
14f9c5c9 5095
96d887e8 5096 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5097 functions names cannot contain "__" in them. */
96d887e8
PH
5098 if (strstr (name, "__") != NULL)
5099 return 0;
4c4b4cd2 5100
528e1572 5101 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5102
528e1572 5103 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5104}
14f9c5c9 5105
96d887e8 5106/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5107 not visible from FUNCTION_NAME. */
14f9c5c9 5108
96d887e8 5109static int
0d5cff50 5110old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5111{
aeb5907d
JB
5112 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5113 return 0;
5114
49d83361 5115 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5116
96d887e8 5117 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5118 if (is_package_name (scope.c_str ()))
5119 return 0;
14f9c5c9 5120
96d887e8
PH
5121 /* Check that the rename is in the current function scope by checking
5122 that its name starts with SCOPE. */
76a01679 5123
96d887e8
PH
5124 /* If the function name starts with "_ada_", it means that it is
5125 a library-level function. Strip this prefix before doing the
5126 comparison, as the encoding for the renaming does not contain
5127 this prefix. */
61012eef 5128 if (startswith (function_name, "_ada_"))
96d887e8 5129 function_name += 5;
f26caa11 5130
49d83361 5131 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5132}
5133
aeb5907d
JB
5134/* Remove entries from SYMS that corresponds to a renaming entity that
5135 is not visible from the function associated with CURRENT_BLOCK or
5136 that is superfluous due to the presence of more specific renaming
5137 information. Places surviving symbols in the initial entries of
5138 SYMS and returns the number of surviving symbols.
96d887e8
PH
5139
5140 Rationale:
aeb5907d
JB
5141 First, in cases where an object renaming is implemented as a
5142 reference variable, GNAT may produce both the actual reference
5143 variable and the renaming encoding. In this case, we discard the
5144 latter.
5145
5146 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5147 entity. Unfortunately, STABS currently does not support the definition
5148 of types that are local to a given lexical block, so all renamings types
5149 are emitted at library level. As a consequence, if an application
5150 contains two renaming entities using the same name, and a user tries to
5151 print the value of one of these entities, the result of the ada symbol
5152 lookup will also contain the wrong renaming type.
f26caa11 5153
96d887e8
PH
5154 This function partially covers for this limitation by attempting to
5155 remove from the SYMS list renaming symbols that should be visible
5156 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5157 method with the current information available. The implementation
5158 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5159
5160 - When the user tries to print a rename in a function while there
5161 is another rename entity defined in a package: Normally, the
5162 rename in the function has precedence over the rename in the
5163 package, so the latter should be removed from the list. This is
5164 currently not the case.
5165
5166 - This function will incorrectly remove valid renames if
5167 the CURRENT_BLOCK corresponds to a function which symbol name
5168 has been changed by an "Export" pragma. As a consequence,
5169 the user will be unable to print such rename entities. */
4c4b4cd2 5170
14f9c5c9 5171static int
54d343a2
TT
5172remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5173 const struct block *current_block)
4c4b4cd2
PH
5174{
5175 struct symbol *current_function;
0d5cff50 5176 const char *current_function_name;
4c4b4cd2 5177 int i;
aeb5907d
JB
5178 int is_new_style_renaming;
5179
5180 /* If there is both a renaming foo___XR... encoded as a variable and
5181 a simple variable foo in the same block, discard the latter.
0963b4bd 5182 First, zero out such symbols, then compress. */
aeb5907d 5183 is_new_style_renaming = 0;
54d343a2 5184 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5185 {
54d343a2
TT
5186 struct symbol *sym = (*syms)[i].symbol;
5187 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5188 const char *name;
5189 const char *suffix;
5190
5191 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5192 continue;
5193 name = SYMBOL_LINKAGE_NAME (sym);
5194 suffix = strstr (name, "___XR");
5195
5196 if (suffix != NULL)
5197 {
5198 int name_len = suffix - name;
5199 int j;
5b4ee69b 5200
aeb5907d 5201 is_new_style_renaming = 1;
54d343a2
TT
5202 for (j = 0; j < syms->size (); j += 1)
5203 if (i != j && (*syms)[j].symbol != NULL
5204 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5205 name_len) == 0
54d343a2
TT
5206 && block == (*syms)[j].block)
5207 (*syms)[j].symbol = NULL;
aeb5907d
JB
5208 }
5209 }
5210 if (is_new_style_renaming)
5211 {
5212 int j, k;
5213
54d343a2
TT
5214 for (j = k = 0; j < syms->size (); j += 1)
5215 if ((*syms)[j].symbol != NULL)
aeb5907d 5216 {
54d343a2 5217 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5218 k += 1;
5219 }
5220 return k;
5221 }
4c4b4cd2
PH
5222
5223 /* Extract the function name associated to CURRENT_BLOCK.
5224 Abort if unable to do so. */
76a01679 5225
4c4b4cd2 5226 if (current_block == NULL)
54d343a2 5227 return syms->size ();
76a01679 5228
7f0df278 5229 current_function = block_linkage_function (current_block);
4c4b4cd2 5230 if (current_function == NULL)
54d343a2 5231 return syms->size ();
4c4b4cd2
PH
5232
5233 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5234 if (current_function_name == NULL)
54d343a2 5235 return syms->size ();
4c4b4cd2
PH
5236
5237 /* Check each of the symbols, and remove it from the list if it is
5238 a type corresponding to a renaming that is out of the scope of
5239 the current block. */
5240
5241 i = 0;
54d343a2 5242 while (i < syms->size ())
4c4b4cd2 5243 {
54d343a2 5244 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5245 == ADA_OBJECT_RENAMING
54d343a2
TT
5246 && old_renaming_is_invisible ((*syms)[i].symbol,
5247 current_function_name))
5248 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5249 else
5250 i += 1;
5251 }
5252
54d343a2 5253 return syms->size ();
4c4b4cd2
PH
5254}
5255
339c13b6
JB
5256/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5257 whose name and domain match NAME and DOMAIN respectively.
5258 If no match was found, then extend the search to "enclosing"
5259 routines (in other words, if we're inside a nested function,
5260 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5261 If WILD_MATCH_P is nonzero, perform the naming matching in
5262 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5263
5264 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5265
5266static void
b5ec771e
PA
5267ada_add_local_symbols (struct obstack *obstackp,
5268 const lookup_name_info &lookup_name,
5269 const struct block *block, domain_enum domain)
339c13b6
JB
5270{
5271 int block_depth = 0;
5272
5273 while (block != NULL)
5274 {
5275 block_depth += 1;
b5ec771e 5276 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5277
5278 /* If we found a non-function match, assume that's the one. */
5279 if (is_nonfunction (defns_collected (obstackp, 0),
5280 num_defns_collected (obstackp)))
5281 return;
5282
5283 block = BLOCK_SUPERBLOCK (block);
5284 }
5285
5286 /* If no luck so far, try to find NAME as a local symbol in some lexically
5287 enclosing subprogram. */
5288 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5289 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5290}
5291
ccefe4c4 5292/* An object of this type is used as the user_data argument when
40658b94 5293 calling the map_matching_symbols method. */
ccefe4c4 5294
40658b94 5295struct match_data
ccefe4c4 5296{
40658b94 5297 struct objfile *objfile;
ccefe4c4 5298 struct obstack *obstackp;
40658b94
PH
5299 struct symbol *arg_sym;
5300 int found_sym;
ccefe4c4
TT
5301};
5302
199b4314
TT
5303/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5304 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5305 containing the obstack that collects the symbol list, the file that SYM
5306 must come from, a flag indicating whether a non-argument symbol has
5307 been found in the current block, and the last argument symbol
5308 passed in SYM within the current block (if any). When SYM is null,
5309 marking the end of a block, the argument symbol is added if no
5310 other has been found. */
ccefe4c4 5311
199b4314
TT
5312static bool
5313aux_add_nonlocal_symbols (struct block_symbol *bsym,
5314 struct match_data *data)
ccefe4c4 5315{
199b4314
TT
5316 const struct block *block = bsym->block;
5317 struct symbol *sym = bsym->symbol;
5318
40658b94
PH
5319 if (sym == NULL)
5320 {
5321 if (!data->found_sym && data->arg_sym != NULL)
5322 add_defn_to_vec (data->obstackp,
5323 fixup_symbol_section (data->arg_sym, data->objfile),
5324 block);
5325 data->found_sym = 0;
5326 data->arg_sym = NULL;
5327 }
5328 else
5329 {
5330 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5331 return true;
40658b94
PH
5332 else if (SYMBOL_IS_ARGUMENT (sym))
5333 data->arg_sym = sym;
5334 else
5335 {
5336 data->found_sym = 1;
5337 add_defn_to_vec (data->obstackp,
5338 fixup_symbol_section (sym, data->objfile),
5339 block);
5340 }
5341 }
199b4314 5342 return true;
40658b94
PH
5343}
5344
b5ec771e
PA
5345/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5346 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5347 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5348
5349static int
5350ada_add_block_renamings (struct obstack *obstackp,
5351 const struct block *block,
b5ec771e
PA
5352 const lookup_name_info &lookup_name,
5353 domain_enum domain)
22cee43f
PMR
5354{
5355 struct using_direct *renaming;
5356 int defns_mark = num_defns_collected (obstackp);
5357
b5ec771e
PA
5358 symbol_name_matcher_ftype *name_match
5359 = ada_get_symbol_name_matcher (lookup_name);
5360
22cee43f
PMR
5361 for (renaming = block_using (block);
5362 renaming != NULL;
5363 renaming = renaming->next)
5364 {
5365 const char *r_name;
22cee43f
PMR
5366
5367 /* Avoid infinite recursions: skip this renaming if we are actually
5368 already traversing it.
5369
5370 Currently, symbol lookup in Ada don't use the namespace machinery from
5371 C++/Fortran support: skip namespace imports that use them. */
5372 if (renaming->searched
5373 || (renaming->import_src != NULL
5374 && renaming->import_src[0] != '\0')
5375 || (renaming->import_dest != NULL
5376 && renaming->import_dest[0] != '\0'))
5377 continue;
5378 renaming->searched = 1;
5379
5380 /* TODO: here, we perform another name-based symbol lookup, which can
5381 pull its own multiple overloads. In theory, we should be able to do
5382 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5383 not a simple name. But in order to do this, we would need to enhance
5384 the DWARF reader to associate a symbol to this renaming, instead of a
5385 name. So, for now, we do something simpler: re-use the C++/Fortran
5386 namespace machinery. */
5387 r_name = (renaming->alias != NULL
5388 ? renaming->alias
5389 : renaming->declaration);
b5ec771e
PA
5390 if (name_match (r_name, lookup_name, NULL))
5391 {
5392 lookup_name_info decl_lookup_name (renaming->declaration,
5393 lookup_name.match_type ());
5394 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5395 1, NULL);
5396 }
22cee43f
PMR
5397 renaming->searched = 0;
5398 }
5399 return num_defns_collected (obstackp) != defns_mark;
5400}
5401
db230ce3
JB
5402/* Implements compare_names, but only applying the comparision using
5403 the given CASING. */
5b4ee69b 5404
40658b94 5405static int
db230ce3
JB
5406compare_names_with_case (const char *string1, const char *string2,
5407 enum case_sensitivity casing)
40658b94
PH
5408{
5409 while (*string1 != '\0' && *string2 != '\0')
5410 {
db230ce3
JB
5411 char c1, c2;
5412
40658b94
PH
5413 if (isspace (*string1) || isspace (*string2))
5414 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5415
5416 if (casing == case_sensitive_off)
5417 {
5418 c1 = tolower (*string1);
5419 c2 = tolower (*string2);
5420 }
5421 else
5422 {
5423 c1 = *string1;
5424 c2 = *string2;
5425 }
5426 if (c1 != c2)
40658b94 5427 break;
db230ce3 5428
40658b94
PH
5429 string1 += 1;
5430 string2 += 1;
5431 }
db230ce3 5432
40658b94
PH
5433 switch (*string1)
5434 {
5435 case '(':
5436 return strcmp_iw_ordered (string1, string2);
5437 case '_':
5438 if (*string2 == '\0')
5439 {
052874e8 5440 if (is_name_suffix (string1))
40658b94
PH
5441 return 0;
5442 else
1a1d5513 5443 return 1;
40658b94 5444 }
dbb8534f 5445 /* FALLTHROUGH */
40658b94
PH
5446 default:
5447 if (*string2 == '(')
5448 return strcmp_iw_ordered (string1, string2);
5449 else
db230ce3
JB
5450 {
5451 if (casing == case_sensitive_off)
5452 return tolower (*string1) - tolower (*string2);
5453 else
5454 return *string1 - *string2;
5455 }
40658b94 5456 }
ccefe4c4
TT
5457}
5458
db230ce3
JB
5459/* Compare STRING1 to STRING2, with results as for strcmp.
5460 Compatible with strcmp_iw_ordered in that...
5461
5462 strcmp_iw_ordered (STRING1, STRING2) <= 0
5463
5464 ... implies...
5465
5466 compare_names (STRING1, STRING2) <= 0
5467
5468 (they may differ as to what symbols compare equal). */
5469
5470static int
5471compare_names (const char *string1, const char *string2)
5472{
5473 int result;
5474
5475 /* Similar to what strcmp_iw_ordered does, we need to perform
5476 a case-insensitive comparison first, and only resort to
5477 a second, case-sensitive, comparison if the first one was
5478 not sufficient to differentiate the two strings. */
5479
5480 result = compare_names_with_case (string1, string2, case_sensitive_off);
5481 if (result == 0)
5482 result = compare_names_with_case (string1, string2, case_sensitive_on);
5483
5484 return result;
5485}
5486
b5ec771e
PA
5487/* Convenience function to get at the Ada encoded lookup name for
5488 LOOKUP_NAME, as a C string. */
5489
5490static const char *
5491ada_lookup_name (const lookup_name_info &lookup_name)
5492{
5493 return lookup_name.ada ().lookup_name ().c_str ();
5494}
5495
339c13b6 5496/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5497 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5498 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5499 symbols otherwise. */
339c13b6
JB
5500
5501static void
b5ec771e
PA
5502add_nonlocal_symbols (struct obstack *obstackp,
5503 const lookup_name_info &lookup_name,
5504 domain_enum domain, int global)
339c13b6 5505{
40658b94 5506 struct match_data data;
339c13b6 5507
6475f2fe 5508 memset (&data, 0, sizeof data);
ccefe4c4 5509 data.obstackp = obstackp;
339c13b6 5510
b5ec771e
PA
5511 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5512
199b4314
TT
5513 auto callback = [&] (struct block_symbol *bsym)
5514 {
5515 return aux_add_nonlocal_symbols (bsym, &data);
5516 };
5517
2030c079 5518 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5519 {
5520 data.objfile = objfile;
5521
b054970d
TT
5522 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5523 domain, global, callback,
5524 (is_wild_match
5525 ? NULL : compare_names));
22cee43f 5526
b669c953 5527 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5528 {
5529 const struct block *global_block
5530 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5531
b5ec771e
PA
5532 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5533 domain))
22cee43f
PMR
5534 data.found_sym = 1;
5535 }
40658b94
PH
5536 }
5537
5538 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5539 {
b5ec771e 5540 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5541 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5542 symbol_name_match_type::FULL);
b5ec771e 5543
2030c079 5544 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5545 {
40658b94 5546 data.objfile = objfile;
b054970d 5547 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5548 domain, global, callback,
b5ec771e 5549 compare_names);
40658b94
PH
5550 }
5551 }
339c13b6
JB
5552}
5553
b5ec771e
PA
5554/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5555 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5556 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5557
22cee43f
PMR
5558 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5559 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5560 is the one match returned (no other matches in that or
d9680e73 5561 enclosing blocks is returned). If there are any matches in or
22cee43f 5562 surrounding BLOCK, then these alone are returned.
4eeaa230 5563
b5ec771e
PA
5564 Names prefixed with "standard__" are handled specially:
5565 "standard__" is first stripped off (by the lookup_name
5566 constructor), and only static and global symbols are searched.
14f9c5c9 5567
22cee43f
PMR
5568 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5569 to lookup global symbols. */
5570
5571static void
5572ada_add_all_symbols (struct obstack *obstackp,
5573 const struct block *block,
b5ec771e 5574 const lookup_name_info &lookup_name,
22cee43f
PMR
5575 domain_enum domain,
5576 int full_search,
5577 int *made_global_lookup_p)
14f9c5c9
AS
5578{
5579 struct symbol *sym;
14f9c5c9 5580
22cee43f
PMR
5581 if (made_global_lookup_p)
5582 *made_global_lookup_p = 0;
339c13b6
JB
5583
5584 /* Special case: If the user specifies a symbol name inside package
5585 Standard, do a non-wild matching of the symbol name without
5586 the "standard__" prefix. This was primarily introduced in order
5587 to allow the user to specifically access the standard exceptions
5588 using, for instance, Standard.Constraint_Error when Constraint_Error
5589 is ambiguous (due to the user defining its own Constraint_Error
5590 entity inside its program). */
b5ec771e
PA
5591 if (lookup_name.ada ().standard_p ())
5592 block = NULL;
4c4b4cd2 5593
339c13b6 5594 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5595
4eeaa230
DE
5596 if (block != NULL)
5597 {
5598 if (full_search)
b5ec771e 5599 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5600 else
5601 {
5602 /* In the !full_search case we're are being called by
5603 ada_iterate_over_symbols, and we don't want to search
5604 superblocks. */
b5ec771e 5605 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5606 }
22cee43f
PMR
5607 if (num_defns_collected (obstackp) > 0 || !full_search)
5608 return;
4eeaa230 5609 }
d2e4a39e 5610
339c13b6
JB
5611 /* No non-global symbols found. Check our cache to see if we have
5612 already performed this search before. If we have, then return
5613 the same result. */
5614
b5ec771e
PA
5615 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5616 domain, &sym, &block))
4c4b4cd2
PH
5617 {
5618 if (sym != NULL)
b5ec771e 5619 add_defn_to_vec (obstackp, sym, block);
22cee43f 5620 return;
4c4b4cd2 5621 }
14f9c5c9 5622
22cee43f
PMR
5623 if (made_global_lookup_p)
5624 *made_global_lookup_p = 1;
b1eedac9 5625
339c13b6
JB
5626 /* Search symbols from all global blocks. */
5627
b5ec771e 5628 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5629
4c4b4cd2 5630 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5631 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5632
22cee43f 5633 if (num_defns_collected (obstackp) == 0)
b5ec771e 5634 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5635}
5636
b5ec771e
PA
5637/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5638 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5639 matches.
54d343a2
TT
5640 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5641 found and the blocks and symbol tables (if any) in which they were
5642 found.
22cee43f
PMR
5643
5644 When full_search is non-zero, any non-function/non-enumeral
5645 symbol match within the nest of blocks whose innermost member is BLOCK,
5646 is the one match returned (no other matches in that or
5647 enclosing blocks is returned). If there are any matches in or
5648 surrounding BLOCK, then these alone are returned.
5649
5650 Names prefixed with "standard__" are handled specially: "standard__"
5651 is first stripped off, and only static and global symbols are searched. */
5652
5653static int
b5ec771e
PA
5654ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5655 const struct block *block,
22cee43f 5656 domain_enum domain,
54d343a2 5657 std::vector<struct block_symbol> *results,
22cee43f
PMR
5658 int full_search)
5659{
22cee43f
PMR
5660 int syms_from_global_search;
5661 int ndefns;
ec6a20c2 5662 auto_obstack obstack;
22cee43f 5663
ec6a20c2 5664 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5665 domain, full_search, &syms_from_global_search);
14f9c5c9 5666
ec6a20c2
JB
5667 ndefns = num_defns_collected (&obstack);
5668
54d343a2
TT
5669 struct block_symbol *base = defns_collected (&obstack, 1);
5670 for (int i = 0; i < ndefns; ++i)
5671 results->push_back (base[i]);
4c4b4cd2 5672
54d343a2 5673 ndefns = remove_extra_symbols (results);
4c4b4cd2 5674
b1eedac9 5675 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5676 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5677
b1eedac9 5678 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5679 cache_symbol (ada_lookup_name (lookup_name), domain,
5680 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5681
54d343a2 5682 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5683
14f9c5c9
AS
5684 return ndefns;
5685}
5686
b5ec771e 5687/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5688 in global scopes, returning the number of matches, and filling *RESULTS
5689 with (SYM,BLOCK) tuples.
ec6a20c2 5690
4eeaa230
DE
5691 See ada_lookup_symbol_list_worker for further details. */
5692
5693int
b5ec771e 5694ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5695 domain_enum domain,
5696 std::vector<struct block_symbol> *results)
4eeaa230 5697{
b5ec771e
PA
5698 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5699 lookup_name_info lookup_name (name, name_match_type);
5700
5701 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5702}
5703
5704/* Implementation of the la_iterate_over_symbols method. */
5705
6969f124 5706static bool
14bc53a8 5707ada_iterate_over_symbols
b5ec771e
PA
5708 (const struct block *block, const lookup_name_info &name,
5709 domain_enum domain,
14bc53a8 5710 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5711{
5712 int ndefs, i;
54d343a2 5713 std::vector<struct block_symbol> results;
4eeaa230
DE
5714
5715 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5716
4eeaa230
DE
5717 for (i = 0; i < ndefs; ++i)
5718 {
7e41c8db 5719 if (!callback (&results[i]))
6969f124 5720 return false;
4eeaa230 5721 }
6969f124
TT
5722
5723 return true;
4eeaa230
DE
5724}
5725
4e5c77fe
JB
5726/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5727 to 1, but choosing the first symbol found if there are multiple
5728 choices.
5729
5e2336be
JB
5730 The result is stored in *INFO, which must be non-NULL.
5731 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5732
5733void
5734ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5735 domain_enum domain,
d12307c1 5736 struct block_symbol *info)
14f9c5c9 5737{
b5ec771e
PA
5738 /* Since we already have an encoded name, wrap it in '<>' to force a
5739 verbatim match. Otherwise, if the name happens to not look like
5740 an encoded name (because it doesn't include a "__"),
5741 ada_lookup_name_info would re-encode/fold it again, and that
5742 would e.g., incorrectly lowercase object renaming names like
5743 "R28b" -> "r28b". */
5744 std::string verbatim = std::string ("<") + name + '>';
5745
5e2336be 5746 gdb_assert (info != NULL);
65392b3e 5747 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5748}
aeb5907d
JB
5749
5750/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5751 scope and in global scopes, or NULL if none. NAME is folded and
5752 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5753 choosing the first symbol if there are multiple choices. */
4e5c77fe 5754
d12307c1 5755struct block_symbol
aeb5907d 5756ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5757 domain_enum domain)
aeb5907d 5758{
54d343a2 5759 std::vector<struct block_symbol> candidates;
f98fc17b 5760 int n_candidates;
f98fc17b
PA
5761
5762 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5763
5764 if (n_candidates == 0)
54d343a2 5765 return {};
f98fc17b
PA
5766
5767 block_symbol info = candidates[0];
5768 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5769 return info;
4c4b4cd2 5770}
14f9c5c9 5771
d12307c1 5772static struct block_symbol
f606139a
DE
5773ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5774 const char *name,
76a01679 5775 const struct block *block,
21b556f4 5776 const domain_enum domain)
4c4b4cd2 5777{
d12307c1 5778 struct block_symbol sym;
04dccad0 5779
65392b3e 5780 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5781 if (sym.symbol != NULL)
04dccad0
JB
5782 return sym;
5783
5784 /* If we haven't found a match at this point, try the primitive
5785 types. In other languages, this search is performed before
5786 searching for global symbols in order to short-circuit that
5787 global-symbol search if it happens that the name corresponds
5788 to a primitive type. But we cannot do the same in Ada, because
5789 it is perfectly legitimate for a program to declare a type which
5790 has the same name as a standard type. If looking up a type in
5791 that situation, we have traditionally ignored the primitive type
5792 in favor of user-defined types. This is why, unlike most other
5793 languages, we search the primitive types this late and only after
5794 having searched the global symbols without success. */
5795
5796 if (domain == VAR_DOMAIN)
5797 {
5798 struct gdbarch *gdbarch;
5799
5800 if (block == NULL)
5801 gdbarch = target_gdbarch ();
5802 else
5803 gdbarch = block_gdbarch (block);
d12307c1
PMR
5804 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5805 if (sym.symbol != NULL)
04dccad0
JB
5806 return sym;
5807 }
5808
6640a367 5809 return {};
14f9c5c9
AS
5810}
5811
5812
4c4b4cd2
PH
5813/* True iff STR is a possible encoded suffix of a normal Ada name
5814 that is to be ignored for matching purposes. Suffixes of parallel
5815 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5816 are given by any of the regular expressions:
4c4b4cd2 5817
babe1480
JB
5818 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5819 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5820 TKB [subprogram suffix for task bodies]
babe1480 5821 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5822 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5823
5824 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5825 match is performed. This sequence is used to differentiate homonyms,
5826 is an optional part of a valid name suffix. */
4c4b4cd2 5827
14f9c5c9 5828static int
d2e4a39e 5829is_name_suffix (const char *str)
14f9c5c9
AS
5830{
5831 int k;
4c4b4cd2
PH
5832 const char *matching;
5833 const int len = strlen (str);
5834
babe1480
JB
5835 /* Skip optional leading __[0-9]+. */
5836
4c4b4cd2
PH
5837 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5838 {
babe1480
JB
5839 str += 3;
5840 while (isdigit (str[0]))
5841 str += 1;
4c4b4cd2 5842 }
babe1480
JB
5843
5844 /* [.$][0-9]+ */
4c4b4cd2 5845
babe1480 5846 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5847 {
babe1480 5848 matching = str + 1;
4c4b4cd2
PH
5849 while (isdigit (matching[0]))
5850 matching += 1;
5851 if (matching[0] == '\0')
5852 return 1;
5853 }
5854
5855 /* ___[0-9]+ */
babe1480 5856
4c4b4cd2
PH
5857 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5858 {
5859 matching = str + 3;
5860 while (isdigit (matching[0]))
5861 matching += 1;
5862 if (matching[0] == '\0')
5863 return 1;
5864 }
5865
9ac7f98e
JB
5866 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5867
5868 if (strcmp (str, "TKB") == 0)
5869 return 1;
5870
529cad9c
PH
5871#if 0
5872 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5873 with a N at the end. Unfortunately, the compiler uses the same
5874 convention for other internal types it creates. So treating
529cad9c 5875 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5876 some regressions. For instance, consider the case of an enumerated
5877 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5878 name ends with N.
5879 Having a single character like this as a suffix carrying some
0963b4bd 5880 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5881 to be something like "_N" instead. In the meantime, do not do
5882 the following check. */
5883 /* Protected Object Subprograms */
5884 if (len == 1 && str [0] == 'N')
5885 return 1;
5886#endif
5887
5888 /* _E[0-9]+[bs]$ */
5889 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5890 {
5891 matching = str + 3;
5892 while (isdigit (matching[0]))
5893 matching += 1;
5894 if ((matching[0] == 'b' || matching[0] == 's')
5895 && matching [1] == '\0')
5896 return 1;
5897 }
5898
4c4b4cd2
PH
5899 /* ??? We should not modify STR directly, as we are doing below. This
5900 is fine in this case, but may become problematic later if we find
5901 that this alternative did not work, and want to try matching
5902 another one from the begining of STR. Since we modified it, we
5903 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5904 if (str[0] == 'X')
5905 {
5906 str += 1;
d2e4a39e 5907 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5908 {
5909 if (str[0] != 'n' && str[0] != 'b')
5910 return 0;
5911 str += 1;
5912 }
14f9c5c9 5913 }
babe1480 5914
14f9c5c9
AS
5915 if (str[0] == '\000')
5916 return 1;
babe1480 5917
d2e4a39e 5918 if (str[0] == '_')
14f9c5c9
AS
5919 {
5920 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5921 return 0;
d2e4a39e 5922 if (str[2] == '_')
4c4b4cd2 5923 {
61ee279c
PH
5924 if (strcmp (str + 3, "JM") == 0)
5925 return 1;
5926 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5927 the LJM suffix in favor of the JM one. But we will
5928 still accept LJM as a valid suffix for a reasonable
5929 amount of time, just to allow ourselves to debug programs
5930 compiled using an older version of GNAT. */
4c4b4cd2
PH
5931 if (strcmp (str + 3, "LJM") == 0)
5932 return 1;
5933 if (str[3] != 'X')
5934 return 0;
1265e4aa
JB
5935 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5936 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5937 return 1;
5938 if (str[4] == 'R' && str[5] != 'T')
5939 return 1;
5940 return 0;
5941 }
5942 if (!isdigit (str[2]))
5943 return 0;
5944 for (k = 3; str[k] != '\0'; k += 1)
5945 if (!isdigit (str[k]) && str[k] != '_')
5946 return 0;
14f9c5c9
AS
5947 return 1;
5948 }
4c4b4cd2 5949 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5950 {
4c4b4cd2
PH
5951 for (k = 2; str[k] != '\0'; k += 1)
5952 if (!isdigit (str[k]) && str[k] != '_')
5953 return 0;
14f9c5c9
AS
5954 return 1;
5955 }
5956 return 0;
5957}
d2e4a39e 5958
aeb5907d
JB
5959/* Return non-zero if the string starting at NAME and ending before
5960 NAME_END contains no capital letters. */
529cad9c
PH
5961
5962static int
5963is_valid_name_for_wild_match (const char *name0)
5964{
f945dedf 5965 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5966 int i;
5967
5823c3ef
JB
5968 /* If the decoded name starts with an angle bracket, it means that
5969 NAME0 does not follow the GNAT encoding format. It should then
5970 not be allowed as a possible wild match. */
5971 if (decoded_name[0] == '<')
5972 return 0;
5973
529cad9c
PH
5974 for (i=0; decoded_name[i] != '\0'; i++)
5975 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5976 return 0;
5977
5978 return 1;
5979}
5980
73589123
PH
5981/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5982 that could start a simple name. Assumes that *NAMEP points into
5983 the string beginning at NAME0. */
4c4b4cd2 5984
14f9c5c9 5985static int
73589123 5986advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5987{
73589123 5988 const char *name = *namep;
5b4ee69b 5989
5823c3ef 5990 while (1)
14f9c5c9 5991 {
aa27d0b3 5992 int t0, t1;
73589123
PH
5993
5994 t0 = *name;
5995 if (t0 == '_')
5996 {
5997 t1 = name[1];
5998 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5999 {
6000 name += 1;
61012eef 6001 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6002 break;
6003 else
6004 name += 1;
6005 }
aa27d0b3
JB
6006 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6007 || name[2] == target0))
73589123
PH
6008 {
6009 name += 2;
6010 break;
6011 }
6012 else
6013 return 0;
6014 }
6015 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6016 name += 1;
6017 else
5823c3ef 6018 return 0;
73589123
PH
6019 }
6020
6021 *namep = name;
6022 return 1;
6023}
6024
b5ec771e
PA
6025/* Return true iff NAME encodes a name of the form prefix.PATN.
6026 Ignores any informational suffixes of NAME (i.e., for which
6027 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6028 simple name. */
73589123 6029
b5ec771e 6030static bool
73589123
PH
6031wild_match (const char *name, const char *patn)
6032{
22e048c9 6033 const char *p;
73589123
PH
6034 const char *name0 = name;
6035
6036 while (1)
6037 {
6038 const char *match = name;
6039
6040 if (*name == *patn)
6041 {
6042 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6043 if (*p != *name)
6044 break;
6045 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6046 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6047
6048 if (name[-1] == '_')
6049 name -= 1;
6050 }
6051 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6052 return false;
96d887e8 6053 }
96d887e8
PH
6054}
6055
b5ec771e
PA
6056/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6057 any trailing suffixes that encode debugging information or leading
6058 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6059 information that is ignored). */
40658b94 6060
b5ec771e 6061static bool
c4d840bd
PH
6062full_match (const char *sym_name, const char *search_name)
6063{
b5ec771e
PA
6064 size_t search_name_len = strlen (search_name);
6065
6066 if (strncmp (sym_name, search_name, search_name_len) == 0
6067 && is_name_suffix (sym_name + search_name_len))
6068 return true;
6069
6070 if (startswith (sym_name, "_ada_")
6071 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6072 && is_name_suffix (sym_name + search_name_len + 5))
6073 return true;
c4d840bd 6074
b5ec771e
PA
6075 return false;
6076}
c4d840bd 6077
b5ec771e
PA
6078/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6079 *defn_symbols, updating the list of symbols in OBSTACKP (if
6080 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6081
6082static void
6083ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6084 const struct block *block,
6085 const lookup_name_info &lookup_name,
6086 domain_enum domain, struct objfile *objfile)
96d887e8 6087{
8157b174 6088 struct block_iterator iter;
96d887e8
PH
6089 /* A matching argument symbol, if any. */
6090 struct symbol *arg_sym;
6091 /* Set true when we find a matching non-argument symbol. */
6092 int found_sym;
6093 struct symbol *sym;
6094
6095 arg_sym = NULL;
6096 found_sym = 0;
b5ec771e
PA
6097 for (sym = block_iter_match_first (block, lookup_name, &iter);
6098 sym != NULL;
6099 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6100 {
b5ec771e
PA
6101 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6102 SYMBOL_DOMAIN (sym), domain))
6103 {
6104 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6105 {
6106 if (SYMBOL_IS_ARGUMENT (sym))
6107 arg_sym = sym;
6108 else
6109 {
6110 found_sym = 1;
6111 add_defn_to_vec (obstackp,
6112 fixup_symbol_section (sym, objfile),
6113 block);
6114 }
6115 }
6116 }
96d887e8
PH
6117 }
6118
22cee43f
PMR
6119 /* Handle renamings. */
6120
b5ec771e 6121 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6122 found_sym = 1;
6123
96d887e8
PH
6124 if (!found_sym && arg_sym != NULL)
6125 {
76a01679
JB
6126 add_defn_to_vec (obstackp,
6127 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6128 block);
96d887e8
PH
6129 }
6130
b5ec771e 6131 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6132 {
6133 arg_sym = NULL;
6134 found_sym = 0;
b5ec771e
PA
6135 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6136 const char *name = ada_lookup_name.c_str ();
6137 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6138
6139 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6140 {
4186eb54
KS
6141 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6142 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6143 {
6144 int cmp;
6145
6146 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6147 if (cmp == 0)
6148 {
61012eef 6149 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6150 if (cmp == 0)
6151 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6152 name_len);
6153 }
6154
6155 if (cmp == 0
6156 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6157 {
2a2d4dc3
AS
6158 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6159 {
6160 if (SYMBOL_IS_ARGUMENT (sym))
6161 arg_sym = sym;
6162 else
6163 {
6164 found_sym = 1;
6165 add_defn_to_vec (obstackp,
6166 fixup_symbol_section (sym, objfile),
6167 block);
6168 }
6169 }
76a01679
JB
6170 }
6171 }
76a01679 6172 }
96d887e8
PH
6173
6174 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6175 They aren't parameters, right? */
6176 if (!found_sym && arg_sym != NULL)
6177 {
6178 add_defn_to_vec (obstackp,
76a01679 6179 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6180 block);
96d887e8
PH
6181 }
6182 }
6183}
6184\f
41d27058
JB
6185
6186 /* Symbol Completion */
6187
b5ec771e 6188/* See symtab.h. */
41d27058 6189
b5ec771e
PA
6190bool
6191ada_lookup_name_info::matches
6192 (const char *sym_name,
6193 symbol_name_match_type match_type,
a207cff2 6194 completion_match_result *comp_match_res) const
41d27058 6195{
b5ec771e
PA
6196 bool match = false;
6197 const char *text = m_encoded_name.c_str ();
6198 size_t text_len = m_encoded_name.size ();
41d27058
JB
6199
6200 /* First, test against the fully qualified name of the symbol. */
6201
6202 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6203 match = true;
41d27058 6204
f945dedf 6205 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6206 if (match && !m_encoded_p)
41d27058
JB
6207 {
6208 /* One needed check before declaring a positive match is to verify
6209 that iff we are doing a verbatim match, the decoded version
6210 of the symbol name starts with '<'. Otherwise, this symbol name
6211 is not a suitable completion. */
41d27058 6212
f945dedf 6213 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6214 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6215 }
6216
b5ec771e 6217 if (match && !m_verbatim_p)
41d27058
JB
6218 {
6219 /* When doing non-verbatim match, another check that needs to
6220 be done is to verify that the potentially matching symbol name
6221 does not include capital letters, because the ada-mode would
6222 not be able to understand these symbol names without the
6223 angle bracket notation. */
6224 const char *tmp;
6225
6226 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6227 if (*tmp != '\0')
b5ec771e 6228 match = false;
41d27058
JB
6229 }
6230
6231 /* Second: Try wild matching... */
6232
b5ec771e 6233 if (!match && m_wild_match_p)
41d27058
JB
6234 {
6235 /* Since we are doing wild matching, this means that TEXT
6236 may represent an unqualified symbol name. We therefore must
6237 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6238 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6239
6240 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6241 match = true;
41d27058
JB
6242 }
6243
b5ec771e 6244 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6245
6246 if (!match)
b5ec771e 6247 return false;
41d27058 6248
a207cff2 6249 if (comp_match_res != NULL)
b5ec771e 6250 {
a207cff2 6251 std::string &match_str = comp_match_res->match.storage ();
41d27058 6252
b5ec771e 6253 if (!m_encoded_p)
a207cff2 6254 match_str = ada_decode (sym_name);
b5ec771e
PA
6255 else
6256 {
6257 if (m_verbatim_p)
6258 match_str = add_angle_brackets (sym_name);
6259 else
6260 match_str = sym_name;
41d27058 6261
b5ec771e 6262 }
a207cff2
PA
6263
6264 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6265 }
6266
b5ec771e 6267 return true;
41d27058
JB
6268}
6269
b5ec771e 6270/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6271 WORD is the entire command on which completion is made. */
41d27058 6272
eb3ff9a5
PA
6273static void
6274ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6275 complete_symbol_mode mode,
b5ec771e
PA
6276 symbol_name_match_type name_match_type,
6277 const char *text, const char *word,
eb3ff9a5 6278 enum type_code code)
41d27058 6279{
41d27058 6280 struct symbol *sym;
3977b71f 6281 const struct block *b, *surrounding_static_block = 0;
8157b174 6282 struct block_iterator iter;
41d27058 6283
2f68a895
TT
6284 gdb_assert (code == TYPE_CODE_UNDEF);
6285
1b026119 6286 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6287
6288 /* First, look at the partial symtab symbols. */
14bc53a8 6289 expand_symtabs_matching (NULL,
b5ec771e
PA
6290 lookup_name,
6291 NULL,
14bc53a8
PA
6292 NULL,
6293 ALL_DOMAIN);
41d27058
JB
6294
6295 /* At this point scan through the misc symbol vectors and add each
6296 symbol you find to the list. Eventually we want to ignore
6297 anything that isn't a text symbol (everything else will be
6298 handled by the psymtab code above). */
6299
2030c079 6300 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6301 {
7932255d 6302 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6303 {
6304 QUIT;
6305
6306 if (completion_skip_symbol (mode, msymbol))
6307 continue;
6308
6309 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6310
6311 /* Ada minimal symbols won't have their language set to Ada. If
6312 we let completion_list_add_name compare using the
6313 default/C-like matcher, then when completing e.g., symbols in a
6314 package named "pck", we'd match internal Ada symbols like
6315 "pckS", which are invalid in an Ada expression, unless you wrap
6316 them in '<' '>' to request a verbatim match.
6317
6318 Unfortunately, some Ada encoded names successfully demangle as
6319 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6320 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6321 with the wrong language set. Paper over that issue here. */
6322 if (symbol_language == language_auto
6323 || symbol_language == language_cplus)
6324 symbol_language = language_ada;
6325
6326 completion_list_add_name (tracker,
6327 symbol_language,
6328 MSYMBOL_LINKAGE_NAME (msymbol),
6329 lookup_name, text, word);
6330 }
6331 }
41d27058
JB
6332
6333 /* Search upwards from currently selected frame (so that we can
6334 complete on local vars. */
6335
6336 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6337 {
6338 if (!BLOCK_SUPERBLOCK (b))
6339 surrounding_static_block = b; /* For elmin of dups */
6340
6341 ALL_BLOCK_SYMBOLS (b, iter, sym)
6342 {
f9d67a22
PA
6343 if (completion_skip_symbol (mode, sym))
6344 continue;
6345
b5ec771e
PA
6346 completion_list_add_name (tracker,
6347 SYMBOL_LANGUAGE (sym),
6348 SYMBOL_LINKAGE_NAME (sym),
1b026119 6349 lookup_name, text, word);
41d27058
JB
6350 }
6351 }
6352
6353 /* Go through the symtabs and check the externs and statics for
43f3e411 6354 symbols which match. */
41d27058 6355
2030c079 6356 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6357 {
b669c953 6358 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6359 {
6360 QUIT;
6361 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6362 ALL_BLOCK_SYMBOLS (b, iter, sym)
6363 {
6364 if (completion_skip_symbol (mode, sym))
6365 continue;
f9d67a22 6366
d8aeb77f
TT
6367 completion_list_add_name (tracker,
6368 SYMBOL_LANGUAGE (sym),
6369 SYMBOL_LINKAGE_NAME (sym),
6370 lookup_name, text, word);
6371 }
6372 }
41d27058 6373 }
41d27058 6374
2030c079 6375 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6376 {
b669c953 6377 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6378 {
6379 QUIT;
6380 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6381 /* Don't do this block twice. */
6382 if (b == surrounding_static_block)
6383 continue;
6384 ALL_BLOCK_SYMBOLS (b, iter, sym)
6385 {
6386 if (completion_skip_symbol (mode, sym))
6387 continue;
f9d67a22 6388
d8aeb77f
TT
6389 completion_list_add_name (tracker,
6390 SYMBOL_LANGUAGE (sym),
6391 SYMBOL_LINKAGE_NAME (sym),
6392 lookup_name, text, word);
6393 }
6394 }
41d27058 6395 }
41d27058
JB
6396}
6397
963a6417 6398 /* Field Access */
96d887e8 6399
73fb9985
JB
6400/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6401 for tagged types. */
6402
6403static int
6404ada_is_dispatch_table_ptr_type (struct type *type)
6405{
0d5cff50 6406 const char *name;
73fb9985
JB
6407
6408 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6409 return 0;
6410
6411 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6412 if (name == NULL)
6413 return 0;
6414
6415 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6416}
6417
ac4a2da4
JG
6418/* Return non-zero if TYPE is an interface tag. */
6419
6420static int
6421ada_is_interface_tag (struct type *type)
6422{
6423 const char *name = TYPE_NAME (type);
6424
6425 if (name == NULL)
6426 return 0;
6427
6428 return (strcmp (name, "ada__tags__interface_tag") == 0);
6429}
6430
963a6417
PH
6431/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6432 to be invisible to users. */
96d887e8 6433
963a6417
PH
6434int
6435ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6436{
963a6417
PH
6437 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6438 return 1;
ffde82bf 6439
73fb9985
JB
6440 /* Check the name of that field. */
6441 {
6442 const char *name = TYPE_FIELD_NAME (type, field_num);
6443
6444 /* Anonymous field names should not be printed.
6445 brobecker/2007-02-20: I don't think this can actually happen
6446 but we don't want to print the value of annonymous fields anyway. */
6447 if (name == NULL)
6448 return 1;
6449
ffde82bf
JB
6450 /* Normally, fields whose name start with an underscore ("_")
6451 are fields that have been internally generated by the compiler,
6452 and thus should not be printed. The "_parent" field is special,
6453 however: This is a field internally generated by the compiler
6454 for tagged types, and it contains the components inherited from
6455 the parent type. This field should not be printed as is, but
6456 should not be ignored either. */
61012eef 6457 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6458 return 1;
6459 }
6460
ac4a2da4
JG
6461 /* If this is the dispatch table of a tagged type or an interface tag,
6462 then ignore. */
73fb9985 6463 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6464 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6465 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6466 return 1;
6467
6468 /* Not a special field, so it should not be ignored. */
6469 return 0;
963a6417 6470}
96d887e8 6471
963a6417 6472/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6473 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6474
963a6417
PH
6475int
6476ada_is_tagged_type (struct type *type, int refok)
6477{
988f6b3d 6478 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6479}
96d887e8 6480
963a6417 6481/* True iff TYPE represents the type of X'Tag */
96d887e8 6482
963a6417
PH
6483int
6484ada_is_tag_type (struct type *type)
6485{
460efde1
JB
6486 type = ada_check_typedef (type);
6487
963a6417
PH
6488 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6489 return 0;
6490 else
96d887e8 6491 {
963a6417 6492 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6493
963a6417
PH
6494 return (name != NULL
6495 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6496 }
96d887e8
PH
6497}
6498
963a6417 6499/* The type of the tag on VAL. */
76a01679 6500
963a6417
PH
6501struct type *
6502ada_tag_type (struct value *val)
96d887e8 6503{
988f6b3d 6504 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6505}
96d887e8 6506
b50d69b5
JG
6507/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6508 retired at Ada 05). */
6509
6510static int
6511is_ada95_tag (struct value *tag)
6512{
6513 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6514}
6515
963a6417 6516/* The value of the tag on VAL. */
96d887e8 6517
963a6417
PH
6518struct value *
6519ada_value_tag (struct value *val)
6520{
03ee6b2e 6521 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6522}
6523
963a6417
PH
6524/* The value of the tag on the object of type TYPE whose contents are
6525 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6526 ADDRESS. */
96d887e8 6527
963a6417 6528static struct value *
10a2c479 6529value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6530 const gdb_byte *valaddr,
963a6417 6531 CORE_ADDR address)
96d887e8 6532{
b5385fc0 6533 int tag_byte_offset;
963a6417 6534 struct type *tag_type;
5b4ee69b 6535
963a6417 6536 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6537 NULL, NULL, NULL))
96d887e8 6538 {
fc1a4b47 6539 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6540 ? NULL
6541 : valaddr + tag_byte_offset);
963a6417 6542 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6543
963a6417 6544 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6545 }
963a6417
PH
6546 return NULL;
6547}
96d887e8 6548
963a6417
PH
6549static struct type *
6550type_from_tag (struct value *tag)
6551{
6552 const char *type_name = ada_tag_name (tag);
5b4ee69b 6553
963a6417
PH
6554 if (type_name != NULL)
6555 return ada_find_any_type (ada_encode (type_name));
6556 return NULL;
6557}
96d887e8 6558
b50d69b5
JG
6559/* Given a value OBJ of a tagged type, return a value of this
6560 type at the base address of the object. The base address, as
6561 defined in Ada.Tags, it is the address of the primary tag of
6562 the object, and therefore where the field values of its full
6563 view can be fetched. */
6564
6565struct value *
6566ada_tag_value_at_base_address (struct value *obj)
6567{
b50d69b5
JG
6568 struct value *val;
6569 LONGEST offset_to_top = 0;
6570 struct type *ptr_type, *obj_type;
6571 struct value *tag;
6572 CORE_ADDR base_address;
6573
6574 obj_type = value_type (obj);
6575
6576 /* It is the responsability of the caller to deref pointers. */
6577
6578 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6579 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6580 return obj;
6581
6582 tag = ada_value_tag (obj);
6583 if (!tag)
6584 return obj;
6585
6586 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6587
6588 if (is_ada95_tag (tag))
6589 return obj;
6590
08f49010
XR
6591 ptr_type = language_lookup_primitive_type
6592 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6593 ptr_type = lookup_pointer_type (ptr_type);
6594 val = value_cast (ptr_type, tag);
6595 if (!val)
6596 return obj;
6597
6598 /* It is perfectly possible that an exception be raised while
6599 trying to determine the base address, just like for the tag;
6600 see ada_tag_name for more details. We do not print the error
6601 message for the same reason. */
6602
a70b8144 6603 try
b50d69b5
JG
6604 {
6605 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6606 }
6607
230d2906 6608 catch (const gdb_exception_error &e)
492d29ea
PA
6609 {
6610 return obj;
6611 }
b50d69b5
JG
6612
6613 /* If offset is null, nothing to do. */
6614
6615 if (offset_to_top == 0)
6616 return obj;
6617
6618 /* -1 is a special case in Ada.Tags; however, what should be done
6619 is not quite clear from the documentation. So do nothing for
6620 now. */
6621
6622 if (offset_to_top == -1)
6623 return obj;
6624
08f49010
XR
6625 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6626 from the base address. This was however incompatible with
6627 C++ dispatch table: C++ uses a *negative* value to *add*
6628 to the base address. Ada's convention has therefore been
6629 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6630 use the same convention. Here, we support both cases by
6631 checking the sign of OFFSET_TO_TOP. */
6632
6633 if (offset_to_top > 0)
6634 offset_to_top = -offset_to_top;
6635
6636 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6637 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6638
6639 /* Make sure that we have a proper tag at the new address.
6640 Otherwise, offset_to_top is bogus (which can happen when
6641 the object is not initialized yet). */
6642
6643 if (!tag)
6644 return obj;
6645
6646 obj_type = type_from_tag (tag);
6647
6648 if (!obj_type)
6649 return obj;
6650
6651 return value_from_contents_and_address (obj_type, NULL, base_address);
6652}
6653
1b611343
JB
6654/* Return the "ada__tags__type_specific_data" type. */
6655
6656static struct type *
6657ada_get_tsd_type (struct inferior *inf)
963a6417 6658{
1b611343 6659 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6660
1b611343
JB
6661 if (data->tsd_type == 0)
6662 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6663 return data->tsd_type;
6664}
529cad9c 6665
1b611343
JB
6666/* Return the TSD (type-specific data) associated to the given TAG.
6667 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6668
1b611343 6669 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6670
1b611343
JB
6671static struct value *
6672ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6673{
4c4b4cd2 6674 struct value *val;
1b611343 6675 struct type *type;
5b4ee69b 6676
1b611343
JB
6677 /* First option: The TSD is simply stored as a field of our TAG.
6678 Only older versions of GNAT would use this format, but we have
6679 to test it first, because there are no visible markers for
6680 the current approach except the absence of that field. */
529cad9c 6681
1b611343
JB
6682 val = ada_value_struct_elt (tag, "tsd", 1);
6683 if (val)
6684 return val;
e802dbe0 6685
1b611343
JB
6686 /* Try the second representation for the dispatch table (in which
6687 there is no explicit 'tsd' field in the referent of the tag pointer,
6688 and instead the tsd pointer is stored just before the dispatch
6689 table. */
e802dbe0 6690
1b611343
JB
6691 type = ada_get_tsd_type (current_inferior());
6692 if (type == NULL)
6693 return NULL;
6694 type = lookup_pointer_type (lookup_pointer_type (type));
6695 val = value_cast (type, tag);
6696 if (val == NULL)
6697 return NULL;
6698 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6699}
6700
1b611343
JB
6701/* Given the TSD of a tag (type-specific data), return a string
6702 containing the name of the associated type.
6703
6704 The returned value is good until the next call. May return NULL
6705 if we are unable to determine the tag name. */
6706
6707static char *
6708ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6709{
529cad9c
PH
6710 static char name[1024];
6711 char *p;
1b611343 6712 struct value *val;
529cad9c 6713
1b611343 6714 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6715 if (val == NULL)
1b611343 6716 return NULL;
4c4b4cd2
PH
6717 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6718 for (p = name; *p != '\0'; p += 1)
6719 if (isalpha (*p))
6720 *p = tolower (*p);
1b611343 6721 return name;
4c4b4cd2
PH
6722}
6723
6724/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6725 a C string.
6726
6727 Return NULL if the TAG is not an Ada tag, or if we were unable to
6728 determine the name of that tag. The result is good until the next
6729 call. */
4c4b4cd2
PH
6730
6731const char *
6732ada_tag_name (struct value *tag)
6733{
1b611343 6734 char *name = NULL;
5b4ee69b 6735
df407dfe 6736 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6737 return NULL;
1b611343
JB
6738
6739 /* It is perfectly possible that an exception be raised while trying
6740 to determine the TAG's name, even under normal circumstances:
6741 The associated variable may be uninitialized or corrupted, for
6742 instance. We do not let any exception propagate past this point.
6743 instead we return NULL.
6744
6745 We also do not print the error message either (which often is very
6746 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6747 the caller print a more meaningful message if necessary. */
a70b8144 6748 try
1b611343
JB
6749 {
6750 struct value *tsd = ada_get_tsd_from_tag (tag);
6751
6752 if (tsd != NULL)
6753 name = ada_tag_name_from_tsd (tsd);
6754 }
230d2906 6755 catch (const gdb_exception_error &e)
492d29ea
PA
6756 {
6757 }
1b611343
JB
6758
6759 return name;
4c4b4cd2
PH
6760}
6761
6762/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6763
d2e4a39e 6764struct type *
ebf56fd3 6765ada_parent_type (struct type *type)
14f9c5c9
AS
6766{
6767 int i;
6768
61ee279c 6769 type = ada_check_typedef (type);
14f9c5c9
AS
6770
6771 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6772 return NULL;
6773
6774 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6775 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6776 {
6777 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6778
6779 /* If the _parent field is a pointer, then dereference it. */
6780 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6781 parent_type = TYPE_TARGET_TYPE (parent_type);
6782 /* If there is a parallel XVS type, get the actual base type. */
6783 parent_type = ada_get_base_type (parent_type);
6784
6785 return ada_check_typedef (parent_type);
6786 }
14f9c5c9
AS
6787
6788 return NULL;
6789}
6790
4c4b4cd2
PH
6791/* True iff field number FIELD_NUM of structure type TYPE contains the
6792 parent-type (inherited) fields of a derived type. Assumes TYPE is
6793 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6794
6795int
ebf56fd3 6796ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6797{
61ee279c 6798 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6799
4c4b4cd2 6800 return (name != NULL
61012eef
GB
6801 && (startswith (name, "PARENT")
6802 || startswith (name, "_parent")));
14f9c5c9
AS
6803}
6804
4c4b4cd2 6805/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6806 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6807 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6808 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6809 structures. */
14f9c5c9
AS
6810
6811int
ebf56fd3 6812ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6813{
d2e4a39e 6814 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6815
dddc0e16
JB
6816 if (name != NULL && strcmp (name, "RETVAL") == 0)
6817 {
6818 /* This happens in functions with "out" or "in out" parameters
6819 which are passed by copy. For such functions, GNAT describes
6820 the function's return type as being a struct where the return
6821 value is in a field called RETVAL, and where the other "out"
6822 or "in out" parameters are fields of that struct. This is not
6823 a wrapper. */
6824 return 0;
6825 }
6826
d2e4a39e 6827 return (name != NULL
61012eef 6828 && (startswith (name, "PARENT")
4c4b4cd2 6829 || strcmp (name, "REP") == 0
61012eef 6830 || startswith (name, "_parent")
4c4b4cd2 6831 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6832}
6833
4c4b4cd2
PH
6834/* True iff field number FIELD_NUM of structure or union type TYPE
6835 is a variant wrapper. Assumes TYPE is a structure type with at least
6836 FIELD_NUM+1 fields. */
14f9c5c9
AS
6837
6838int
ebf56fd3 6839ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6840{
8ecb59f8
TT
6841 /* Only Ada types are eligible. */
6842 if (!ADA_TYPE_P (type))
6843 return 0;
6844
d2e4a39e 6845 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6846
14f9c5c9 6847 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6848 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6849 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6850 == TYPE_CODE_UNION)));
14f9c5c9
AS
6851}
6852
6853/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6854 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6855 returns the type of the controlling discriminant for the variant.
6856 May return NULL if the type could not be found. */
14f9c5c9 6857
d2e4a39e 6858struct type *
ebf56fd3 6859ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6860{
a121b7c1 6861 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6862
988f6b3d 6863 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6864}
6865
4c4b4cd2 6866/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6867 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6868 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6869
6870int
ebf56fd3 6871ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6872{
d2e4a39e 6873 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6874
14f9c5c9
AS
6875 return (name != NULL && name[0] == 'O');
6876}
6877
6878/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6879 returns the name of the discriminant controlling the variant.
6880 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6881
a121b7c1 6882const char *
ebf56fd3 6883ada_variant_discrim_name (struct type *type0)
14f9c5c9 6884{
d2e4a39e 6885 static char *result = NULL;
14f9c5c9 6886 static size_t result_len = 0;
d2e4a39e
AS
6887 struct type *type;
6888 const char *name;
6889 const char *discrim_end;
6890 const char *discrim_start;
14f9c5c9
AS
6891
6892 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6893 type = TYPE_TARGET_TYPE (type0);
6894 else
6895 type = type0;
6896
6897 name = ada_type_name (type);
6898
6899 if (name == NULL || name[0] == '\000')
6900 return "";
6901
6902 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6903 discrim_end -= 1)
6904 {
61012eef 6905 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6906 break;
14f9c5c9
AS
6907 }
6908 if (discrim_end == name)
6909 return "";
6910
d2e4a39e 6911 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6912 discrim_start -= 1)
6913 {
d2e4a39e 6914 if (discrim_start == name + 1)
4c4b4cd2 6915 return "";
76a01679 6916 if ((discrim_start > name + 3
61012eef 6917 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6918 || discrim_start[-1] == '.')
6919 break;
14f9c5c9
AS
6920 }
6921
6922 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6923 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6924 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6925 return result;
6926}
6927
4c4b4cd2
PH
6928/* Scan STR for a subtype-encoded number, beginning at position K.
6929 Put the position of the character just past the number scanned in
6930 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6931 Return 1 if there was a valid number at the given position, and 0
6932 otherwise. A "subtype-encoded" number consists of the absolute value
6933 in decimal, followed by the letter 'm' to indicate a negative number.
6934 Assumes 0m does not occur. */
14f9c5c9
AS
6935
6936int
d2e4a39e 6937ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6938{
6939 ULONGEST RU;
6940
d2e4a39e 6941 if (!isdigit (str[k]))
14f9c5c9
AS
6942 return 0;
6943
4c4b4cd2 6944 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6945 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6946 LONGEST. */
14f9c5c9
AS
6947 RU = 0;
6948 while (isdigit (str[k]))
6949 {
d2e4a39e 6950 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6951 k += 1;
6952 }
6953
d2e4a39e 6954 if (str[k] == 'm')
14f9c5c9
AS
6955 {
6956 if (R != NULL)
4c4b4cd2 6957 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6958 k += 1;
6959 }
6960 else if (R != NULL)
6961 *R = (LONGEST) RU;
6962
4c4b4cd2 6963 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6964 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6965 number representable as a LONGEST (although either would probably work
6966 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6967 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6968
6969 if (new_k != NULL)
6970 *new_k = k;
6971 return 1;
6972}
6973
4c4b4cd2
PH
6974/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6975 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6976 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6977
d2e4a39e 6978int
ebf56fd3 6979ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6980{
d2e4a39e 6981 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6982 int p;
6983
6984 p = 0;
6985 while (1)
6986 {
d2e4a39e 6987 switch (name[p])
4c4b4cd2
PH
6988 {
6989 case '\0':
6990 return 0;
6991 case 'S':
6992 {
6993 LONGEST W;
5b4ee69b 6994
4c4b4cd2
PH
6995 if (!ada_scan_number (name, p + 1, &W, &p))
6996 return 0;
6997 if (val == W)
6998 return 1;
6999 break;
7000 }
7001 case 'R':
7002 {
7003 LONGEST L, U;
5b4ee69b 7004
4c4b4cd2
PH
7005 if (!ada_scan_number (name, p + 1, &L, &p)
7006 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7007 return 0;
7008 if (val >= L && val <= U)
7009 return 1;
7010 break;
7011 }
7012 case 'O':
7013 return 1;
7014 default:
7015 return 0;
7016 }
7017 }
7018}
7019
0963b4bd 7020/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7021
7022/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7023 ARG_TYPE, extract and return the value of one of its (non-static)
7024 fields. FIELDNO says which field. Differs from value_primitive_field
7025 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7026
4c4b4cd2 7027static struct value *
d2e4a39e 7028ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7029 struct type *arg_type)
14f9c5c9 7030{
14f9c5c9
AS
7031 struct type *type;
7032
61ee279c 7033 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7034 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7035
4504bbde
TT
7036 /* Handle packed fields. It might be that the field is not packed
7037 relative to its containing structure, but the structure itself is
7038 packed; in this case we must take the bit-field path. */
7039 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7040 {
7041 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7042 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7043
0fd88904 7044 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7045 offset + bit_pos / 8,
7046 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7047 }
7048 else
7049 return value_primitive_field (arg1, offset, fieldno, arg_type);
7050}
7051
52ce6436
PH
7052/* Find field with name NAME in object of type TYPE. If found,
7053 set the following for each argument that is non-null:
7054 - *FIELD_TYPE_P to the field's type;
7055 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7056 an object of that type;
7057 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7058 - *BIT_SIZE_P to its size in bits if the field is packed, and
7059 0 otherwise;
7060 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7061 fields up to but not including the desired field, or by the total
7062 number of fields if not found. A NULL value of NAME never
7063 matches; the function just counts visible fields in this case.
7064
828d5846
XR
7065 Notice that we need to handle when a tagged record hierarchy
7066 has some components with the same name, like in this scenario:
7067
7068 type Top_T is tagged record
7069 N : Integer := 1;
7070 U : Integer := 974;
7071 A : Integer := 48;
7072 end record;
7073
7074 type Middle_T is new Top.Top_T with record
7075 N : Character := 'a';
7076 C : Integer := 3;
7077 end record;
7078
7079 type Bottom_T is new Middle.Middle_T with record
7080 N : Float := 4.0;
7081 C : Character := '5';
7082 X : Integer := 6;
7083 A : Character := 'J';
7084 end record;
7085
7086 Let's say we now have a variable declared and initialized as follow:
7087
7088 TC : Top_A := new Bottom_T;
7089
7090 And then we use this variable to call this function
7091
7092 procedure Assign (Obj: in out Top_T; TV : Integer);
7093
7094 as follow:
7095
7096 Assign (Top_T (B), 12);
7097
7098 Now, we're in the debugger, and we're inside that procedure
7099 then and we want to print the value of obj.c:
7100
7101 Usually, the tagged record or one of the parent type owns the
7102 component to print and there's no issue but in this particular
7103 case, what does it mean to ask for Obj.C? Since the actual
7104 type for object is type Bottom_T, it could mean two things: type
7105 component C from the Middle_T view, but also component C from
7106 Bottom_T. So in that "undefined" case, when the component is
7107 not found in the non-resolved type (which includes all the
7108 components of the parent type), then resolve it and see if we
7109 get better luck once expanded.
7110
7111 In the case of homonyms in the derived tagged type, we don't
7112 guaranty anything, and pick the one that's easiest for us
7113 to program.
7114
0963b4bd 7115 Returns 1 if found, 0 otherwise. */
52ce6436 7116
4c4b4cd2 7117static int
0d5cff50 7118find_struct_field (const char *name, struct type *type, int offset,
76a01679 7119 struct type **field_type_p,
52ce6436
PH
7120 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7121 int *index_p)
4c4b4cd2
PH
7122{
7123 int i;
828d5846 7124 int parent_offset = -1;
4c4b4cd2 7125
61ee279c 7126 type = ada_check_typedef (type);
76a01679 7127
52ce6436
PH
7128 if (field_type_p != NULL)
7129 *field_type_p = NULL;
7130 if (byte_offset_p != NULL)
d5d6fca5 7131 *byte_offset_p = 0;
52ce6436
PH
7132 if (bit_offset_p != NULL)
7133 *bit_offset_p = 0;
7134 if (bit_size_p != NULL)
7135 *bit_size_p = 0;
7136
7137 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7138 {
7139 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7140 int fld_offset = offset + bit_pos / 8;
0d5cff50 7141 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7142
4c4b4cd2
PH
7143 if (t_field_name == NULL)
7144 continue;
7145
828d5846
XR
7146 else if (ada_is_parent_field (type, i))
7147 {
7148 /* This is a field pointing us to the parent type of a tagged
7149 type. As hinted in this function's documentation, we give
7150 preference to fields in the current record first, so what
7151 we do here is just record the index of this field before
7152 we skip it. If it turns out we couldn't find our field
7153 in the current record, then we'll get back to it and search
7154 inside it whether the field might exist in the parent. */
7155
7156 parent_offset = i;
7157 continue;
7158 }
7159
52ce6436 7160 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7161 {
7162 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7163
52ce6436
PH
7164 if (field_type_p != NULL)
7165 *field_type_p = TYPE_FIELD_TYPE (type, i);
7166 if (byte_offset_p != NULL)
7167 *byte_offset_p = fld_offset;
7168 if (bit_offset_p != NULL)
7169 *bit_offset_p = bit_pos % 8;
7170 if (bit_size_p != NULL)
7171 *bit_size_p = bit_size;
76a01679
JB
7172 return 1;
7173 }
4c4b4cd2
PH
7174 else if (ada_is_wrapper_field (type, i))
7175 {
52ce6436
PH
7176 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7177 field_type_p, byte_offset_p, bit_offset_p,
7178 bit_size_p, index_p))
76a01679
JB
7179 return 1;
7180 }
4c4b4cd2
PH
7181 else if (ada_is_variant_part (type, i))
7182 {
52ce6436
PH
7183 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7184 fixed type?? */
4c4b4cd2 7185 int j;
52ce6436
PH
7186 struct type *field_type
7187 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7188
52ce6436 7189 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7190 {
76a01679
JB
7191 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7192 fld_offset
7193 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7194 field_type_p, byte_offset_p,
52ce6436 7195 bit_offset_p, bit_size_p, index_p))
76a01679 7196 return 1;
4c4b4cd2
PH
7197 }
7198 }
52ce6436
PH
7199 else if (index_p != NULL)
7200 *index_p += 1;
4c4b4cd2 7201 }
828d5846
XR
7202
7203 /* Field not found so far. If this is a tagged type which
7204 has a parent, try finding that field in the parent now. */
7205
7206 if (parent_offset != -1)
7207 {
7208 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7209 int fld_offset = offset + bit_pos / 8;
7210
7211 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7212 fld_offset, field_type_p, byte_offset_p,
7213 bit_offset_p, bit_size_p, index_p))
7214 return 1;
7215 }
7216
4c4b4cd2
PH
7217 return 0;
7218}
7219
0963b4bd 7220/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7221
52ce6436
PH
7222static int
7223num_visible_fields (struct type *type)
7224{
7225 int n;
5b4ee69b 7226
52ce6436
PH
7227 n = 0;
7228 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7229 return n;
7230}
14f9c5c9 7231
4c4b4cd2 7232/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7233 and search in it assuming it has (class) type TYPE.
7234 If found, return value, else return NULL.
7235
828d5846
XR
7236 Searches recursively through wrapper fields (e.g., '_parent').
7237
7238 In the case of homonyms in the tagged types, please refer to the
7239 long explanation in find_struct_field's function documentation. */
14f9c5c9 7240
4c4b4cd2 7241static struct value *
108d56a4 7242ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7243 struct type *type)
14f9c5c9
AS
7244{
7245 int i;
828d5846 7246 int parent_offset = -1;
14f9c5c9 7247
5b4ee69b 7248 type = ada_check_typedef (type);
52ce6436 7249 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7250 {
0d5cff50 7251 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7252
7253 if (t_field_name == NULL)
4c4b4cd2 7254 continue;
14f9c5c9 7255
828d5846
XR
7256 else if (ada_is_parent_field (type, i))
7257 {
7258 /* This is a field pointing us to the parent type of a tagged
7259 type. As hinted in this function's documentation, we give
7260 preference to fields in the current record first, so what
7261 we do here is just record the index of this field before
7262 we skip it. If it turns out we couldn't find our field
7263 in the current record, then we'll get back to it and search
7264 inside it whether the field might exist in the parent. */
7265
7266 parent_offset = i;
7267 continue;
7268 }
7269
14f9c5c9 7270 else if (field_name_match (t_field_name, name))
4c4b4cd2 7271 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7272
7273 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7274 {
0963b4bd 7275 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7276 ada_search_struct_field (name, arg,
7277 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7278 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7279
4c4b4cd2
PH
7280 if (v != NULL)
7281 return v;
7282 }
14f9c5c9
AS
7283
7284 else if (ada_is_variant_part (type, i))
4c4b4cd2 7285 {
0963b4bd 7286 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7287 int j;
5b4ee69b
MS
7288 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7289 i));
4c4b4cd2
PH
7290 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7291
52ce6436 7292 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7293 {
0963b4bd
MS
7294 struct value *v = ada_search_struct_field /* Force line
7295 break. */
06d5cf63
JB
7296 (name, arg,
7297 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7298 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7299
4c4b4cd2
PH
7300 if (v != NULL)
7301 return v;
7302 }
7303 }
14f9c5c9 7304 }
828d5846
XR
7305
7306 /* Field not found so far. If this is a tagged type which
7307 has a parent, try finding that field in the parent now. */
7308
7309 if (parent_offset != -1)
7310 {
7311 struct value *v = ada_search_struct_field (
7312 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7313 TYPE_FIELD_TYPE (type, parent_offset));
7314
7315 if (v != NULL)
7316 return v;
7317 }
7318
14f9c5c9
AS
7319 return NULL;
7320}
d2e4a39e 7321
52ce6436
PH
7322static struct value *ada_index_struct_field_1 (int *, struct value *,
7323 int, struct type *);
7324
7325
7326/* Return field #INDEX in ARG, where the index is that returned by
7327 * find_struct_field through its INDEX_P argument. Adjust the address
7328 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7329 * If found, return value, else return NULL. */
52ce6436
PH
7330
7331static struct value *
7332ada_index_struct_field (int index, struct value *arg, int offset,
7333 struct type *type)
7334{
7335 return ada_index_struct_field_1 (&index, arg, offset, type);
7336}
7337
7338
7339/* Auxiliary function for ada_index_struct_field. Like
7340 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7341 * *INDEX_P. */
52ce6436
PH
7342
7343static struct value *
7344ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7345 struct type *type)
7346{
7347 int i;
7348 type = ada_check_typedef (type);
7349
7350 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7351 {
7352 if (TYPE_FIELD_NAME (type, i) == NULL)
7353 continue;
7354 else if (ada_is_wrapper_field (type, i))
7355 {
0963b4bd 7356 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7357 ada_index_struct_field_1 (index_p, arg,
7358 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7359 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7360
52ce6436
PH
7361 if (v != NULL)
7362 return v;
7363 }
7364
7365 else if (ada_is_variant_part (type, i))
7366 {
7367 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7368 find_struct_field. */
52ce6436
PH
7369 error (_("Cannot assign this kind of variant record"));
7370 }
7371 else if (*index_p == 0)
7372 return ada_value_primitive_field (arg, offset, i, type);
7373 else
7374 *index_p -= 1;
7375 }
7376 return NULL;
7377}
7378
4c4b4cd2
PH
7379/* Given ARG, a value of type (pointer or reference to a)*
7380 structure/union, extract the component named NAME from the ultimate
7381 target structure/union and return it as a value with its
f5938064 7382 appropriate type.
14f9c5c9 7383
4c4b4cd2
PH
7384 The routine searches for NAME among all members of the structure itself
7385 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7386 (e.g., '_parent').
7387
03ee6b2e
PH
7388 If NO_ERR, then simply return NULL in case of error, rather than
7389 calling error. */
14f9c5c9 7390
d2e4a39e 7391struct value *
a121b7c1 7392ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7393{
4c4b4cd2 7394 struct type *t, *t1;
d2e4a39e 7395 struct value *v;
1f5d1570 7396 int check_tag;
14f9c5c9 7397
4c4b4cd2 7398 v = NULL;
df407dfe 7399 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7400 if (TYPE_CODE (t) == TYPE_CODE_REF)
7401 {
7402 t1 = TYPE_TARGET_TYPE (t);
7403 if (t1 == NULL)
03ee6b2e 7404 goto BadValue;
61ee279c 7405 t1 = ada_check_typedef (t1);
4c4b4cd2 7406 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7407 {
994b9211 7408 arg = coerce_ref (arg);
76a01679
JB
7409 t = t1;
7410 }
4c4b4cd2 7411 }
14f9c5c9 7412
4c4b4cd2
PH
7413 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7414 {
7415 t1 = TYPE_TARGET_TYPE (t);
7416 if (t1 == NULL)
03ee6b2e 7417 goto BadValue;
61ee279c 7418 t1 = ada_check_typedef (t1);
4c4b4cd2 7419 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7420 {
7421 arg = value_ind (arg);
7422 t = t1;
7423 }
4c4b4cd2 7424 else
76a01679 7425 break;
4c4b4cd2 7426 }
14f9c5c9 7427
4c4b4cd2 7428 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7429 goto BadValue;
14f9c5c9 7430
4c4b4cd2
PH
7431 if (t1 == t)
7432 v = ada_search_struct_field (name, arg, 0, t);
7433 else
7434 {
7435 int bit_offset, bit_size, byte_offset;
7436 struct type *field_type;
7437 CORE_ADDR address;
7438
76a01679 7439 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7440 address = value_address (ada_value_ind (arg));
4c4b4cd2 7441 else
b50d69b5 7442 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7443
828d5846
XR
7444 /* Check to see if this is a tagged type. We also need to handle
7445 the case where the type is a reference to a tagged type, but
7446 we have to be careful to exclude pointers to tagged types.
7447 The latter should be shown as usual (as a pointer), whereas
7448 a reference should mostly be transparent to the user. */
7449
7450 if (ada_is_tagged_type (t1, 0)
7451 || (TYPE_CODE (t1) == TYPE_CODE_REF
7452 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7453 {
7454 /* We first try to find the searched field in the current type.
7455 If not found then let's look in the fixed type. */
7456
7457 if (!find_struct_field (name, t1, 0,
7458 &field_type, &byte_offset, &bit_offset,
7459 &bit_size, NULL))
1f5d1570
JG
7460 check_tag = 1;
7461 else
7462 check_tag = 0;
828d5846
XR
7463 }
7464 else
1f5d1570
JG
7465 check_tag = 0;
7466
7467 /* Convert to fixed type in all cases, so that we have proper
7468 offsets to each field in unconstrained record types. */
7469 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7470 address, NULL, check_tag);
828d5846 7471
76a01679
JB
7472 if (find_struct_field (name, t1, 0,
7473 &field_type, &byte_offset, &bit_offset,
52ce6436 7474 &bit_size, NULL))
76a01679
JB
7475 {
7476 if (bit_size != 0)
7477 {
714e53ab
PH
7478 if (TYPE_CODE (t) == TYPE_CODE_REF)
7479 arg = ada_coerce_ref (arg);
7480 else
7481 arg = ada_value_ind (arg);
76a01679
JB
7482 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7483 bit_offset, bit_size,
7484 field_type);
7485 }
7486 else
f5938064 7487 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7488 }
7489 }
7490
03ee6b2e
PH
7491 if (v != NULL || no_err)
7492 return v;
7493 else
323e0a4a 7494 error (_("There is no member named %s."), name);
14f9c5c9 7495
03ee6b2e
PH
7496 BadValue:
7497 if (no_err)
7498 return NULL;
7499 else
0963b4bd
MS
7500 error (_("Attempt to extract a component of "
7501 "a value that is not a record."));
14f9c5c9
AS
7502}
7503
3b4de39c 7504/* Return a string representation of type TYPE. */
99bbb428 7505
3b4de39c 7506static std::string
99bbb428
PA
7507type_as_string (struct type *type)
7508{
d7e74731 7509 string_file tmp_stream;
99bbb428 7510
d7e74731 7511 type_print (type, "", &tmp_stream, -1);
99bbb428 7512
d7e74731 7513 return std::move (tmp_stream.string ());
99bbb428
PA
7514}
7515
14f9c5c9 7516/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7517 If DISPP is non-null, add its byte displacement from the beginning of a
7518 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7519 work for packed fields).
7520
7521 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7522 followed by "___".
14f9c5c9 7523
0963b4bd 7524 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7525 be a (pointer or reference)+ to a struct or union, and the
7526 ultimate target type will be searched.
14f9c5c9
AS
7527
7528 Looks recursively into variant clauses and parent types.
7529
828d5846
XR
7530 In the case of homonyms in the tagged types, please refer to the
7531 long explanation in find_struct_field's function documentation.
7532
4c4b4cd2
PH
7533 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7534 TYPE is not a type of the right kind. */
14f9c5c9 7535
4c4b4cd2 7536static struct type *
a121b7c1 7537ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7538 int noerr)
14f9c5c9
AS
7539{
7540 int i;
828d5846 7541 int parent_offset = -1;
14f9c5c9
AS
7542
7543 if (name == NULL)
7544 goto BadName;
7545
76a01679 7546 if (refok && type != NULL)
4c4b4cd2
PH
7547 while (1)
7548 {
61ee279c 7549 type = ada_check_typedef (type);
76a01679
JB
7550 if (TYPE_CODE (type) != TYPE_CODE_PTR
7551 && TYPE_CODE (type) != TYPE_CODE_REF)
7552 break;
7553 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7554 }
14f9c5c9 7555
76a01679 7556 if (type == NULL
1265e4aa
JB
7557 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7558 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7559 {
4c4b4cd2 7560 if (noerr)
76a01679 7561 return NULL;
99bbb428 7562
3b4de39c
PA
7563 error (_("Type %s is not a structure or union type"),
7564 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7565 }
7566
7567 type = to_static_fixed_type (type);
7568
7569 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7570 {
0d5cff50 7571 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7572 struct type *t;
d2e4a39e 7573
14f9c5c9 7574 if (t_field_name == NULL)
4c4b4cd2 7575 continue;
14f9c5c9 7576
828d5846
XR
7577 else if (ada_is_parent_field (type, i))
7578 {
7579 /* This is a field pointing us to the parent type of a tagged
7580 type. As hinted in this function's documentation, we give
7581 preference to fields in the current record first, so what
7582 we do here is just record the index of this field before
7583 we skip it. If it turns out we couldn't find our field
7584 in the current record, then we'll get back to it and search
7585 inside it whether the field might exist in the parent. */
7586
7587 parent_offset = i;
7588 continue;
7589 }
7590
14f9c5c9 7591 else if (field_name_match (t_field_name, name))
988f6b3d 7592 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7593
7594 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7595 {
4c4b4cd2 7596 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7597 0, 1);
4c4b4cd2 7598 if (t != NULL)
988f6b3d 7599 return t;
4c4b4cd2 7600 }
14f9c5c9
AS
7601
7602 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7603 {
7604 int j;
5b4ee69b
MS
7605 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7606 i));
4c4b4cd2
PH
7607
7608 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7609 {
b1f33ddd
JB
7610 /* FIXME pnh 2008/01/26: We check for a field that is
7611 NOT wrapped in a struct, since the compiler sometimes
7612 generates these for unchecked variant types. Revisit
0963b4bd 7613 if the compiler changes this practice. */
0d5cff50 7614 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7615
b1f33ddd
JB
7616 if (v_field_name != NULL
7617 && field_name_match (v_field_name, name))
460efde1 7618 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7619 else
0963b4bd
MS
7620 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7621 j),
988f6b3d 7622 name, 0, 1);
b1f33ddd 7623
4c4b4cd2 7624 if (t != NULL)
988f6b3d 7625 return t;
4c4b4cd2
PH
7626 }
7627 }
14f9c5c9
AS
7628
7629 }
7630
828d5846
XR
7631 /* Field not found so far. If this is a tagged type which
7632 has a parent, try finding that field in the parent now. */
7633
7634 if (parent_offset != -1)
7635 {
7636 struct type *t;
7637
7638 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7639 name, 0, 1);
7640 if (t != NULL)
7641 return t;
7642 }
7643
14f9c5c9 7644BadName:
d2e4a39e 7645 if (!noerr)
14f9c5c9 7646 {
2b2798cc 7647 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7648
7649 error (_("Type %s has no component named %s"),
3b4de39c 7650 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7651 }
7652
7653 return NULL;
7654}
7655
b1f33ddd
JB
7656/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7657 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7658 represents an unchecked union (that is, the variant part of a
0963b4bd 7659 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7660
7661static int
7662is_unchecked_variant (struct type *var_type, struct type *outer_type)
7663{
a121b7c1 7664 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7665
988f6b3d 7666 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7667}
7668
7669
14f9c5c9
AS
7670/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7671 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7672 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7673 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7674
d2e4a39e 7675int
ebf56fd3 7676ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7677 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7678{
7679 int others_clause;
7680 int i;
a121b7c1 7681 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7682 struct value *outer;
7683 struct value *discrim;
14f9c5c9
AS
7684 LONGEST discrim_val;
7685
012370f6
TT
7686 /* Using plain value_from_contents_and_address here causes problems
7687 because we will end up trying to resolve a type that is currently
7688 being constructed. */
7689 outer = value_from_contents_and_address_unresolved (outer_type,
7690 outer_valaddr, 0);
0c281816
JB
7691 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7692 if (discrim == NULL)
14f9c5c9 7693 return -1;
0c281816 7694 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7695
7696 others_clause = -1;
7697 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7698 {
7699 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7700 others_clause = i;
14f9c5c9 7701 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7702 return i;
14f9c5c9
AS
7703 }
7704
7705 return others_clause;
7706}
d2e4a39e 7707\f
14f9c5c9
AS
7708
7709
4c4b4cd2 7710 /* Dynamic-Sized Records */
14f9c5c9
AS
7711
7712/* Strategy: The type ostensibly attached to a value with dynamic size
7713 (i.e., a size that is not statically recorded in the debugging
7714 data) does not accurately reflect the size or layout of the value.
7715 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7716 conventional types that are constructed on the fly. */
14f9c5c9
AS
7717
7718/* There is a subtle and tricky problem here. In general, we cannot
7719 determine the size of dynamic records without its data. However,
7720 the 'struct value' data structure, which GDB uses to represent
7721 quantities in the inferior process (the target), requires the size
7722 of the type at the time of its allocation in order to reserve space
7723 for GDB's internal copy of the data. That's why the
7724 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7725 rather than struct value*s.
14f9c5c9
AS
7726
7727 However, GDB's internal history variables ($1, $2, etc.) are
7728 struct value*s containing internal copies of the data that are not, in
7729 general, the same as the data at their corresponding addresses in
7730 the target. Fortunately, the types we give to these values are all
7731 conventional, fixed-size types (as per the strategy described
7732 above), so that we don't usually have to perform the
7733 'to_fixed_xxx_type' conversions to look at their values.
7734 Unfortunately, there is one exception: if one of the internal
7735 history variables is an array whose elements are unconstrained
7736 records, then we will need to create distinct fixed types for each
7737 element selected. */
7738
7739/* The upshot of all of this is that many routines take a (type, host
7740 address, target address) triple as arguments to represent a value.
7741 The host address, if non-null, is supposed to contain an internal
7742 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7743 target at the target address. */
14f9c5c9
AS
7744
7745/* Assuming that VAL0 represents a pointer value, the result of
7746 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7747 dynamic-sized types. */
14f9c5c9 7748
d2e4a39e
AS
7749struct value *
7750ada_value_ind (struct value *val0)
14f9c5c9 7751{
c48db5ca 7752 struct value *val = value_ind (val0);
5b4ee69b 7753
b50d69b5
JG
7754 if (ada_is_tagged_type (value_type (val), 0))
7755 val = ada_tag_value_at_base_address (val);
7756
4c4b4cd2 7757 return ada_to_fixed_value (val);
14f9c5c9
AS
7758}
7759
7760/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7761 qualifiers on VAL0. */
7762
d2e4a39e
AS
7763static struct value *
7764ada_coerce_ref (struct value *val0)
7765{
df407dfe 7766 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7767 {
7768 struct value *val = val0;
5b4ee69b 7769
994b9211 7770 val = coerce_ref (val);
b50d69b5
JG
7771
7772 if (ada_is_tagged_type (value_type (val), 0))
7773 val = ada_tag_value_at_base_address (val);
7774
4c4b4cd2 7775 return ada_to_fixed_value (val);
d2e4a39e
AS
7776 }
7777 else
14f9c5c9
AS
7778 return val0;
7779}
7780
7781/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7782 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7783
7784static unsigned int
ebf56fd3 7785align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7786{
7787 return (off + alignment - 1) & ~(alignment - 1);
7788}
7789
4c4b4cd2 7790/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7791
7792static unsigned int
ebf56fd3 7793field_alignment (struct type *type, int f)
14f9c5c9 7794{
d2e4a39e 7795 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7796 int len;
14f9c5c9
AS
7797 int align_offset;
7798
64a1bf19
JB
7799 /* The field name should never be null, unless the debugging information
7800 is somehow malformed. In this case, we assume the field does not
7801 require any alignment. */
7802 if (name == NULL)
7803 return 1;
7804
7805 len = strlen (name);
7806
4c4b4cd2
PH
7807 if (!isdigit (name[len - 1]))
7808 return 1;
14f9c5c9 7809
d2e4a39e 7810 if (isdigit (name[len - 2]))
14f9c5c9
AS
7811 align_offset = len - 2;
7812 else
7813 align_offset = len - 1;
7814
61012eef 7815 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7816 return TARGET_CHAR_BIT;
7817
4c4b4cd2
PH
7818 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7819}
7820
852dff6c 7821/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7822
852dff6c
JB
7823static struct symbol *
7824ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7825{
7826 struct symbol *sym;
7827
7828 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7829 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7830 return sym;
7831
4186eb54
KS
7832 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7833 return sym;
14f9c5c9
AS
7834}
7835
dddfab26
UW
7836/* Find a type named NAME. Ignores ambiguity. This routine will look
7837 solely for types defined by debug info, it will not search the GDB
7838 primitive types. */
4c4b4cd2 7839
852dff6c 7840static struct type *
ebf56fd3 7841ada_find_any_type (const char *name)
14f9c5c9 7842{
852dff6c 7843 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7844
14f9c5c9 7845 if (sym != NULL)
dddfab26 7846 return SYMBOL_TYPE (sym);
14f9c5c9 7847
dddfab26 7848 return NULL;
14f9c5c9
AS
7849}
7850
739593e0
JB
7851/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7852 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7853 symbol, in which case it is returned. Otherwise, this looks for
7854 symbols whose name is that of NAME_SYM suffixed with "___XR".
7855 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7856
c0e70c62
TT
7857static bool
7858ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7859{
739593e0 7860 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7861 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7862}
7863
14f9c5c9 7864/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7865 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7866 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7867 otherwise return 0. */
7868
14f9c5c9 7869int
d2e4a39e 7870ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7871{
7872 if (type1 == NULL)
7873 return 1;
7874 else if (type0 == NULL)
7875 return 0;
7876 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7877 return 1;
7878 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7879 return 0;
4c4b4cd2
PH
7880 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7881 return 1;
ad82864c 7882 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7883 return 1;
4c4b4cd2
PH
7884 else if (ada_is_array_descriptor_type (type0)
7885 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7886 return 1;
aeb5907d
JB
7887 else
7888 {
a737d952
TT
7889 const char *type0_name = TYPE_NAME (type0);
7890 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7891
7892 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7893 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7894 return 1;
7895 }
14f9c5c9
AS
7896 return 0;
7897}
7898
e86ca25f
TT
7899/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7900 null. */
4c4b4cd2 7901
0d5cff50 7902const char *
d2e4a39e 7903ada_type_name (struct type *type)
14f9c5c9 7904{
d2e4a39e 7905 if (type == NULL)
14f9c5c9 7906 return NULL;
e86ca25f 7907 return TYPE_NAME (type);
14f9c5c9
AS
7908}
7909
b4ba55a1
JB
7910/* Search the list of "descriptive" types associated to TYPE for a type
7911 whose name is NAME. */
7912
7913static struct type *
7914find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7915{
931e5bc3 7916 struct type *result, *tmp;
b4ba55a1 7917
c6044dd1
JB
7918 if (ada_ignore_descriptive_types_p)
7919 return NULL;
7920
b4ba55a1
JB
7921 /* If there no descriptive-type info, then there is no parallel type
7922 to be found. */
7923 if (!HAVE_GNAT_AUX_INFO (type))
7924 return NULL;
7925
7926 result = TYPE_DESCRIPTIVE_TYPE (type);
7927 while (result != NULL)
7928 {
0d5cff50 7929 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7930
7931 if (result_name == NULL)
7932 {
7933 warning (_("unexpected null name on descriptive type"));
7934 return NULL;
7935 }
7936
7937 /* If the names match, stop. */
7938 if (strcmp (result_name, name) == 0)
7939 break;
7940
7941 /* Otherwise, look at the next item on the list, if any. */
7942 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7943 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7944 else
7945 tmp = NULL;
7946
7947 /* If not found either, try after having resolved the typedef. */
7948 if (tmp != NULL)
7949 result = tmp;
b4ba55a1 7950 else
931e5bc3 7951 {
f168693b 7952 result = check_typedef (result);
931e5bc3
JG
7953 if (HAVE_GNAT_AUX_INFO (result))
7954 result = TYPE_DESCRIPTIVE_TYPE (result);
7955 else
7956 result = NULL;
7957 }
b4ba55a1
JB
7958 }
7959
7960 /* If we didn't find a match, see whether this is a packed array. With
7961 older compilers, the descriptive type information is either absent or
7962 irrelevant when it comes to packed arrays so the above lookup fails.
7963 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7964 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7965 return ada_find_any_type (name);
7966
7967 return result;
7968}
7969
7970/* Find a parallel type to TYPE with the specified NAME, using the
7971 descriptive type taken from the debugging information, if available,
7972 and otherwise using the (slower) name-based method. */
7973
7974static struct type *
7975ada_find_parallel_type_with_name (struct type *type, const char *name)
7976{
7977 struct type *result = NULL;
7978
7979 if (HAVE_GNAT_AUX_INFO (type))
7980 result = find_parallel_type_by_descriptive_type (type, name);
7981 else
7982 result = ada_find_any_type (name);
7983
7984 return result;
7985}
7986
7987/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7988 SUFFIX to the name of TYPE. */
14f9c5c9 7989
d2e4a39e 7990struct type *
ebf56fd3 7991ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7992{
0d5cff50 7993 char *name;
fe978cb0 7994 const char *type_name = ada_type_name (type);
14f9c5c9 7995 int len;
d2e4a39e 7996
fe978cb0 7997 if (type_name == NULL)
14f9c5c9
AS
7998 return NULL;
7999
fe978cb0 8000 len = strlen (type_name);
14f9c5c9 8001
b4ba55a1 8002 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8003
fe978cb0 8004 strcpy (name, type_name);
14f9c5c9
AS
8005 strcpy (name + len, suffix);
8006
b4ba55a1 8007 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8008}
8009
14f9c5c9 8010/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8011 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8012
d2e4a39e
AS
8013static struct type *
8014dynamic_template_type (struct type *type)
14f9c5c9 8015{
61ee279c 8016 type = ada_check_typedef (type);
14f9c5c9
AS
8017
8018 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8019 || ada_type_name (type) == NULL)
14f9c5c9 8020 return NULL;
d2e4a39e 8021 else
14f9c5c9
AS
8022 {
8023 int len = strlen (ada_type_name (type));
5b4ee69b 8024
4c4b4cd2
PH
8025 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8026 return type;
14f9c5c9 8027 else
4c4b4cd2 8028 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8029 }
8030}
8031
8032/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8033 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8034
d2e4a39e
AS
8035static int
8036is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8037{
8038 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8039
d2e4a39e 8040 return name != NULL
14f9c5c9
AS
8041 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8042 && strstr (name, "___XVL") != NULL;
8043}
8044
4c4b4cd2
PH
8045/* The index of the variant field of TYPE, or -1 if TYPE does not
8046 represent a variant record type. */
14f9c5c9 8047
d2e4a39e 8048static int
4c4b4cd2 8049variant_field_index (struct type *type)
14f9c5c9
AS
8050{
8051 int f;
8052
4c4b4cd2
PH
8053 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8054 return -1;
8055
8056 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8057 {
8058 if (ada_is_variant_part (type, f))
8059 return f;
8060 }
8061 return -1;
14f9c5c9
AS
8062}
8063
4c4b4cd2
PH
8064/* A record type with no fields. */
8065
d2e4a39e 8066static struct type *
fe978cb0 8067empty_record (struct type *templ)
14f9c5c9 8068{
fe978cb0 8069 struct type *type = alloc_type_copy (templ);
5b4ee69b 8070
14f9c5c9
AS
8071 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8072 TYPE_NFIELDS (type) = 0;
8073 TYPE_FIELDS (type) = NULL;
8ecb59f8 8074 INIT_NONE_SPECIFIC (type);
14f9c5c9 8075 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8076 TYPE_LENGTH (type) = 0;
8077 return type;
8078}
8079
8080/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8081 the value of type TYPE at VALADDR or ADDRESS (see comments at
8082 the beginning of this section) VAL according to GNAT conventions.
8083 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8084 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8085 an outer-level type (i.e., as opposed to a branch of a variant.) A
8086 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8087 of the variant.
14f9c5c9 8088
4c4b4cd2
PH
8089 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8090 length are not statically known are discarded. As a consequence,
8091 VALADDR, ADDRESS and DVAL0 are ignored.
8092
8093 NOTE: Limitations: For now, we assume that dynamic fields and
8094 variants occupy whole numbers of bytes. However, they need not be
8095 byte-aligned. */
8096
8097struct type *
10a2c479 8098ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8099 const gdb_byte *valaddr,
4c4b4cd2
PH
8100 CORE_ADDR address, struct value *dval0,
8101 int keep_dynamic_fields)
14f9c5c9 8102{
d2e4a39e
AS
8103 struct value *mark = value_mark ();
8104 struct value *dval;
8105 struct type *rtype;
14f9c5c9 8106 int nfields, bit_len;
4c4b4cd2 8107 int variant_field;
14f9c5c9 8108 long off;
d94e4f4f 8109 int fld_bit_len;
14f9c5c9
AS
8110 int f;
8111
4c4b4cd2
PH
8112 /* Compute the number of fields in this record type that are going
8113 to be processed: unless keep_dynamic_fields, this includes only
8114 fields whose position and length are static will be processed. */
8115 if (keep_dynamic_fields)
8116 nfields = TYPE_NFIELDS (type);
8117 else
8118 {
8119 nfields = 0;
76a01679 8120 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8121 && !ada_is_variant_part (type, nfields)
8122 && !is_dynamic_field (type, nfields))
8123 nfields++;
8124 }
8125
e9bb382b 8126 rtype = alloc_type_copy (type);
14f9c5c9 8127 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8128 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8129 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8130 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8131 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8132 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8133 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8134 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8135
d2e4a39e
AS
8136 off = 0;
8137 bit_len = 0;
4c4b4cd2
PH
8138 variant_field = -1;
8139
14f9c5c9
AS
8140 for (f = 0; f < nfields; f += 1)
8141 {
6c038f32
PH
8142 off = align_value (off, field_alignment (type, f))
8143 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8144 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8145 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8146
d2e4a39e 8147 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8148 {
8149 variant_field = f;
d94e4f4f 8150 fld_bit_len = 0;
4c4b4cd2 8151 }
14f9c5c9 8152 else if (is_dynamic_field (type, f))
4c4b4cd2 8153 {
284614f0
JB
8154 const gdb_byte *field_valaddr = valaddr;
8155 CORE_ADDR field_address = address;
8156 struct type *field_type =
8157 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8158
4c4b4cd2 8159 if (dval0 == NULL)
b5304971
JG
8160 {
8161 /* rtype's length is computed based on the run-time
8162 value of discriminants. If the discriminants are not
8163 initialized, the type size may be completely bogus and
0963b4bd 8164 GDB may fail to allocate a value for it. So check the
b5304971 8165 size first before creating the value. */
c1b5a1a6 8166 ada_ensure_varsize_limit (rtype);
012370f6
TT
8167 /* Using plain value_from_contents_and_address here
8168 causes problems because we will end up trying to
8169 resolve a type that is currently being
8170 constructed. */
8171 dval = value_from_contents_and_address_unresolved (rtype,
8172 valaddr,
8173 address);
9f1f738a 8174 rtype = value_type (dval);
b5304971 8175 }
4c4b4cd2
PH
8176 else
8177 dval = dval0;
8178
284614f0
JB
8179 /* If the type referenced by this field is an aligner type, we need
8180 to unwrap that aligner type, because its size might not be set.
8181 Keeping the aligner type would cause us to compute the wrong
8182 size for this field, impacting the offset of the all the fields
8183 that follow this one. */
8184 if (ada_is_aligner_type (field_type))
8185 {
8186 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8187
8188 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8189 field_address = cond_offset_target (field_address, field_offset);
8190 field_type = ada_aligned_type (field_type);
8191 }
8192
8193 field_valaddr = cond_offset_host (field_valaddr,
8194 off / TARGET_CHAR_BIT);
8195 field_address = cond_offset_target (field_address,
8196 off / TARGET_CHAR_BIT);
8197
8198 /* Get the fixed type of the field. Note that, in this case,
8199 we do not want to get the real type out of the tag: if
8200 the current field is the parent part of a tagged record,
8201 we will get the tag of the object. Clearly wrong: the real
8202 type of the parent is not the real type of the child. We
8203 would end up in an infinite loop. */
8204 field_type = ada_get_base_type (field_type);
8205 field_type = ada_to_fixed_type (field_type, field_valaddr,
8206 field_address, dval, 0);
27f2a97b
JB
8207 /* If the field size is already larger than the maximum
8208 object size, then the record itself will necessarily
8209 be larger than the maximum object size. We need to make
8210 this check now, because the size might be so ridiculously
8211 large (due to an uninitialized variable in the inferior)
8212 that it would cause an overflow when adding it to the
8213 record size. */
c1b5a1a6 8214 ada_ensure_varsize_limit (field_type);
284614f0
JB
8215
8216 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8217 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8218 /* The multiplication can potentially overflow. But because
8219 the field length has been size-checked just above, and
8220 assuming that the maximum size is a reasonable value,
8221 an overflow should not happen in practice. So rather than
8222 adding overflow recovery code to this already complex code,
8223 we just assume that it's not going to happen. */
d94e4f4f 8224 fld_bit_len =
4c4b4cd2
PH
8225 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8226 }
14f9c5c9 8227 else
4c4b4cd2 8228 {
5ded5331
JB
8229 /* Note: If this field's type is a typedef, it is important
8230 to preserve the typedef layer.
8231
8232 Otherwise, we might be transforming a typedef to a fat
8233 pointer (encoding a pointer to an unconstrained array),
8234 into a basic fat pointer (encoding an unconstrained
8235 array). As both types are implemented using the same
8236 structure, the typedef is the only clue which allows us
8237 to distinguish between the two options. Stripping it
8238 would prevent us from printing this field appropriately. */
8239 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8240 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8241 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8242 fld_bit_len =
4c4b4cd2
PH
8243 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8244 else
5ded5331
JB
8245 {
8246 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8247
8248 /* We need to be careful of typedefs when computing
8249 the length of our field. If this is a typedef,
8250 get the length of the target type, not the length
8251 of the typedef. */
8252 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8253 field_type = ada_typedef_target_type (field_type);
8254
8255 fld_bit_len =
8256 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8257 }
4c4b4cd2 8258 }
14f9c5c9 8259 if (off + fld_bit_len > bit_len)
4c4b4cd2 8260 bit_len = off + fld_bit_len;
d94e4f4f 8261 off += fld_bit_len;
4c4b4cd2
PH
8262 TYPE_LENGTH (rtype) =
8263 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8264 }
4c4b4cd2
PH
8265
8266 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8267 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8268 the record. This can happen in the presence of representation
8269 clauses. */
8270 if (variant_field >= 0)
8271 {
8272 struct type *branch_type;
8273
8274 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8275
8276 if (dval0 == NULL)
9f1f738a 8277 {
012370f6
TT
8278 /* Using plain value_from_contents_and_address here causes
8279 problems because we will end up trying to resolve a type
8280 that is currently being constructed. */
8281 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8282 address);
9f1f738a
SA
8283 rtype = value_type (dval);
8284 }
4c4b4cd2
PH
8285 else
8286 dval = dval0;
8287
8288 branch_type =
8289 to_fixed_variant_branch_type
8290 (TYPE_FIELD_TYPE (type, variant_field),
8291 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8292 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8293 if (branch_type == NULL)
8294 {
8295 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8296 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8297 TYPE_NFIELDS (rtype) -= 1;
8298 }
8299 else
8300 {
8301 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8302 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8303 fld_bit_len =
8304 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8305 TARGET_CHAR_BIT;
8306 if (off + fld_bit_len > bit_len)
8307 bit_len = off + fld_bit_len;
8308 TYPE_LENGTH (rtype) =
8309 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8310 }
8311 }
8312
714e53ab
PH
8313 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8314 should contain the alignment of that record, which should be a strictly
8315 positive value. If null or negative, then something is wrong, most
8316 probably in the debug info. In that case, we don't round up the size
0963b4bd 8317 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8318 the current RTYPE length might be good enough for our purposes. */
8319 if (TYPE_LENGTH (type) <= 0)
8320 {
323e0a4a 8321 if (TYPE_NAME (rtype))
cc1defb1
KS
8322 warning (_("Invalid type size for `%s' detected: %s."),
8323 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8324 else
cc1defb1
KS
8325 warning (_("Invalid type size for <unnamed> detected: %s."),
8326 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8327 }
8328 else
8329 {
8330 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8331 TYPE_LENGTH (type));
8332 }
14f9c5c9
AS
8333
8334 value_free_to_mark (mark);
d2e4a39e 8335 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8336 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8337 return rtype;
8338}
8339
4c4b4cd2
PH
8340/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8341 of 1. */
14f9c5c9 8342
d2e4a39e 8343static struct type *
fc1a4b47 8344template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8345 CORE_ADDR address, struct value *dval0)
8346{
8347 return ada_template_to_fixed_record_type_1 (type, valaddr,
8348 address, dval0, 1);
8349}
8350
8351/* An ordinary record type in which ___XVL-convention fields and
8352 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8353 static approximations, containing all possible fields. Uses
8354 no runtime values. Useless for use in values, but that's OK,
8355 since the results are used only for type determinations. Works on both
8356 structs and unions. Representation note: to save space, we memorize
8357 the result of this function in the TYPE_TARGET_TYPE of the
8358 template type. */
8359
8360static struct type *
8361template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8362{
8363 struct type *type;
8364 int nfields;
8365 int f;
8366
9e195661
PMR
8367 /* No need no do anything if the input type is already fixed. */
8368 if (TYPE_FIXED_INSTANCE (type0))
8369 return type0;
8370
8371 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8372 if (TYPE_TARGET_TYPE (type0) != NULL)
8373 return TYPE_TARGET_TYPE (type0);
8374
9e195661 8375 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8376 type = type0;
9e195661
PMR
8377 nfields = TYPE_NFIELDS (type0);
8378
8379 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8380 recompute all over next time. */
8381 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8382
8383 for (f = 0; f < nfields; f += 1)
8384 {
460efde1 8385 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8386 struct type *new_type;
14f9c5c9 8387
4c4b4cd2 8388 if (is_dynamic_field (type0, f))
460efde1
JB
8389 {
8390 field_type = ada_check_typedef (field_type);
8391 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8392 }
14f9c5c9 8393 else
f192137b 8394 new_type = static_unwrap_type (field_type);
9e195661
PMR
8395
8396 if (new_type != field_type)
8397 {
8398 /* Clone TYPE0 only the first time we get a new field type. */
8399 if (type == type0)
8400 {
8401 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8402 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8403 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8404 TYPE_NFIELDS (type) = nfields;
8405 TYPE_FIELDS (type) = (struct field *)
8406 TYPE_ALLOC (type, nfields * sizeof (struct field));
8407 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8408 sizeof (struct field) * nfields);
8409 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8410 TYPE_FIXED_INSTANCE (type) = 1;
8411 TYPE_LENGTH (type) = 0;
8412 }
8413 TYPE_FIELD_TYPE (type, f) = new_type;
8414 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8415 }
14f9c5c9 8416 }
9e195661 8417
14f9c5c9
AS
8418 return type;
8419}
8420
4c4b4cd2 8421/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8422 whose address in memory is ADDRESS, returns a revision of TYPE,
8423 which should be a non-dynamic-sized record, in which the variant
8424 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8425 for discriminant values in DVAL0, which can be NULL if the record
8426 contains the necessary discriminant values. */
8427
d2e4a39e 8428static struct type *
fc1a4b47 8429to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8430 CORE_ADDR address, struct value *dval0)
14f9c5c9 8431{
d2e4a39e 8432 struct value *mark = value_mark ();
4c4b4cd2 8433 struct value *dval;
d2e4a39e 8434 struct type *rtype;
14f9c5c9
AS
8435 struct type *branch_type;
8436 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8437 int variant_field = variant_field_index (type);
14f9c5c9 8438
4c4b4cd2 8439 if (variant_field == -1)
14f9c5c9
AS
8440 return type;
8441
4c4b4cd2 8442 if (dval0 == NULL)
9f1f738a
SA
8443 {
8444 dval = value_from_contents_and_address (type, valaddr, address);
8445 type = value_type (dval);
8446 }
4c4b4cd2
PH
8447 else
8448 dval = dval0;
8449
e9bb382b 8450 rtype = alloc_type_copy (type);
14f9c5c9 8451 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8452 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8453 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8454 TYPE_FIELDS (rtype) =
8455 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8456 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8457 sizeof (struct field) * nfields);
14f9c5c9 8458 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8459 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8460 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8461
4c4b4cd2
PH
8462 branch_type = to_fixed_variant_branch_type
8463 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8464 cond_offset_host (valaddr,
4c4b4cd2
PH
8465 TYPE_FIELD_BITPOS (type, variant_field)
8466 / TARGET_CHAR_BIT),
d2e4a39e 8467 cond_offset_target (address,
4c4b4cd2
PH
8468 TYPE_FIELD_BITPOS (type, variant_field)
8469 / TARGET_CHAR_BIT), dval);
d2e4a39e 8470 if (branch_type == NULL)
14f9c5c9 8471 {
4c4b4cd2 8472 int f;
5b4ee69b 8473
4c4b4cd2
PH
8474 for (f = variant_field + 1; f < nfields; f += 1)
8475 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8476 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8477 }
8478 else
8479 {
4c4b4cd2
PH
8480 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8481 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8482 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8483 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8484 }
4c4b4cd2 8485 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8486
4c4b4cd2 8487 value_free_to_mark (mark);
14f9c5c9
AS
8488 return rtype;
8489}
8490
8491/* An ordinary record type (with fixed-length fields) that describes
8492 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8493 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8494 should be in DVAL, a record value; it may be NULL if the object
8495 at ADDR itself contains any necessary discriminant values.
8496 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8497 values from the record are needed. Except in the case that DVAL,
8498 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8499 unchecked) is replaced by a particular branch of the variant.
8500
8501 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8502 is questionable and may be removed. It can arise during the
8503 processing of an unconstrained-array-of-record type where all the
8504 variant branches have exactly the same size. This is because in
8505 such cases, the compiler does not bother to use the XVS convention
8506 when encoding the record. I am currently dubious of this
8507 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8508
d2e4a39e 8509static struct type *
fc1a4b47 8510to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8511 CORE_ADDR address, struct value *dval)
14f9c5c9 8512{
d2e4a39e 8513 struct type *templ_type;
14f9c5c9 8514
876cecd0 8515 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8516 return type0;
8517
d2e4a39e 8518 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8519
8520 if (templ_type != NULL)
8521 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8522 else if (variant_field_index (type0) >= 0)
8523 {
8524 if (dval == NULL && valaddr == NULL && address == 0)
8525 return type0;
8526 return to_record_with_fixed_variant_part (type0, valaddr, address,
8527 dval);
8528 }
14f9c5c9
AS
8529 else
8530 {
876cecd0 8531 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8532 return type0;
8533 }
8534
8535}
8536
8537/* An ordinary record type (with fixed-length fields) that describes
8538 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8539 union type. Any necessary discriminants' values should be in DVAL,
8540 a record value. That is, this routine selects the appropriate
8541 branch of the union at ADDR according to the discriminant value
b1f33ddd 8542 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8543 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8544
d2e4a39e 8545static struct type *
fc1a4b47 8546to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8547 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8548{
8549 int which;
d2e4a39e
AS
8550 struct type *templ_type;
8551 struct type *var_type;
14f9c5c9
AS
8552
8553 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8554 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8555 else
14f9c5c9
AS
8556 var_type = var_type0;
8557
8558 templ_type = ada_find_parallel_type (var_type, "___XVU");
8559
8560 if (templ_type != NULL)
8561 var_type = templ_type;
8562
b1f33ddd
JB
8563 if (is_unchecked_variant (var_type, value_type (dval)))
8564 return var_type0;
d2e4a39e
AS
8565 which =
8566 ada_which_variant_applies (var_type,
0fd88904 8567 value_type (dval), value_contents (dval));
14f9c5c9
AS
8568
8569 if (which < 0)
e9bb382b 8570 return empty_record (var_type);
14f9c5c9 8571 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8572 return to_fixed_record_type
d2e4a39e
AS
8573 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8574 valaddr, address, dval);
4c4b4cd2 8575 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8576 return
8577 to_fixed_record_type
8578 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8579 else
8580 return TYPE_FIELD_TYPE (var_type, which);
8581}
8582
8908fca5
JB
8583/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8584 ENCODING_TYPE, a type following the GNAT conventions for discrete
8585 type encodings, only carries redundant information. */
8586
8587static int
8588ada_is_redundant_range_encoding (struct type *range_type,
8589 struct type *encoding_type)
8590{
108d56a4 8591 const char *bounds_str;
8908fca5
JB
8592 int n;
8593 LONGEST lo, hi;
8594
8595 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8596
005e2509
JB
8597 if (TYPE_CODE (get_base_type (range_type))
8598 != TYPE_CODE (get_base_type (encoding_type)))
8599 {
8600 /* The compiler probably used a simple base type to describe
8601 the range type instead of the range's actual base type,
8602 expecting us to get the real base type from the encoding
8603 anyway. In this situation, the encoding cannot be ignored
8604 as redundant. */
8605 return 0;
8606 }
8607
8908fca5
JB
8608 if (is_dynamic_type (range_type))
8609 return 0;
8610
8611 if (TYPE_NAME (encoding_type) == NULL)
8612 return 0;
8613
8614 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8615 if (bounds_str == NULL)
8616 return 0;
8617
8618 n = 8; /* Skip "___XDLU_". */
8619 if (!ada_scan_number (bounds_str, n, &lo, &n))
8620 return 0;
8621 if (TYPE_LOW_BOUND (range_type) != lo)
8622 return 0;
8623
8624 n += 2; /* Skip the "__" separator between the two bounds. */
8625 if (!ada_scan_number (bounds_str, n, &hi, &n))
8626 return 0;
8627 if (TYPE_HIGH_BOUND (range_type) != hi)
8628 return 0;
8629
8630 return 1;
8631}
8632
8633/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8634 a type following the GNAT encoding for describing array type
8635 indices, only carries redundant information. */
8636
8637static int
8638ada_is_redundant_index_type_desc (struct type *array_type,
8639 struct type *desc_type)
8640{
8641 struct type *this_layer = check_typedef (array_type);
8642 int i;
8643
8644 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8645 {
8646 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8647 TYPE_FIELD_TYPE (desc_type, i)))
8648 return 0;
8649 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8650 }
8651
8652 return 1;
8653}
8654
14f9c5c9
AS
8655/* Assuming that TYPE0 is an array type describing the type of a value
8656 at ADDR, and that DVAL describes a record containing any
8657 discriminants used in TYPE0, returns a type for the value that
8658 contains no dynamic components (that is, no components whose sizes
8659 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8660 true, gives an error message if the resulting type's size is over
4c4b4cd2 8661 varsize_limit. */
14f9c5c9 8662
d2e4a39e
AS
8663static struct type *
8664to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8665 int ignore_too_big)
14f9c5c9 8666{
d2e4a39e
AS
8667 struct type *index_type_desc;
8668 struct type *result;
ad82864c 8669 int constrained_packed_array_p;
931e5bc3 8670 static const char *xa_suffix = "___XA";
14f9c5c9 8671
b0dd7688 8672 type0 = ada_check_typedef (type0);
284614f0 8673 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8674 return type0;
14f9c5c9 8675
ad82864c
JB
8676 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8677 if (constrained_packed_array_p)
8678 type0 = decode_constrained_packed_array_type (type0);
284614f0 8679
931e5bc3
JG
8680 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8681
8682 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8683 encoding suffixed with 'P' may still be generated. If so,
8684 it should be used to find the XA type. */
8685
8686 if (index_type_desc == NULL)
8687 {
1da0522e 8688 const char *type_name = ada_type_name (type0);
931e5bc3 8689
1da0522e 8690 if (type_name != NULL)
931e5bc3 8691 {
1da0522e 8692 const int len = strlen (type_name);
931e5bc3
JG
8693 char *name = (char *) alloca (len + strlen (xa_suffix));
8694
1da0522e 8695 if (type_name[len - 1] == 'P')
931e5bc3 8696 {
1da0522e 8697 strcpy (name, type_name);
931e5bc3
JG
8698 strcpy (name + len - 1, xa_suffix);
8699 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8700 }
8701 }
8702 }
8703
28c85d6c 8704 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8705 if (index_type_desc != NULL
8706 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8707 {
8708 /* Ignore this ___XA parallel type, as it does not bring any
8709 useful information. This allows us to avoid creating fixed
8710 versions of the array's index types, which would be identical
8711 to the original ones. This, in turn, can also help avoid
8712 the creation of fixed versions of the array itself. */
8713 index_type_desc = NULL;
8714 }
8715
14f9c5c9
AS
8716 if (index_type_desc == NULL)
8717 {
61ee279c 8718 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8719
14f9c5c9 8720 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8721 depend on the contents of the array in properly constructed
8722 debugging data. */
529cad9c
PH
8723 /* Create a fixed version of the array element type.
8724 We're not providing the address of an element here,
e1d5a0d2 8725 and thus the actual object value cannot be inspected to do
529cad9c
PH
8726 the conversion. This should not be a problem, since arrays of
8727 unconstrained objects are not allowed. In particular, all
8728 the elements of an array of a tagged type should all be of
8729 the same type specified in the debugging info. No need to
8730 consult the object tag. */
1ed6ede0 8731 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8732
284614f0
JB
8733 /* Make sure we always create a new array type when dealing with
8734 packed array types, since we're going to fix-up the array
8735 type length and element bitsize a little further down. */
ad82864c 8736 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8737 result = type0;
14f9c5c9 8738 else
e9bb382b 8739 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8740 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8741 }
8742 else
8743 {
8744 int i;
8745 struct type *elt_type0;
8746
8747 elt_type0 = type0;
8748 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8749 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8750
8751 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8752 depend on the contents of the array in properly constructed
8753 debugging data. */
529cad9c
PH
8754 /* Create a fixed version of the array element type.
8755 We're not providing the address of an element here,
e1d5a0d2 8756 and thus the actual object value cannot be inspected to do
529cad9c
PH
8757 the conversion. This should not be a problem, since arrays of
8758 unconstrained objects are not allowed. In particular, all
8759 the elements of an array of a tagged type should all be of
8760 the same type specified in the debugging info. No need to
8761 consult the object tag. */
1ed6ede0
JB
8762 result =
8763 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8764
8765 elt_type0 = type0;
14f9c5c9 8766 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8767 {
8768 struct type *range_type =
28c85d6c 8769 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8770
e9bb382b 8771 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8772 result, range_type);
1ce677a4 8773 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8774 }
d2e4a39e 8775 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8776 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8777 }
8778
2e6fda7d
JB
8779 /* We want to preserve the type name. This can be useful when
8780 trying to get the type name of a value that has already been
8781 printed (for instance, if the user did "print VAR; whatis $". */
8782 TYPE_NAME (result) = TYPE_NAME (type0);
8783
ad82864c 8784 if (constrained_packed_array_p)
284614f0
JB
8785 {
8786 /* So far, the resulting type has been created as if the original
8787 type was a regular (non-packed) array type. As a result, the
8788 bitsize of the array elements needs to be set again, and the array
8789 length needs to be recomputed based on that bitsize. */
8790 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8791 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8792
8793 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8794 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8795 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8796 TYPE_LENGTH (result)++;
8797 }
8798
876cecd0 8799 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8800 return result;
d2e4a39e 8801}
14f9c5c9
AS
8802
8803
8804/* A standard type (containing no dynamically sized components)
8805 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8806 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8807 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8808 ADDRESS or in VALADDR contains these discriminants.
8809
1ed6ede0
JB
8810 If CHECK_TAG is not null, in the case of tagged types, this function
8811 attempts to locate the object's tag and use it to compute the actual
8812 type. However, when ADDRESS is null, we cannot use it to determine the
8813 location of the tag, and therefore compute the tagged type's actual type.
8814 So we return the tagged type without consulting the tag. */
529cad9c 8815
f192137b
JB
8816static struct type *
8817ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8818 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8819{
61ee279c 8820 type = ada_check_typedef (type);
8ecb59f8
TT
8821
8822 /* Only un-fixed types need to be handled here. */
8823 if (!HAVE_GNAT_AUX_INFO (type))
8824 return type;
8825
d2e4a39e
AS
8826 switch (TYPE_CODE (type))
8827 {
8828 default:
14f9c5c9 8829 return type;
d2e4a39e 8830 case TYPE_CODE_STRUCT:
4c4b4cd2 8831 {
76a01679 8832 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8833 struct type *fixed_record_type =
8834 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8835
529cad9c
PH
8836 /* If STATIC_TYPE is a tagged type and we know the object's address,
8837 then we can determine its tag, and compute the object's actual
0963b4bd 8838 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8839 type (the parent part of the record may have dynamic fields
8840 and the way the location of _tag is expressed may depend on
8841 them). */
529cad9c 8842
1ed6ede0 8843 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8844 {
b50d69b5
JG
8845 struct value *tag =
8846 value_tag_from_contents_and_address
8847 (fixed_record_type,
8848 valaddr,
8849 address);
8850 struct type *real_type = type_from_tag (tag);
8851 struct value *obj =
8852 value_from_contents_and_address (fixed_record_type,
8853 valaddr,
8854 address);
9f1f738a 8855 fixed_record_type = value_type (obj);
76a01679 8856 if (real_type != NULL)
b50d69b5
JG
8857 return to_fixed_record_type
8858 (real_type, NULL,
8859 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8860 }
4af88198
JB
8861
8862 /* Check to see if there is a parallel ___XVZ variable.
8863 If there is, then it provides the actual size of our type. */
8864 else if (ada_type_name (fixed_record_type) != NULL)
8865 {
0d5cff50 8866 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8867 char *xvz_name
8868 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8869 bool xvz_found = false;
4af88198
JB
8870 LONGEST size;
8871
88c15c34 8872 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8873 try
eccab96d
JB
8874 {
8875 xvz_found = get_int_var_value (xvz_name, size);
8876 }
230d2906 8877 catch (const gdb_exception_error &except)
eccab96d
JB
8878 {
8879 /* We found the variable, but somehow failed to read
8880 its value. Rethrow the same error, but with a little
8881 bit more information, to help the user understand
8882 what went wrong (Eg: the variable might have been
8883 optimized out). */
8884 throw_error (except.error,
8885 _("unable to read value of %s (%s)"),
3d6e9d23 8886 xvz_name, except.what ());
eccab96d 8887 }
eccab96d
JB
8888
8889 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8890 {
8891 fixed_record_type = copy_type (fixed_record_type);
8892 TYPE_LENGTH (fixed_record_type) = size;
8893
8894 /* The FIXED_RECORD_TYPE may have be a stub. We have
8895 observed this when the debugging info is STABS, and
8896 apparently it is something that is hard to fix.
8897
8898 In practice, we don't need the actual type definition
8899 at all, because the presence of the XVZ variable allows us
8900 to assume that there must be a XVS type as well, which we
8901 should be able to use later, when we need the actual type
8902 definition.
8903
8904 In the meantime, pretend that the "fixed" type we are
8905 returning is NOT a stub, because this can cause trouble
8906 when using this type to create new types targeting it.
8907 Indeed, the associated creation routines often check
8908 whether the target type is a stub and will try to replace
0963b4bd 8909 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8910 might cause the new type to have the wrong size too.
8911 Consider the case of an array, for instance, where the size
8912 of the array is computed from the number of elements in
8913 our array multiplied by the size of its element. */
8914 TYPE_STUB (fixed_record_type) = 0;
8915 }
8916 }
1ed6ede0 8917 return fixed_record_type;
4c4b4cd2 8918 }
d2e4a39e 8919 case TYPE_CODE_ARRAY:
4c4b4cd2 8920 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8921 case TYPE_CODE_UNION:
8922 if (dval == NULL)
4c4b4cd2 8923 return type;
d2e4a39e 8924 else
4c4b4cd2 8925 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8926 }
14f9c5c9
AS
8927}
8928
f192137b
JB
8929/* The same as ada_to_fixed_type_1, except that it preserves the type
8930 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8931
8932 The typedef layer needs be preserved in order to differentiate between
8933 arrays and array pointers when both types are implemented using the same
8934 fat pointer. In the array pointer case, the pointer is encoded as
8935 a typedef of the pointer type. For instance, considering:
8936
8937 type String_Access is access String;
8938 S1 : String_Access := null;
8939
8940 To the debugger, S1 is defined as a typedef of type String. But
8941 to the user, it is a pointer. So if the user tries to print S1,
8942 we should not dereference the array, but print the array address
8943 instead.
8944
8945 If we didn't preserve the typedef layer, we would lose the fact that
8946 the type is to be presented as a pointer (needs de-reference before
8947 being printed). And we would also use the source-level type name. */
f192137b
JB
8948
8949struct type *
8950ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8951 CORE_ADDR address, struct value *dval, int check_tag)
8952
8953{
8954 struct type *fixed_type =
8955 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8956
96dbd2c1
JB
8957 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8958 then preserve the typedef layer.
8959
8960 Implementation note: We can only check the main-type portion of
8961 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8962 from TYPE now returns a type that has the same instance flags
8963 as TYPE. For instance, if TYPE is a "typedef const", and its
8964 target type is a "struct", then the typedef elimination will return
8965 a "const" version of the target type. See check_typedef for more
8966 details about how the typedef layer elimination is done.
8967
8968 brobecker/2010-11-19: It seems to me that the only case where it is
8969 useful to preserve the typedef layer is when dealing with fat pointers.
8970 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8971 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8972 because we call check_typedef/ada_check_typedef pretty much everywhere.
8973 */
f192137b 8974 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8975 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8976 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8977 return type;
8978
8979 return fixed_type;
8980}
8981
14f9c5c9 8982/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8983 TYPE0, but based on no runtime data. */
14f9c5c9 8984
d2e4a39e
AS
8985static struct type *
8986to_static_fixed_type (struct type *type0)
14f9c5c9 8987{
d2e4a39e 8988 struct type *type;
14f9c5c9
AS
8989
8990 if (type0 == NULL)
8991 return NULL;
8992
876cecd0 8993 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8994 return type0;
8995
61ee279c 8996 type0 = ada_check_typedef (type0);
d2e4a39e 8997
14f9c5c9
AS
8998 switch (TYPE_CODE (type0))
8999 {
9000 default:
9001 return type0;
9002 case TYPE_CODE_STRUCT:
9003 type = dynamic_template_type (type0);
d2e4a39e 9004 if (type != NULL)
4c4b4cd2
PH
9005 return template_to_static_fixed_type (type);
9006 else
9007 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9008 case TYPE_CODE_UNION:
9009 type = ada_find_parallel_type (type0, "___XVU");
9010 if (type != NULL)
4c4b4cd2
PH
9011 return template_to_static_fixed_type (type);
9012 else
9013 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9014 }
9015}
9016
4c4b4cd2
PH
9017/* A static approximation of TYPE with all type wrappers removed. */
9018
d2e4a39e
AS
9019static struct type *
9020static_unwrap_type (struct type *type)
14f9c5c9
AS
9021{
9022 if (ada_is_aligner_type (type))
9023 {
61ee279c 9024 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9025 if (ada_type_name (type1) == NULL)
4c4b4cd2 9026 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9027
9028 return static_unwrap_type (type1);
9029 }
d2e4a39e 9030 else
14f9c5c9 9031 {
d2e4a39e 9032 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9033
d2e4a39e 9034 if (raw_real_type == type)
4c4b4cd2 9035 return type;
14f9c5c9 9036 else
4c4b4cd2 9037 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9038 }
9039}
9040
9041/* In some cases, incomplete and private types require
4c4b4cd2 9042 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9043 type Foo;
9044 type FooP is access Foo;
9045 V: FooP;
9046 type Foo is array ...;
4c4b4cd2 9047 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9048 cross-references to such types, we instead substitute for FooP a
9049 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9050 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9051
9052/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9053 exists, otherwise TYPE. */
9054
d2e4a39e 9055struct type *
61ee279c 9056ada_check_typedef (struct type *type)
14f9c5c9 9057{
727e3d2e
JB
9058 if (type == NULL)
9059 return NULL;
9060
736ade86
XR
9061 /* If our type is an access to an unconstrained array, which is encoded
9062 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9063 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9064 what allows us to distinguish between fat pointers that represent
9065 array types, and fat pointers that represent array access types
9066 (in both cases, the compiler implements them as fat pointers). */
736ade86 9067 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9068 return type;
9069
f168693b 9070 type = check_typedef (type);
14f9c5c9 9071 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9072 || !TYPE_STUB (type)
e86ca25f 9073 || TYPE_NAME (type) == NULL)
14f9c5c9 9074 return type;
d2e4a39e 9075 else
14f9c5c9 9076 {
e86ca25f 9077 const char *name = TYPE_NAME (type);
d2e4a39e 9078 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9079
05e522ef
JB
9080 if (type1 == NULL)
9081 return type;
9082
9083 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9084 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9085 types, only for the typedef-to-array types). If that's the case,
9086 strip the typedef layer. */
9087 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9088 type1 = ada_check_typedef (type1);
9089
9090 return type1;
14f9c5c9
AS
9091 }
9092}
9093
9094/* A value representing the data at VALADDR/ADDRESS as described by
9095 type TYPE0, but with a standard (static-sized) type that correctly
9096 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9097 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9098 creation of struct values]. */
14f9c5c9 9099
4c4b4cd2
PH
9100static struct value *
9101ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9102 struct value *val0)
14f9c5c9 9103{
1ed6ede0 9104 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9105
14f9c5c9
AS
9106 if (type == type0 && val0 != NULL)
9107 return val0;
cc0e770c
JB
9108
9109 if (VALUE_LVAL (val0) != lval_memory)
9110 {
9111 /* Our value does not live in memory; it could be a convenience
9112 variable, for instance. Create a not_lval value using val0's
9113 contents. */
9114 return value_from_contents (type, value_contents (val0));
9115 }
9116
9117 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9118}
9119
9120/* A value representing VAL, but with a standard (static-sized) type
9121 that correctly describes it. Does not necessarily create a new
9122 value. */
9123
0c3acc09 9124struct value *
4c4b4cd2
PH
9125ada_to_fixed_value (struct value *val)
9126{
c48db5ca 9127 val = unwrap_value (val);
d8ce9127 9128 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9129 return val;
14f9c5c9 9130}
d2e4a39e 9131\f
14f9c5c9 9132
14f9c5c9
AS
9133/* Attributes */
9134
4c4b4cd2
PH
9135/* Table mapping attribute numbers to names.
9136 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9137
d2e4a39e 9138static const char *attribute_names[] = {
14f9c5c9
AS
9139 "<?>",
9140
d2e4a39e 9141 "first",
14f9c5c9
AS
9142 "last",
9143 "length",
9144 "image",
14f9c5c9
AS
9145 "max",
9146 "min",
4c4b4cd2
PH
9147 "modulus",
9148 "pos",
9149 "size",
9150 "tag",
14f9c5c9 9151 "val",
14f9c5c9
AS
9152 0
9153};
9154
d2e4a39e 9155const char *
4c4b4cd2 9156ada_attribute_name (enum exp_opcode n)
14f9c5c9 9157{
4c4b4cd2
PH
9158 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9159 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9160 else
9161 return attribute_names[0];
9162}
9163
4c4b4cd2 9164/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9165
4c4b4cd2
PH
9166static LONGEST
9167pos_atr (struct value *arg)
14f9c5c9 9168{
24209737
PH
9169 struct value *val = coerce_ref (arg);
9170 struct type *type = value_type (val);
aa715135 9171 LONGEST result;
14f9c5c9 9172
d2e4a39e 9173 if (!discrete_type_p (type))
323e0a4a 9174 error (_("'POS only defined on discrete types"));
14f9c5c9 9175
aa715135
JG
9176 if (!discrete_position (type, value_as_long (val), &result))
9177 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9178
aa715135 9179 return result;
4c4b4cd2
PH
9180}
9181
9182static struct value *
3cb382c9 9183value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9184{
3cb382c9 9185 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9186}
9187
4c4b4cd2 9188/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9189
d2e4a39e
AS
9190static struct value *
9191value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9192{
d2e4a39e 9193 if (!discrete_type_p (type))
323e0a4a 9194 error (_("'VAL only defined on discrete types"));
df407dfe 9195 if (!integer_type_p (value_type (arg)))
323e0a4a 9196 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9197
9198 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9199 {
9200 long pos = value_as_long (arg);
5b4ee69b 9201
14f9c5c9 9202 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9203 error (_("argument to 'VAL out of range"));
14e75d8e 9204 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9205 }
9206 else
9207 return value_from_longest (type, value_as_long (arg));
9208}
14f9c5c9 9209\f
d2e4a39e 9210
4c4b4cd2 9211 /* Evaluation */
14f9c5c9 9212
4c4b4cd2
PH
9213/* True if TYPE appears to be an Ada character type.
9214 [At the moment, this is true only for Character and Wide_Character;
9215 It is a heuristic test that could stand improvement]. */
14f9c5c9 9216
fc913e53 9217bool
d2e4a39e 9218ada_is_character_type (struct type *type)
14f9c5c9 9219{
7b9f71f2
JB
9220 const char *name;
9221
9222 /* If the type code says it's a character, then assume it really is,
9223 and don't check any further. */
9224 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9225 return true;
7b9f71f2
JB
9226
9227 /* Otherwise, assume it's a character type iff it is a discrete type
9228 with a known character type name. */
9229 name = ada_type_name (type);
9230 return (name != NULL
9231 && (TYPE_CODE (type) == TYPE_CODE_INT
9232 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9233 && (strcmp (name, "character") == 0
9234 || strcmp (name, "wide_character") == 0
5a517ebd 9235 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9236 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9237}
9238
4c4b4cd2 9239/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9240
fc913e53 9241bool
ebf56fd3 9242ada_is_string_type (struct type *type)
14f9c5c9 9243{
61ee279c 9244 type = ada_check_typedef (type);
d2e4a39e 9245 if (type != NULL
14f9c5c9 9246 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9247 && (ada_is_simple_array_type (type)
9248 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9249 && ada_array_arity (type) == 1)
9250 {
9251 struct type *elttype = ada_array_element_type (type, 1);
9252
9253 return ada_is_character_type (elttype);
9254 }
d2e4a39e 9255 else
fc913e53 9256 return false;
14f9c5c9
AS
9257}
9258
5bf03f13
JB
9259/* The compiler sometimes provides a parallel XVS type for a given
9260 PAD type. Normally, it is safe to follow the PAD type directly,
9261 but older versions of the compiler have a bug that causes the offset
9262 of its "F" field to be wrong. Following that field in that case
9263 would lead to incorrect results, but this can be worked around
9264 by ignoring the PAD type and using the associated XVS type instead.
9265
9266 Set to True if the debugger should trust the contents of PAD types.
9267 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9268static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9269
9270/* True if TYPE is a struct type introduced by the compiler to force the
9271 alignment of a value. Such types have a single field with a
4c4b4cd2 9272 distinctive name. */
14f9c5c9
AS
9273
9274int
ebf56fd3 9275ada_is_aligner_type (struct type *type)
14f9c5c9 9276{
61ee279c 9277 type = ada_check_typedef (type);
714e53ab 9278
5bf03f13 9279 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9280 return 0;
9281
14f9c5c9 9282 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9283 && TYPE_NFIELDS (type) == 1
9284 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9285}
9286
9287/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9288 the parallel type. */
14f9c5c9 9289
d2e4a39e
AS
9290struct type *
9291ada_get_base_type (struct type *raw_type)
14f9c5c9 9292{
d2e4a39e
AS
9293 struct type *real_type_namer;
9294 struct type *raw_real_type;
14f9c5c9
AS
9295
9296 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9297 return raw_type;
9298
284614f0
JB
9299 if (ada_is_aligner_type (raw_type))
9300 /* The encoding specifies that we should always use the aligner type.
9301 So, even if this aligner type has an associated XVS type, we should
9302 simply ignore it.
9303
9304 According to the compiler gurus, an XVS type parallel to an aligner
9305 type may exist because of a stabs limitation. In stabs, aligner
9306 types are empty because the field has a variable-sized type, and
9307 thus cannot actually be used as an aligner type. As a result,
9308 we need the associated parallel XVS type to decode the type.
9309 Since the policy in the compiler is to not change the internal
9310 representation based on the debugging info format, we sometimes
9311 end up having a redundant XVS type parallel to the aligner type. */
9312 return raw_type;
9313
14f9c5c9 9314 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9315 if (real_type_namer == NULL
14f9c5c9
AS
9316 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9317 || TYPE_NFIELDS (real_type_namer) != 1)
9318 return raw_type;
9319
f80d3ff2
JB
9320 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9321 {
9322 /* This is an older encoding form where the base type needs to be
85102364 9323 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9324 more efficient. */
9325 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9326 if (raw_real_type == NULL)
9327 return raw_type;
9328 else
9329 return raw_real_type;
9330 }
9331
9332 /* The field in our XVS type is a reference to the base type. */
9333 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9334}
14f9c5c9 9335
4c4b4cd2 9336/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9337
d2e4a39e
AS
9338struct type *
9339ada_aligned_type (struct type *type)
14f9c5c9
AS
9340{
9341 if (ada_is_aligner_type (type))
9342 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9343 else
9344 return ada_get_base_type (type);
9345}
9346
9347
9348/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9349 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9350
fc1a4b47
AC
9351const gdb_byte *
9352ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9353{
d2e4a39e 9354 if (ada_is_aligner_type (type))
14f9c5c9 9355 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9356 valaddr +
9357 TYPE_FIELD_BITPOS (type,
9358 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9359 else
9360 return valaddr;
9361}
9362
4c4b4cd2
PH
9363
9364
14f9c5c9 9365/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9366 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9367const char *
9368ada_enum_name (const char *name)
14f9c5c9 9369{
4c4b4cd2
PH
9370 static char *result;
9371 static size_t result_len = 0;
e6a959d6 9372 const char *tmp;
14f9c5c9 9373
4c4b4cd2
PH
9374 /* First, unqualify the enumeration name:
9375 1. Search for the last '.' character. If we find one, then skip
177b42fe 9376 all the preceding characters, the unqualified name starts
76a01679 9377 right after that dot.
4c4b4cd2 9378 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9379 translates dots into "__". Search forward for double underscores,
9380 but stop searching when we hit an overloading suffix, which is
9381 of the form "__" followed by digits. */
4c4b4cd2 9382
c3e5cd34
PH
9383 tmp = strrchr (name, '.');
9384 if (tmp != NULL)
4c4b4cd2
PH
9385 name = tmp + 1;
9386 else
14f9c5c9 9387 {
4c4b4cd2
PH
9388 while ((tmp = strstr (name, "__")) != NULL)
9389 {
9390 if (isdigit (tmp[2]))
9391 break;
9392 else
9393 name = tmp + 2;
9394 }
14f9c5c9
AS
9395 }
9396
9397 if (name[0] == 'Q')
9398 {
14f9c5c9 9399 int v;
5b4ee69b 9400
14f9c5c9 9401 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9402 {
9403 if (sscanf (name + 2, "%x", &v) != 1)
9404 return name;
9405 }
272560b5
TT
9406 else if (((name[1] >= '0' && name[1] <= '9')
9407 || (name[1] >= 'a' && name[1] <= 'z'))
9408 && name[2] == '\0')
9409 {
9410 GROW_VECT (result, result_len, 4);
9411 xsnprintf (result, result_len, "'%c'", name[1]);
9412 return result;
9413 }
14f9c5c9 9414 else
4c4b4cd2 9415 return name;
14f9c5c9 9416
4c4b4cd2 9417 GROW_VECT (result, result_len, 16);
14f9c5c9 9418 if (isascii (v) && isprint (v))
88c15c34 9419 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9420 else if (name[1] == 'U')
88c15c34 9421 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9422 else
88c15c34 9423 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9424
9425 return result;
9426 }
d2e4a39e 9427 else
4c4b4cd2 9428 {
c3e5cd34
PH
9429 tmp = strstr (name, "__");
9430 if (tmp == NULL)
9431 tmp = strstr (name, "$");
9432 if (tmp != NULL)
4c4b4cd2
PH
9433 {
9434 GROW_VECT (result, result_len, tmp - name + 1);
9435 strncpy (result, name, tmp - name);
9436 result[tmp - name] = '\0';
9437 return result;
9438 }
9439
9440 return name;
9441 }
14f9c5c9
AS
9442}
9443
14f9c5c9
AS
9444/* Evaluate the subexpression of EXP starting at *POS as for
9445 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9446 expression. */
14f9c5c9 9447
d2e4a39e
AS
9448static struct value *
9449evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9450{
4b27a620 9451 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9452}
9453
9454/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9455 value it wraps. */
14f9c5c9 9456
d2e4a39e
AS
9457static struct value *
9458unwrap_value (struct value *val)
14f9c5c9 9459{
df407dfe 9460 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9461
14f9c5c9
AS
9462 if (ada_is_aligner_type (type))
9463 {
de4d072f 9464 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9465 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9466
14f9c5c9 9467 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9468 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9469
9470 return unwrap_value (v);
9471 }
d2e4a39e 9472 else
14f9c5c9 9473 {
d2e4a39e 9474 struct type *raw_real_type =
61ee279c 9475 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9476
5bf03f13
JB
9477 /* If there is no parallel XVS or XVE type, then the value is
9478 already unwrapped. Return it without further modification. */
9479 if ((type == raw_real_type)
9480 && ada_find_parallel_type (type, "___XVE") == NULL)
9481 return val;
14f9c5c9 9482
d2e4a39e 9483 return
4c4b4cd2
PH
9484 coerce_unspec_val_to_type
9485 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9486 value_address (val),
1ed6ede0 9487 NULL, 1));
14f9c5c9
AS
9488 }
9489}
d2e4a39e
AS
9490
9491static struct value *
50eff16b 9492cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9493{
50eff16b
UW
9494 struct value *scale = ada_scaling_factor (value_type (arg));
9495 arg = value_cast (value_type (scale), arg);
14f9c5c9 9496
50eff16b
UW
9497 arg = value_binop (arg, scale, BINOP_MUL);
9498 return value_cast (type, arg);
14f9c5c9
AS
9499}
9500
d2e4a39e 9501static struct value *
50eff16b 9502cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9503{
50eff16b
UW
9504 if (type == value_type (arg))
9505 return arg;
5b4ee69b 9506
50eff16b
UW
9507 struct value *scale = ada_scaling_factor (type);
9508 if (ada_is_fixed_point_type (value_type (arg)))
9509 arg = cast_from_fixed (value_type (scale), arg);
9510 else
9511 arg = value_cast (value_type (scale), arg);
9512
9513 arg = value_binop (arg, scale, BINOP_DIV);
9514 return value_cast (type, arg);
14f9c5c9
AS
9515}
9516
d99dcf51
JB
9517/* Given two array types T1 and T2, return nonzero iff both arrays
9518 contain the same number of elements. */
9519
9520static int
9521ada_same_array_size_p (struct type *t1, struct type *t2)
9522{
9523 LONGEST lo1, hi1, lo2, hi2;
9524
9525 /* Get the array bounds in order to verify that the size of
9526 the two arrays match. */
9527 if (!get_array_bounds (t1, &lo1, &hi1)
9528 || !get_array_bounds (t2, &lo2, &hi2))
9529 error (_("unable to determine array bounds"));
9530
9531 /* To make things easier for size comparison, normalize a bit
9532 the case of empty arrays by making sure that the difference
9533 between upper bound and lower bound is always -1. */
9534 if (lo1 > hi1)
9535 hi1 = lo1 - 1;
9536 if (lo2 > hi2)
9537 hi2 = lo2 - 1;
9538
9539 return (hi1 - lo1 == hi2 - lo2);
9540}
9541
9542/* Assuming that VAL is an array of integrals, and TYPE represents
9543 an array with the same number of elements, but with wider integral
9544 elements, return an array "casted" to TYPE. In practice, this
9545 means that the returned array is built by casting each element
9546 of the original array into TYPE's (wider) element type. */
9547
9548static struct value *
9549ada_promote_array_of_integrals (struct type *type, struct value *val)
9550{
9551 struct type *elt_type = TYPE_TARGET_TYPE (type);
9552 LONGEST lo, hi;
9553 struct value *res;
9554 LONGEST i;
9555
9556 /* Verify that both val and type are arrays of scalars, and
9557 that the size of val's elements is smaller than the size
9558 of type's element. */
9559 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9560 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9561 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9562 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9563 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9564 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9565
9566 if (!get_array_bounds (type, &lo, &hi))
9567 error (_("unable to determine array bounds"));
9568
9569 res = allocate_value (type);
9570
9571 /* Promote each array element. */
9572 for (i = 0; i < hi - lo + 1; i++)
9573 {
9574 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9575
9576 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9577 value_contents_all (elt), TYPE_LENGTH (elt_type));
9578 }
9579
9580 return res;
9581}
9582
4c4b4cd2
PH
9583/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9584 return the converted value. */
9585
d2e4a39e
AS
9586static struct value *
9587coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9588{
df407dfe 9589 struct type *type2 = value_type (val);
5b4ee69b 9590
14f9c5c9
AS
9591 if (type == type2)
9592 return val;
9593
61ee279c
PH
9594 type2 = ada_check_typedef (type2);
9595 type = ada_check_typedef (type);
14f9c5c9 9596
d2e4a39e
AS
9597 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9598 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9599 {
9600 val = ada_value_ind (val);
df407dfe 9601 type2 = value_type (val);
14f9c5c9
AS
9602 }
9603
d2e4a39e 9604 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9605 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9606 {
d99dcf51
JB
9607 if (!ada_same_array_size_p (type, type2))
9608 error (_("cannot assign arrays of different length"));
9609
9610 if (is_integral_type (TYPE_TARGET_TYPE (type))
9611 && is_integral_type (TYPE_TARGET_TYPE (type2))
9612 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9613 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9614 {
9615 /* Allow implicit promotion of the array elements to
9616 a wider type. */
9617 return ada_promote_array_of_integrals (type, val);
9618 }
9619
9620 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9621 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9622 error (_("Incompatible types in assignment"));
04624583 9623 deprecated_set_value_type (val, type);
14f9c5c9 9624 }
d2e4a39e 9625 return val;
14f9c5c9
AS
9626}
9627
4c4b4cd2
PH
9628static struct value *
9629ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9630{
9631 struct value *val;
9632 struct type *type1, *type2;
9633 LONGEST v, v1, v2;
9634
994b9211
AC
9635 arg1 = coerce_ref (arg1);
9636 arg2 = coerce_ref (arg2);
18af8284
JB
9637 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9638 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9639
76a01679
JB
9640 if (TYPE_CODE (type1) != TYPE_CODE_INT
9641 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9642 return value_binop (arg1, arg2, op);
9643
76a01679 9644 switch (op)
4c4b4cd2
PH
9645 {
9646 case BINOP_MOD:
9647 case BINOP_DIV:
9648 case BINOP_REM:
9649 break;
9650 default:
9651 return value_binop (arg1, arg2, op);
9652 }
9653
9654 v2 = value_as_long (arg2);
9655 if (v2 == 0)
323e0a4a 9656 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9657
9658 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9659 return value_binop (arg1, arg2, op);
9660
9661 v1 = value_as_long (arg1);
9662 switch (op)
9663 {
9664 case BINOP_DIV:
9665 v = v1 / v2;
76a01679
JB
9666 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9667 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9668 break;
9669 case BINOP_REM:
9670 v = v1 % v2;
76a01679
JB
9671 if (v * v1 < 0)
9672 v -= v2;
4c4b4cd2
PH
9673 break;
9674 default:
9675 /* Should not reach this point. */
9676 v = 0;
9677 }
9678
9679 val = allocate_value (type1);
990a07ab 9680 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9681 TYPE_LENGTH (value_type (val)),
9682 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9683 return val;
9684}
9685
9686static int
9687ada_value_equal (struct value *arg1, struct value *arg2)
9688{
df407dfe
AC
9689 if (ada_is_direct_array_type (value_type (arg1))
9690 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9691 {
79e8fcaa
JB
9692 struct type *arg1_type, *arg2_type;
9693
f58b38bf
JB
9694 /* Automatically dereference any array reference before
9695 we attempt to perform the comparison. */
9696 arg1 = ada_coerce_ref (arg1);
9697 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9698
4c4b4cd2
PH
9699 arg1 = ada_coerce_to_simple_array (arg1);
9700 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9701
9702 arg1_type = ada_check_typedef (value_type (arg1));
9703 arg2_type = ada_check_typedef (value_type (arg2));
9704
9705 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9706 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9707 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9708 /* FIXME: The following works only for types whose
76a01679
JB
9709 representations use all bits (no padding or undefined bits)
9710 and do not have user-defined equality. */
79e8fcaa
JB
9711 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9712 && memcmp (value_contents (arg1), value_contents (arg2),
9713 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9714 }
9715 return value_equal (arg1, arg2);
9716}
9717
52ce6436
PH
9718/* Total number of component associations in the aggregate starting at
9719 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9720 OP_AGGREGATE. */
52ce6436
PH
9721
9722static int
9723num_component_specs (struct expression *exp, int pc)
9724{
9725 int n, m, i;
5b4ee69b 9726
52ce6436
PH
9727 m = exp->elts[pc + 1].longconst;
9728 pc += 3;
9729 n = 0;
9730 for (i = 0; i < m; i += 1)
9731 {
9732 switch (exp->elts[pc].opcode)
9733 {
9734 default:
9735 n += 1;
9736 break;
9737 case OP_CHOICES:
9738 n += exp->elts[pc + 1].longconst;
9739 break;
9740 }
9741 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9742 }
9743 return n;
9744}
9745
9746/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9747 component of LHS (a simple array or a record), updating *POS past
9748 the expression, assuming that LHS is contained in CONTAINER. Does
9749 not modify the inferior's memory, nor does it modify LHS (unless
9750 LHS == CONTAINER). */
9751
9752static void
9753assign_component (struct value *container, struct value *lhs, LONGEST index,
9754 struct expression *exp, int *pos)
9755{
9756 struct value *mark = value_mark ();
9757 struct value *elt;
0e2da9f0 9758 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9759
0e2da9f0 9760 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9761 {
22601c15
UW
9762 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9763 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9764
52ce6436
PH
9765 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9766 }
9767 else
9768 {
9769 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9770 elt = ada_to_fixed_value (elt);
52ce6436
PH
9771 }
9772
9773 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9774 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9775 else
9776 value_assign_to_component (container, elt,
9777 ada_evaluate_subexp (NULL, exp, pos,
9778 EVAL_NORMAL));
9779
9780 value_free_to_mark (mark);
9781}
9782
9783/* Assuming that LHS represents an lvalue having a record or array
9784 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9785 of that aggregate's value to LHS, advancing *POS past the
9786 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9787 lvalue containing LHS (possibly LHS itself). Does not modify
9788 the inferior's memory, nor does it modify the contents of
0963b4bd 9789 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9790
9791static struct value *
9792assign_aggregate (struct value *container,
9793 struct value *lhs, struct expression *exp,
9794 int *pos, enum noside noside)
9795{
9796 struct type *lhs_type;
9797 int n = exp->elts[*pos+1].longconst;
9798 LONGEST low_index, high_index;
9799 int num_specs;
9800 LONGEST *indices;
9801 int max_indices, num_indices;
52ce6436 9802 int i;
52ce6436
PH
9803
9804 *pos += 3;
9805 if (noside != EVAL_NORMAL)
9806 {
52ce6436
PH
9807 for (i = 0; i < n; i += 1)
9808 ada_evaluate_subexp (NULL, exp, pos, noside);
9809 return container;
9810 }
9811
9812 container = ada_coerce_ref (container);
9813 if (ada_is_direct_array_type (value_type (container)))
9814 container = ada_coerce_to_simple_array (container);
9815 lhs = ada_coerce_ref (lhs);
9816 if (!deprecated_value_modifiable (lhs))
9817 error (_("Left operand of assignment is not a modifiable lvalue."));
9818
0e2da9f0 9819 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9820 if (ada_is_direct_array_type (lhs_type))
9821 {
9822 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9823 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9824 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9825 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9826 }
9827 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9828 {
9829 low_index = 0;
9830 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9831 }
9832 else
9833 error (_("Left-hand side must be array or record."));
9834
9835 num_specs = num_component_specs (exp, *pos - 3);
9836 max_indices = 4 * num_specs + 4;
8d749320 9837 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9838 indices[0] = indices[1] = low_index - 1;
9839 indices[2] = indices[3] = high_index + 1;
9840 num_indices = 4;
9841
9842 for (i = 0; i < n; i += 1)
9843 {
9844 switch (exp->elts[*pos].opcode)
9845 {
1fbf5ada
JB
9846 case OP_CHOICES:
9847 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9848 &num_indices, max_indices,
9849 low_index, high_index);
9850 break;
9851 case OP_POSITIONAL:
9852 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9853 &num_indices, max_indices,
9854 low_index, high_index);
1fbf5ada
JB
9855 break;
9856 case OP_OTHERS:
9857 if (i != n-1)
9858 error (_("Misplaced 'others' clause"));
9859 aggregate_assign_others (container, lhs, exp, pos, indices,
9860 num_indices, low_index, high_index);
9861 break;
9862 default:
9863 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9864 }
9865 }
9866
9867 return container;
9868}
9869
9870/* Assign into the component of LHS indexed by the OP_POSITIONAL
9871 construct at *POS, updating *POS past the construct, given that
9872 the positions are relative to lower bound LOW, where HIGH is the
9873 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9874 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9875 assign_aggregate. */
52ce6436
PH
9876static void
9877aggregate_assign_positional (struct value *container,
9878 struct value *lhs, struct expression *exp,
9879 int *pos, LONGEST *indices, int *num_indices,
9880 int max_indices, LONGEST low, LONGEST high)
9881{
9882 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9883
9884 if (ind - 1 == high)
e1d5a0d2 9885 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9886 if (ind <= high)
9887 {
9888 add_component_interval (ind, ind, indices, num_indices, max_indices);
9889 *pos += 3;
9890 assign_component (container, lhs, ind, exp, pos);
9891 }
9892 else
9893 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9894}
9895
9896/* Assign into the components of LHS indexed by the OP_CHOICES
9897 construct at *POS, updating *POS past the construct, given that
9898 the allowable indices are LOW..HIGH. Record the indices assigned
9899 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9900 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9901static void
9902aggregate_assign_from_choices (struct value *container,
9903 struct value *lhs, struct expression *exp,
9904 int *pos, LONGEST *indices, int *num_indices,
9905 int max_indices, LONGEST low, LONGEST high)
9906{
9907 int j;
9908 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9909 int choice_pos, expr_pc;
9910 int is_array = ada_is_direct_array_type (value_type (lhs));
9911
9912 choice_pos = *pos += 3;
9913
9914 for (j = 0; j < n_choices; j += 1)
9915 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9916 expr_pc = *pos;
9917 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9918
9919 for (j = 0; j < n_choices; j += 1)
9920 {
9921 LONGEST lower, upper;
9922 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9923
52ce6436
PH
9924 if (op == OP_DISCRETE_RANGE)
9925 {
9926 choice_pos += 1;
9927 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9928 EVAL_NORMAL));
9929 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9930 EVAL_NORMAL));
9931 }
9932 else if (is_array)
9933 {
9934 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9935 EVAL_NORMAL));
9936 upper = lower;
9937 }
9938 else
9939 {
9940 int ind;
0d5cff50 9941 const char *name;
5b4ee69b 9942
52ce6436
PH
9943 switch (op)
9944 {
9945 case OP_NAME:
9946 name = &exp->elts[choice_pos + 2].string;
9947 break;
9948 case OP_VAR_VALUE:
9949 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9950 break;
9951 default:
9952 error (_("Invalid record component association."));
9953 }
9954 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9955 ind = 0;
9956 if (! find_struct_field (name, value_type (lhs), 0,
9957 NULL, NULL, NULL, NULL, &ind))
9958 error (_("Unknown component name: %s."), name);
9959 lower = upper = ind;
9960 }
9961
9962 if (lower <= upper && (lower < low || upper > high))
9963 error (_("Index in component association out of bounds."));
9964
9965 add_component_interval (lower, upper, indices, num_indices,
9966 max_indices);
9967 while (lower <= upper)
9968 {
9969 int pos1;
5b4ee69b 9970
52ce6436
PH
9971 pos1 = expr_pc;
9972 assign_component (container, lhs, lower, exp, &pos1);
9973 lower += 1;
9974 }
9975 }
9976}
9977
9978/* Assign the value of the expression in the OP_OTHERS construct in
9979 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9980 have not been previously assigned. The index intervals already assigned
9981 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9982 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9983static void
9984aggregate_assign_others (struct value *container,
9985 struct value *lhs, struct expression *exp,
9986 int *pos, LONGEST *indices, int num_indices,
9987 LONGEST low, LONGEST high)
9988{
9989 int i;
5ce64950 9990 int expr_pc = *pos + 1;
52ce6436
PH
9991
9992 for (i = 0; i < num_indices - 2; i += 2)
9993 {
9994 LONGEST ind;
5b4ee69b 9995
52ce6436
PH
9996 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9997 {
5ce64950 9998 int localpos;
5b4ee69b 9999
5ce64950
MS
10000 localpos = expr_pc;
10001 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10002 }
10003 }
10004 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10005}
10006
10007/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10008 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10009 modifying *SIZE as needed. It is an error if *SIZE exceeds
10010 MAX_SIZE. The resulting intervals do not overlap. */
10011static void
10012add_component_interval (LONGEST low, LONGEST high,
10013 LONGEST* indices, int *size, int max_size)
10014{
10015 int i, j;
5b4ee69b 10016
52ce6436
PH
10017 for (i = 0; i < *size; i += 2) {
10018 if (high >= indices[i] && low <= indices[i + 1])
10019 {
10020 int kh;
5b4ee69b 10021
52ce6436
PH
10022 for (kh = i + 2; kh < *size; kh += 2)
10023 if (high < indices[kh])
10024 break;
10025 if (low < indices[i])
10026 indices[i] = low;
10027 indices[i + 1] = indices[kh - 1];
10028 if (high > indices[i + 1])
10029 indices[i + 1] = high;
10030 memcpy (indices + i + 2, indices + kh, *size - kh);
10031 *size -= kh - i - 2;
10032 return;
10033 }
10034 else if (high < indices[i])
10035 break;
10036 }
10037
10038 if (*size == max_size)
10039 error (_("Internal error: miscounted aggregate components."));
10040 *size += 2;
10041 for (j = *size-1; j >= i+2; j -= 1)
10042 indices[j] = indices[j - 2];
10043 indices[i] = low;
10044 indices[i + 1] = high;
10045}
10046
6e48bd2c
JB
10047/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10048 is different. */
10049
10050static struct value *
b7e22850 10051ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10052{
10053 if (type == ada_check_typedef (value_type (arg2)))
10054 return arg2;
10055
10056 if (ada_is_fixed_point_type (type))
95f39a5b 10057 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10058
10059 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10060 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10061
10062 return value_cast (type, arg2);
10063}
10064
284614f0
JB
10065/* Evaluating Ada expressions, and printing their result.
10066 ------------------------------------------------------
10067
21649b50
JB
10068 1. Introduction:
10069 ----------------
10070
284614f0
JB
10071 We usually evaluate an Ada expression in order to print its value.
10072 We also evaluate an expression in order to print its type, which
10073 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10074 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10075 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10076 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10077 similar.
10078
10079 Evaluating expressions is a little more complicated for Ada entities
10080 than it is for entities in languages such as C. The main reason for
10081 this is that Ada provides types whose definition might be dynamic.
10082 One example of such types is variant records. Or another example
10083 would be an array whose bounds can only be known at run time.
10084
10085 The following description is a general guide as to what should be
10086 done (and what should NOT be done) in order to evaluate an expression
10087 involving such types, and when. This does not cover how the semantic
10088 information is encoded by GNAT as this is covered separatly. For the
10089 document used as the reference for the GNAT encoding, see exp_dbug.ads
10090 in the GNAT sources.
10091
10092 Ideally, we should embed each part of this description next to its
10093 associated code. Unfortunately, the amount of code is so vast right
10094 now that it's hard to see whether the code handling a particular
10095 situation might be duplicated or not. One day, when the code is
10096 cleaned up, this guide might become redundant with the comments
10097 inserted in the code, and we might want to remove it.
10098
21649b50
JB
10099 2. ``Fixing'' an Entity, the Simple Case:
10100 -----------------------------------------
10101
284614f0
JB
10102 When evaluating Ada expressions, the tricky issue is that they may
10103 reference entities whose type contents and size are not statically
10104 known. Consider for instance a variant record:
10105
10106 type Rec (Empty : Boolean := True) is record
10107 case Empty is
10108 when True => null;
10109 when False => Value : Integer;
10110 end case;
10111 end record;
10112 Yes : Rec := (Empty => False, Value => 1);
10113 No : Rec := (empty => True);
10114
10115 The size and contents of that record depends on the value of the
10116 descriminant (Rec.Empty). At this point, neither the debugging
10117 information nor the associated type structure in GDB are able to
10118 express such dynamic types. So what the debugger does is to create
10119 "fixed" versions of the type that applies to the specific object.
10120 We also informally refer to this opperation as "fixing" an object,
10121 which means creating its associated fixed type.
10122
10123 Example: when printing the value of variable "Yes" above, its fixed
10124 type would look like this:
10125
10126 type Rec is record
10127 Empty : Boolean;
10128 Value : Integer;
10129 end record;
10130
10131 On the other hand, if we printed the value of "No", its fixed type
10132 would become:
10133
10134 type Rec is record
10135 Empty : Boolean;
10136 end record;
10137
10138 Things become a little more complicated when trying to fix an entity
10139 with a dynamic type that directly contains another dynamic type,
10140 such as an array of variant records, for instance. There are
10141 two possible cases: Arrays, and records.
10142
21649b50
JB
10143 3. ``Fixing'' Arrays:
10144 ---------------------
10145
10146 The type structure in GDB describes an array in terms of its bounds,
10147 and the type of its elements. By design, all elements in the array
10148 have the same type and we cannot represent an array of variant elements
10149 using the current type structure in GDB. When fixing an array,
10150 we cannot fix the array element, as we would potentially need one
10151 fixed type per element of the array. As a result, the best we can do
10152 when fixing an array is to produce an array whose bounds and size
10153 are correct (allowing us to read it from memory), but without having
10154 touched its element type. Fixing each element will be done later,
10155 when (if) necessary.
10156
10157 Arrays are a little simpler to handle than records, because the same
10158 amount of memory is allocated for each element of the array, even if
1b536f04 10159 the amount of space actually used by each element differs from element
21649b50 10160 to element. Consider for instance the following array of type Rec:
284614f0
JB
10161
10162 type Rec_Array is array (1 .. 2) of Rec;
10163
1b536f04
JB
10164 The actual amount of memory occupied by each element might be different
10165 from element to element, depending on the value of their discriminant.
21649b50 10166 But the amount of space reserved for each element in the array remains
1b536f04 10167 fixed regardless. So we simply need to compute that size using
21649b50
JB
10168 the debugging information available, from which we can then determine
10169 the array size (we multiply the number of elements of the array by
10170 the size of each element).
10171
10172 The simplest case is when we have an array of a constrained element
10173 type. For instance, consider the following type declarations:
10174
10175 type Bounded_String (Max_Size : Integer) is
10176 Length : Integer;
10177 Buffer : String (1 .. Max_Size);
10178 end record;
10179 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10180
10181 In this case, the compiler describes the array as an array of
10182 variable-size elements (identified by its XVS suffix) for which
10183 the size can be read in the parallel XVZ variable.
10184
10185 In the case of an array of an unconstrained element type, the compiler
10186 wraps the array element inside a private PAD type. This type should not
10187 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10188 that we also use the adjective "aligner" in our code to designate
10189 these wrapper types.
10190
1b536f04 10191 In some cases, the size allocated for each element is statically
21649b50
JB
10192 known. In that case, the PAD type already has the correct size,
10193 and the array element should remain unfixed.
10194
10195 But there are cases when this size is not statically known.
10196 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10197
10198 type Dynamic is array (1 .. Five) of Integer;
10199 type Wrapper (Has_Length : Boolean := False) is record
10200 Data : Dynamic;
10201 case Has_Length is
10202 when True => Length : Integer;
10203 when False => null;
10204 end case;
10205 end record;
10206 type Wrapper_Array is array (1 .. 2) of Wrapper;
10207
10208 Hello : Wrapper_Array := (others => (Has_Length => True,
10209 Data => (others => 17),
10210 Length => 1));
10211
10212
10213 The debugging info would describe variable Hello as being an
10214 array of a PAD type. The size of that PAD type is not statically
10215 known, but can be determined using a parallel XVZ variable.
10216 In that case, a copy of the PAD type with the correct size should
10217 be used for the fixed array.
10218
21649b50
JB
10219 3. ``Fixing'' record type objects:
10220 ----------------------------------
10221
10222 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10223 record types. In this case, in order to compute the associated
10224 fixed type, we need to determine the size and offset of each of
10225 its components. This, in turn, requires us to compute the fixed
10226 type of each of these components.
10227
10228 Consider for instance the example:
10229
10230 type Bounded_String (Max_Size : Natural) is record
10231 Str : String (1 .. Max_Size);
10232 Length : Natural;
10233 end record;
10234 My_String : Bounded_String (Max_Size => 10);
10235
10236 In that case, the position of field "Length" depends on the size
10237 of field Str, which itself depends on the value of the Max_Size
21649b50 10238 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10239 we need to fix the type of field Str. Therefore, fixing a variant
10240 record requires us to fix each of its components.
10241
10242 However, if a component does not have a dynamic size, the component
10243 should not be fixed. In particular, fields that use a PAD type
10244 should not fixed. Here is an example where this might happen
10245 (assuming type Rec above):
10246
10247 type Container (Big : Boolean) is record
10248 First : Rec;
10249 After : Integer;
10250 case Big is
10251 when True => Another : Integer;
10252 when False => null;
10253 end case;
10254 end record;
10255 My_Container : Container := (Big => False,
10256 First => (Empty => True),
10257 After => 42);
10258
10259 In that example, the compiler creates a PAD type for component First,
10260 whose size is constant, and then positions the component After just
10261 right after it. The offset of component After is therefore constant
10262 in this case.
10263
10264 The debugger computes the position of each field based on an algorithm
10265 that uses, among other things, the actual position and size of the field
21649b50
JB
10266 preceding it. Let's now imagine that the user is trying to print
10267 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10268 end up computing the offset of field After based on the size of the
10269 fixed version of field First. And since in our example First has
10270 only one actual field, the size of the fixed type is actually smaller
10271 than the amount of space allocated to that field, and thus we would
10272 compute the wrong offset of field After.
10273
21649b50
JB
10274 To make things more complicated, we need to watch out for dynamic
10275 components of variant records (identified by the ___XVL suffix in
10276 the component name). Even if the target type is a PAD type, the size
10277 of that type might not be statically known. So the PAD type needs
10278 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10279 we might end up with the wrong size for our component. This can be
10280 observed with the following type declarations:
284614f0
JB
10281
10282 type Octal is new Integer range 0 .. 7;
10283 type Octal_Array is array (Positive range <>) of Octal;
10284 pragma Pack (Octal_Array);
10285
10286 type Octal_Buffer (Size : Positive) is record
10287 Buffer : Octal_Array (1 .. Size);
10288 Length : Integer;
10289 end record;
10290
10291 In that case, Buffer is a PAD type whose size is unset and needs
10292 to be computed by fixing the unwrapped type.
10293
21649b50
JB
10294 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10295 ----------------------------------------------------------
10296
10297 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10298 thus far, be actually fixed?
10299
10300 The answer is: Only when referencing that element. For instance
10301 when selecting one component of a record, this specific component
10302 should be fixed at that point in time. Or when printing the value
10303 of a record, each component should be fixed before its value gets
10304 printed. Similarly for arrays, the element of the array should be
10305 fixed when printing each element of the array, or when extracting
10306 one element out of that array. On the other hand, fixing should
10307 not be performed on the elements when taking a slice of an array!
10308
31432a67 10309 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10310 size of each field is that we end up also miscomputing the size
10311 of the containing type. This can have adverse results when computing
10312 the value of an entity. GDB fetches the value of an entity based
10313 on the size of its type, and thus a wrong size causes GDB to fetch
10314 the wrong amount of memory. In the case where the computed size is
10315 too small, GDB fetches too little data to print the value of our
31432a67 10316 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10317 past the buffer containing the data =:-o. */
10318
ced9779b
JB
10319/* Evaluate a subexpression of EXP, at index *POS, and return a value
10320 for that subexpression cast to TO_TYPE. Advance *POS over the
10321 subexpression. */
10322
10323static value *
10324ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10325 enum noside noside, struct type *to_type)
10326{
10327 int pc = *pos;
10328
10329 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10330 || exp->elts[pc].opcode == OP_VAR_VALUE)
10331 {
10332 (*pos) += 4;
10333
10334 value *val;
10335 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10336 {
10337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10338 return value_zero (to_type, not_lval);
10339
10340 val = evaluate_var_msym_value (noside,
10341 exp->elts[pc + 1].objfile,
10342 exp->elts[pc + 2].msymbol);
10343 }
10344 else
10345 val = evaluate_var_value (noside,
10346 exp->elts[pc + 1].block,
10347 exp->elts[pc + 2].symbol);
10348
10349 if (noside == EVAL_SKIP)
10350 return eval_skip_value (exp);
10351
10352 val = ada_value_cast (to_type, val);
10353
10354 /* Follow the Ada language semantics that do not allow taking
10355 an address of the result of a cast (view conversion in Ada). */
10356 if (VALUE_LVAL (val) == lval_memory)
10357 {
10358 if (value_lazy (val))
10359 value_fetch_lazy (val);
10360 VALUE_LVAL (val) = not_lval;
10361 }
10362 return val;
10363 }
10364
10365 value *val = evaluate_subexp (to_type, exp, pos, noside);
10366 if (noside == EVAL_SKIP)
10367 return eval_skip_value (exp);
10368 return ada_value_cast (to_type, val);
10369}
10370
284614f0
JB
10371/* Implement the evaluate_exp routine in the exp_descriptor structure
10372 for the Ada language. */
10373
52ce6436 10374static struct value *
ebf56fd3 10375ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10376 int *pos, enum noside noside)
14f9c5c9
AS
10377{
10378 enum exp_opcode op;
b5385fc0 10379 int tem;
14f9c5c9 10380 int pc;
5ec18f2b 10381 int preeval_pos;
14f9c5c9
AS
10382 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10383 struct type *type;
52ce6436 10384 int nargs, oplen;
d2e4a39e 10385 struct value **argvec;
14f9c5c9 10386
d2e4a39e
AS
10387 pc = *pos;
10388 *pos += 1;
14f9c5c9
AS
10389 op = exp->elts[pc].opcode;
10390
d2e4a39e 10391 switch (op)
14f9c5c9
AS
10392 {
10393 default:
10394 *pos -= 1;
6e48bd2c 10395 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10396
10397 if (noside == EVAL_NORMAL)
10398 arg1 = unwrap_value (arg1);
6e48bd2c 10399
edd079d9 10400 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10401 then we need to perform the conversion manually, because
10402 evaluate_subexp_standard doesn't do it. This conversion is
10403 necessary in Ada because the different kinds of float/fixed
10404 types in Ada have different representations.
10405
10406 Similarly, we need to perform the conversion from OP_LONG
10407 ourselves. */
edd079d9 10408 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10409 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10410
10411 return arg1;
4c4b4cd2
PH
10412
10413 case OP_STRING:
10414 {
76a01679 10415 struct value *result;
5b4ee69b 10416
76a01679
JB
10417 *pos -= 1;
10418 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10419 /* The result type will have code OP_STRING, bashed there from
10420 OP_ARRAY. Bash it back. */
df407dfe
AC
10421 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10422 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10423 return result;
4c4b4cd2 10424 }
14f9c5c9
AS
10425
10426 case UNOP_CAST:
10427 (*pos) += 2;
10428 type = exp->elts[pc + 1].type;
ced9779b 10429 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10430
4c4b4cd2
PH
10431 case UNOP_QUAL:
10432 (*pos) += 2;
10433 type = exp->elts[pc + 1].type;
10434 return ada_evaluate_subexp (type, exp, pos, noside);
10435
14f9c5c9
AS
10436 case BINOP_ASSIGN:
10437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10438 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10439 {
10440 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10441 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10442 return arg1;
10443 return ada_value_assign (arg1, arg1);
10444 }
003f3813
JB
10445 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10446 except if the lhs of our assignment is a convenience variable.
10447 In the case of assigning to a convenience variable, the lhs
10448 should be exactly the result of the evaluation of the rhs. */
10449 type = value_type (arg1);
10450 if (VALUE_LVAL (arg1) == lval_internalvar)
10451 type = NULL;
10452 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10453 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10454 return arg1;
f411722c
TT
10455 if (VALUE_LVAL (arg1) == lval_internalvar)
10456 {
10457 /* Nothing. */
10458 }
10459 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10460 arg2 = cast_to_fixed (value_type (arg1), arg2);
10461 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10462 error
323e0a4a 10463 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10464 else
df407dfe 10465 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10466 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10467
10468 case BINOP_ADD:
10469 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10470 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10471 if (noside == EVAL_SKIP)
4c4b4cd2 10472 goto nosideret;
2ac8a782
JB
10473 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10474 return (value_from_longest
10475 (value_type (arg1),
10476 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10477 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10478 return (value_from_longest
10479 (value_type (arg2),
10480 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10481 if ((ada_is_fixed_point_type (value_type (arg1))
10482 || ada_is_fixed_point_type (value_type (arg2)))
10483 && value_type (arg1) != value_type (arg2))
323e0a4a 10484 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10485 /* Do the addition, and cast the result to the type of the first
10486 argument. We cannot cast the result to a reference type, so if
10487 ARG1 is a reference type, find its underlying type. */
10488 type = value_type (arg1);
10489 while (TYPE_CODE (type) == TYPE_CODE_REF)
10490 type = TYPE_TARGET_TYPE (type);
f44316fa 10491 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10492 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10493
10494 case BINOP_SUB:
10495 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10496 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10497 if (noside == EVAL_SKIP)
4c4b4cd2 10498 goto nosideret;
2ac8a782
JB
10499 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10500 return (value_from_longest
10501 (value_type (arg1),
10502 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10503 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10504 return (value_from_longest
10505 (value_type (arg2),
10506 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10507 if ((ada_is_fixed_point_type (value_type (arg1))
10508 || ada_is_fixed_point_type (value_type (arg2)))
10509 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10510 error (_("Operands of fixed-point subtraction "
10511 "must have the same type"));
b7789565
JB
10512 /* Do the substraction, and cast the result to the type of the first
10513 argument. We cannot cast the result to a reference type, so if
10514 ARG1 is a reference type, find its underlying type. */
10515 type = value_type (arg1);
10516 while (TYPE_CODE (type) == TYPE_CODE_REF)
10517 type = TYPE_TARGET_TYPE (type);
f44316fa 10518 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10519 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10520
10521 case BINOP_MUL:
10522 case BINOP_DIV:
e1578042
JB
10523 case BINOP_REM:
10524 case BINOP_MOD:
14f9c5c9
AS
10525 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10526 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10527 if (noside == EVAL_SKIP)
4c4b4cd2 10528 goto nosideret;
e1578042 10529 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10530 {
10531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10532 return value_zero (value_type (arg1), not_lval);
10533 }
14f9c5c9 10534 else
4c4b4cd2 10535 {
a53b7a21 10536 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10537 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10538 arg1 = cast_from_fixed (type, arg1);
df407dfe 10539 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10540 arg2 = cast_from_fixed (type, arg2);
f44316fa 10541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10542 return ada_value_binop (arg1, arg2, op);
10543 }
10544
4c4b4cd2
PH
10545 case BINOP_EQUAL:
10546 case BINOP_NOTEQUAL:
14f9c5c9 10547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10548 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10549 if (noside == EVAL_SKIP)
76a01679 10550 goto nosideret;
4c4b4cd2 10551 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10552 tem = 0;
4c4b4cd2 10553 else
f44316fa
UW
10554 {
10555 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10556 tem = ada_value_equal (arg1, arg2);
10557 }
4c4b4cd2 10558 if (op == BINOP_NOTEQUAL)
76a01679 10559 tem = !tem;
fbb06eb1
UW
10560 type = language_bool_type (exp->language_defn, exp->gdbarch);
10561 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10562
10563 case UNOP_NEG:
10564 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10565 if (noside == EVAL_SKIP)
10566 goto nosideret;
df407dfe
AC
10567 else if (ada_is_fixed_point_type (value_type (arg1)))
10568 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10569 else
f44316fa
UW
10570 {
10571 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10572 return value_neg (arg1);
10573 }
4c4b4cd2 10574
2330c6c6
JB
10575 case BINOP_LOGICAL_AND:
10576 case BINOP_LOGICAL_OR:
10577 case UNOP_LOGICAL_NOT:
000d5124
JB
10578 {
10579 struct value *val;
10580
10581 *pos -= 1;
10582 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10583 type = language_bool_type (exp->language_defn, exp->gdbarch);
10584 return value_cast (type, val);
000d5124 10585 }
2330c6c6
JB
10586
10587 case BINOP_BITWISE_AND:
10588 case BINOP_BITWISE_IOR:
10589 case BINOP_BITWISE_XOR:
000d5124
JB
10590 {
10591 struct value *val;
10592
10593 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10594 *pos = pc;
10595 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10596
10597 return value_cast (value_type (arg1), val);
10598 }
2330c6c6 10599
14f9c5c9
AS
10600 case OP_VAR_VALUE:
10601 *pos -= 1;
6799def4 10602
14f9c5c9 10603 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10604 {
10605 *pos += 4;
10606 goto nosideret;
10607 }
da5c522f
JB
10608
10609 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10610 /* Only encountered when an unresolved symbol occurs in a
10611 context other than a function call, in which case, it is
52ce6436 10612 invalid. */
323e0a4a 10613 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10614 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10615
10616 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10617 {
0c1f74cf 10618 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10619 /* Check to see if this is a tagged type. We also need to handle
10620 the case where the type is a reference to a tagged type, but
10621 we have to be careful to exclude pointers to tagged types.
10622 The latter should be shown as usual (as a pointer), whereas
10623 a reference should mostly be transparent to the user. */
10624 if (ada_is_tagged_type (type, 0)
023db19c 10625 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10626 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10627 {
10628 /* Tagged types are a little special in the fact that the real
10629 type is dynamic and can only be determined by inspecting the
10630 object's tag. This means that we need to get the object's
10631 value first (EVAL_NORMAL) and then extract the actual object
10632 type from its tag.
10633
10634 Note that we cannot skip the final step where we extract
10635 the object type from its tag, because the EVAL_NORMAL phase
10636 results in dynamic components being resolved into fixed ones.
10637 This can cause problems when trying to print the type
10638 description of tagged types whose parent has a dynamic size:
10639 We use the type name of the "_parent" component in order
10640 to print the name of the ancestor type in the type description.
10641 If that component had a dynamic size, the resolution into
10642 a fixed type would result in the loss of that type name,
10643 thus preventing us from printing the name of the ancestor
10644 type in the type description. */
10645 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10646
10647 if (TYPE_CODE (type) != TYPE_CODE_REF)
10648 {
10649 struct type *actual_type;
10650
10651 actual_type = type_from_tag (ada_value_tag (arg1));
10652 if (actual_type == NULL)
10653 /* If, for some reason, we were unable to determine
10654 the actual type from the tag, then use the static
10655 approximation that we just computed as a fallback.
10656 This can happen if the debugging information is
10657 incomplete, for instance. */
10658 actual_type = type;
10659 return value_zero (actual_type, not_lval);
10660 }
10661 else
10662 {
10663 /* In the case of a ref, ada_coerce_ref takes care
10664 of determining the actual type. But the evaluation
10665 should return a ref as it should be valid to ask
10666 for its address; so rebuild a ref after coerce. */
10667 arg1 = ada_coerce_ref (arg1);
a65cfae5 10668 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10669 }
10670 }
0c1f74cf 10671
84754697
JB
10672 /* Records and unions for which GNAT encodings have been
10673 generated need to be statically fixed as well.
10674 Otherwise, non-static fixing produces a type where
10675 all dynamic properties are removed, which prevents "ptype"
10676 from being able to completely describe the type.
10677 For instance, a case statement in a variant record would be
10678 replaced by the relevant components based on the actual
10679 value of the discriminants. */
10680 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10681 && dynamic_template_type (type) != NULL)
10682 || (TYPE_CODE (type) == TYPE_CODE_UNION
10683 && ada_find_parallel_type (type, "___XVU") != NULL))
10684 {
10685 *pos += 4;
10686 return value_zero (to_static_fixed_type (type), not_lval);
10687 }
4c4b4cd2 10688 }
da5c522f
JB
10689
10690 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10691 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10692
10693 case OP_FUNCALL:
10694 (*pos) += 2;
10695
10696 /* Allocate arg vector, including space for the function to be
10697 called in argvec[0] and a terminating NULL. */
10698 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10699 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10700
10701 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10702 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10703 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10704 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10705 else
10706 {
10707 for (tem = 0; tem <= nargs; tem += 1)
10708 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10709 argvec[tem] = 0;
10710
10711 if (noside == EVAL_SKIP)
10712 goto nosideret;
10713 }
10714
ad82864c
JB
10715 if (ada_is_constrained_packed_array_type
10716 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10717 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10718 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10719 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10720 /* This is a packed array that has already been fixed, and
10721 therefore already coerced to a simple array. Nothing further
10722 to do. */
10723 ;
e6c2c623
PMR
10724 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10725 {
10726 /* Make sure we dereference references so that all the code below
10727 feels like it's really handling the referenced value. Wrapping
10728 types (for alignment) may be there, so make sure we strip them as
10729 well. */
10730 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10731 }
10732 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10733 && VALUE_LVAL (argvec[0]) == lval_memory)
10734 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10735
df407dfe 10736 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10737
10738 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10739 them. So, if this is an array typedef (encoding use for array
10740 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10741 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10742 type = ada_typedef_target_type (type);
10743
4c4b4cd2
PH
10744 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10745 {
61ee279c 10746 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10747 {
10748 case TYPE_CODE_FUNC:
61ee279c 10749 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10750 break;
10751 case TYPE_CODE_ARRAY:
10752 break;
10753 case TYPE_CODE_STRUCT:
10754 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10755 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10756 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10757 break;
10758 default:
323e0a4a 10759 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10760 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10761 break;
10762 }
10763 }
10764
10765 switch (TYPE_CODE (type))
10766 {
10767 case TYPE_CODE_FUNC:
10768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10769 {
7022349d
PA
10770 if (TYPE_TARGET_TYPE (type) == NULL)
10771 error_call_unknown_return_type (NULL);
10772 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10773 }
e71585ff
PA
10774 return call_function_by_hand (argvec[0], NULL,
10775 gdb::make_array_view (argvec + 1,
10776 nargs));
c8ea1972
PH
10777 case TYPE_CODE_INTERNAL_FUNCTION:
10778 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10779 /* We don't know anything about what the internal
10780 function might return, but we have to return
10781 something. */
10782 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10783 not_lval);
10784 else
10785 return call_internal_function (exp->gdbarch, exp->language_defn,
10786 argvec[0], nargs, argvec + 1);
10787
4c4b4cd2
PH
10788 case TYPE_CODE_STRUCT:
10789 {
10790 int arity;
10791
4c4b4cd2
PH
10792 arity = ada_array_arity (type);
10793 type = ada_array_element_type (type, nargs);
10794 if (type == NULL)
323e0a4a 10795 error (_("cannot subscript or call a record"));
4c4b4cd2 10796 if (arity != nargs)
323e0a4a 10797 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10799 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10800 return
10801 unwrap_value (ada_value_subscript
10802 (argvec[0], nargs, argvec + 1));
10803 }
10804 case TYPE_CODE_ARRAY:
10805 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10806 {
10807 type = ada_array_element_type (type, nargs);
10808 if (type == NULL)
323e0a4a 10809 error (_("element type of array unknown"));
4c4b4cd2 10810 else
0a07e705 10811 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10812 }
10813 return
10814 unwrap_value (ada_value_subscript
10815 (ada_coerce_to_simple_array (argvec[0]),
10816 nargs, argvec + 1));
10817 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819 {
deede10c 10820 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10821 type = ada_array_element_type (type, nargs);
10822 if (type == NULL)
323e0a4a 10823 error (_("element type of array unknown"));
4c4b4cd2 10824 else
0a07e705 10825 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10826 }
10827 return
deede10c
JB
10828 unwrap_value (ada_value_ptr_subscript (argvec[0],
10829 nargs, argvec + 1));
4c4b4cd2
PH
10830
10831 default:
e1d5a0d2
PH
10832 error (_("Attempt to index or call something other than an "
10833 "array or function"));
4c4b4cd2
PH
10834 }
10835
10836 case TERNOP_SLICE:
10837 {
10838 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10839 struct value *low_bound_val =
10840 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10841 struct value *high_bound_val =
10842 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10843 LONGEST low_bound;
10844 LONGEST high_bound;
5b4ee69b 10845
994b9211
AC
10846 low_bound_val = coerce_ref (low_bound_val);
10847 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10848 low_bound = value_as_long (low_bound_val);
10849 high_bound = value_as_long (high_bound_val);
963a6417 10850
4c4b4cd2
PH
10851 if (noside == EVAL_SKIP)
10852 goto nosideret;
10853
4c4b4cd2
PH
10854 /* If this is a reference to an aligner type, then remove all
10855 the aligners. */
df407dfe
AC
10856 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10857 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10858 TYPE_TARGET_TYPE (value_type (array)) =
10859 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10860
ad82864c 10861 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10862 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10863
10864 /* If this is a reference to an array or an array lvalue,
10865 convert to a pointer. */
df407dfe
AC
10866 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10867 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10868 && VALUE_LVAL (array) == lval_memory))
10869 array = value_addr (array);
10870
1265e4aa 10871 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10872 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10873 (value_type (array))))
bff8c71f
TT
10874 return empty_array (ada_type_of_array (array, 0), low_bound,
10875 high_bound);
4c4b4cd2
PH
10876
10877 array = ada_coerce_to_simple_array_ptr (array);
10878
714e53ab
PH
10879 /* If we have more than one level of pointer indirection,
10880 dereference the value until we get only one level. */
df407dfe
AC
10881 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10882 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10883 == TYPE_CODE_PTR))
10884 array = value_ind (array);
10885
10886 /* Make sure we really do have an array type before going further,
10887 to avoid a SEGV when trying to get the index type or the target
10888 type later down the road if the debug info generated by
10889 the compiler is incorrect or incomplete. */
df407dfe 10890 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10891 error (_("cannot take slice of non-array"));
714e53ab 10892
828292f2
JB
10893 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10894 == TYPE_CODE_PTR)
4c4b4cd2 10895 {
828292f2
JB
10896 struct type *type0 = ada_check_typedef (value_type (array));
10897
0b5d8877 10898 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10899 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10900 else
10901 {
10902 struct type *arr_type0 =
828292f2 10903 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10904
f5938064
JG
10905 return ada_value_slice_from_ptr (array, arr_type0,
10906 longest_to_int (low_bound),
10907 longest_to_int (high_bound));
4c4b4cd2
PH
10908 }
10909 }
10910 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10911 return array;
10912 else if (high_bound < low_bound)
bff8c71f 10913 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10914 else
529cad9c
PH
10915 return ada_value_slice (array, longest_to_int (low_bound),
10916 longest_to_int (high_bound));
4c4b4cd2 10917 }
14f9c5c9 10918
4c4b4cd2
PH
10919 case UNOP_IN_RANGE:
10920 (*pos) += 2;
10921 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10922 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10923
14f9c5c9 10924 if (noside == EVAL_SKIP)
4c4b4cd2 10925 goto nosideret;
14f9c5c9 10926
4c4b4cd2
PH
10927 switch (TYPE_CODE (type))
10928 {
10929 default:
e1d5a0d2
PH
10930 lim_warning (_("Membership test incompletely implemented; "
10931 "always returns true"));
fbb06eb1
UW
10932 type = language_bool_type (exp->language_defn, exp->gdbarch);
10933 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10934
10935 case TYPE_CODE_RANGE:
030b4912
UW
10936 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10937 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10938 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10940 type = language_bool_type (exp->language_defn, exp->gdbarch);
10941 return
10942 value_from_longest (type,
4c4b4cd2
PH
10943 (value_less (arg1, arg3)
10944 || value_equal (arg1, arg3))
10945 && (value_less (arg2, arg1)
10946 || value_equal (arg2, arg1)));
10947 }
10948
10949 case BINOP_IN_BOUNDS:
14f9c5c9 10950 (*pos) += 2;
4c4b4cd2
PH
10951 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10952 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10953
4c4b4cd2
PH
10954 if (noside == EVAL_SKIP)
10955 goto nosideret;
14f9c5c9 10956
4c4b4cd2 10957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10958 {
10959 type = language_bool_type (exp->language_defn, exp->gdbarch);
10960 return value_zero (type, not_lval);
10961 }
14f9c5c9 10962
4c4b4cd2 10963 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10964
1eea4ebd
UW
10965 type = ada_index_type (value_type (arg2), tem, "range");
10966 if (!type)
10967 type = value_type (arg1);
14f9c5c9 10968
1eea4ebd
UW
10969 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10970 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10971
f44316fa
UW
10972 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10973 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10974 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10975 return
fbb06eb1 10976 value_from_longest (type,
4c4b4cd2
PH
10977 (value_less (arg1, arg3)
10978 || value_equal (arg1, arg3))
10979 && (value_less (arg2, arg1)
10980 || value_equal (arg2, arg1)));
10981
10982 case TERNOP_IN_RANGE:
10983 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10984 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10985 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10986
10987 if (noside == EVAL_SKIP)
10988 goto nosideret;
10989
f44316fa
UW
10990 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10991 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10992 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10993 return
fbb06eb1 10994 value_from_longest (type,
4c4b4cd2
PH
10995 (value_less (arg1, arg3)
10996 || value_equal (arg1, arg3))
10997 && (value_less (arg2, arg1)
10998 || value_equal (arg2, arg1)));
10999
11000 case OP_ATR_FIRST:
11001 case OP_ATR_LAST:
11002 case OP_ATR_LENGTH:
11003 {
76a01679 11004 struct type *type_arg;
5b4ee69b 11005
76a01679
JB
11006 if (exp->elts[*pos].opcode == OP_TYPE)
11007 {
11008 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11009 arg1 = NULL;
5bc23cb3 11010 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11011 }
11012 else
11013 {
11014 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11015 type_arg = NULL;
11016 }
11017
11018 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11019 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11020 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11021 *pos += 4;
11022
11023 if (noside == EVAL_SKIP)
11024 goto nosideret;
680e1bee
TT
11025 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11026 {
11027 if (type_arg == NULL)
11028 type_arg = value_type (arg1);
76a01679 11029
680e1bee
TT
11030 if (ada_is_constrained_packed_array_type (type_arg))
11031 type_arg = decode_constrained_packed_array_type (type_arg);
11032
11033 if (!discrete_type_p (type_arg))
11034 {
11035 switch (op)
11036 {
11037 default: /* Should never happen. */
11038 error (_("unexpected attribute encountered"));
11039 case OP_ATR_FIRST:
11040 case OP_ATR_LAST:
11041 type_arg = ada_index_type (type_arg, tem,
11042 ada_attribute_name (op));
11043 break;
11044 case OP_ATR_LENGTH:
11045 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11046 break;
11047 }
11048 }
11049
11050 return value_zero (type_arg, not_lval);
11051 }
11052 else if (type_arg == NULL)
76a01679
JB
11053 {
11054 arg1 = ada_coerce_ref (arg1);
11055
ad82864c 11056 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11057 arg1 = ada_coerce_to_simple_array (arg1);
11058
aa4fb036 11059 if (op == OP_ATR_LENGTH)
1eea4ebd 11060 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11061 else
11062 {
11063 type = ada_index_type (value_type (arg1), tem,
11064 ada_attribute_name (op));
11065 if (type == NULL)
11066 type = builtin_type (exp->gdbarch)->builtin_int;
11067 }
76a01679 11068
76a01679
JB
11069 switch (op)
11070 {
11071 default: /* Should never happen. */
323e0a4a 11072 error (_("unexpected attribute encountered"));
76a01679 11073 case OP_ATR_FIRST:
1eea4ebd
UW
11074 return value_from_longest
11075 (type, ada_array_bound (arg1, tem, 0));
76a01679 11076 case OP_ATR_LAST:
1eea4ebd
UW
11077 return value_from_longest
11078 (type, ada_array_bound (arg1, tem, 1));
76a01679 11079 case OP_ATR_LENGTH:
1eea4ebd
UW
11080 return value_from_longest
11081 (type, ada_array_length (arg1, tem));
76a01679
JB
11082 }
11083 }
11084 else if (discrete_type_p (type_arg))
11085 {
11086 struct type *range_type;
0d5cff50 11087 const char *name = ada_type_name (type_arg);
5b4ee69b 11088
76a01679
JB
11089 range_type = NULL;
11090 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11091 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11092 if (range_type == NULL)
11093 range_type = type_arg;
11094 switch (op)
11095 {
11096 default:
323e0a4a 11097 error (_("unexpected attribute encountered"));
76a01679 11098 case OP_ATR_FIRST:
690cc4eb 11099 return value_from_longest
43bbcdc2 11100 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11101 case OP_ATR_LAST:
690cc4eb 11102 return value_from_longest
43bbcdc2 11103 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11104 case OP_ATR_LENGTH:
323e0a4a 11105 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11106 }
11107 }
11108 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11109 error (_("unimplemented type attribute"));
76a01679
JB
11110 else
11111 {
11112 LONGEST low, high;
11113
ad82864c
JB
11114 if (ada_is_constrained_packed_array_type (type_arg))
11115 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11116
aa4fb036 11117 if (op == OP_ATR_LENGTH)
1eea4ebd 11118 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11119 else
11120 {
11121 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11122 if (type == NULL)
11123 type = builtin_type (exp->gdbarch)->builtin_int;
11124 }
1eea4ebd 11125
76a01679
JB
11126 switch (op)
11127 {
11128 default:
323e0a4a 11129 error (_("unexpected attribute encountered"));
76a01679 11130 case OP_ATR_FIRST:
1eea4ebd 11131 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11132 return value_from_longest (type, low);
11133 case OP_ATR_LAST:
1eea4ebd 11134 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11135 return value_from_longest (type, high);
11136 case OP_ATR_LENGTH:
1eea4ebd
UW
11137 low = ada_array_bound_from_type (type_arg, tem, 0);
11138 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11139 return value_from_longest (type, high - low + 1);
11140 }
11141 }
14f9c5c9
AS
11142 }
11143
4c4b4cd2
PH
11144 case OP_ATR_TAG:
11145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11146 if (noside == EVAL_SKIP)
76a01679 11147 goto nosideret;
4c4b4cd2
PH
11148
11149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11150 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11151
11152 return ada_value_tag (arg1);
11153
11154 case OP_ATR_MIN:
11155 case OP_ATR_MAX:
11156 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 if (noside == EVAL_SKIP)
76a01679 11160 goto nosideret;
d2e4a39e 11161 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11162 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11163 else
f44316fa
UW
11164 {
11165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11166 return value_binop (arg1, arg2,
11167 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11168 }
14f9c5c9 11169
4c4b4cd2
PH
11170 case OP_ATR_MODULUS:
11171 {
31dedfee 11172 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11173
5b4ee69b 11174 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
4c4b4cd2 11177
76a01679 11178 if (!ada_is_modular_type (type_arg))
323e0a4a 11179 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11180
76a01679
JB
11181 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11182 ada_modulus (type_arg));
4c4b4cd2
PH
11183 }
11184
11185
11186 case OP_ATR_POS:
11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 if (noside == EVAL_SKIP)
76a01679 11190 goto nosideret;
3cb382c9
UW
11191 type = builtin_type (exp->gdbarch)->builtin_int;
11192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11193 return value_zero (type, not_lval);
14f9c5c9 11194 else
3cb382c9 11195 return value_pos_atr (type, arg1);
14f9c5c9 11196
4c4b4cd2
PH
11197 case OP_ATR_SIZE:
11198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11199 type = value_type (arg1);
11200
11201 /* If the argument is a reference, then dereference its type, since
11202 the user is really asking for the size of the actual object,
11203 not the size of the pointer. */
11204 if (TYPE_CODE (type) == TYPE_CODE_REF)
11205 type = TYPE_TARGET_TYPE (type);
11206
4c4b4cd2 11207 if (noside == EVAL_SKIP)
76a01679 11208 goto nosideret;
4c4b4cd2 11209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11210 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11211 else
22601c15 11212 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11213 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11214
11215 case OP_ATR_VAL:
11216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11218 type = exp->elts[pc + 2].type;
14f9c5c9 11219 if (noside == EVAL_SKIP)
76a01679 11220 goto nosideret;
4c4b4cd2 11221 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11222 return value_zero (type, not_lval);
4c4b4cd2 11223 else
76a01679 11224 return value_val_atr (type, arg1);
4c4b4cd2
PH
11225
11226 case BINOP_EXP:
11227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11228 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
11231 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11232 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11233 else
f44316fa
UW
11234 {
11235 /* For integer exponentiation operations,
11236 only promote the first argument. */
11237 if (is_integral_type (value_type (arg2)))
11238 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11239 else
11240 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11241
11242 return value_binop (arg1, arg2, op);
11243 }
4c4b4cd2
PH
11244
11245 case UNOP_PLUS:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 else
11250 return arg1;
11251
11252 case UNOP_ABS:
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11254 if (noside == EVAL_SKIP)
11255 goto nosideret;
f44316fa 11256 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11257 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11258 return value_neg (arg1);
14f9c5c9 11259 else
4c4b4cd2 11260 return arg1;
14f9c5c9
AS
11261
11262 case UNOP_IND:
5ec18f2b 11263 preeval_pos = *pos;
6b0d7253 11264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11265 if (noside == EVAL_SKIP)
4c4b4cd2 11266 goto nosideret;
df407dfe 11267 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11269 {
11270 if (ada_is_array_descriptor_type (type))
11271 /* GDB allows dereferencing GNAT array descriptors. */
11272 {
11273 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11274
4c4b4cd2 11275 if (arrType == NULL)
323e0a4a 11276 error (_("Attempt to dereference null array pointer."));
00a4c844 11277 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11278 }
11279 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11280 || TYPE_CODE (type) == TYPE_CODE_REF
11281 /* In C you can dereference an array to get the 1st elt. */
11282 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11283 {
5ec18f2b
JG
11284 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11285 only be determined by inspecting the object's tag.
11286 This means that we need to evaluate completely the
11287 expression in order to get its type. */
11288
023db19c
JB
11289 if ((TYPE_CODE (type) == TYPE_CODE_REF
11290 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11291 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11292 {
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11294 EVAL_NORMAL);
11295 type = value_type (ada_value_ind (arg1));
11296 }
11297 else
11298 {
11299 type = to_static_fixed_type
11300 (ada_aligned_type
11301 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11302 }
c1b5a1a6 11303 ada_ensure_varsize_limit (type);
714e53ab
PH
11304 return value_zero (type, lval_memory);
11305 }
4c4b4cd2 11306 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11307 {
11308 /* GDB allows dereferencing an int. */
11309 if (expect_type == NULL)
11310 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11311 lval_memory);
11312 else
11313 {
11314 expect_type =
11315 to_static_fixed_type (ada_aligned_type (expect_type));
11316 return value_zero (expect_type, lval_memory);
11317 }
11318 }
4c4b4cd2 11319 else
323e0a4a 11320 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11321 }
0963b4bd 11322 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11323 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11324
96967637
JB
11325 if (TYPE_CODE (type) == TYPE_CODE_INT)
11326 /* GDB allows dereferencing an int. If we were given
11327 the expect_type, then use that as the target type.
11328 Otherwise, assume that the target type is an int. */
11329 {
11330 if (expect_type != NULL)
11331 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11332 arg1));
11333 else
11334 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11335 (CORE_ADDR) value_as_address (arg1));
11336 }
6b0d7253 11337
4c4b4cd2
PH
11338 if (ada_is_array_descriptor_type (type))
11339 /* GDB allows dereferencing GNAT array descriptors. */
11340 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11341 else
4c4b4cd2 11342 return ada_value_ind (arg1);
14f9c5c9
AS
11343
11344 case STRUCTOP_STRUCT:
11345 tem = longest_to_int (exp->elts[pc + 1].longconst);
11346 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11347 preeval_pos = *pos;
14f9c5c9
AS
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 if (noside == EVAL_SKIP)
4c4b4cd2 11350 goto nosideret;
14f9c5c9 11351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11352 {
df407dfe 11353 struct type *type1 = value_type (arg1);
5b4ee69b 11354
76a01679
JB
11355 if (ada_is_tagged_type (type1, 1))
11356 {
11357 type = ada_lookup_struct_elt_type (type1,
11358 &exp->elts[pc + 2].string,
988f6b3d 11359 1, 1);
5ec18f2b
JG
11360
11361 /* If the field is not found, check if it exists in the
11362 extension of this object's type. This means that we
11363 need to evaluate completely the expression. */
11364
76a01679 11365 if (type == NULL)
5ec18f2b
JG
11366 {
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11368 EVAL_NORMAL);
11369 arg1 = ada_value_struct_elt (arg1,
11370 &exp->elts[pc + 2].string,
11371 0);
11372 arg1 = unwrap_value (arg1);
11373 type = value_type (ada_to_fixed_value (arg1));
11374 }
76a01679
JB
11375 }
11376 else
11377 type =
11378 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11379 0);
76a01679
JB
11380
11381 return value_zero (ada_aligned_type (type), lval_memory);
11382 }
14f9c5c9 11383 else
a579cd9a
MW
11384 {
11385 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11386 arg1 = unwrap_value (arg1);
11387 return ada_to_fixed_value (arg1);
11388 }
284614f0 11389
14f9c5c9 11390 case OP_TYPE:
4c4b4cd2
PH
11391 /* The value is not supposed to be used. This is here to make it
11392 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11393 (*pos) += 2;
11394 if (noside == EVAL_SKIP)
4c4b4cd2 11395 goto nosideret;
14f9c5c9 11396 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11397 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11398 else
323e0a4a 11399 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11400
11401 case OP_AGGREGATE:
11402 case OP_CHOICES:
11403 case OP_OTHERS:
11404 case OP_DISCRETE_RANGE:
11405 case OP_POSITIONAL:
11406 case OP_NAME:
11407 if (noside == EVAL_NORMAL)
11408 switch (op)
11409 {
11410 case OP_NAME:
11411 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11412 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11413 case OP_AGGREGATE:
11414 error (_("Aggregates only allowed on the right of an assignment"));
11415 default:
0963b4bd
MS
11416 internal_error (__FILE__, __LINE__,
11417 _("aggregate apparently mangled"));
52ce6436
PH
11418 }
11419
11420 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11421 *pos += oplen - 1;
11422 for (tem = 0; tem < nargs; tem += 1)
11423 ada_evaluate_subexp (NULL, exp, pos, noside);
11424 goto nosideret;
14f9c5c9
AS
11425 }
11426
11427nosideret:
ced9779b 11428 return eval_skip_value (exp);
14f9c5c9 11429}
14f9c5c9 11430\f
d2e4a39e 11431
4c4b4cd2 11432 /* Fixed point */
14f9c5c9
AS
11433
11434/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11435 type name that encodes the 'small and 'delta information.
4c4b4cd2 11436 Otherwise, return NULL. */
14f9c5c9 11437
d2e4a39e 11438static const char *
ebf56fd3 11439fixed_type_info (struct type *type)
14f9c5c9 11440{
d2e4a39e 11441 const char *name = ada_type_name (type);
14f9c5c9
AS
11442 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11443
d2e4a39e
AS
11444 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11445 {
14f9c5c9 11446 const char *tail = strstr (name, "___XF_");
5b4ee69b 11447
14f9c5c9 11448 if (tail == NULL)
4c4b4cd2 11449 return NULL;
d2e4a39e 11450 else
4c4b4cd2 11451 return tail + 5;
14f9c5c9
AS
11452 }
11453 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11454 return fixed_type_info (TYPE_TARGET_TYPE (type));
11455 else
11456 return NULL;
11457}
11458
4c4b4cd2 11459/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11460
11461int
ebf56fd3 11462ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11463{
11464 return fixed_type_info (type) != NULL;
11465}
11466
4c4b4cd2
PH
11467/* Return non-zero iff TYPE represents a System.Address type. */
11468
11469int
11470ada_is_system_address_type (struct type *type)
11471{
11472 return (TYPE_NAME (type)
11473 && strcmp (TYPE_NAME (type), "system__address") == 0);
11474}
11475
14f9c5c9 11476/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11477 type, return the target floating-point type to be used to represent
11478 of this type during internal computation. */
11479
11480static struct type *
11481ada_scaling_type (struct type *type)
11482{
11483 return builtin_type (get_type_arch (type))->builtin_long_double;
11484}
11485
11486/* Assuming that TYPE is the representation of an Ada fixed-point
11487 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11488 delta cannot be determined. */
14f9c5c9 11489
50eff16b 11490struct value *
ebf56fd3 11491ada_delta (struct type *type)
14f9c5c9
AS
11492{
11493 const char *encoding = fixed_type_info (type);
50eff16b
UW
11494 struct type *scale_type = ada_scaling_type (type);
11495
11496 long long num, den;
11497
11498 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11499 return nullptr;
d2e4a39e 11500 else
50eff16b
UW
11501 return value_binop (value_from_longest (scale_type, num),
11502 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11503}
11504
11505/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11506 factor ('SMALL value) associated with the type. */
14f9c5c9 11507
50eff16b
UW
11508struct value *
11509ada_scaling_factor (struct type *type)
14f9c5c9
AS
11510{
11511 const char *encoding = fixed_type_info (type);
50eff16b
UW
11512 struct type *scale_type = ada_scaling_type (type);
11513
11514 long long num0, den0, num1, den1;
14f9c5c9 11515 int n;
d2e4a39e 11516
50eff16b 11517 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11518 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11519
11520 if (n < 2)
50eff16b 11521 return value_from_longest (scale_type, 1);
14f9c5c9 11522 else if (n == 4)
50eff16b
UW
11523 return value_binop (value_from_longest (scale_type, num1),
11524 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11525 else
50eff16b
UW
11526 return value_binop (value_from_longest (scale_type, num0),
11527 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11528}
11529
14f9c5c9 11530\f
d2e4a39e 11531
4c4b4cd2 11532 /* Range types */
14f9c5c9
AS
11533
11534/* Scan STR beginning at position K for a discriminant name, and
11535 return the value of that discriminant field of DVAL in *PX. If
11536 PNEW_K is not null, put the position of the character beyond the
11537 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11538 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11539
11540static int
108d56a4 11541scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11542 int *pnew_k)
14f9c5c9
AS
11543{
11544 static char *bound_buffer = NULL;
11545 static size_t bound_buffer_len = 0;
5da1a4d3 11546 const char *pstart, *pend, *bound;
d2e4a39e 11547 struct value *bound_val;
14f9c5c9
AS
11548
11549 if (dval == NULL || str == NULL || str[k] == '\0')
11550 return 0;
11551
5da1a4d3
SM
11552 pstart = str + k;
11553 pend = strstr (pstart, "__");
14f9c5c9
AS
11554 if (pend == NULL)
11555 {
5da1a4d3 11556 bound = pstart;
14f9c5c9
AS
11557 k += strlen (bound);
11558 }
d2e4a39e 11559 else
14f9c5c9 11560 {
5da1a4d3
SM
11561 int len = pend - pstart;
11562
11563 /* Strip __ and beyond. */
11564 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11565 strncpy (bound_buffer, pstart, len);
11566 bound_buffer[len] = '\0';
11567
14f9c5c9 11568 bound = bound_buffer;
d2e4a39e 11569 k = pend - str;
14f9c5c9 11570 }
d2e4a39e 11571
df407dfe 11572 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11573 if (bound_val == NULL)
11574 return 0;
11575
11576 *px = value_as_long (bound_val);
11577 if (pnew_k != NULL)
11578 *pnew_k = k;
11579 return 1;
11580}
11581
11582/* Value of variable named NAME in the current environment. If
11583 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11584 otherwise causes an error with message ERR_MSG. */
11585
d2e4a39e 11586static struct value *
edb0c9cb 11587get_var_value (const char *name, const char *err_msg)
14f9c5c9 11588{
b5ec771e 11589 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11590
54d343a2 11591 std::vector<struct block_symbol> syms;
b5ec771e
PA
11592 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11593 get_selected_block (0),
11594 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11595
11596 if (nsyms != 1)
11597 {
11598 if (err_msg == NULL)
4c4b4cd2 11599 return 0;
14f9c5c9 11600 else
8a3fe4f8 11601 error (("%s"), err_msg);
14f9c5c9
AS
11602 }
11603
54d343a2 11604 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11605}
d2e4a39e 11606
edb0c9cb
PA
11607/* Value of integer variable named NAME in the current environment.
11608 If no such variable is found, returns false. Otherwise, sets VALUE
11609 to the variable's value and returns true. */
4c4b4cd2 11610
edb0c9cb
PA
11611bool
11612get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11613{
4c4b4cd2 11614 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11615
14f9c5c9 11616 if (var_val == 0)
edb0c9cb
PA
11617 return false;
11618
11619 value = value_as_long (var_val);
11620 return true;
14f9c5c9 11621}
d2e4a39e 11622
14f9c5c9
AS
11623
11624/* Return a range type whose base type is that of the range type named
11625 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11626 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11627 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11628 corresponding range type from debug information; fall back to using it
11629 if symbol lookup fails. If a new type must be created, allocate it
11630 like ORIG_TYPE was. The bounds information, in general, is encoded
11631 in NAME, the base type given in the named range type. */
14f9c5c9 11632
d2e4a39e 11633static struct type *
28c85d6c 11634to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11635{
0d5cff50 11636 const char *name;
14f9c5c9 11637 struct type *base_type;
108d56a4 11638 const char *subtype_info;
14f9c5c9 11639
28c85d6c
JB
11640 gdb_assert (raw_type != NULL);
11641 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11642
1ce677a4 11643 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11644 base_type = TYPE_TARGET_TYPE (raw_type);
11645 else
11646 base_type = raw_type;
11647
28c85d6c 11648 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11649 subtype_info = strstr (name, "___XD");
11650 if (subtype_info == NULL)
690cc4eb 11651 {
43bbcdc2
PH
11652 LONGEST L = ada_discrete_type_low_bound (raw_type);
11653 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11654
690cc4eb
PH
11655 if (L < INT_MIN || U > INT_MAX)
11656 return raw_type;
11657 else
0c9c3474
SA
11658 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11659 L, U);
690cc4eb 11660 }
14f9c5c9
AS
11661 else
11662 {
11663 static char *name_buf = NULL;
11664 static size_t name_len = 0;
11665 int prefix_len = subtype_info - name;
11666 LONGEST L, U;
11667 struct type *type;
108d56a4 11668 const char *bounds_str;
14f9c5c9
AS
11669 int n;
11670
11671 GROW_VECT (name_buf, name_len, prefix_len + 5);
11672 strncpy (name_buf, name, prefix_len);
11673 name_buf[prefix_len] = '\0';
11674
11675 subtype_info += 5;
11676 bounds_str = strchr (subtype_info, '_');
11677 n = 1;
11678
d2e4a39e 11679 if (*subtype_info == 'L')
4c4b4cd2
PH
11680 {
11681 if (!ada_scan_number (bounds_str, n, &L, &n)
11682 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11683 return raw_type;
11684 if (bounds_str[n] == '_')
11685 n += 2;
0963b4bd 11686 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11687 n += 1;
11688 subtype_info += 1;
11689 }
d2e4a39e 11690 else
4c4b4cd2 11691 {
4c4b4cd2 11692 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11693 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11694 {
323e0a4a 11695 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11696 L = 1;
11697 }
11698 }
14f9c5c9 11699
d2e4a39e 11700 if (*subtype_info == 'U')
4c4b4cd2
PH
11701 {
11702 if (!ada_scan_number (bounds_str, n, &U, &n)
11703 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11704 return raw_type;
11705 }
d2e4a39e 11706 else
4c4b4cd2 11707 {
4c4b4cd2 11708 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11709 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11710 {
323e0a4a 11711 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11712 U = L;
11713 }
11714 }
14f9c5c9 11715
0c9c3474
SA
11716 type = create_static_range_type (alloc_type_copy (raw_type),
11717 base_type, L, U);
f5a91472
JB
11718 /* create_static_range_type alters the resulting type's length
11719 to match the size of the base_type, which is not what we want.
11720 Set it back to the original range type's length. */
11721 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11722 TYPE_NAME (type) = name;
14f9c5c9
AS
11723 return type;
11724 }
11725}
11726
4c4b4cd2
PH
11727/* True iff NAME is the name of a range type. */
11728
14f9c5c9 11729int
d2e4a39e 11730ada_is_range_type_name (const char *name)
14f9c5c9
AS
11731{
11732 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11733}
14f9c5c9 11734\f
d2e4a39e 11735
4c4b4cd2
PH
11736 /* Modular types */
11737
11738/* True iff TYPE is an Ada modular type. */
14f9c5c9 11739
14f9c5c9 11740int
d2e4a39e 11741ada_is_modular_type (struct type *type)
14f9c5c9 11742{
18af8284 11743 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11744
11745 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11746 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11747 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11748}
11749
4c4b4cd2
PH
11750/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11751
61ee279c 11752ULONGEST
0056e4d5 11753ada_modulus (struct type *type)
14f9c5c9 11754{
43bbcdc2 11755 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11756}
d2e4a39e 11757\f
f7f9143b
JB
11758
11759/* Ada exception catchpoint support:
11760 ---------------------------------
11761
11762 We support 3 kinds of exception catchpoints:
11763 . catchpoints on Ada exceptions
11764 . catchpoints on unhandled Ada exceptions
11765 . catchpoints on failed assertions
11766
11767 Exceptions raised during failed assertions, or unhandled exceptions
11768 could perfectly be caught with the general catchpoint on Ada exceptions.
11769 However, we can easily differentiate these two special cases, and having
11770 the option to distinguish these two cases from the rest can be useful
11771 to zero-in on certain situations.
11772
11773 Exception catchpoints are a specialized form of breakpoint,
11774 since they rely on inserting breakpoints inside known routines
11775 of the GNAT runtime. The implementation therefore uses a standard
11776 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11777 of breakpoint_ops.
11778
0259addd
JB
11779 Support in the runtime for exception catchpoints have been changed
11780 a few times already, and these changes affect the implementation
11781 of these catchpoints. In order to be able to support several
11782 variants of the runtime, we use a sniffer that will determine
28010a5d 11783 the runtime variant used by the program being debugged. */
f7f9143b 11784
82eacd52
JB
11785/* Ada's standard exceptions.
11786
11787 The Ada 83 standard also defined Numeric_Error. But there so many
11788 situations where it was unclear from the Ada 83 Reference Manual
11789 (RM) whether Constraint_Error or Numeric_Error should be raised,
11790 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11791 Interpretation saying that anytime the RM says that Numeric_Error
11792 should be raised, the implementation may raise Constraint_Error.
11793 Ada 95 went one step further and pretty much removed Numeric_Error
11794 from the list of standard exceptions (it made it a renaming of
11795 Constraint_Error, to help preserve compatibility when compiling
11796 an Ada83 compiler). As such, we do not include Numeric_Error from
11797 this list of standard exceptions. */
3d0b0fa3 11798
a121b7c1 11799static const char *standard_exc[] = {
3d0b0fa3
JB
11800 "constraint_error",
11801 "program_error",
11802 "storage_error",
11803 "tasking_error"
11804};
11805
0259addd
JB
11806typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11807
11808/* A structure that describes how to support exception catchpoints
11809 for a given executable. */
11810
11811struct exception_support_info
11812{
11813 /* The name of the symbol to break on in order to insert
11814 a catchpoint on exceptions. */
11815 const char *catch_exception_sym;
11816
11817 /* The name of the symbol to break on in order to insert
11818 a catchpoint on unhandled exceptions. */
11819 const char *catch_exception_unhandled_sym;
11820
11821 /* The name of the symbol to break on in order to insert
11822 a catchpoint on failed assertions. */
11823 const char *catch_assert_sym;
11824
9f757bf7
XR
11825 /* The name of the symbol to break on in order to insert
11826 a catchpoint on exception handling. */
11827 const char *catch_handlers_sym;
11828
0259addd
JB
11829 /* Assuming that the inferior just triggered an unhandled exception
11830 catchpoint, this function is responsible for returning the address
11831 in inferior memory where the name of that exception is stored.
11832 Return zero if the address could not be computed. */
11833 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11834};
11835
11836static CORE_ADDR ada_unhandled_exception_name_addr (void);
11837static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11838
11839/* The following exception support info structure describes how to
11840 implement exception catchpoints with the latest version of the
ca683e3a 11841 Ada runtime (as of 2019-08-??). */
0259addd
JB
11842
11843static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11844{
11845 "__gnat_debug_raise_exception", /* catch_exception_sym */
11846 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11847 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11848 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11849 ada_unhandled_exception_name_addr
11850};
11851
11852/* The following exception support info structure describes how to
11853 implement exception catchpoints with an earlier version of the
11854 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11855
11856static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11857{
11858 "__gnat_debug_raise_exception", /* catch_exception_sym */
11859 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11860 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11861 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11862 ada_unhandled_exception_name_addr
11863};
11864
11865/* The following exception support info structure describes how to
11866 implement exception catchpoints with a slightly older version
11867 of the Ada runtime. */
11868
11869static const struct exception_support_info exception_support_info_fallback =
11870{
11871 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11872 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11873 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11874 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11875 ada_unhandled_exception_name_addr_from_raise
11876};
11877
f17011e0
JB
11878/* Return nonzero if we can detect the exception support routines
11879 described in EINFO.
11880
11881 This function errors out if an abnormal situation is detected
11882 (for instance, if we find the exception support routines, but
11883 that support is found to be incomplete). */
11884
11885static int
11886ada_has_this_exception_support (const struct exception_support_info *einfo)
11887{
11888 struct symbol *sym;
11889
11890 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11891 that should be compiled with debugging information. As a result, we
11892 expect to find that symbol in the symtabs. */
11893
11894 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11895 if (sym == NULL)
a6af7abe
JB
11896 {
11897 /* Perhaps we did not find our symbol because the Ada runtime was
11898 compiled without debugging info, or simply stripped of it.
11899 It happens on some GNU/Linux distributions for instance, where
11900 users have to install a separate debug package in order to get
11901 the runtime's debugging info. In that situation, let the user
11902 know why we cannot insert an Ada exception catchpoint.
11903
11904 Note: Just for the purpose of inserting our Ada exception
11905 catchpoint, we could rely purely on the associated minimal symbol.
11906 But we would be operating in degraded mode anyway, since we are
11907 still lacking the debugging info needed later on to extract
11908 the name of the exception being raised (this name is printed in
11909 the catchpoint message, and is also used when trying to catch
11910 a specific exception). We do not handle this case for now. */
3b7344d5 11911 struct bound_minimal_symbol msym
1c8e84b0
JB
11912 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11913
3b7344d5 11914 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11915 error (_("Your Ada runtime appears to be missing some debugging "
11916 "information.\nCannot insert Ada exception catchpoint "
11917 "in this configuration."));
11918
11919 return 0;
11920 }
f17011e0
JB
11921
11922 /* Make sure that the symbol we found corresponds to a function. */
11923
11924 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11925 {
11926 error (_("Symbol \"%s\" is not a function (class = %d)"),
11927 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11928 return 0;
11929 }
11930
11931 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11932 if (sym == NULL)
11933 {
11934 struct bound_minimal_symbol msym
11935 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11936
11937 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11938 error (_("Your Ada runtime appears to be missing some debugging "
11939 "information.\nCannot insert Ada exception catchpoint "
11940 "in this configuration."));
11941
11942 return 0;
11943 }
11944
11945 /* Make sure that the symbol we found corresponds to a function. */
11946
11947 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11948 {
11949 error (_("Symbol \"%s\" is not a function (class = %d)"),
11950 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11951 return 0;
11952 }
f17011e0
JB
11953
11954 return 1;
11955}
11956
0259addd
JB
11957/* Inspect the Ada runtime and determine which exception info structure
11958 should be used to provide support for exception catchpoints.
11959
3eecfa55
JB
11960 This function will always set the per-inferior exception_info,
11961 or raise an error. */
0259addd
JB
11962
11963static void
11964ada_exception_support_info_sniffer (void)
11965{
3eecfa55 11966 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11967
11968 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11969 if (data->exception_info != NULL)
0259addd
JB
11970 return;
11971
11972 /* Check the latest (default) exception support info. */
f17011e0 11973 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11974 {
3eecfa55 11975 data->exception_info = &default_exception_support_info;
0259addd
JB
11976 return;
11977 }
11978
ca683e3a
AO
11979 /* Try the v0 exception suport info. */
11980 if (ada_has_this_exception_support (&exception_support_info_v0))
11981 {
11982 data->exception_info = &exception_support_info_v0;
11983 return;
11984 }
11985
0259addd 11986 /* Try our fallback exception suport info. */
f17011e0 11987 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11988 {
3eecfa55 11989 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11990 return;
11991 }
11992
11993 /* Sometimes, it is normal for us to not be able to find the routine
11994 we are looking for. This happens when the program is linked with
11995 the shared version of the GNAT runtime, and the program has not been
11996 started yet. Inform the user of these two possible causes if
11997 applicable. */
11998
ccefe4c4 11999 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12000 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12001
12002 /* If the symbol does not exist, then check that the program is
12003 already started, to make sure that shared libraries have been
12004 loaded. If it is not started, this may mean that the symbol is
12005 in a shared library. */
12006
e99b03dc 12007 if (inferior_ptid.pid () == 0)
0259addd
JB
12008 error (_("Unable to insert catchpoint. Try to start the program first."));
12009
12010 /* At this point, we know that we are debugging an Ada program and
12011 that the inferior has been started, but we still are not able to
0963b4bd 12012 find the run-time symbols. That can mean that we are in
0259addd
JB
12013 configurable run time mode, or that a-except as been optimized
12014 out by the linker... In any case, at this point it is not worth
12015 supporting this feature. */
12016
7dda8cff 12017 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12018}
12019
f7f9143b
JB
12020/* True iff FRAME is very likely to be that of a function that is
12021 part of the runtime system. This is all very heuristic, but is
12022 intended to be used as advice as to what frames are uninteresting
12023 to most users. */
12024
12025static int
12026is_known_support_routine (struct frame_info *frame)
12027{
692465f1 12028 enum language func_lang;
f7f9143b 12029 int i;
f35a17b5 12030 const char *fullname;
f7f9143b 12031
4ed6b5be
JB
12032 /* If this code does not have any debugging information (no symtab),
12033 This cannot be any user code. */
f7f9143b 12034
51abb421 12035 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12036 if (sal.symtab == NULL)
12037 return 1;
12038
4ed6b5be
JB
12039 /* If there is a symtab, but the associated source file cannot be
12040 located, then assume this is not user code: Selecting a frame
12041 for which we cannot display the code would not be very helpful
12042 for the user. This should also take care of case such as VxWorks
12043 where the kernel has some debugging info provided for a few units. */
f7f9143b 12044
f35a17b5
JK
12045 fullname = symtab_to_fullname (sal.symtab);
12046 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12047 return 1;
12048
85102364 12049 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
12050 We also check the name of the objfile against the name of some
12051 known system libraries that sometimes come with debugging info
12052 too. */
12053
f7f9143b
JB
12054 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12055 {
12056 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12057 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12058 return 1;
eb822aa6
DE
12059 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12060 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12061 return 1;
f7f9143b
JB
12062 }
12063
4ed6b5be 12064 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12065
c6dc63a1
TT
12066 gdb::unique_xmalloc_ptr<char> func_name
12067 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12068 if (func_name == NULL)
12069 return 1;
12070
12071 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12072 {
12073 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12074 if (re_exec (func_name.get ()))
12075 return 1;
f7f9143b
JB
12076 }
12077
12078 return 0;
12079}
12080
12081/* Find the first frame that contains debugging information and that is not
12082 part of the Ada run-time, starting from FI and moving upward. */
12083
0ef643c8 12084void
f7f9143b
JB
12085ada_find_printable_frame (struct frame_info *fi)
12086{
12087 for (; fi != NULL; fi = get_prev_frame (fi))
12088 {
12089 if (!is_known_support_routine (fi))
12090 {
12091 select_frame (fi);
12092 break;
12093 }
12094 }
12095
12096}
12097
12098/* Assuming that the inferior just triggered an unhandled exception
12099 catchpoint, return the address in inferior memory where the name
12100 of the exception is stored.
12101
12102 Return zero if the address could not be computed. */
12103
12104static CORE_ADDR
12105ada_unhandled_exception_name_addr (void)
0259addd
JB
12106{
12107 return parse_and_eval_address ("e.full_name");
12108}
12109
12110/* Same as ada_unhandled_exception_name_addr, except that this function
12111 should be used when the inferior uses an older version of the runtime,
12112 where the exception name needs to be extracted from a specific frame
12113 several frames up in the callstack. */
12114
12115static CORE_ADDR
12116ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12117{
12118 int frame_level;
12119 struct frame_info *fi;
3eecfa55 12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12121
12122 /* To determine the name of this exception, we need to select
12123 the frame corresponding to RAISE_SYM_NAME. This frame is
12124 at least 3 levels up, so we simply skip the first 3 frames
12125 without checking the name of their associated function. */
12126 fi = get_current_frame ();
12127 for (frame_level = 0; frame_level < 3; frame_level += 1)
12128 if (fi != NULL)
12129 fi = get_prev_frame (fi);
12130
12131 while (fi != NULL)
12132 {
692465f1
JB
12133 enum language func_lang;
12134
c6dc63a1
TT
12135 gdb::unique_xmalloc_ptr<char> func_name
12136 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12137 if (func_name != NULL)
12138 {
c6dc63a1 12139 if (strcmp (func_name.get (),
55b87a52
KS
12140 data->exception_info->catch_exception_sym) == 0)
12141 break; /* We found the frame we were looking for... */
55b87a52 12142 }
fb44b1a7 12143 fi = get_prev_frame (fi);
f7f9143b
JB
12144 }
12145
12146 if (fi == NULL)
12147 return 0;
12148
12149 select_frame (fi);
12150 return parse_and_eval_address ("id.full_name");
12151}
12152
12153/* Assuming the inferior just triggered an Ada exception catchpoint
12154 (of any type), return the address in inferior memory where the name
12155 of the exception is stored, if applicable.
12156
45db7c09
PA
12157 Assumes the selected frame is the current frame.
12158
f7f9143b
JB
12159 Return zero if the address could not be computed, or if not relevant. */
12160
12161static CORE_ADDR
761269c8 12162ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12163 struct breakpoint *b)
12164{
3eecfa55
JB
12165 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12166
f7f9143b
JB
12167 switch (ex)
12168 {
761269c8 12169 case ada_catch_exception:
f7f9143b
JB
12170 return (parse_and_eval_address ("e.full_name"));
12171 break;
12172
761269c8 12173 case ada_catch_exception_unhandled:
3eecfa55 12174 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12175 break;
9f757bf7
XR
12176
12177 case ada_catch_handlers:
12178 return 0; /* The runtimes does not provide access to the exception
12179 name. */
12180 break;
12181
761269c8 12182 case ada_catch_assert:
f7f9143b
JB
12183 return 0; /* Exception name is not relevant in this case. */
12184 break;
12185
12186 default:
12187 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12188 break;
12189 }
12190
12191 return 0; /* Should never be reached. */
12192}
12193
e547c119
JB
12194/* Assuming the inferior is stopped at an exception catchpoint,
12195 return the message which was associated to the exception, if
12196 available. Return NULL if the message could not be retrieved.
12197
e547c119
JB
12198 Note: The exception message can be associated to an exception
12199 either through the use of the Raise_Exception function, or
12200 more simply (Ada 2005 and later), via:
12201
12202 raise Exception_Name with "exception message";
12203
12204 */
12205
6f46ac85 12206static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12207ada_exception_message_1 (void)
12208{
12209 struct value *e_msg_val;
e547c119 12210 int e_msg_len;
e547c119
JB
12211
12212 /* For runtimes that support this feature, the exception message
12213 is passed as an unbounded string argument called "message". */
12214 e_msg_val = parse_and_eval ("message");
12215 if (e_msg_val == NULL)
12216 return NULL; /* Exception message not supported. */
12217
12218 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12219 gdb_assert (e_msg_val != NULL);
12220 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12221
12222 /* If the message string is empty, then treat it as if there was
12223 no exception message. */
12224 if (e_msg_len <= 0)
12225 return NULL;
12226
6f46ac85
TT
12227 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12228 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12229 e_msg.get ()[e_msg_len] = '\0';
e547c119 12230
e547c119
JB
12231 return e_msg;
12232}
12233
12234/* Same as ada_exception_message_1, except that all exceptions are
12235 contained here (returning NULL instead). */
12236
6f46ac85 12237static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12238ada_exception_message (void)
12239{
6f46ac85 12240 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12241
a70b8144 12242 try
e547c119
JB
12243 {
12244 e_msg = ada_exception_message_1 ();
12245 }
230d2906 12246 catch (const gdb_exception_error &e)
e547c119 12247 {
6f46ac85 12248 e_msg.reset (nullptr);
e547c119 12249 }
e547c119
JB
12250
12251 return e_msg;
12252}
12253
f7f9143b
JB
12254/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12255 any error that ada_exception_name_addr_1 might cause to be thrown.
12256 When an error is intercepted, a warning with the error message is printed,
12257 and zero is returned. */
12258
12259static CORE_ADDR
761269c8 12260ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12261 struct breakpoint *b)
12262{
f7f9143b
JB
12263 CORE_ADDR result = 0;
12264
a70b8144 12265 try
f7f9143b
JB
12266 {
12267 result = ada_exception_name_addr_1 (ex, b);
12268 }
12269
230d2906 12270 catch (const gdb_exception_error &e)
f7f9143b 12271 {
3d6e9d23 12272 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12273 return 0;
12274 }
12275
12276 return result;
12277}
12278
cb7de75e 12279static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12280 (const char *excep_string,
12281 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12282
12283/* Ada catchpoints.
12284
12285 In the case of catchpoints on Ada exceptions, the catchpoint will
12286 stop the target on every exception the program throws. When a user
12287 specifies the name of a specific exception, we translate this
12288 request into a condition expression (in text form), and then parse
12289 it into an expression stored in each of the catchpoint's locations.
12290 We then use this condition to check whether the exception that was
12291 raised is the one the user is interested in. If not, then the
12292 target is resumed again. We store the name of the requested
12293 exception, in order to be able to re-set the condition expression
12294 when symbols change. */
12295
12296/* An instance of this type is used to represent an Ada catchpoint
5625a286 12297 breakpoint location. */
28010a5d 12298
5625a286 12299class ada_catchpoint_location : public bp_location
28010a5d 12300{
5625a286 12301public:
5f486660 12302 ada_catchpoint_location (breakpoint *owner)
f06f1252 12303 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12304 {}
28010a5d
PA
12305
12306 /* The condition that checks whether the exception that was raised
12307 is the specific exception the user specified on catchpoint
12308 creation. */
4d01a485 12309 expression_up excep_cond_expr;
28010a5d
PA
12310};
12311
c1fc2657 12312/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12313
c1fc2657 12314struct ada_catchpoint : public breakpoint
28010a5d 12315{
37f6a7f4
TT
12316 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12317 : m_kind (kind)
12318 {
12319 }
12320
28010a5d 12321 /* The name of the specific exception the user specified. */
bc18fbb5 12322 std::string excep_string;
37f6a7f4
TT
12323
12324 /* What kind of catchpoint this is. */
12325 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12326};
12327
12328/* Parse the exception condition string in the context of each of the
12329 catchpoint's locations, and store them for later evaluation. */
12330
12331static void
9f757bf7
XR
12332create_excep_cond_exprs (struct ada_catchpoint *c,
12333 enum ada_exception_catchpoint_kind ex)
28010a5d 12334{
fccf9de1
TT
12335 struct bp_location *bl;
12336
28010a5d 12337 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12338 if (c->excep_string.empty ())
28010a5d
PA
12339 return;
12340
12341 /* Same if there are no locations... */
c1fc2657 12342 if (c->loc == NULL)
28010a5d
PA
12343 return;
12344
fccf9de1
TT
12345 /* Compute the condition expression in text form, from the specific
12346 expection we want to catch. */
12347 std::string cond_string
12348 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12349
fccf9de1
TT
12350 /* Iterate over all the catchpoint's locations, and parse an
12351 expression for each. */
12352 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12353 {
12354 struct ada_catchpoint_location *ada_loc
fccf9de1 12355 = (struct ada_catchpoint_location *) bl;
4d01a485 12356 expression_up exp;
28010a5d 12357
fccf9de1 12358 if (!bl->shlib_disabled)
28010a5d 12359 {
bbc13ae3 12360 const char *s;
28010a5d 12361
cb7de75e 12362 s = cond_string.c_str ();
a70b8144 12363 try
28010a5d 12364 {
fccf9de1
TT
12365 exp = parse_exp_1 (&s, bl->address,
12366 block_for_pc (bl->address),
036e657b 12367 0);
28010a5d 12368 }
230d2906 12369 catch (const gdb_exception_error &e)
849f2b52
JB
12370 {
12371 warning (_("failed to reevaluate internal exception condition "
12372 "for catchpoint %d: %s"),
3d6e9d23 12373 c->number, e.what ());
849f2b52 12374 }
28010a5d
PA
12375 }
12376
b22e99fd 12377 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12378 }
28010a5d
PA
12379}
12380
28010a5d
PA
12381/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12382 structure for all exception catchpoint kinds. */
12383
12384static struct bp_location *
37f6a7f4 12385allocate_location_exception (struct breakpoint *self)
28010a5d 12386{
5f486660 12387 return new ada_catchpoint_location (self);
28010a5d
PA
12388}
12389
12390/* Implement the RE_SET method in the breakpoint_ops structure for all
12391 exception catchpoint kinds. */
12392
12393static void
37f6a7f4 12394re_set_exception (struct breakpoint *b)
28010a5d
PA
12395{
12396 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12397
12398 /* Call the base class's method. This updates the catchpoint's
12399 locations. */
2060206e 12400 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12401
12402 /* Reparse the exception conditional expressions. One for each
12403 location. */
37f6a7f4 12404 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12405}
12406
12407/* Returns true if we should stop for this breakpoint hit. If the
12408 user specified a specific exception, we only want to cause a stop
12409 if the program thrown that exception. */
12410
12411static int
12412should_stop_exception (const struct bp_location *bl)
12413{
12414 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12415 const struct ada_catchpoint_location *ada_loc
12416 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12417 int stop;
12418
37f6a7f4
TT
12419 struct internalvar *var = lookup_internalvar ("_ada_exception");
12420 if (c->m_kind == ada_catch_assert)
12421 clear_internalvar (var);
12422 else
12423 {
12424 try
12425 {
12426 const char *expr;
12427
12428 if (c->m_kind == ada_catch_handlers)
12429 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12430 ".all.occurrence.id");
12431 else
12432 expr = "e";
12433
12434 struct value *exc = parse_and_eval (expr);
12435 set_internalvar (var, exc);
12436 }
12437 catch (const gdb_exception_error &ex)
12438 {
12439 clear_internalvar (var);
12440 }
12441 }
12442
28010a5d 12443 /* With no specific exception, should always stop. */
bc18fbb5 12444 if (c->excep_string.empty ())
28010a5d
PA
12445 return 1;
12446
12447 if (ada_loc->excep_cond_expr == NULL)
12448 {
12449 /* We will have a NULL expression if back when we were creating
12450 the expressions, this location's had failed to parse. */
12451 return 1;
12452 }
12453
12454 stop = 1;
a70b8144 12455 try
28010a5d
PA
12456 {
12457 struct value *mark;
12458
12459 mark = value_mark ();
4d01a485 12460 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12461 value_free_to_mark (mark);
12462 }
230d2906 12463 catch (const gdb_exception &ex)
492d29ea
PA
12464 {
12465 exception_fprintf (gdb_stderr, ex,
12466 _("Error in testing exception condition:\n"));
12467 }
492d29ea 12468
28010a5d
PA
12469 return stop;
12470}
12471
12472/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12473 for all exception catchpoint kinds. */
12474
12475static void
37f6a7f4 12476check_status_exception (bpstat bs)
28010a5d
PA
12477{
12478 bs->stop = should_stop_exception (bs->bp_location_at);
12479}
12480
f7f9143b
JB
12481/* Implement the PRINT_IT method in the breakpoint_ops structure
12482 for all exception catchpoint kinds. */
12483
12484static enum print_stop_action
37f6a7f4 12485print_it_exception (bpstat bs)
f7f9143b 12486{
79a45e25 12487 struct ui_out *uiout = current_uiout;
348d480f
PA
12488 struct breakpoint *b = bs->breakpoint_at;
12489
956a9fb9 12490 annotate_catchpoint (b->number);
f7f9143b 12491
112e8700 12492 if (uiout->is_mi_like_p ())
f7f9143b 12493 {
112e8700 12494 uiout->field_string ("reason",
956a9fb9 12495 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12496 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12497 }
12498
112e8700
SM
12499 uiout->text (b->disposition == disp_del
12500 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12501 uiout->field_signed ("bkptno", b->number);
112e8700 12502 uiout->text (", ");
f7f9143b 12503
45db7c09
PA
12504 /* ada_exception_name_addr relies on the selected frame being the
12505 current frame. Need to do this here because this function may be
12506 called more than once when printing a stop, and below, we'll
12507 select the first frame past the Ada run-time (see
12508 ada_find_printable_frame). */
12509 select_frame (get_current_frame ());
12510
37f6a7f4
TT
12511 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12512 switch (c->m_kind)
f7f9143b 12513 {
761269c8
JB
12514 case ada_catch_exception:
12515 case ada_catch_exception_unhandled:
9f757bf7 12516 case ada_catch_handlers:
956a9fb9 12517 {
37f6a7f4 12518 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12519 char exception_name[256];
12520
12521 if (addr != 0)
12522 {
c714b426
PA
12523 read_memory (addr, (gdb_byte *) exception_name,
12524 sizeof (exception_name) - 1);
956a9fb9
JB
12525 exception_name [sizeof (exception_name) - 1] = '\0';
12526 }
12527 else
12528 {
12529 /* For some reason, we were unable to read the exception
12530 name. This could happen if the Runtime was compiled
12531 without debugging info, for instance. In that case,
12532 just replace the exception name by the generic string
12533 "exception" - it will read as "an exception" in the
12534 notification we are about to print. */
967cff16 12535 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12536 }
12537 /* In the case of unhandled exception breakpoints, we print
12538 the exception name as "unhandled EXCEPTION_NAME", to make
12539 it clearer to the user which kind of catchpoint just got
12540 hit. We used ui_out_text to make sure that this extra
12541 info does not pollute the exception name in the MI case. */
37f6a7f4 12542 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12543 uiout->text ("unhandled ");
12544 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12545 }
12546 break;
761269c8 12547 case ada_catch_assert:
956a9fb9
JB
12548 /* In this case, the name of the exception is not really
12549 important. Just print "failed assertion" to make it clearer
12550 that his program just hit an assertion-failure catchpoint.
12551 We used ui_out_text because this info does not belong in
12552 the MI output. */
112e8700 12553 uiout->text ("failed assertion");
956a9fb9 12554 break;
f7f9143b 12555 }
e547c119 12556
6f46ac85 12557 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12558 if (exception_message != NULL)
12559 {
e547c119 12560 uiout->text (" (");
6f46ac85 12561 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12562 uiout->text (")");
e547c119
JB
12563 }
12564
112e8700 12565 uiout->text (" at ");
956a9fb9 12566 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12567
12568 return PRINT_SRC_AND_LOC;
12569}
12570
12571/* Implement the PRINT_ONE method in the breakpoint_ops structure
12572 for all exception catchpoint kinds. */
12573
12574static void
37f6a7f4 12575print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12576{
79a45e25 12577 struct ui_out *uiout = current_uiout;
28010a5d 12578 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12579 struct value_print_options opts;
12580
12581 get_user_print_options (&opts);
f06f1252 12582
79a45b7d 12583 if (opts.addressprint)
f06f1252 12584 uiout->field_skip ("addr");
f7f9143b
JB
12585
12586 annotate_field (5);
37f6a7f4 12587 switch (c->m_kind)
f7f9143b 12588 {
761269c8 12589 case ada_catch_exception:
bc18fbb5 12590 if (!c->excep_string.empty ())
f7f9143b 12591 {
bc18fbb5
TT
12592 std::string msg = string_printf (_("`%s' Ada exception"),
12593 c->excep_string.c_str ());
28010a5d 12594
112e8700 12595 uiout->field_string ("what", msg);
f7f9143b
JB
12596 }
12597 else
112e8700 12598 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12599
12600 break;
12601
761269c8 12602 case ada_catch_exception_unhandled:
112e8700 12603 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12604 break;
12605
9f757bf7 12606 case ada_catch_handlers:
bc18fbb5 12607 if (!c->excep_string.empty ())
9f757bf7
XR
12608 {
12609 uiout->field_fmt ("what",
12610 _("`%s' Ada exception handlers"),
bc18fbb5 12611 c->excep_string.c_str ());
9f757bf7
XR
12612 }
12613 else
12614 uiout->field_string ("what", "all Ada exceptions handlers");
12615 break;
12616
761269c8 12617 case ada_catch_assert:
112e8700 12618 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12619 break;
12620
12621 default:
12622 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12623 break;
12624 }
12625}
12626
12627/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12628 for all exception catchpoint kinds. */
12629
12630static void
37f6a7f4 12631print_mention_exception (struct breakpoint *b)
f7f9143b 12632{
28010a5d 12633 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12634 struct ui_out *uiout = current_uiout;
28010a5d 12635
112e8700 12636 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12637 : _("Catchpoint "));
381befee 12638 uiout->field_signed ("bkptno", b->number);
112e8700 12639 uiout->text (": ");
00eb2c4a 12640
37f6a7f4 12641 switch (c->m_kind)
f7f9143b 12642 {
761269c8 12643 case ada_catch_exception:
bc18fbb5 12644 if (!c->excep_string.empty ())
00eb2c4a 12645 {
862d101a 12646 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12647 c->excep_string.c_str ());
862d101a 12648 uiout->text (info.c_str ());
00eb2c4a 12649 }
f7f9143b 12650 else
112e8700 12651 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12652 break;
12653
761269c8 12654 case ada_catch_exception_unhandled:
112e8700 12655 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12656 break;
9f757bf7
XR
12657
12658 case ada_catch_handlers:
bc18fbb5 12659 if (!c->excep_string.empty ())
9f757bf7
XR
12660 {
12661 std::string info
12662 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12663 c->excep_string.c_str ());
9f757bf7
XR
12664 uiout->text (info.c_str ());
12665 }
12666 else
12667 uiout->text (_("all Ada exceptions handlers"));
12668 break;
12669
761269c8 12670 case ada_catch_assert:
112e8700 12671 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12672 break;
12673
12674 default:
12675 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12676 break;
12677 }
12678}
12679
6149aea9
PA
12680/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12681 for all exception catchpoint kinds. */
12682
12683static void
37f6a7f4 12684print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12685{
28010a5d
PA
12686 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12687
37f6a7f4 12688 switch (c->m_kind)
6149aea9 12689 {
761269c8 12690 case ada_catch_exception:
6149aea9 12691 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12692 if (!c->excep_string.empty ())
12693 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12694 break;
12695
761269c8 12696 case ada_catch_exception_unhandled:
78076abc 12697 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12698 break;
12699
9f757bf7
XR
12700 case ada_catch_handlers:
12701 fprintf_filtered (fp, "catch handlers");
12702 break;
12703
761269c8 12704 case ada_catch_assert:
6149aea9
PA
12705 fprintf_filtered (fp, "catch assert");
12706 break;
12707
12708 default:
12709 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12710 }
d9b3f62e 12711 print_recreate_thread (b, fp);
6149aea9
PA
12712}
12713
37f6a7f4 12714/* Virtual tables for various breakpoint types. */
2060206e 12715static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12716static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12717static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12718static struct breakpoint_ops catch_handlers_breakpoint_ops;
12719
f06f1252
TT
12720/* See ada-lang.h. */
12721
12722bool
12723is_ada_exception_catchpoint (breakpoint *bp)
12724{
12725 return (bp->ops == &catch_exception_breakpoint_ops
12726 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12727 || bp->ops == &catch_assert_breakpoint_ops
12728 || bp->ops == &catch_handlers_breakpoint_ops);
12729}
12730
f7f9143b
JB
12731/* Split the arguments specified in a "catch exception" command.
12732 Set EX to the appropriate catchpoint type.
28010a5d 12733 Set EXCEP_STRING to the name of the specific exception if
5845583d 12734 specified by the user.
9f757bf7
XR
12735 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12736 "catch handlers" command. False otherwise.
5845583d
JB
12737 If a condition is found at the end of the arguments, the condition
12738 expression is stored in COND_STRING (memory must be deallocated
12739 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12740
12741static void
a121b7c1 12742catch_ada_exception_command_split (const char *args,
9f757bf7 12743 bool is_catch_handlers_cmd,
761269c8 12744 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12745 std::string *excep_string,
12746 std::string *cond_string)
f7f9143b 12747{
bc18fbb5 12748 std::string exception_name;
f7f9143b 12749
bc18fbb5
TT
12750 exception_name = extract_arg (&args);
12751 if (exception_name == "if")
5845583d
JB
12752 {
12753 /* This is not an exception name; this is the start of a condition
12754 expression for a catchpoint on all exceptions. So, "un-get"
12755 this token, and set exception_name to NULL. */
bc18fbb5 12756 exception_name.clear ();
5845583d
JB
12757 args -= 2;
12758 }
f7f9143b 12759
5845583d 12760 /* Check to see if we have a condition. */
f7f9143b 12761
f1735a53 12762 args = skip_spaces (args);
61012eef 12763 if (startswith (args, "if")
5845583d
JB
12764 && (isspace (args[2]) || args[2] == '\0'))
12765 {
12766 args += 2;
f1735a53 12767 args = skip_spaces (args);
5845583d
JB
12768
12769 if (args[0] == '\0')
12770 error (_("Condition missing after `if' keyword"));
bc18fbb5 12771 *cond_string = args;
5845583d
JB
12772
12773 args += strlen (args);
12774 }
12775
12776 /* Check that we do not have any more arguments. Anything else
12777 is unexpected. */
f7f9143b
JB
12778
12779 if (args[0] != '\0')
12780 error (_("Junk at end of expression"));
12781
9f757bf7
XR
12782 if (is_catch_handlers_cmd)
12783 {
12784 /* Catch handling of exceptions. */
12785 *ex = ada_catch_handlers;
12786 *excep_string = exception_name;
12787 }
bc18fbb5 12788 else if (exception_name.empty ())
f7f9143b
JB
12789 {
12790 /* Catch all exceptions. */
761269c8 12791 *ex = ada_catch_exception;
bc18fbb5 12792 excep_string->clear ();
f7f9143b 12793 }
bc18fbb5 12794 else if (exception_name == "unhandled")
f7f9143b
JB
12795 {
12796 /* Catch unhandled exceptions. */
761269c8 12797 *ex = ada_catch_exception_unhandled;
bc18fbb5 12798 excep_string->clear ();
f7f9143b
JB
12799 }
12800 else
12801 {
12802 /* Catch a specific exception. */
761269c8 12803 *ex = ada_catch_exception;
28010a5d 12804 *excep_string = exception_name;
f7f9143b
JB
12805 }
12806}
12807
12808/* Return the name of the symbol on which we should break in order to
12809 implement a catchpoint of the EX kind. */
12810
12811static const char *
761269c8 12812ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12813{
3eecfa55
JB
12814 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12815
12816 gdb_assert (data->exception_info != NULL);
0259addd 12817
f7f9143b
JB
12818 switch (ex)
12819 {
761269c8 12820 case ada_catch_exception:
3eecfa55 12821 return (data->exception_info->catch_exception_sym);
f7f9143b 12822 break;
761269c8 12823 case ada_catch_exception_unhandled:
3eecfa55 12824 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12825 break;
761269c8 12826 case ada_catch_assert:
3eecfa55 12827 return (data->exception_info->catch_assert_sym);
f7f9143b 12828 break;
9f757bf7
XR
12829 case ada_catch_handlers:
12830 return (data->exception_info->catch_handlers_sym);
12831 break;
f7f9143b
JB
12832 default:
12833 internal_error (__FILE__, __LINE__,
12834 _("unexpected catchpoint kind (%d)"), ex);
12835 }
12836}
12837
12838/* Return the breakpoint ops "virtual table" used for catchpoints
12839 of the EX kind. */
12840
c0a91b2b 12841static const struct breakpoint_ops *
761269c8 12842ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12843{
12844 switch (ex)
12845 {
761269c8 12846 case ada_catch_exception:
f7f9143b
JB
12847 return (&catch_exception_breakpoint_ops);
12848 break;
761269c8 12849 case ada_catch_exception_unhandled:
f7f9143b
JB
12850 return (&catch_exception_unhandled_breakpoint_ops);
12851 break;
761269c8 12852 case ada_catch_assert:
f7f9143b
JB
12853 return (&catch_assert_breakpoint_ops);
12854 break;
9f757bf7
XR
12855 case ada_catch_handlers:
12856 return (&catch_handlers_breakpoint_ops);
12857 break;
f7f9143b
JB
12858 default:
12859 internal_error (__FILE__, __LINE__,
12860 _("unexpected catchpoint kind (%d)"), ex);
12861 }
12862}
12863
12864/* Return the condition that will be used to match the current exception
12865 being raised with the exception that the user wants to catch. This
12866 assumes that this condition is used when the inferior just triggered
12867 an exception catchpoint.
cb7de75e 12868 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12869
cb7de75e 12870static std::string
9f757bf7
XR
12871ada_exception_catchpoint_cond_string (const char *excep_string,
12872 enum ada_exception_catchpoint_kind ex)
f7f9143b 12873{
3d0b0fa3 12874 int i;
fccf9de1 12875 bool is_standard_exc = false;
cb7de75e 12876 std::string result;
9f757bf7
XR
12877
12878 if (ex == ada_catch_handlers)
12879 {
12880 /* For exception handlers catchpoints, the condition string does
12881 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12882 result = ("long_integer (GNAT_GCC_exception_Access"
12883 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12884 }
12885 else
fccf9de1 12886 result = "long_integer (e)";
3d0b0fa3 12887
0963b4bd 12888 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12889 runtime units that have been compiled without debugging info; if
28010a5d 12890 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12891 exception (e.g. "constraint_error") then, during the evaluation
12892 of the condition expression, the symbol lookup on this name would
0963b4bd 12893 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12894 may then be set only on user-defined exceptions which have the
12895 same not-fully-qualified name (e.g. my_package.constraint_error).
12896
12897 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12898 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12899 exception constraint_error" is rewritten into "catch exception
12900 standard.constraint_error".
12901
85102364 12902 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12903 the inferior program, then the only way to specify this exception as a
12904 breakpoint condition is to use its fully-qualified named:
fccf9de1 12905 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12906
12907 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12908 {
28010a5d 12909 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12910 {
fccf9de1 12911 is_standard_exc = true;
9f757bf7 12912 break;
3d0b0fa3
JB
12913 }
12914 }
9f757bf7 12915
fccf9de1
TT
12916 result += " = ";
12917
12918 if (is_standard_exc)
12919 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12920 else
12921 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12922
9f757bf7 12923 return result;
f7f9143b
JB
12924}
12925
12926/* Return the symtab_and_line that should be used to insert an exception
12927 catchpoint of the TYPE kind.
12928
28010a5d
PA
12929 ADDR_STRING returns the name of the function where the real
12930 breakpoint that implements the catchpoints is set, depending on the
12931 type of catchpoint we need to create. */
f7f9143b
JB
12932
12933static struct symtab_and_line
bc18fbb5 12934ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12935 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12936{
12937 const char *sym_name;
12938 struct symbol *sym;
f7f9143b 12939
0259addd
JB
12940 /* First, find out which exception support info to use. */
12941 ada_exception_support_info_sniffer ();
12942
12943 /* Then lookup the function on which we will break in order to catch
f7f9143b 12944 the Ada exceptions requested by the user. */
f7f9143b
JB
12945 sym_name = ada_exception_sym_name (ex);
12946 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12947
57aff202
JB
12948 if (sym == NULL)
12949 error (_("Catchpoint symbol not found: %s"), sym_name);
12950
12951 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12952 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12953
12954 /* Set ADDR_STRING. */
cc12f4a8 12955 *addr_string = sym_name;
f7f9143b 12956
f7f9143b 12957 /* Set OPS. */
4b9eee8c 12958 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12959
f17011e0 12960 return find_function_start_sal (sym, 1);
f7f9143b
JB
12961}
12962
b4a5b78b 12963/* Create an Ada exception catchpoint.
f7f9143b 12964
b4a5b78b 12965 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12966
bc18fbb5 12967 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12968 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12969 of the exception to which this catchpoint applies.
2df4d1d5 12970
bc18fbb5 12971 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12972
b4a5b78b
JB
12973 TEMPFLAG, if nonzero, means that the underlying breakpoint
12974 should be temporary.
28010a5d 12975
b4a5b78b 12976 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12977
349774ef 12978void
28010a5d 12979create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12980 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12981 const std::string &excep_string,
56ecd069 12982 const std::string &cond_string,
28010a5d 12983 int tempflag,
349774ef 12984 int disabled,
28010a5d
PA
12985 int from_tty)
12986{
cc12f4a8 12987 std::string addr_string;
b4a5b78b 12988 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12989 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12990
37f6a7f4 12991 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12992 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12993 ops, tempflag, disabled, from_tty);
28010a5d 12994 c->excep_string = excep_string;
9f757bf7 12995 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12996 if (!cond_string.empty ())
12997 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12998 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12999}
13000
9ac4176b
PA
13001/* Implement the "catch exception" command. */
13002
13003static void
eb4c3f4a 13004catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13005 struct cmd_list_element *command)
13006{
a121b7c1 13007 const char *arg = arg_entry;
9ac4176b
PA
13008 struct gdbarch *gdbarch = get_current_arch ();
13009 int tempflag;
761269c8 13010 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13011 std::string excep_string;
56ecd069 13012 std::string cond_string;
9ac4176b
PA
13013
13014 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13015
13016 if (!arg)
13017 arg = "";
9f757bf7 13018 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13019 &cond_string);
9f757bf7
XR
13020 create_ada_exception_catchpoint (gdbarch, ex_kind,
13021 excep_string, cond_string,
13022 tempflag, 1 /* enabled */,
13023 from_tty);
13024}
13025
13026/* Implement the "catch handlers" command. */
13027
13028static void
13029catch_ada_handlers_command (const char *arg_entry, int from_tty,
13030 struct cmd_list_element *command)
13031{
13032 const char *arg = arg_entry;
13033 struct gdbarch *gdbarch = get_current_arch ();
13034 int tempflag;
13035 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13036 std::string excep_string;
56ecd069 13037 std::string cond_string;
9f757bf7
XR
13038
13039 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13040
13041 if (!arg)
13042 arg = "";
13043 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13044 &cond_string);
b4a5b78b
JB
13045 create_ada_exception_catchpoint (gdbarch, ex_kind,
13046 excep_string, cond_string,
349774ef
JB
13047 tempflag, 1 /* enabled */,
13048 from_tty);
9ac4176b
PA
13049}
13050
71bed2db
TT
13051/* Completion function for the Ada "catch" commands. */
13052
13053static void
13054catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13055 const char *text, const char *word)
13056{
13057 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13058
13059 for (const ada_exc_info &info : exceptions)
13060 {
13061 if (startswith (info.name, word))
b02f78f9 13062 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13063 }
13064}
13065
b4a5b78b 13066/* Split the arguments specified in a "catch assert" command.
5845583d 13067
b4a5b78b
JB
13068 ARGS contains the command's arguments (or the empty string if
13069 no arguments were passed).
5845583d
JB
13070
13071 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13072 (the memory needs to be deallocated after use). */
5845583d 13073
b4a5b78b 13074static void
56ecd069 13075catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13076{
f1735a53 13077 args = skip_spaces (args);
f7f9143b 13078
5845583d 13079 /* Check whether a condition was provided. */
61012eef 13080 if (startswith (args, "if")
5845583d 13081 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13082 {
5845583d 13083 args += 2;
f1735a53 13084 args = skip_spaces (args);
5845583d
JB
13085 if (args[0] == '\0')
13086 error (_("condition missing after `if' keyword"));
56ecd069 13087 cond_string.assign (args);
f7f9143b
JB
13088 }
13089
5845583d
JB
13090 /* Otherwise, there should be no other argument at the end of
13091 the command. */
13092 else if (args[0] != '\0')
13093 error (_("Junk at end of arguments."));
f7f9143b
JB
13094}
13095
9ac4176b
PA
13096/* Implement the "catch assert" command. */
13097
13098static void
eb4c3f4a 13099catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13100 struct cmd_list_element *command)
13101{
a121b7c1 13102 const char *arg = arg_entry;
9ac4176b
PA
13103 struct gdbarch *gdbarch = get_current_arch ();
13104 int tempflag;
56ecd069 13105 std::string cond_string;
9ac4176b
PA
13106
13107 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13108
13109 if (!arg)
13110 arg = "";
56ecd069 13111 catch_ada_assert_command_split (arg, cond_string);
761269c8 13112 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13113 "", cond_string,
349774ef
JB
13114 tempflag, 1 /* enabled */,
13115 from_tty);
9ac4176b 13116}
778865d3
JB
13117
13118/* Return non-zero if the symbol SYM is an Ada exception object. */
13119
13120static int
13121ada_is_exception_sym (struct symbol *sym)
13122{
a737d952 13123 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13124
13125 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13126 && SYMBOL_CLASS (sym) != LOC_BLOCK
13127 && SYMBOL_CLASS (sym) != LOC_CONST
13128 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13129 && type_name != NULL && strcmp (type_name, "exception") == 0);
13130}
13131
13132/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13133 Ada exception object. This matches all exceptions except the ones
13134 defined by the Ada language. */
13135
13136static int
13137ada_is_non_standard_exception_sym (struct symbol *sym)
13138{
13139 int i;
13140
13141 if (!ada_is_exception_sym (sym))
13142 return 0;
13143
13144 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13145 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13146 return 0; /* A standard exception. */
13147
13148 /* Numeric_Error is also a standard exception, so exclude it.
13149 See the STANDARD_EXC description for more details as to why
13150 this exception is not listed in that array. */
13151 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13152 return 0;
13153
13154 return 1;
13155}
13156
ab816a27 13157/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13158 objects.
13159
13160 The comparison is determined first by exception name, and then
13161 by exception address. */
13162
ab816a27 13163bool
cc536b21 13164ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13165{
778865d3
JB
13166 int result;
13167
ab816a27
TT
13168 result = strcmp (name, other.name);
13169 if (result < 0)
13170 return true;
13171 if (result == 0 && addr < other.addr)
13172 return true;
13173 return false;
13174}
778865d3 13175
ab816a27 13176bool
cc536b21 13177ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13178{
13179 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13180}
13181
13182/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13183 routine, but keeping the first SKIP elements untouched.
13184
13185 All duplicates are also removed. */
13186
13187static void
ab816a27 13188sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13189 int skip)
13190{
ab816a27
TT
13191 std::sort (exceptions->begin () + skip, exceptions->end ());
13192 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13193 exceptions->end ());
778865d3
JB
13194}
13195
778865d3
JB
13196/* Add all exceptions defined by the Ada standard whose name match
13197 a regular expression.
13198
13199 If PREG is not NULL, then this regexp_t object is used to
13200 perform the symbol name matching. Otherwise, no name-based
13201 filtering is performed.
13202
13203 EXCEPTIONS is a vector of exceptions to which matching exceptions
13204 gets pushed. */
13205
13206static void
2d7cc5c7 13207ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13208 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13209{
13210 int i;
13211
13212 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13213 {
13214 if (preg == NULL
2d7cc5c7 13215 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13216 {
13217 struct bound_minimal_symbol msymbol
13218 = ada_lookup_simple_minsym (standard_exc[i]);
13219
13220 if (msymbol.minsym != NULL)
13221 {
13222 struct ada_exc_info info
77e371c0 13223 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13224
ab816a27 13225 exceptions->push_back (info);
778865d3
JB
13226 }
13227 }
13228 }
13229}
13230
13231/* Add all Ada exceptions defined locally and accessible from the given
13232 FRAME.
13233
13234 If PREG is not NULL, then this regexp_t object is used to
13235 perform the symbol name matching. Otherwise, no name-based
13236 filtering is performed.
13237
13238 EXCEPTIONS is a vector of exceptions to which matching exceptions
13239 gets pushed. */
13240
13241static void
2d7cc5c7
PA
13242ada_add_exceptions_from_frame (compiled_regex *preg,
13243 struct frame_info *frame,
ab816a27 13244 std::vector<ada_exc_info> *exceptions)
778865d3 13245{
3977b71f 13246 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13247
13248 while (block != 0)
13249 {
13250 struct block_iterator iter;
13251 struct symbol *sym;
13252
13253 ALL_BLOCK_SYMBOLS (block, iter, sym)
13254 {
13255 switch (SYMBOL_CLASS (sym))
13256 {
13257 case LOC_TYPEDEF:
13258 case LOC_BLOCK:
13259 case LOC_CONST:
13260 break;
13261 default:
13262 if (ada_is_exception_sym (sym))
13263 {
13264 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13265 SYMBOL_VALUE_ADDRESS (sym)};
13266
ab816a27 13267 exceptions->push_back (info);
778865d3
JB
13268 }
13269 }
13270 }
13271 if (BLOCK_FUNCTION (block) != NULL)
13272 break;
13273 block = BLOCK_SUPERBLOCK (block);
13274 }
13275}
13276
14bc53a8
PA
13277/* Return true if NAME matches PREG or if PREG is NULL. */
13278
13279static bool
2d7cc5c7 13280name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13281{
13282 return (preg == NULL
f945dedf 13283 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13284}
13285
778865d3
JB
13286/* Add all exceptions defined globally whose name name match
13287 a regular expression, excluding standard exceptions.
13288
13289 The reason we exclude standard exceptions is that they need
13290 to be handled separately: Standard exceptions are defined inside
13291 a runtime unit which is normally not compiled with debugging info,
13292 and thus usually do not show up in our symbol search. However,
13293 if the unit was in fact built with debugging info, we need to
13294 exclude them because they would duplicate the entry we found
13295 during the special loop that specifically searches for those
13296 standard exceptions.
13297
13298 If PREG is not NULL, then this regexp_t object is used to
13299 perform the symbol name matching. Otherwise, no name-based
13300 filtering is performed.
13301
13302 EXCEPTIONS is a vector of exceptions to which matching exceptions
13303 gets pushed. */
13304
13305static void
2d7cc5c7 13306ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13307 std::vector<ada_exc_info> *exceptions)
778865d3 13308{
14bc53a8
PA
13309 /* In Ada, the symbol "search name" is a linkage name, whereas the
13310 regular expression used to do the matching refers to the natural
13311 name. So match against the decoded name. */
13312 expand_symtabs_matching (NULL,
b5ec771e 13313 lookup_name_info::match_any (),
14bc53a8
PA
13314 [&] (const char *search_name)
13315 {
f945dedf
CB
13316 std::string decoded = ada_decode (search_name);
13317 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13318 },
13319 NULL,
13320 VARIABLES_DOMAIN);
778865d3 13321
2030c079 13322 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13323 {
b669c953 13324 for (compunit_symtab *s : objfile->compunits ())
778865d3 13325 {
d8aeb77f
TT
13326 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13327 int i;
778865d3 13328
d8aeb77f
TT
13329 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13330 {
582942f4 13331 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13332 struct block_iterator iter;
13333 struct symbol *sym;
778865d3 13334
d8aeb77f
TT
13335 ALL_BLOCK_SYMBOLS (b, iter, sym)
13336 if (ada_is_non_standard_exception_sym (sym)
13337 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13338 {
13339 struct ada_exc_info info
13340 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13341
13342 exceptions->push_back (info);
13343 }
13344 }
778865d3
JB
13345 }
13346 }
13347}
13348
13349/* Implements ada_exceptions_list with the regular expression passed
13350 as a regex_t, rather than a string.
13351
13352 If not NULL, PREG is used to filter out exceptions whose names
13353 do not match. Otherwise, all exceptions are listed. */
13354
ab816a27 13355static std::vector<ada_exc_info>
2d7cc5c7 13356ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13357{
ab816a27 13358 std::vector<ada_exc_info> result;
778865d3
JB
13359 int prev_len;
13360
13361 /* First, list the known standard exceptions. These exceptions
13362 need to be handled separately, as they are usually defined in
13363 runtime units that have been compiled without debugging info. */
13364
13365 ada_add_standard_exceptions (preg, &result);
13366
13367 /* Next, find all exceptions whose scope is local and accessible
13368 from the currently selected frame. */
13369
13370 if (has_stack_frames ())
13371 {
ab816a27 13372 prev_len = result.size ();
778865d3
JB
13373 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13374 &result);
ab816a27 13375 if (result.size () > prev_len)
778865d3
JB
13376 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13377 }
13378
13379 /* Add all exceptions whose scope is global. */
13380
ab816a27 13381 prev_len = result.size ();
778865d3 13382 ada_add_global_exceptions (preg, &result);
ab816a27 13383 if (result.size () > prev_len)
778865d3
JB
13384 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13385
778865d3
JB
13386 return result;
13387}
13388
13389/* Return a vector of ada_exc_info.
13390
13391 If REGEXP is NULL, all exceptions are included in the result.
13392 Otherwise, it should contain a valid regular expression,
13393 and only the exceptions whose names match that regular expression
13394 are included in the result.
13395
13396 The exceptions are sorted in the following order:
13397 - Standard exceptions (defined by the Ada language), in
13398 alphabetical order;
13399 - Exceptions only visible from the current frame, in
13400 alphabetical order;
13401 - Exceptions whose scope is global, in alphabetical order. */
13402
ab816a27 13403std::vector<ada_exc_info>
778865d3
JB
13404ada_exceptions_list (const char *regexp)
13405{
2d7cc5c7
PA
13406 if (regexp == NULL)
13407 return ada_exceptions_list_1 (NULL);
778865d3 13408
2d7cc5c7
PA
13409 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13410 return ada_exceptions_list_1 (&reg);
778865d3
JB
13411}
13412
13413/* Implement the "info exceptions" command. */
13414
13415static void
1d12d88f 13416info_exceptions_command (const char *regexp, int from_tty)
778865d3 13417{
778865d3 13418 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13419
ab816a27 13420 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13421
13422 if (regexp != NULL)
13423 printf_filtered
13424 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13425 else
13426 printf_filtered (_("All defined Ada exceptions:\n"));
13427
ab816a27
TT
13428 for (const ada_exc_info &info : exceptions)
13429 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13430}
13431
4c4b4cd2
PH
13432 /* Operators */
13433/* Information about operators given special treatment in functions
13434 below. */
13435/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13436
13437#define ADA_OPERATORS \
13438 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13439 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13440 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13441 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13442 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13443 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13444 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13445 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13446 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13447 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13448 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13449 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13450 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13451 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13452 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13453 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13454 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13455 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13456 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13457
13458static void
554794dc
SDJ
13459ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13460 int *argsp)
4c4b4cd2
PH
13461{
13462 switch (exp->elts[pc - 1].opcode)
13463 {
76a01679 13464 default:
4c4b4cd2
PH
13465 operator_length_standard (exp, pc, oplenp, argsp);
13466 break;
13467
13468#define OP_DEFN(op, len, args, binop) \
13469 case op: *oplenp = len; *argsp = args; break;
13470 ADA_OPERATORS;
13471#undef OP_DEFN
52ce6436
PH
13472
13473 case OP_AGGREGATE:
13474 *oplenp = 3;
13475 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13476 break;
13477
13478 case OP_CHOICES:
13479 *oplenp = 3;
13480 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13481 break;
4c4b4cd2
PH
13482 }
13483}
13484
c0201579
JK
13485/* Implementation of the exp_descriptor method operator_check. */
13486
13487static int
13488ada_operator_check (struct expression *exp, int pos,
13489 int (*objfile_func) (struct objfile *objfile, void *data),
13490 void *data)
13491{
13492 const union exp_element *const elts = exp->elts;
13493 struct type *type = NULL;
13494
13495 switch (elts[pos].opcode)
13496 {
13497 case UNOP_IN_RANGE:
13498 case UNOP_QUAL:
13499 type = elts[pos + 1].type;
13500 break;
13501
13502 default:
13503 return operator_check_standard (exp, pos, objfile_func, data);
13504 }
13505
13506 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13507
13508 if (type && TYPE_OBJFILE (type)
13509 && (*objfile_func) (TYPE_OBJFILE (type), data))
13510 return 1;
13511
13512 return 0;
13513}
13514
a121b7c1 13515static const char *
4c4b4cd2
PH
13516ada_op_name (enum exp_opcode opcode)
13517{
13518 switch (opcode)
13519 {
76a01679 13520 default:
4c4b4cd2 13521 return op_name_standard (opcode);
52ce6436 13522
4c4b4cd2
PH
13523#define OP_DEFN(op, len, args, binop) case op: return #op;
13524 ADA_OPERATORS;
13525#undef OP_DEFN
52ce6436
PH
13526
13527 case OP_AGGREGATE:
13528 return "OP_AGGREGATE";
13529 case OP_CHOICES:
13530 return "OP_CHOICES";
13531 case OP_NAME:
13532 return "OP_NAME";
4c4b4cd2
PH
13533 }
13534}
13535
13536/* As for operator_length, but assumes PC is pointing at the first
13537 element of the operator, and gives meaningful results only for the
52ce6436 13538 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13539
13540static void
76a01679
JB
13541ada_forward_operator_length (struct expression *exp, int pc,
13542 int *oplenp, int *argsp)
4c4b4cd2 13543{
76a01679 13544 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13545 {
13546 default:
13547 *oplenp = *argsp = 0;
13548 break;
52ce6436 13549
4c4b4cd2
PH
13550#define OP_DEFN(op, len, args, binop) \
13551 case op: *oplenp = len; *argsp = args; break;
13552 ADA_OPERATORS;
13553#undef OP_DEFN
52ce6436
PH
13554
13555 case OP_AGGREGATE:
13556 *oplenp = 3;
13557 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13558 break;
13559
13560 case OP_CHOICES:
13561 *oplenp = 3;
13562 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13563 break;
13564
13565 case OP_STRING:
13566 case OP_NAME:
13567 {
13568 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13569
52ce6436
PH
13570 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13571 *argsp = 0;
13572 break;
13573 }
4c4b4cd2
PH
13574 }
13575}
13576
13577static int
13578ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13579{
13580 enum exp_opcode op = exp->elts[elt].opcode;
13581 int oplen, nargs;
13582 int pc = elt;
13583 int i;
76a01679 13584
4c4b4cd2
PH
13585 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13586
76a01679 13587 switch (op)
4c4b4cd2 13588 {
76a01679 13589 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13590 case OP_ATR_FIRST:
13591 case OP_ATR_LAST:
13592 case OP_ATR_LENGTH:
13593 case OP_ATR_IMAGE:
13594 case OP_ATR_MAX:
13595 case OP_ATR_MIN:
13596 case OP_ATR_MODULUS:
13597 case OP_ATR_POS:
13598 case OP_ATR_SIZE:
13599 case OP_ATR_TAG:
13600 case OP_ATR_VAL:
13601 break;
13602
13603 case UNOP_IN_RANGE:
13604 case UNOP_QUAL:
323e0a4a
AC
13605 /* XXX: gdb_sprint_host_address, type_sprint */
13606 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13607 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13608 fprintf_filtered (stream, " (");
13609 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13610 fprintf_filtered (stream, ")");
13611 break;
13612 case BINOP_IN_BOUNDS:
52ce6436
PH
13613 fprintf_filtered (stream, " (%d)",
13614 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13615 break;
13616 case TERNOP_IN_RANGE:
13617 break;
13618
52ce6436
PH
13619 case OP_AGGREGATE:
13620 case OP_OTHERS:
13621 case OP_DISCRETE_RANGE:
13622 case OP_POSITIONAL:
13623 case OP_CHOICES:
13624 break;
13625
13626 case OP_NAME:
13627 case OP_STRING:
13628 {
13629 char *name = &exp->elts[elt + 2].string;
13630 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13631
52ce6436
PH
13632 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13633 break;
13634 }
13635
4c4b4cd2
PH
13636 default:
13637 return dump_subexp_body_standard (exp, stream, elt);
13638 }
13639
13640 elt += oplen;
13641 for (i = 0; i < nargs; i += 1)
13642 elt = dump_subexp (exp, stream, elt);
13643
13644 return elt;
13645}
13646
13647/* The Ada extension of print_subexp (q.v.). */
13648
76a01679
JB
13649static void
13650ada_print_subexp (struct expression *exp, int *pos,
13651 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13652{
52ce6436 13653 int oplen, nargs, i;
4c4b4cd2
PH
13654 int pc = *pos;
13655 enum exp_opcode op = exp->elts[pc].opcode;
13656
13657 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13658
52ce6436 13659 *pos += oplen;
4c4b4cd2
PH
13660 switch (op)
13661 {
13662 default:
52ce6436 13663 *pos -= oplen;
4c4b4cd2
PH
13664 print_subexp_standard (exp, pos, stream, prec);
13665 return;
13666
13667 case OP_VAR_VALUE:
4c4b4cd2
PH
13668 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13669 return;
13670
13671 case BINOP_IN_BOUNDS:
323e0a4a 13672 /* XXX: sprint_subexp */
4c4b4cd2 13673 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13674 fputs_filtered (" in ", stream);
4c4b4cd2 13675 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13676 fputs_filtered ("'range", stream);
4c4b4cd2 13677 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13678 fprintf_filtered (stream, "(%ld)",
13679 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13680 return;
13681
13682 case TERNOP_IN_RANGE:
4c4b4cd2 13683 if (prec >= PREC_EQUAL)
76a01679 13684 fputs_filtered ("(", stream);
323e0a4a 13685 /* XXX: sprint_subexp */
4c4b4cd2 13686 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13687 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13688 print_subexp (exp, pos, stream, PREC_EQUAL);
13689 fputs_filtered (" .. ", stream);
13690 print_subexp (exp, pos, stream, PREC_EQUAL);
13691 if (prec >= PREC_EQUAL)
76a01679
JB
13692 fputs_filtered (")", stream);
13693 return;
4c4b4cd2
PH
13694
13695 case OP_ATR_FIRST:
13696 case OP_ATR_LAST:
13697 case OP_ATR_LENGTH:
13698 case OP_ATR_IMAGE:
13699 case OP_ATR_MAX:
13700 case OP_ATR_MIN:
13701 case OP_ATR_MODULUS:
13702 case OP_ATR_POS:
13703 case OP_ATR_SIZE:
13704 case OP_ATR_TAG:
13705 case OP_ATR_VAL:
4c4b4cd2 13706 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13707 {
13708 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13709 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13710 &type_print_raw_options);
76a01679
JB
13711 *pos += 3;
13712 }
4c4b4cd2 13713 else
76a01679 13714 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13715 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13716 if (nargs > 1)
76a01679
JB
13717 {
13718 int tem;
5b4ee69b 13719
76a01679
JB
13720 for (tem = 1; tem < nargs; tem += 1)
13721 {
13722 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13723 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13724 }
13725 fputs_filtered (")", stream);
13726 }
4c4b4cd2 13727 return;
14f9c5c9 13728
4c4b4cd2 13729 case UNOP_QUAL:
4c4b4cd2
PH
13730 type_print (exp->elts[pc + 1].type, "", stream, 0);
13731 fputs_filtered ("'(", stream);
13732 print_subexp (exp, pos, stream, PREC_PREFIX);
13733 fputs_filtered (")", stream);
13734 return;
14f9c5c9 13735
4c4b4cd2 13736 case UNOP_IN_RANGE:
323e0a4a 13737 /* XXX: sprint_subexp */
4c4b4cd2 13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13739 fputs_filtered (" in ", stream);
79d43c61
TT
13740 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13741 &type_print_raw_options);
4c4b4cd2 13742 return;
52ce6436
PH
13743
13744 case OP_DISCRETE_RANGE:
13745 print_subexp (exp, pos, stream, PREC_SUFFIX);
13746 fputs_filtered ("..", stream);
13747 print_subexp (exp, pos, stream, PREC_SUFFIX);
13748 return;
13749
13750 case OP_OTHERS:
13751 fputs_filtered ("others => ", stream);
13752 print_subexp (exp, pos, stream, PREC_SUFFIX);
13753 return;
13754
13755 case OP_CHOICES:
13756 for (i = 0; i < nargs-1; i += 1)
13757 {
13758 if (i > 0)
13759 fputs_filtered ("|", stream);
13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 }
13762 fputs_filtered (" => ", stream);
13763 print_subexp (exp, pos, stream, PREC_SUFFIX);
13764 return;
13765
13766 case OP_POSITIONAL:
13767 print_subexp (exp, pos, stream, PREC_SUFFIX);
13768 return;
13769
13770 case OP_AGGREGATE:
13771 fputs_filtered ("(", stream);
13772 for (i = 0; i < nargs; i += 1)
13773 {
13774 if (i > 0)
13775 fputs_filtered (", ", stream);
13776 print_subexp (exp, pos, stream, PREC_SUFFIX);
13777 }
13778 fputs_filtered (")", stream);
13779 return;
4c4b4cd2
PH
13780 }
13781}
14f9c5c9
AS
13782
13783/* Table mapping opcodes into strings for printing operators
13784 and precedences of the operators. */
13785
d2e4a39e
AS
13786static const struct op_print ada_op_print_tab[] = {
13787 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13788 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13789 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13790 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13791 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13792 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13793 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13794 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13795 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13796 {">=", BINOP_GEQ, PREC_ORDER, 0},
13797 {">", BINOP_GTR, PREC_ORDER, 0},
13798 {"<", BINOP_LESS, PREC_ORDER, 0},
13799 {">>", BINOP_RSH, PREC_SHIFT, 0},
13800 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13801 {"+", BINOP_ADD, PREC_ADD, 0},
13802 {"-", BINOP_SUB, PREC_ADD, 0},
13803 {"&", BINOP_CONCAT, PREC_ADD, 0},
13804 {"*", BINOP_MUL, PREC_MUL, 0},
13805 {"/", BINOP_DIV, PREC_MUL, 0},
13806 {"rem", BINOP_REM, PREC_MUL, 0},
13807 {"mod", BINOP_MOD, PREC_MUL, 0},
13808 {"**", BINOP_EXP, PREC_REPEAT, 0},
13809 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13810 {"-", UNOP_NEG, PREC_PREFIX, 0},
13811 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13812 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13813 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13814 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13815 {".all", UNOP_IND, PREC_SUFFIX, 1},
13816 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13817 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13818 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13819};
13820\f
72d5681a
PH
13821enum ada_primitive_types {
13822 ada_primitive_type_int,
13823 ada_primitive_type_long,
13824 ada_primitive_type_short,
13825 ada_primitive_type_char,
13826 ada_primitive_type_float,
13827 ada_primitive_type_double,
13828 ada_primitive_type_void,
13829 ada_primitive_type_long_long,
13830 ada_primitive_type_long_double,
13831 ada_primitive_type_natural,
13832 ada_primitive_type_positive,
13833 ada_primitive_type_system_address,
08f49010 13834 ada_primitive_type_storage_offset,
72d5681a
PH
13835 nr_ada_primitive_types
13836};
6c038f32
PH
13837
13838static void
d4a9a881 13839ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13840 struct language_arch_info *lai)
13841{
d4a9a881 13842 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13843
72d5681a 13844 lai->primitive_type_vector
d4a9a881 13845 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13846 struct type *);
e9bb382b
UW
13847
13848 lai->primitive_type_vector [ada_primitive_type_int]
13849 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13850 0, "integer");
13851 lai->primitive_type_vector [ada_primitive_type_long]
13852 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13853 0, "long_integer");
13854 lai->primitive_type_vector [ada_primitive_type_short]
13855 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13856 0, "short_integer");
13857 lai->string_char_type
13858 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13859 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13860 lai->primitive_type_vector [ada_primitive_type_float]
13861 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13862 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13863 lai->primitive_type_vector [ada_primitive_type_double]
13864 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13865 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13866 lai->primitive_type_vector [ada_primitive_type_long_long]
13867 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13868 0, "long_long_integer");
13869 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13870 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13871 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13872 lai->primitive_type_vector [ada_primitive_type_natural]
13873 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13874 0, "natural");
13875 lai->primitive_type_vector [ada_primitive_type_positive]
13876 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13877 0, "positive");
13878 lai->primitive_type_vector [ada_primitive_type_void]
13879 = builtin->builtin_void;
13880
13881 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13882 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13883 "void"));
72d5681a
PH
13884 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13885 = "system__address";
fbb06eb1 13886
08f49010
XR
13887 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13888 type. This is a signed integral type whose size is the same as
13889 the size of addresses. */
13890 {
13891 unsigned int addr_length = TYPE_LENGTH
13892 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13893
13894 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13895 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13896 "storage_offset");
13897 }
13898
47e729a8 13899 lai->bool_type_symbol = NULL;
fbb06eb1 13900 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13901}
6c038f32
PH
13902\f
13903 /* Language vector */
13904
13905/* Not really used, but needed in the ada_language_defn. */
13906
13907static void
6c7a06a3 13908emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13909{
6c7a06a3 13910 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13911}
13912
13913static int
410a0ff2 13914parse (struct parser_state *ps)
6c038f32
PH
13915{
13916 warnings_issued = 0;
410a0ff2 13917 return ada_parse (ps);
6c038f32
PH
13918}
13919
13920static const struct exp_descriptor ada_exp_descriptor = {
13921 ada_print_subexp,
13922 ada_operator_length,
c0201579 13923 ada_operator_check,
6c038f32
PH
13924 ada_op_name,
13925 ada_dump_subexp_body,
13926 ada_evaluate_subexp
13927};
13928
b5ec771e
PA
13929/* symbol_name_matcher_ftype adapter for wild_match. */
13930
13931static bool
13932do_wild_match (const char *symbol_search_name,
13933 const lookup_name_info &lookup_name,
a207cff2 13934 completion_match_result *comp_match_res)
b5ec771e
PA
13935{
13936 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13937}
13938
13939/* symbol_name_matcher_ftype adapter for full_match. */
13940
13941static bool
13942do_full_match (const char *symbol_search_name,
13943 const lookup_name_info &lookup_name,
a207cff2 13944 completion_match_result *comp_match_res)
b5ec771e
PA
13945{
13946 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13947}
13948
a2cd4f14
JB
13949/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13950
13951static bool
13952do_exact_match (const char *symbol_search_name,
13953 const lookup_name_info &lookup_name,
13954 completion_match_result *comp_match_res)
13955{
13956 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13957}
13958
b5ec771e
PA
13959/* Build the Ada lookup name for LOOKUP_NAME. */
13960
13961ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13962{
13963 const std::string &user_name = lookup_name.name ();
13964
13965 if (user_name[0] == '<')
13966 {
13967 if (user_name.back () == '>')
13968 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13969 else
13970 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13971 m_encoded_p = true;
13972 m_verbatim_p = true;
13973 m_wild_match_p = false;
13974 m_standard_p = false;
13975 }
13976 else
13977 {
13978 m_verbatim_p = false;
13979
13980 m_encoded_p = user_name.find ("__") != std::string::npos;
13981
13982 if (!m_encoded_p)
13983 {
13984 const char *folded = ada_fold_name (user_name.c_str ());
13985 const char *encoded = ada_encode_1 (folded, false);
13986 if (encoded != NULL)
13987 m_encoded_name = encoded;
13988 else
13989 m_encoded_name = user_name;
13990 }
13991 else
13992 m_encoded_name = user_name;
13993
13994 /* Handle the 'package Standard' special case. See description
13995 of m_standard_p. */
13996 if (startswith (m_encoded_name.c_str (), "standard__"))
13997 {
13998 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13999 m_standard_p = true;
14000 }
14001 else
14002 m_standard_p = false;
74ccd7f5 14003
b5ec771e
PA
14004 /* If the name contains a ".", then the user is entering a fully
14005 qualified entity name, and the match must not be done in wild
14006 mode. Similarly, if the user wants to complete what looks
14007 like an encoded name, the match must not be done in wild
14008 mode. Also, in the standard__ special case always do
14009 non-wild matching. */
14010 m_wild_match_p
14011 = (lookup_name.match_type () != symbol_name_match_type::FULL
14012 && !m_encoded_p
14013 && !m_standard_p
14014 && user_name.find ('.') == std::string::npos);
14015 }
14016}
14017
14018/* symbol_name_matcher_ftype method for Ada. This only handles
14019 completion mode. */
14020
14021static bool
14022ada_symbol_name_matches (const char *symbol_search_name,
14023 const lookup_name_info &lookup_name,
a207cff2 14024 completion_match_result *comp_match_res)
74ccd7f5 14025{
b5ec771e
PA
14026 return lookup_name.ada ().matches (symbol_search_name,
14027 lookup_name.match_type (),
a207cff2 14028 comp_match_res);
b5ec771e
PA
14029}
14030
de63c46b
PA
14031/* A name matcher that matches the symbol name exactly, with
14032 strcmp. */
14033
14034static bool
14035literal_symbol_name_matcher (const char *symbol_search_name,
14036 const lookup_name_info &lookup_name,
14037 completion_match_result *comp_match_res)
14038{
14039 const std::string &name = lookup_name.name ();
14040
14041 int cmp = (lookup_name.completion_mode ()
14042 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14043 : strcmp (symbol_search_name, name.c_str ()));
14044 if (cmp == 0)
14045 {
14046 if (comp_match_res != NULL)
14047 comp_match_res->set_match (symbol_search_name);
14048 return true;
14049 }
14050 else
14051 return false;
14052}
14053
b5ec771e
PA
14054/* Implement the "la_get_symbol_name_matcher" language_defn method for
14055 Ada. */
14056
14057static symbol_name_matcher_ftype *
14058ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14059{
de63c46b
PA
14060 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14061 return literal_symbol_name_matcher;
14062
b5ec771e
PA
14063 if (lookup_name.completion_mode ())
14064 return ada_symbol_name_matches;
74ccd7f5 14065 else
b5ec771e
PA
14066 {
14067 if (lookup_name.ada ().wild_match_p ())
14068 return do_wild_match;
a2cd4f14
JB
14069 else if (lookup_name.ada ().verbatim_p ())
14070 return do_exact_match;
b5ec771e
PA
14071 else
14072 return do_full_match;
14073 }
74ccd7f5
JB
14074}
14075
a5ee536b
JB
14076/* Implement the "la_read_var_value" language_defn method for Ada. */
14077
14078static struct value *
63e43d3a
PMR
14079ada_read_var_value (struct symbol *var, const struct block *var_block,
14080 struct frame_info *frame)
a5ee536b 14081{
a5ee536b
JB
14082 /* The only case where default_read_var_value is not sufficient
14083 is when VAR is a renaming... */
c0e70c62
TT
14084 if (frame != nullptr)
14085 {
14086 const struct block *frame_block = get_frame_block (frame, NULL);
14087 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14088 return ada_read_renaming_var_value (var, frame_block);
14089 }
a5ee536b
JB
14090
14091 /* This is a typical case where we expect the default_read_var_value
14092 function to work. */
63e43d3a 14093 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14094}
14095
56618e20
TT
14096static const char *ada_extensions[] =
14097{
14098 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14099};
14100
47e77640 14101extern const struct language_defn ada_language_defn = {
6c038f32 14102 "ada", /* Language name */
6abde28f 14103 "Ada",
6c038f32 14104 language_ada,
6c038f32 14105 range_check_off,
6c038f32
PH
14106 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14107 that's not quite what this means. */
6c038f32 14108 array_row_major,
9a044a89 14109 macro_expansion_no,
56618e20 14110 ada_extensions,
6c038f32
PH
14111 &ada_exp_descriptor,
14112 parse,
6c038f32
PH
14113 resolve,
14114 ada_printchar, /* Print a character constant */
14115 ada_printstr, /* Function to print string constant */
14116 emit_char, /* Function to print single char (not used) */
6c038f32 14117 ada_print_type, /* Print a type using appropriate syntax */
be942545 14118 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14119 ada_val_print, /* Print a value using appropriate syntax */
14120 ada_value_print, /* Print a top-level value */
a5ee536b 14121 ada_read_var_value, /* la_read_var_value */
6c038f32 14122 NULL, /* Language specific skip_trampoline */
2b2d9e11 14123 NULL, /* name_of_this */
59cc4834 14124 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14125 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14126 basic_lookup_transparent_type, /* lookup_transparent_type */
14127 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14128 ada_sniff_from_mangled_name,
0963b4bd
MS
14129 NULL, /* Language specific
14130 class_name_from_physname */
6c038f32
PH
14131 ada_op_print_tab, /* expression operators for printing */
14132 0, /* c-style arrays */
14133 1, /* String lower bound */
6c038f32 14134 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14135 ada_collect_symbol_completion_matches,
72d5681a 14136 ada_language_arch_info,
e79af960 14137 ada_print_array_index,
41f1b697 14138 default_pass_by_reference,
ae6a3a4c 14139 c_get_string,
e2b7af72 14140 ada_watch_location_expression,
b5ec771e 14141 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14142 ada_iterate_over_symbols,
5ffa0793 14143 default_search_name_hash,
a53b64ea 14144 &ada_varobj_ops,
bb2ec1b3 14145 NULL,
721b08c6 14146 NULL,
4be290b2 14147 ada_is_string_type,
721b08c6 14148 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14149};
14150
5bf03f13
JB
14151/* Command-list for the "set/show ada" prefix command. */
14152static struct cmd_list_element *set_ada_list;
14153static struct cmd_list_element *show_ada_list;
14154
14155/* Implement the "set ada" prefix command. */
14156
14157static void
981a3fb3 14158set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14159{
14160 printf_unfiltered (_(\
14161"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14162 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14163}
14164
14165/* Implement the "show ada" prefix command. */
14166
14167static void
981a3fb3 14168show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14169{
14170 cmd_show_list (show_ada_list, from_tty, "");
14171}
14172
2060206e
PA
14173static void
14174initialize_ada_catchpoint_ops (void)
14175{
14176 struct breakpoint_ops *ops;
14177
14178 initialize_breakpoint_ops ();
14179
14180 ops = &catch_exception_breakpoint_ops;
14181 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14182 ops->allocate_location = allocate_location_exception;
14183 ops->re_set = re_set_exception;
14184 ops->check_status = check_status_exception;
14185 ops->print_it = print_it_exception;
14186 ops->print_one = print_one_exception;
14187 ops->print_mention = print_mention_exception;
14188 ops->print_recreate = print_recreate_exception;
2060206e
PA
14189
14190 ops = &catch_exception_unhandled_breakpoint_ops;
14191 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14192 ops->allocate_location = allocate_location_exception;
14193 ops->re_set = re_set_exception;
14194 ops->check_status = check_status_exception;
14195 ops->print_it = print_it_exception;
14196 ops->print_one = print_one_exception;
14197 ops->print_mention = print_mention_exception;
14198 ops->print_recreate = print_recreate_exception;
2060206e
PA
14199
14200 ops = &catch_assert_breakpoint_ops;
14201 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14202 ops->allocate_location = allocate_location_exception;
14203 ops->re_set = re_set_exception;
14204 ops->check_status = check_status_exception;
14205 ops->print_it = print_it_exception;
14206 ops->print_one = print_one_exception;
14207 ops->print_mention = print_mention_exception;
14208 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14209
14210 ops = &catch_handlers_breakpoint_ops;
14211 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14212 ops->allocate_location = allocate_location_exception;
14213 ops->re_set = re_set_exception;
14214 ops->check_status = check_status_exception;
14215 ops->print_it = print_it_exception;
14216 ops->print_one = print_one_exception;
14217 ops->print_mention = print_mention_exception;
14218 ops->print_recreate = print_recreate_exception;
2060206e
PA
14219}
14220
3d9434b5
JB
14221/* This module's 'new_objfile' observer. */
14222
14223static void
14224ada_new_objfile_observer (struct objfile *objfile)
14225{
14226 ada_clear_symbol_cache ();
14227}
14228
14229/* This module's 'free_objfile' observer. */
14230
14231static void
14232ada_free_objfile_observer (struct objfile *objfile)
14233{
14234 ada_clear_symbol_cache ();
14235}
14236
d2e4a39e 14237void
6c038f32 14238_initialize_ada_language (void)
14f9c5c9 14239{
2060206e
PA
14240 initialize_ada_catchpoint_ops ();
14241
5bf03f13 14242 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14243 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14244 &set_ada_list, "set ada ", 0, &setlist);
14245
14246 add_prefix_cmd ("ada", no_class, show_ada_command,
14247 _("Generic command for showing Ada-specific settings."),
14248 &show_ada_list, "show ada ", 0, &showlist);
14249
14250 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14251 &trust_pad_over_xvs, _("\
590042fc
PW
14252Enable or disable an optimization trusting PAD types over XVS types."), _("\
14253Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14254 _("\
14255This is related to the encoding used by the GNAT compiler. The debugger\n\
14256should normally trust the contents of PAD types, but certain older versions\n\
14257of GNAT have a bug that sometimes causes the information in the PAD type\n\
14258to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14259work around this bug. It is always safe to turn this option \"off\", but\n\
14260this incurs a slight performance penalty, so it is recommended to NOT change\n\
14261this option to \"off\" unless necessary."),
14262 NULL, NULL, &set_ada_list, &show_ada_list);
14263
d72413e6
PMR
14264 add_setshow_boolean_cmd ("print-signatures", class_vars,
14265 &print_signatures, _("\
14266Enable or disable the output of formal and return types for functions in the \
590042fc 14267overloads selection menu."), _("\
d72413e6 14268Show whether the output of formal and return types for functions in the \
590042fc 14269overloads selection menu is activated."),
d72413e6
PMR
14270 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14271
9ac4176b
PA
14272 add_catch_command ("exception", _("\
14273Catch Ada exceptions, when raised.\n\
9bf7038b 14274Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14275Without any argument, stop when any Ada exception is raised.\n\
14276If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14277being raised does not have a handler (and will therefore lead to the task's\n\
14278termination).\n\
14279Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14280raised is the same as ARG.\n\
14281CONDITION is a boolean expression that is evaluated to see whether the\n\
14282exception should cause a stop."),
9ac4176b 14283 catch_ada_exception_command,
71bed2db 14284 catch_ada_completer,
9ac4176b
PA
14285 CATCH_PERMANENT,
14286 CATCH_TEMPORARY);
9f757bf7
XR
14287
14288 add_catch_command ("handlers", _("\
14289Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14290Usage: catch handlers [ARG] [if CONDITION]\n\
14291Without any argument, stop when any Ada exception is handled.\n\
14292With an argument, catch only exceptions with the given name.\n\
14293CONDITION is a boolean expression that is evaluated to see whether the\n\
14294exception should cause a stop."),
9f757bf7 14295 catch_ada_handlers_command,
71bed2db 14296 catch_ada_completer,
9f757bf7
XR
14297 CATCH_PERMANENT,
14298 CATCH_TEMPORARY);
9ac4176b
PA
14299 add_catch_command ("assert", _("\
14300Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14301Usage: catch assert [if CONDITION]\n\
14302CONDITION is a boolean expression that is evaluated to see whether the\n\
14303exception should cause a stop."),
9ac4176b
PA
14304 catch_assert_command,
14305 NULL,
14306 CATCH_PERMANENT,
14307 CATCH_TEMPORARY);
14308
6c038f32 14309 varsize_limit = 65536;
3fcded8f
JB
14310 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14311 &varsize_limit, _("\
14312Set the maximum number of bytes allowed in a variable-size object."), _("\
14313Show the maximum number of bytes allowed in a variable-size object."), _("\
14314Attempts to access an object whose size is not a compile-time constant\n\
14315and exceeds this limit will cause an error."),
14316 NULL, NULL, &setlist, &showlist);
6c038f32 14317
778865d3
JB
14318 add_info ("exceptions", info_exceptions_command,
14319 _("\
14320List all Ada exception names.\n\
9bf7038b 14321Usage: info exceptions [REGEXP]\n\
778865d3
JB
14322If a regular expression is passed as an argument, only those matching\n\
14323the regular expression are listed."));
14324
c6044dd1
JB
14325 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14326 _("Set Ada maintenance-related variables."),
14327 &maint_set_ada_cmdlist, "maintenance set ada ",
14328 0/*allow-unknown*/, &maintenance_set_cmdlist);
14329
14330 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14331 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14332 &maint_show_ada_cmdlist, "maintenance show ada ",
14333 0/*allow-unknown*/, &maintenance_show_cmdlist);
14334
14335 add_setshow_boolean_cmd
14336 ("ignore-descriptive-types", class_maintenance,
14337 &ada_ignore_descriptive_types_p,
14338 _("Set whether descriptive types generated by GNAT should be ignored."),
14339 _("Show whether descriptive types generated by GNAT should be ignored."),
14340 _("\
14341When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14342DWARF attribute."),
14343 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14344
459a2e4c
TT
14345 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14346 NULL, xcalloc, xfree);
6b69afc4 14347
3d9434b5 14348 /* The ada-lang observers. */
76727919
TT
14349 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14350 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14351 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14352}